
C&O 355, Fall 2010

Lecture 7 Notes

Nicholas Harvey
http://www.math.uwaterloo.ca/~harvey/

1 Covering Hemispheres by Ellipsoids

Recall our notation B = { x : ‖x‖ ≤ 1 } and Hu =
{
x : xTu ≥ 0

}
, where u is an arbitrary unit vector.

The next theorem defines an ellipsoid that covers B ∩Hu and analyzes its volume. For simplicity, let
us assume that n ≥ 3.

Theorem 1. Define

M =
n2

n2 − 1

(
I − 2

n + 1
uuT

)
b =

u

n + 1

B′ = E(M, b) =
{
x : (x− b)TM−1(x− b) ≤ 1

}
.

Then B′ satisfies the following two properties.

B ∩Hu ⊆ B′ (1)

vol(B′)

vol(B)
≤ e−1/4(n+1) ≤ 1− 1

8(n + 1)
(2)

The following two claims prove the theorem.

Claim 2. B ∩Hu ⊆ B′.

Proof. First note that we can derive an explicit expression for M−1 using our Claim 1 on rank-1
updates.

M−1 =
n2 − 1

n2

(
I +

2

n− 1
uuT

)
Substitute this into the definition of E(M, b):

B′ =

{
x :

(
x− u

n + 1

)T(n2 − 1

n2

)(
I +

2

n− 1
uuT

)(
x− u

n + 1

)
≤ 1

}

=

 x :
(
x− u

n + 1

)T(
x− u

n + 1

)
+

2

n− 1

(
uT
(
x− u

n + 1

))2

≤ n2

n2 − 1


=

{
x : xTx− 2xTu

n + 1
+

1

(n + 1)2
+

2

n− 1

(
xTu− 1

n + 1

)2
≤ 1 +

1

n2 − 1

}
(3)

Now consider any x ∈ B ∩ Hu. If we can show that x ∈ B′, then the proof is complete. By (3), it is
sufficient to show that

xTx− 2xTu

n + 1
+

1

(n + 1)2
+

2

n− 1

(
xTu− 1

n + 1

)2
≤ 1 +

1

n2 − 1
.
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We know that xTx ≤ 1 (since x ∈ B), so it is sufficient to show that

− 2xTu

n + 1
+

1

(n + 1)2
+

2

n− 1

(
xTu− 1

n + 1

)2
︸ ︷︷ ︸

f(xTu)

≤ 1

n2 − 1
. (4)

The left-hand side of (4) is a function only of xTu, so let’s call it f(xTu). Every point in B∩Hu satisifies
0 ≤ xTu ≤ 1, by the Cauchy-Schwarz inequality. For notational simplicity, let y denote the scalar xTu.
So, to prove (4), we must analyze the maximum value of f(y) on the interval [0, 1]. Note that f is a
quadratic polynomial in y and it is convex (i.e., the coefficient of y2 is positive), so f is maximized on
[0, 1] either at y = 0 or y = 1. We compute

f(0) =
1

(n + 1)2
+

2

n− 1
· 1

(n + 1)2
=

1

(n + 1)2

(
1 +

2

n− 1

)
=

1

(n + 1)2
· n + 1

n− 1
=

1

n2 − 1
.

On the other hand,

f(1) =
−2

n + 1
+

1

(n + 1)2
+

2

n− 1

( n

n + 1

)2
=

1

(n + 1)2(n− 1)

(
− 2(n + 1)(n− 1) + n− 1 + 2n2

)
=

1

(n + 1)2(n− 1)

(
− 2(n + 1)(n− 1) + (n + 1)(2n− 1)

)
=

1

n2 − 1
.

This proves (4), and so B ∩Hu ⊆ B′. 2

Claim 3. vol(B′) ≤ vol(B) · e−1/4(n+1).

Proof. (
vol(B′)

vol(B)

)2

= |detM | (from Lecture 6)

=

(
n2

n2 − 1

)n(
1− 2

n + 1

)
(from Lecture 6)

=

(
1 +

1

n2 − 1

)n(
1− 2

n + 1

)
≤

(
exp

( 1

n2 − 1

))n

· exp
(
− 2

n + 1

)
(since 1 + x ≤ ex for all x)

= exp

(
n

(n + 1)(n− 1)
− 2

n + 1

)

= exp

(
1

n + 1

( n

n− 1
− 2
))

≤ exp

(
−1

2(n + 1)

)
(since n ≥ 3)

Taking square roots proves the claim. 2
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2 Covering Half-ellipsoids by Ellipsoids

Let E = E(N, z) be an ellipsoid, where N is a positive definite matrix and z is a vector. Let Ha ={
x : aT(x− z) ≥ 0

}
be a halfspace with z on its boundary. We would like to find a small ellipsoid E′

containing the half-ellipsoid E ∩Ha. To solve this problem, we will use our previous result on covering
hemispheres by ellipsoids. We would like to find a linear map f and choose u such that:

• f(B) = E
• f(Hu) = Ha. (Recall that Hu =

{
x : uTx ≥ 0

}
.)

In Lecture 6, we showed that E can be obtained by applying the affine map f(x) = N1/2x + z to the
unit ball B. Now if we can judiciously choose a unit vector u such that f(Hu) = Ha, then we’ll be done.
This turns out to be straightforward. Notice that

f(Hu) =
{
N1/2x + z : uTx ≥ 0

}
=
{
x : uTN−1/2(x− z) ≥ 0

}
.

So choose u = N1/2a. Let B′ to be the ellipsoid covering B ∩Hu, as given in Theorem 1. Our solution
is to define E′ = f(B′).

Claim 4. E′ is an ellipsoid.

Proof. B′ is an ellipsoid, so it is obtained by applying an affine map to the unit ball. E′ is obtained by
applying an affine map to B′. Composing these maps shows that E′ can also be obtained by applying
an affine map to the unit ball, so E′ is also an ellipsoid. �

Claim 5. E ∩Ha ⊆ E′.

Proof. Exercise. �

Claim 6. vol(E′) ≤ vol(E) · e−1/4(n+1).

Proof. Since E′ = f(B′) and E = f(B), our result on volumes under affine maps from Lecture 6
implies that

vol(E′) = |det(N1/2)| vol(B′)

vol(E) = |det(N1/2)| vol(B).

Claim 3 above shows that vol(B′) ≤ vol(B) · e−1/4(n+1). This proves the claim. �
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