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by
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Submitted to the Department of Electrical Engineering and Computer Science
on May 15, 2008, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

This thesis focuses on three fundamental problems in combinatorial optimization:
non-bipartite matching, matroid intersection, and submodular function minimiza-
tion. We develop simple, efficient, randomized algorithms for the first two prob-
lems, and prove new lower bounds for the last two problems.

For the matching problem, we give an algorithm for constructing perfect or
maximum cardinality matchings in non-bipartite graphs. Our algorithm requires
O(nω) time in graphs with n vertices, where ω < 2.38 is the matrix multiplication
exponent. This algorithm achieves the best-known running time for dense graphs,
and it resolves an open question of Mucha and Sankowski (2004).

For the matroid intersection problem, we give an algorithm for constructing a
common base or maximum cardinality independent set for two so-called “linear”
matroids. Our algorithm has running time O(nrω−1) for matroids with n elements
and rank r. This is the best-known running time of any linear matroid intersection
algorithm.

We also consider lower bounds on the efficiency of matroid intersection algo-
rithms, a question raised by Welsh (1976). Given two matroids of rank r on n ele-
ments, it is known that O(nr1.5) oracle queries suffice to solve matroid intersection.
However, no non-trivial lower bounds are known. We make the first progress on
this question. We describe a family of instances for which (log2 3)n − o(n) queries
are necessary to solve these instances. This gives a constant factor improvement
over the trivial lower bound for a certain range of parameters.

Finally, we consider submodular functions, a generalization of matroids. We
give three different proofs that Ω(n) queries are needed to find a minimizer of a
submodular function, and prove that Ω(n2/ log n) queries are needed to find all
minimizers.

Thesis Supervisor: Michel X. Goemans
Title: Professor of Mathematics
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Chapter 1

Introduction

This thesis focuses on three fundamental problems in combinatorial optimization:

non-bipartite matching, matroid intersection, and submodular function minimiza-

tion. The computational complexity of these problems has been a topic of much

interest for forty years. We contribute to this long line of work by developing sim-

ple, efficient, randomized algorithms for the first two problems, and proving new

lower bounds for the last two problems.

1.1 Matchings

The matching problem is: find a largest set of disjoint edges in a given graph.

This is a very natural question regarding a very versatile class of mathematical

objects. Accordingly, the matching problem has applications in a wide range of

areas, including approximation algorithms [13], computer vision [5], personnel

assignment [64], scheduling [28], etc.

A priori, it is not at all obvious how to solve the matching problem efficiently.

Is the problem computationally tractable? Edmonds [21, 22] recognized this issue,

defined a notion of efficient algorithms (the complexity class P ), and gave an ef-

ficient algorithm for the matching problem. This work played an important role

in the development of graph theory, combinatorial optimization, polyhedral com-

binatorics, and computational complexity theory. The matching theory book [61]

gives an extensive treatment of this subject, and uses matchings as a touchstone to

develop much of the theory of combinatorial optimization.

9



10 CHAPTER 1. INTRODUCTION

Authors Year Running Time

Edmonds [22] 1965 O(n2m)
Even and Kariv [27] 1975 O(min {n2.5,

√
nm log n})

Micali and Vazirani [66] 1980 O(
√

nm)
Rabin and Vazirani [78] 1989 O(nω+1)
Goldberg and Karzanov [37] 2004 O(

√
nm log(n2/m)/ log n)

Mucha and Sankowski [69] 2004 O(nω)
Sankowski [84] 2005 O(nω)

Our algorithm 2006 O(nω)

Table 1.1: A summary of algorithms for the non-bipartite matching problem. The quantities n and
m respectively denote the number of vertices and edges in the graph.

After Edmonds’ work, many polynomial time algorithms for the matching prob-

lem were developed. Table 1.1 provides a brief summary, and further discussion

can be found in [86, §24.4]. As one can see, there was little progress from 1975 until

2004, when Mucha and Sankowski [69] improved the simple algorithm of Rabin

and Vazirani [78] from O(nω+1) time to O(nω) time, where ω < 2.38 is the exponent

indicating the time required to multiply two n× n matrices [16]. A nice exposition

of their algorithm is in Mucha’s thesis [68].

Unfortunately, most of the algorithms mentioned above are quite complicated;

the algorithms of Edmonds and Rabin-Vazirani are perhaps the only exceptions.

For example, the Micali-Vazirani algorithm was not formally proven correct until

much later [93]. The Mucha-Sankowski algorithm relies on a non-trivial struc-

tural decomposition of graphs called the “canonical partition”, and uses sophisti-

cated dynamic connectivity data structures to maintain this decomposition online.

Mucha writes [68, §6]:

[The non-bipartite] algorithm is quite complicated and heavily relies

on graph-theoretic results and techniques. It would be nice to have a

strictly algebraic, and possibly simpler, matching algorithm for general

graphs.

Interestingly, for the special case of bipartite graphs, Mucha and Sankowski give

a simple algorithm that amounts to performing Gaussian elimination lazily. Un-

fortunately, this technique seems to break down for general graphs, leading to a
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conjecture that there is no O(nω) matching algorithm for non-bipartite graphs that

uses only lazy computation techniques [68, §3.4].

This thesis presents a simple, efficient, randomized algorithm for constructing

a maximum matching in O(nω) time. The algorithm is based on a lazy updating

scheme, and does not require sophisticated data structures or subroutines other

than a black-box algorithm for matrix multiplication and inversion. Our work

therefore resolves the central open question of Mucha and Sankowski [69], and

refutes the conjecture [68] that no such lazy algorithm exists.

