C\&O 355, Fall 2010
 Lecture 7 Notes

Nicholas Harvey
http://www.math.uwaterloo.ca/~harvey/

1 Covering Hemispheres by Ellipsoids

Recall our notation $B=\{x:\|x\| \leq 1\}$ and $H_{u}=\left\{x: x^{\boldsymbol{\top}} u \geq 0\right\}$, where u is an arbitrary unit vector. The next theorem defines an ellipsoid that covers $B \cap H_{u}$ and analyzes its volume. For simplicity, let us assume that $n \geq 3$.

Theorem 1. Define

$$
\begin{aligned}
M & =\frac{n^{2}}{n^{2}-1}\left(I-\frac{2}{n+1} u u^{\top}\right) \\
b & =\frac{u}{n+1} \\
B^{\prime} & =E(M, b)=\left\{x:(x-b)^{\top} M^{-1}(x-b) \leq 1\right\}
\end{aligned}
$$

Then B^{\prime} satisfies the following two properties.

$$
\begin{gather*}
B \cap H_{u} \subseteq B^{\prime} \tag{1}\\
\frac{\operatorname{vol}\left(B^{\prime}\right)}{\operatorname{vol}(B)} \leq e^{-1 / 4(n+1)} \leq 1-\frac{1}{8(n+1)} \tag{2}
\end{gather*}
$$

The following two claims prove the theorem.
Claim 2. $B \cap H_{u} \subseteq B^{\prime}$.
Proof. First note that we can derive an explicit expression for M^{-1} using our Claim 1 on rank-1 updates.

$$
M^{-1}=\frac{n^{2}-1}{n^{2}}\left(I+\frac{2}{n-1} u u^{\top}\right)
$$

Substitute this into the definition of $E(M, b)$:

$$
\begin{align*}
B^{\prime} & =\left\{x:\left(x-\frac{u}{n+1}\right)^{\top}\left(\frac{n^{2}-1}{n^{2}}\right)\left(I+\frac{2}{n-1} u u^{\top}\right)\left(x-\frac{u}{n+1}\right) \leq 1\right\} \\
& =\left\{x:\left(x-\frac{u}{n+1}\right)^{\top}\left(x-\frac{u}{n+1}\right)+\frac{2}{n-1}\left(u^{\top}\left(x-\frac{u}{n+1}\right)\right)^{2} \leq \frac{n^{2}}{n^{2}-1}\right\} \\
& =\left\{x: x^{\top} x-\frac{2 x^{\top} u}{n+1}+\frac{1}{(n+1)^{2}}+\frac{2}{n-1}\left(x^{\top} u-\frac{1}{n+1}\right)^{2} \leq 1+\frac{1}{n^{2}-1}\right\} \tag{3}
\end{align*}
$$

Now consider any $x \in B \cap H_{u}$. If we can show that $x \in B^{\prime}$, then the proof is complete. By (3), it is sufficient to show that

$$
x^{\top} x-\frac{2 x^{\top} u}{n+1}+\frac{1}{(n+1)^{2}}+\frac{2}{n-1}\left(x^{\top} u-\frac{1}{n+1}\right)^{2} \leq 1+\frac{1}{n^{2}-1} .
$$

We know that $x^{\top} x \leq 1$ (since $x \in B$), so it is sufficient to show that

$$
\begin{equation*}
\underbrace{-\frac{2 x^{\top} u}{n+1}+\frac{1}{(n+1)^{2}}+\frac{2}{n-1}\left(x^{\top} u-\frac{1}{n+1}\right)^{2}}_{f\left(x^{\top} u\right)} \leq \frac{1}{n^{2}-1} . \tag{4}
\end{equation*}
$$

The left-hand side of (4) is a function only of $x^{\top} u$, so let's call it $f\left(x^{\top} u\right)$. Every point in $B \cap H_{u}$ satisifies $0 \leq x^{\top} u \leq 1$, by the Cauchy-Schwarz inequality. For notational simplicity, let y denote the scalar $x^{\top} u$. So, to prove (4), we must analyze the maximum value of $f(y)$ on the interval $[0,1]$. Note that f is a quadratic polynomial in y and it is convex (i.e., the coefficient of y^{2} is positive), so f is maximized on $[0,1]$ either at $y=0$ or $y=1$. We compute

$$
f(0)=\frac{1}{(n+1)^{2}}+\frac{2}{n-1} \cdot \frac{1}{(n+1)^{2}}=\frac{1}{(n+1)^{2}}\left(1+\frac{2}{n-1}\right)=\frac{1}{(n+1)^{2}} \cdot \frac{n+1}{n-1}=\frac{1}{n^{2}-1} .
$$