Our algorithm, presented in Chapter 2, builds on the Rabin-Vazirani and Mucha-

Sankowski algorithms by contributing two ideas. The first is a recursive decom-

position of a graph for which every pair of vertices occurs as a base case of that

recursion. The second is the observation that, after making numerous localized

updates to a matrix, the Sherman-Morrison-Woodbury formula gives a very use-

ful way of making a corresponding update to the inverse of that matrix.

Complete Matlab code for our algorithm (using matrix inversion as a black

box) is given in Section 2.8. This can be combined with the Matlab code in Algo-

rithm A.2, which implements fast LU-factorization, and hence inversion, using fast

matrix multiplication as a black box. Some fast matrix multiplication algorithms,

such as Strassen’s [88], can easily be implemented in, say, 25 lines of code. So, alto-

gether, this yields an algorithm solving the matching problem in O(n2.81) time and

only about 150 lines of Matlab code.

For many graph optimization problems, randomized methods yield the sim-

plest and most efficient solutions. Some examples include the minimum cut [49]

and minimum spanning tree [50] problems. This thesis, arguably, adds the non-

bipartite matching problem to this list of examples.

1.2 Matroids

Matroids are abstract objects that capture important combinatorial properties of

graphs and matrices. Imagine discussing graphs without mentioning vertices, or

matrices without mentioning their entries. Then, roughly speaking, you are dis-

cussing a matroid.

The two most important optimization problems involving matroids are

• The greedy algorithm: find a minimum weight base of a matroid.
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• The matroid intersection problem: find a common base in two given matroids.

The greedy algorithm is technically an algorithm, not a problem, but it is so fun-

damental that it justifies conflating the problem with its solution.

To explain these problems, let us draw an analogy to graphs; we defer the for-

mal definition of matroids until Chapter 3. A “base” in a matroid is the analog of a

spanning tree in a graph. The matroid greedy algorithm is the analog of Kruskal’s

algorithm for finding a minimum weight spanning tree.

The matroid intersection problem requires more work to explain. Suppose that

we have two graphs G = (V,E) and H = (V, F ), together with a bijection π : E →
F . A common base is a set of edges T ⊆ E such that T that forms a spanning tree

for G and π(T ) forms a spanning tree for H .

This “common spanning tree” problem seems peculiar, but it is actually fairly

natural. For example, one can show that the bipartite matching problem is a special

case. The more general matroid intersection problem has applications in various

areas such as approximation algorithms [11, 36, 43, 52], graph connectivity [31],

mixed matrix theory [70], and network coding [42].

The matroid intersection problem can be solved efficiently, as was shown in

the pioneering work of Edmonds [23, 24, 26]. This work led to significant devel-

opments concerning integral polyhedra [86], submodular functions [30], and con-

vex analysis [71]. Generally speaking, algorithms involving matroids fall into two

classes.

• Oracle algorithms. These algorithms access the matroid via an oracle which

answers queries about its structure.

• Linear matroid algorithms. These algorithms assume that a matroid is given

as input to the algorithm as an explicit matrix which represents the matroid.

Both of these models play an important role in this thesis. Linear matroid algo-

rithms only apply to a subclass of matroids known as linear matroids, which we

will define in Chapter 3. Most useful matroids arising in applications are indeed

linear matroids.

The matroid intersection problem can be solved efficiently in either the linear

model or oracle model. Table 1.2 and Table 1.3 provide a brief summary of the

existing algorithms. It should be noted that the Gabow-Xu algorithm achieves the

running time of O(nr1.62) via use of the O(n2.38) matrix multiplication algorithm of
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Authors Year Running Time

Cunningham [19] 1986 O(nr2 log r)
Gabow and Xu [32, 33] 1989 O(nr1.62)

Our algorithm 2006 O(nrω−1)

Table 1.2: A summary of linear matroid algorithms for the matroid intersection problem. The
quantities n and r respectively denote the number of columns and rows of the given matrix.

Authors Year Number of Oracle Queries

Edmonds [23]1 1968 not stated
Aigner and Dowling [1] 1971 O(nr2)
Tomizawa and Iri [90] 1974 not stated
Lawler [55] 1975 O(nr2)
Edmonds [26] 1979 not stated
Cunningham [19] 1986 O(nr1.5)

Table 1.3: A summary of oracle algorithms for the matroid intersection problem. The quantities n
and r respectively denote the number of elements and rank of the matroid; they are analogous to the
quantities n and r mentioned in Table 1.2.

Coppersmith and Winograd [16]. However, this bound seems somewhat unnatu-

ral: for square matrices their running time is O(n2.62), although one would hope

for a running time of O(n2.38).

Chapter 3 of this thesis presents a linear matroid algorithm for the matroid in-

tersection problem that uses only O(nrω−1) time. The algorithm is randomized and

quite simple. We have not implemented it, but it would be straightforward to do

so. Whereas most existing matroid algorithms use augmenting path techniques,

ours uses an algebraic approach. Several previous matroid algorithms also use al-

gebraic techniques [4, 58, 73]. This approach requires that the given matroids are

linear, and additionally requires that the two matroids can be represented as matri-

ces over the same field. These assumptions will be discussed further in Chapter 3.

Is it possible that the algorithms listed at the bottom of Table 1.2 and Table 1.3

are optimal? First let us consider linear matroid algorithms (Table 1.2). If it is

1Edmonds [23] gives an efficient algorithm for the matroid partition problem. As was shown by
Edmonds [24, 25], this implies an efficient algorithm for the matroid intersection problem.
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eventually shown that ω = 2 then our algorithm would require Õ(nr) time which

is near-optimal. But if ω > 2 then proving optimality is hopeless: the best known

circuit-size lower bound for any explicit function in the complexity class NP is still

only linear [45].

Oracle algorithms are a different story. Since these algorithms are formulated

in a restricted model of computation (they can only access the matroids via ora-

cle queries), it is conceivable to prove strong lower bounds. To our knowledge,

this question was first raised by Welsh1 [94, p368] in 1976. In the following thirty

years, no non-trivial lower bounds were shown for matroid intersection in the or-

acle model. In this thesis, we prove the first non-trivial result. Chapter 4 describes

a family of instances and proves that (log2 3) n−o(n) queries are necessary to solve

these instances. Our proof uses methods from communication complexity and

group representation theory.

1.3 Submodular functions

What is a submodular function? One possible answer is: a very general abstraction

of a matroid. But that’s not quite right; it’s like saying that a convex function is an

abstraction of a quadratic polynomial. Perhaps a more illuminating answer is:

the sensible definition that one obtains when trying to define what it means for a

function on {0, 1}n to be “convex”.

Submodular functions share many familiar properties with convex functions

(e.g., one can efficiently find their minimum), and also have some similarities to

concave functions (e.g., they reflect some notion of “economies of scale”). They

arise in a wide variety of contexts: graph theory, linear algebra, information theory

[29], economics [91], etc. In particular, submodular functions play a very important

role in combinatorial optimization. The submodular property often leads to ele-

gant, succinct proofs, such as Lovász’s proof [57] of Edmonds’ disjoint branchings

theorem. Submodular functions also often arise as the right-hand vector in large,

combinatorially-defined linear programs. Consequently, the problem of separating

over such polytopes involves the problem of minimizing a submodular function.

The submodular function minimization (SFM) problem is: given a submodular

1To be precise, Welsh asked about the number of queries needed to solve the matroid partition
problem, which is equivalent to matroid intersection, as was mentioned earlier.
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function, find a point that minimizes it. This is a very general problem that encom-

passes many important optimization problems, including matroid intersection and

finding a minimum cut in a graph. Accordingly, this problem has received much

attention in the literature, dating back to the work of Grötschel, Lovász, and Schri-

jver [39] in 1981, and even Edmonds [24] in 1970. Given a submodular function,

one can find a minimizer (or even find all minimizers) using only O(n5) queries [63]

to the function, where n is the dimension of the function’s domain.

Several researchers have raised the question of proving a lower bound on the

number of queries needed for SFM. (See, for example, the surveys of Iwata [46] or

McCormick [63, p387]). In Chapter 5, we prove that n queries are needed; in fact,

we give three different proofs that Ω(n) queries are needed. We also show that

Ω(n2/ log n) queries are needed to find all minimizers.

Finally, we turn to the question of “learning” (or “approximating”) a submod-

ular function. How much information can one learn about a submodular function

using only poly(n) queries? Is it possible to approximate the value of f on every

point in the domain? We show that it is not possible to approximate f better than

a factor Ω(
√

n/ log n).

A subsequent paper by Svitkina and Fleischer [89] has built on our work in very

nice ways. They use submodular functions to generalize several classic optimiza-

tion problems, such as sparsest cut, knapsack, and others. Our result is used to

show that any efficient algorithm for “submodular sparsest cut” or “submodular

knapsack” must have approximation ratio Ω(
√

n/ log n). These results are tight:

they also show matching upper bounds.

1.4 Preliminaries

We now introduce some mathematical notation and computational assumptions

that are used in subsequent chapters.

Basic notation

We will use the following sets of numbers: the integers (Z), the non-negative inte-

gers (N), the reals (R), the non-negative reals (R≥0), the complex numbers (C), and

the finite field on q elements (Fq). The set of integers {1, . . . , n} is denoted [n]. The
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base-2 logarithm and natural logarithm of x are respectively denoted log x and ln x.

If X is a set then X + i denotes X ∪ {i}. If X and Y are two sets then X ⊕ Y

denotes their symmetric difference, i.e., X ⊕ Y = (X \ Y ) ∪ (Y \X). The notation

X ∪̇Y denotes the union of sets X and Y , and asserts that this is a disjoint union,

i.e., X ∩ Y = ∅. The power set (set of all subsets) of a set S is denoted 2S .

If M is a matrix, a submatrix containing rows S and columns T is denoted

M [S, T ]. A submatrix containing all rows (columns) is denoted M [∗, T ] (M [S, ∗]).
A submatrix M [S, T ] is sometimes written as MS,T when this enhances legibility.

The ith row (column) of M is denoted Mi,∗ (M∗,i). An entry of M is denoted Mi,j .

The submatrix obtained by deleting row i and column j (row-set I and column-set

J) from M is denoted Mdel(i,j) (Mdel(I,J)).

The notation RE denotes the Euclidean space of dimension |E| over R where

the dimensions are indexed by the elements of E. For any subset U ⊆ E, its char-

acteristic vector is the vector χU ∈ {0, 1}E where, for each e ∈ E, χU(e) = 1 if

e ∈ U and χU(e) = 0 otherwise. For any vector x ∈ RE the notation x(U) denotes
∑

e∈U x(e), or equivalently x(U) = xTχU .

Assumptions and conventions

We assume a randomized computational model, in which algorithms have access

to a stream of independent, unbiased coin flips. All algorithms presented herein

are randomized, even if this is not stated explicitly. Furthermore, our computa-

tional model assumes that all arithmetic operations in a given finite field require a

single time step, even if we work with an extension field of polynomial size.