On the other hand,

$$
\begin{aligned}
f(1) & =\frac{-2}{n+1}+\frac{1}{(n+1)^{2}}+\frac{2}{n-1}\left(\frac{n}{n+1}\right)^{2} \\
& =\frac{1}{(n+1)^{2}(n-1)}\left(-2(n+1)(n-1)+n-1+2 n^{2}\right) \\
& =\frac{1}{(n+1)^{2}(n-1)}(-2(n+1)(n-1)+(n+1)(2 n-1)) \\
& =\frac{1}{n^{2}-1} .
\end{aligned}
$$

This proves (4), and so $B \cap H_{u} \subseteq B^{\prime}$.
Claim 3. $\operatorname{vol}\left(B^{\prime}\right) \leq \operatorname{vol}(B) \cdot e^{-1 / 4(n+1)}$.
Proof.

$$
\begin{aligned}
\left(\frac{\operatorname{vol}\left(B^{\prime}\right)}{\operatorname{vol}(B)}\right)^{2} & =|\operatorname{det} M| \quad \quad(\text { from Lecture 6) } \\
& \left.=\left(\frac{n^{2}}{n^{2}-1}\right)^{n}\left(1-\frac{2}{n+1}\right) \quad \quad \quad \text { from Lecture } 6\right) \\
& =\left(1+\frac{1}{n^{2}-1}\right)^{n}\left(1-\frac{2}{n+1}\right) \\
& \left.\leq\left(\exp \left(\frac{1}{n^{2}-1}\right)\right)^{n} \cdot \exp \left(-\frac{2}{n+1}\right) \quad \quad \quad \text { (since } 1+x \leq e^{x} \text { for all } x\right) \\
& =\exp \left(\frac{n}{(n+1)(n-1)}-\frac{2}{n+1}\right) \quad(\text { since } n \geq 3) \\
& =\exp \left(\frac{1}{n+1}\left(\frac{n}{n-1}-2\right)\right) \\
& \leq \exp \left(\frac{-1}{2(n+1)}\right) \quad
\end{aligned}
$$

Taking square roots proves the claim.

2 Covering Half-ellipsoids by Ellipsoids

Let $E=E(N, z)$ be an ellipsoid, where N is a positive definite matrix and z is a vector. Let $H_{a}=$ $\left\{x: a^{\top}(x-z) \geq 0\right\}$ be a halfspace with z on its boundary. We would like to find a small ellipsoid E^{\prime} containing the half-ellipsoid $E \cap H_{a}$. To solve this problem, we will use our previous result on covering hemispheres by ellipsoids. We would like to find a linear map f and choose u such that:

- $f(B)=E$
- $f\left(H_{u}\right)=H_{a}$. (Recall that $\left.H_{u}=\left\{x: u^{\top} x \geq 0\right\}.\right)$

In Lecture 6 , we showed that E can be obtained by applying the affine map $f(x)=N^{1 / 2} x+z$ to the unit ball B. Now if we can judiciously choose a unit vector u such that $f\left(H_{u}\right)=H_{a}$, then we'll be done. This turns out to be straightforward. Notice that

$$
\begin{aligned}
f\left(H_{u}\right) & =\left\{N^{1 / 2} x+z: u^{\top} x \geq 0\right\} \\
& =\left\{x: u^{\top} N^{-1 / 2}(x-z) \geq 0\right\}
\end{aligned}
$$

So choose $u=N^{1 / 2} a$. Let B^{\prime} to be the ellipsoid covering $B \cap H_{u}$, as given in Theorem 1. Our solution is to define $E^{\prime}=f\left(B^{\prime}\right)$.

Claim 4. E^{\prime} is an ellipsoid.
Proof. B^{\prime} is an ellipsoid, so it is obtained by applying an affine map to the unit ball. E^{\prime} is obtained by applying an affine map to B^{\prime}. Composing these maps shows that E^{\prime} can also be obtained by applying an affine map to the unit ball, so E^{\prime} is also an ellipsoid.

Claim 5. $E \cap H_{a} \subseteq E^{\prime}$.
Proof. Exercise.
Claim 6. $\operatorname{vol}\left(E^{\prime}\right) \leq \operatorname{vol}(E) \cdot e^{-1 / 4(n+1)}$.
Proof. Since $E^{\prime}=f\left(B^{\prime}\right)$ and $E=f(B)$, our result on volumes under affine maps from Lecture 6 implies that

$$
\begin{aligned}
\operatorname{vol}\left(E^{\prime}\right) & =\left|\operatorname{det}\left(N^{1 / 2}\right)\right| \operatorname{vol}\left(B^{\prime}\right) \\
\operatorname{vol}(E) & =\left|\operatorname{det}\left(N^{1 / 2}\right)\right| \operatorname{vol}(B)
\end{aligned}
$$

Claim 3 above shows that $\operatorname{vol}\left(B^{\prime}\right) \leq \operatorname{vol}(B) \cdot e^{-1 / 4(n+1)}$. This proves the claim.