A Monte Carlo algorithm is one whose output may be incorrect with some

(bounded) probability, but whose running time is not a random variable. The

Monte Carlo algorithms that we present have one-sided error and failure prob-

ability δ < 1/2. Thus, the error can be decreased to any desired quantity λ by

performing log λ independent trials. A Las Vegas algorithm is one whose out-

put is always correct but whose running time is a random variable, typically with

bounded expectation.

The value ω is a real number defined as the infimum of all values c such that

multiplying two n × n matrices requires O(nc) time. We say that matrix multipli-

cation requires O(nω) time although, strictly speaking, this is not accurate. Never-

theless, this inaccuracy justifies the following notational convention: we will im-
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plicitly ignore polylog(n) factors in expressions of the form O(nω).

Linear algebraic algorithms

We conclude this section by considering the algorithmic efficiency of operations

on matrices with entries in a field F. We assume that two n × n matrices can be

multiplied in O(nω) time. This same time bound suffices for the following opera-

tions.

• Determinant. Given an n× n matrix M , compute det M .

• Rank. Given an n× n matrix M , compute rank M .

• Inversion. Given a non-singular n× n matrix M , compute M−1.

• Max-rank submatrix. Given an n × n matrix M , compute sets A and B such

that M [A,B] is non-singular and |A| = |B| = rank M .

A complete discussion of these algorithms appears in Appendix A.

Consider now the problem of rectangular matrix multiplication. For example,

one could multiply an r × n matrix A by a n × r matrix B, where r < n. This can

be accomplished by partitioning A and B into blocks of size r × r, multiplying the

ith block of A by the ith block of B via an O(rω) time algorithm, then finally adding

these results together. Since dn/remultiplications are performed, the total time re-

quired is O(nrω−1). This basic technique will frequently be used in the subsequent

chapters. More sophisticated rectangular matrix multiplication algorithms [15] do

exist, but they will not be considered herein.
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Chapter 2

Non-bipartite matching algorithm

In this chapter, we present an efficient, randomized algorithm for constructing per-

fect or maximum cardinality matchings in non-bipartite graphs. Our algorithm re-

quires O(nω) time in graphs with n vertices. This is the best-known running time

for dense graphs, on par with the algorithm of Mucha and Sankowski [69].

The chapter is organized as follows. First, some basic definitions and facts are

introduced in Section 2.1. Then Section 2.2 introduces the Tutte matrix, which is

used in Section 2.3 to obtain a simple algorithm based on self-reducibility for con-

structing a perfect matching. Section 2.4 improves the efficiency of this algorithm

by using Woodbury updates. Finally, Section 2.5 improves the previous algorithm

by introducing a recursive procedure to perform the updates. The resulting algo-

rithm requires only O(nω) time for graphs with n vertices.

Two variants of this algorithm are presented in Section 2.6: the first constructs

a maximum cardinality matching, and the second is a Las Vegas algorithm. Some

proofs are given in Section 2.7. Section 2.8 presents Matlab code that implements

the algorithm of Section 2.5.

2.1 Preliminaries

Let G = (V,E) be a finite, simple, undirected graph with vertex set V and edge set

E. A matching in G is a set of edges M ⊆ E such that every vertex is contained

in at most one edge of M . If every vertex is contained in exactly one edge then M

is called a perfect matching. Let I and J be disjoint subsets of V . We denote the

19
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edges within set I and edges crossing between I and J as follows.

E[I] = { {u, v} : u ∈ I, v ∈ I, and {u, v} ∈ E }
E[I, J ] = { {u, v} : u ∈ I, v ∈ J, and {u, v} ∈ E }

The algorithms of this chapter are based on some standard tools from linear

algebra, which we review now. Let F be a field, let F[x1, . . . , xm] be the ring of

polynomials over F in indeterminates {x1, . . . , xm}, and let F(x1, . . . , xm) be the

field of rational functions over F in these indeterminates. A matrix with entries in

F[x1, . . . , xm] or F(x1, . . . , xm) will be called a matrix of indeterminates. A matrix M

of indeterminates is said to be non-singular if its determinant is not the zero func-

tion. In this case, M−1 exists and it is a matrix whose entries are in F(x1, . . . , xm).

The entries of M−1 are given by:

(M−1)i,j = (−1)i+j · det Mdel(j,i) / det M. (2.1)

Given a matrix of indeterminates, our algorithms will typically substitute values

in F for the indeterminates. So for much of the discussion below, it suffices to

consider ordinary numeric matrices over F.

The following fact, and its corollary, are fundamental to many of our results.

Fact 2.1 (Sherman-Morrison-Woodbury Formula). Let M be an n × n matrix, U be

an n× k matrix, and V be a k × n matrix. Suppose that M is non-singular. Then

• M + UV T is non-singular iff I + V TM−1U is non-singular

• if M + UV T is non-singular then

(M + UV T)−1 = M−1 − M−1 U (I + V TM−1U)−1 V T M−1.

Proof. This result is well-known; see, e.g., Golub and Van Loan [38, §2.1.3]. We

give a proof on page 29. �

Corollary 2.2. Let M be a non-singular matrix and let N be its inverse. Let M̃ be a

matrix which is identical to M except that M̃S,S 6= MS,S . Then M̃ is non-singular iff

det
(
I + (M̃S,S −MS,S) ·NS,S

)
6= 0.
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If M̃ is non-singular, then

M̃−1 = N − N∗,S

(
I + (M̃S,S −MS,S)NS,S

)−1
(M̃S,S −MS,S) NS,∗.

The proof of Corollary 2.2 can be found on page 29.

A matrix M is called skew-symmetric if M = −MT. Note that the diagonal en-

tries of a skew-symmetric matrix are necessarily zero (over a field of characteristic

greater than two).

Fact 2.3. Let M be an n × n skew-symmetric matrix. If M is non-singular then M−1 is

also skew-symmetric.

The proof of Fact 2.3 can be found on page 30.

2.2 Tutte matrix

Let G = (V,E) be a graph with |V | = n, and letM be the set of all perfect matchings

of G. A lot of information aboutM is contained in the Tutte matrix T of G, which

is defined as follows. For each edge {u, v} ∈ E, associate an indeterminate t{u,v}.

Then T is an n × n matrix where Tu,v is ±t{u,v} if {u, v} ∈ E and 0 otherwise. The

signs are chosen such that T is skew-symmetric.

We now describe an important polynomial associated with the Tutte matrix.

The Pfaffian of T is defined as

Pf(T ) :=
∑

µ∈M

sgn(µ) ·
∏

{u,v}∈M

Tu,v,

where sgn(µ) ∈ {−1, 1} is a sign whose precise definition is not needed for our

purposes. Tutte showed several nice properties of T , one of which is the following

fact.

Fact 2.4 (Tutte [92]). G has a perfect matching iff T is non-singular.

Proof. This follows from the (previously known) fact that det(T ) = Pf(T )2. See,

e.g., Godsil [35]. �

This is a useful characterization, but it does not directly imply an efficient algo-

rithm to test if G has a perfect matching. The issue is that Pf(T ) has a monomial
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for every perfect matching of G, of which there may be exponentially many. In this

case det T also has exponential size, and so computing it symbolically is inefficient.

Fortunately, Lovász [58] showed that the rank of T is preserved with high prob-

ability after randomly substituting non-zero values from a sufficiently large field

for the indeterminates. Let us argue the full-rank case more formally. Suppose

that G has a perfect matching. Then, over any field, Pf(T ) is a non-zero polyno-

mial of degree n/2. Since det T = Pf(T )2, det T is a non-zero polynomial of degree

n, again over any field. The Schwartz-Zippel lemma [67, Theorem 7.2] shows that

if we evaluate this polynomial at a random point in F
|E|
q (i.e., pick each t{u,v} ∈ Fq

independently and uniformly), then the evaluation is zero with probability at most

n/q. Therefore the rank is preserved with probability at least 1− n/q. If we choose

q ≥ 2n, the rank is preserved with probability at least 1/2. We may obtain any

desired failure probability λ by performing log λ independent trials.

After this numeric substitution, the rank of the resulting matrix can be com-

puted in O(nω) time, using the algorithm of Appendix A, for example. If the re-

sulting matrix has full rank then G definitely has a perfect matching. Otherwise,

we assume that G does not have a perfect matching. This discussion shows that

there is an efficient, randomized algorithm to test if a graph has a perfect matching

(with failure probability at most n/q). The remainder of this chapter considers the

problem of constructing a perfect matching, if one exists.

2.3 A self-reducibility algorithm

Since Lovász’s approach allows one to efficiently test if a graph has a perfect

matching, one can use a self-reducibility argument to actually construct a perfect

matching. Such an argument was explicitly stated by Rabin and Vazirani [78]. The

algorithm deletes as many edges as possible subject to the constraint that the re-

maining graph has a perfect matching. Thus, at the termination of the algorithm,

the remaining edges necessarily form a perfect matching.

The first step is to construct T , then to randomly substitute values for the in-

determinates from a field of size q, where q will be chosen below. If T does not

have full rank then the algorithm halts and announces that the graph has no per-

fect matching. Otherwise, it examines the edges of the graph one-by-one. For each

edge {r, s}, we temporarily delete it and test if the resulting graph still has a perfect
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matching. If so, we permanently delete the edge; if not, we restore the edge.

When temporarily deleting an edge, how do we test if the resulting graph has

a perfect matching? This is done again by Lovász’s approach. We simply set Tr,s =

Ts,r = 0, then test whether T still has full rank. The Schwartz-Zippel lemma again

shows that this test fails with probability at most n/q, even without choosing new

random numbers.

Since there are fewer than n2 edges, a union bound shows that the failure prob-

ability is less than n3/q. If the random values are chosen from a field of size at

least n3/δ, then the overall failure probability is at most δ. The time for each rank

computation is O(nω), so the total time required by this algorithm is O(nω+2). As

mentioned earlier, we may set δ = 1/2 and obtain any desired failure probability λ

by performing log λ independent trials.

2.4 An algorithm using rank-2 updates

The self-reducibility algorithm can be improved to run in O(n4) time. To do so,

we need an improved method to test if an edge can be deleted while maintain-

ing the property that the graph has a perfect matching. This is done by applying

Corollary 2.2 to the matching problem as follows.

Suppose that we have computed the inverse of the Tutte matrix N := T−1. Let

G̃ denote the graph where edge {r, s} has been deleted. We wish to decide if G̃ still

has a perfect matching. This can be decided (probabilistically) as follows. Let T̃ be

the matrix which is identical to T except that T̃S,S = 0, where S = {r, s}. We will

test if T̃ is non-singular. By Corollary 2.2 and Fact 2.3, this holds if and only if the

following determinant is non-zero.

det

((

1 0

0 1

)

−
(

0 Tr,s

−Tr,s 0

)

·
(

0 Nr,s

−Nr,s 0

))

= det

(

1 + Tr,s Nr,s

1 + Tr,s Nr,s

)

Thus T̃ is non-singular iff (1 + Tr,s Nr,s)
2 6= 0. So, to decide if edge {r, s} can be

deleted, we simply test if Nr,s 6= −1/Tr,s. The probability that this test fails (i.e., if

G̃ has a perfect matching but T̃ is singular) is at most n/q, again by the Schwartz-

Zippel lemma.

After deleting an edge {r, s} the matrix N must be updated accordingly. By
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Corollary 2.2, we must set

N := N + N∗,S

(

1 + Tr,s Nr,s

1 + Tr,s Nr,s

)−1

TS,S NS,∗. (2.2)

This computation takes only O(n2) time, since it is a rank-2 update.

The algorithm examines each edge, decides if it can be deleted and, if so, per-

forms the update described above. The main computational work of the algorithm

is the updates. There are O(n2) edges, so the total time required is O(n4). As in

Section 2.3, if the random values are chosen from a field of size at least n3/δ, then

the overall failure probability is at most δ.

2.5 A recursive algorithm

In this section, we describe an improvement of the previous algorithm which re-

quires only O(nω) time. The key idea is to examine the edges of the graph in a par-

ticular order, with the purpose of minimizing the cost of updating N . The ordering

is based on a recursive partitioning of the graph which arises from the following

observation.

Claim 2.5. Let R and S be subsets of V with R = R1 ∪̇R2 and S = S1 ∪̇S2. Then

E[S] = E[S1] ∪̇ E[S2] ∪̇ E[S1, S2]

E[R,S] = E[R1, S1] ∪̇ E[R1, S2] ∪̇ E[R2, S1] ∪̇ E[R2, S2].

For the sake of simplicity, let us henceforth assume that n is a power of two.

To satisfy this assumption, one may add a new clique on 2dlog ne − n vertices that

is disconnected from the rest of the graph. One may easily see that the resulting

graph has a perfect matching iff the original graph does.

The pseudocode in Algorithm 2.1 examines all edges of the graph by employing

the recursive partitioning of Claim 2.5. At each base of the recursion, the algorithm

examines a single edge {r, s} and decides if it can be deleted, via the same approach

as the previous section: by testing if Nr,s 6= −1/Tr,s. As long as we can ensure that

Nr,s = (T−1)r,s in each base of the recursion then the algorithm is correct: the matrix

T remains non-singular throughout the algorithm and, at the end, N has exactly
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Algorithm 2.1 FINDPERFECTMATCHING constructs a perfect matching of the graph G, assum-
ing the number of vertices is a power of two. The probability of failure is at most δ if the field F has
cardinality at least |V |3/δ. DELETEEDGESWITHIN deletes any edge {r, s} with both r, s ∈ S,
subject to the constraint that the graph still has a perfect matching. DELETEEDGESCROSSING

deletes any edge {r, s} with r ∈ R and s ∈ S, subject to the constraint that the graph still has a
perfect matching. Updating N requires O(|S|ω) time; details are given below.

FINDPERFECTMATCHING(G = (V, E))
Let T be the Tutte matrix for G
Replace the variables in T with random values from field F

If T is singular, return “no perfect matching”
Compute N := T−1

DeleteEdgesWithin(V )
Return the set of remaining edges

DELETEEDGESWITHIN(S)
If |S| = 1 then return
Partition S into S1 ∪̇S2 such that |S1| = |S2| = |S|/2
For i ∈ {1, 2}

DeleteEdgesWithin(Si)
Update N [S, S]

DeleteEdgesCrossing(S1, S2)

DELETEEDGESCROSSING(R, S)
If |R| = 1 then

Let r ∈ R and s ∈ S
If Tr,s 6= 0 and Nr,s 6= −1/Tr,s then

� Edge {r, s} can be deleted
Set Tr,s = Ts,r = 0
Update N [R∪S, R∪S]

Else
Partition R = R1 ∪̇R2 and S = S1 ∪̇S2 such that |R1| = |R2| = |S1| = |S2| = |R|/2
For i ∈ {1, 2} and for j ∈ {1, 2}

DeleteEdgesCrossing(Ri,Sj)
Update N [R∪S, R∪S]
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one non-zero entry per row and column (with failure probability n3/δ).

Algorithm 2.1 ensures that Nr,s = (T−1)r,s in each base case by updating N

whenever an edge is deleted. However, the algorithm does not update N all at

once, as Eq. (2.2) indicates one should do. Instead, it only updates portions of N

that are needed to satisfy the following two invariants.

1. DELETEEDGESWITHIN(S) initially has N [S, S] = T−1[S, S]. It restores this

property after each recursive call to DELETEEDGESWITHIN(Si) and after

calling DELETEEDGESCROSSING(S1, S2).

2. DELETEEDGESCROSSING(R,S) initially has N [R∪S,R∪S] = T−1[R∪S,R∪S].

It restores this property after deleting an edge, and after each recursive call

to DELETEEDGESCROSSING(Ri, Sj).

To explain why invariant 1 holds, consider executing DELETEEDGESWITHIN(S).

We must consider what happens whenever the Tutte matrix is changed, i.e., when-

ever an edge is deleted. This can happen when calling DELETEEDGESWITHIN(Si)

or DELETEEDGESCROSSING(S1, S2).

First, suppose the algorithm has just recursed on DELETEEDGESWITHIN(S1).

Let T denote the Tutte matrix before recursing and let T̃ denote the Tutte matrix

after recursing (i.e., incorporating any edge deletions that occurred during the re-

cursion). Note that T and T̃ differ only in that ∆ := T̃ [S1, S1] − T [S1, S1] may be

non-zero. Since the algorithm ensures that the Tutte matrix is always non-singular,

Corollary 2.2 shows that

T̃−1 = T−1 − (T−1)∗,S1 ·
(
I + ∆ · (T−1)S1,S1

)−1 ·∆ · (T−1)S1,∗.

Restricting to the set S, we have

(T̃−1)S,S = (T−1)S,S − (T−1)S,S1 ·
(
I + ∆ · (T−1)S1,S1

)−1 ·∆ · (T−1)S1,S.

Let N refer to that matrix’s value before recursing. To restore invariant 1, we must

compute the following new value for N [S, S].

NS,S := NS,S − NS,S1 ·
(
I + ∆ ·NS1,S1

)−1 ·∆ ·NS1,S (2.3)

The matrix multiplications and inversions in this computation all involve matrices

of size at most |S| × |S|, so O(|S|ω) time suffices.
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Next, suppose that the algorithm has just called DELETEEDGESCROSSING(S1, S2)

at the end of DELETEEDGESWITHIN(S). Invariant 2 ensures that

N [S, S] = N [S1 ∪ S2, S1 ∪ S2] = T−1[S1 ∪ S2, S1 ∪ S2] = T−1[S, S]

at the end of DELETEEDGESCROSSING(S1, S2), and thus invariant 1 holds at the

end of DELETEEDGESWITHIN(S).

Similar arguments show how to compute updates such that invariant 2 holds.

After deleting an edge {r, s}, it suffices to perform the following update.

Nr,s := Nr,s · (1− Tr,sNr,s)/(1 + Tr,sNr,s)

Ns,r := −Nr,s

(2.4)

After recursively calling DELETEEDGESCROSSING(Ri, Sj), we perform an update

as follows. Let T denote the Tutte matrix before recursing, let T̃ denote the Tutte

matrix after recursing, and let ∆ := (T̃ − T )Ri∪Sj ,Ri∪Sj
. Then we set

NR∪S,R∪S := NR∪S,R∪S − NR∪S,Ri∪Sj
·
(
I + ∆ ·NRi∪Sj ,Ri∪Sj

)−1 ·∆ ·NRi∪Sj ,R∪S

This shows that the algorithm satisfies the stated invariants.

Analysis. Let f(n) and g(n) respectively denote the running time of the functions

DELETEEDGESWITHIN(S) and DELETEEDGESCROSSING(R,S), where n = |R| =

|S|. As argued above, updating N requires only O(|S|ω) time, so we have

f(n) = 2 · f(n/2) + g(n) + O(nω)

g(n) = 4 · g(n/2) + O(nω).

By a standard analysis of divide-and-conquer recurrence relations [17], the solu-

tions of these recurrences are g(n) = O(nω) and f(n) = O(nω).

As argued in Section 2.4, each test to decide whether an edge can be deleted

fails with probability at most n/q, and therefore the overall failure probability is

at most n3/q. Therefore setting q ≥ n3/δ ensures that the algorithm fails with

probability at most δ.
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Remarks. Let T and N denote those matrices’ values before recursing on DELE-

TEEDGESWITHIN(S1), and let T̃ and Ñ denote the values after recursing. Invari-

ant 1 (for the subproblem S1) ensures that Ñ [S1, S1] = T̃−1[S1, S1]. The update

in Eq. (2.3) is performed to ensure that invariant 1 holds for the subproblem S.

However, that computation does not require the matrix Ñ , only the matrix N —

the matrix Ñ is discarded. For this reason, the invariants stated above are some-

what stronger than necessary. In particular, the update in Eq. (2.4) is completely

unnecessary, and is omitted from the Matlab code in Section 2.8.

2.6 Extensions

Maximum matching. Algorithm 2.1 is a Monte Carlo algorithm for finding a per-

fect matching in a non-bipartite graph. If the graph does not have a perfect match-

ing then T is singular and the algorithm reports a failure. An alternative solution

would be to find a maximum cardinality matching. This can be done by existing

techniques [78, 68], without increasing the asymptotic running time. Let TR,S be

a maximum rank square submatrix of T . Then it is known [78] that TS,S is also

non-singular, and that a perfect matching for the subgraph induced by S gives a

maximum cardinality matching in G.

This suggests the following algorithm. Randomly substitute values for the in-

determinates in T from Fq. The submatrix TR,S remains non-singular with proba-

bility at least n/q. Find a maximum rank submatrix of T ; without loss of generality,

it is TR,S . This can be done in O(nω) time using the algorithm in Appendix A. Now

apply Algorithm 2.1 to TS,S to obtain a matching containing all vertices in S. This

matching is a maximum cardinality matching of the original graph.

Las Vegas. The algorithms presented above are Monte Carlo. They can be made

Las Vegas by constructing an optimum dual solution — the Edmonds-Gallai de-

composition [86, p423]. Karloff [51] showed that this can be done by algebraic tech-

niques, and Cheriyan [12] gave a randomized algorithm using only O(nω) time. If

the dual solution agrees with the constructed matching then this certifies that the

matching indeed has maximum cardinality. We may choose the field size q so that

both the primal algorithm and dual algorithm succeed with constant probability.

Thus, the expected number of trials before this occurs is a constant, and hence the

algorithm requires time O(nω) time in expectation.
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2.7 Proofs

Proof (of Fact 2.1). Note that

(

I 0

−U I

)

·
(

I V T

0 M + UV T

)

=

(

I V T

−U M

)

=

(

I V TM−1

0 I

)

·
(

I + V TM−1U 0

−U M

)

.

Taking determinants shows that det(M + UV T) = det(I + V TM−1U) · det(M). This

proves the first claim. The second claim follows since

(

M−1 −M−1U(I + V TM−1U)−1V TM−1
)

·
(

M + UV T
)

= I + M−1U
(

I − (I + V TM−1U)−1 − (I + V TM−1U)−1V TM−1U
)

V T

= I + M−1U(I + V TM−1U)−1
(

(I + V TM−1U)− I − V TM−1U
)

V T

= I,

as required. �

Proof (of Corollary 2.2). Let us write M̃ = M + UV T, where

M =

S S

S ( MS,S MS,S
)

S MS,S MS,S

M̃ =

S S

S ( M̃S,S MS,S
)

S MS,S MS,S

U =

S

S ( I )

S 0

V T =
S S

S
(

M̃S,S−MS,S 0
) .

Then Fact 2.1 shows that M̃ is non-singular iff I + V TM−1U is non-singular. Using

the definition of N , V and U , we get

I + V TNU = I + (M̃S,S −MS,S)NS,S.
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Furthermore, Fact 2.1 also shows that

M̃−1 = N − N U (I + V TNU)−1 V T N

= N − N∗,S

(
I + (M̃S,S −MS,S)NS,S

)−1
(M̃S,S −MS,S) NS,∗,

as required. �

Proof (of Fact 2.3). Suppose that M−1 exists. Then

(M−1)i,j =
(
(M−1)T )j,i =

(
(MT)−1 )j,i =

(
(−M)−1 )j,i = − (M−1)j,i,

as required. �
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2.8 Matlab implementation

This section gives Matlab code which implements Algorithm 2.1.

%%% FindPerfectMatching %%%

% Input: A is the adjacency matrix of a graph G.

% Output: a vector representing a perfect matching of G.

function match = FindPerfectMatching(A)

global T N

% Build Tutte matrix.

% Add dummy vertices so that size is a power of 2.

% The chosen range of random values ensures success w.p. > 1/2

m=size(A,1); n=pow2(ceil(log2(m))); q=2 * nˆ3;

T=zeros(n);

for i=1:m for j=i+1:m

if (A(i,j)˜=0) T(i,j)=unidrnd(q); T(j,i)=-T(i,j); end;

end; end;

for i=m+1:n for j=i+1:n % Dummy vertices and edges

T(i,j)=unidrnd(q); T(j,i)=-T(i,j);

end; end;

if (rank(T)<n)

match=[]; return; % No perfect matching

end;

N = inv(T);

DeleteEdgesWithin(1:n);

% T now (probably) has one entry per row and column.

% Return the corresponding matching of G.

[match,z] = find(T);

if (length(match)==n)

match=match(1:m);

else

match=[];

end;

%%% DeleteEdgesWithin %%%

function DeleteEdgesWithin(S)

global T N

n=length(S); m=n/2;

if n==1 return; end

for i=1:2

Si=S(1+(i-1) * m:i * m);

Told=T(Si,Si); Nold=N(Si,Si);

DeleteEdgesWithin(Si);

Delta=T(Si,Si)-Told; N(Si,Si)=Nold;

N(S,S)=N(S,S)-N(S,Si) * inv(eye(m)+Delta * Nold) * Delta * N(Si,S);

end;

DeleteEdgesCrossing(S(1:m),S(m+1:n));
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%%% DeleteEdgesCrossing %%%

function DeleteEdgesCrossing(R,S)

global T N

n=length(R); m=n/2; RS=[R,S];

if n==1

r=R(1); s=S(1);

% Test if T(r,s)<>0 and N(r,s)<>-1/T(r,s), avoiding floati ng-point error

if ( abs(T(r,s))>100 * eps && abs(N(r,s)+1/T(r,s))>100 * eps )

T(r,s)=0; T(s,r)=0;

end;

return;

end

for i=1:2 for j=1:2

Ri=R(1+(i-1) * m:i * m); Sj=S(1+(j-1) * m:j * m); RiSj=[Ri,Sj];

Told=T(RiSj,RiSj); Nold=N(RiSj,RiSj);

DeleteEdgesCrossing(Ri,Sj);

Delta=T(RiSj,RiSj)-Told; N(RiSj,RiSj)=Nold;

N(RS,RS)=N(RS,RS)-N(RS,RiSj) * inv(eye(n)+Delta * Nold) * Delta * N(RiSj,RS);

end; end;



Chapter 3

Matroid intersection algorithm

In this chapter, we present algorithms for solving the matroid intersection prob-

lem for linear matroids that are explicitly represented over the same field. Sec-

tion 3.1 formally defines matroids and our required properties. Section 3.2 gives

an overview of our approach, and Section 3.3 explains the connections to linear

algebra. Section 3.4 shows how these tools can be used to give an efficient algo-

rithm for matroids of large rank. That algorithm is then used as a subroutine in

the algorithm of Section 3.5, which requires only O(nrω−1) time for matroids with

n elements and rank r.

The algebraic approach used in this chapter only applies when the two given

matroids are linear and represented over the same field. The same assumption is

needed by several existing algorithms [4, 9, 58, 73]. Although there exist linear

matroids for which this assumption cannot be satisfied (e.g., the Fano and non-

Fano matroids), this assumption is valid for the vast majority of matroids arising

in applications. For example, the regular matroids are those that are representable

over all fields; this class includes the graphic, cographic and partition matroids.

Many classes of matroids are representable over all but finitely many fields; these

include the uniform, matching, and transversal matroids, as well as deltoids and

gammoids [86]. Our results apply to any two matroids from the union of these

classes.

33
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3.1 Matroids

Matroids are combinatorial objects first introduced by Whitney [95] and others in

the 1930s. Many excellent texts contain an introduction to the subject [14, 56, 70,

75, 86, 94]. We review some of the important definitions and facts below.

A matroid is a combinatorial object defined on a finite ground set S. The cardi-

nality of S is typically denoted by n. There are several important ancillary objects

relating to matroids, any one of which can be used to define matroids. Below we

list those objects that play a role in this paper, and we use “base families” as the

central definition.

Base family: This non-empty family B ⊆ 2S satisfies the axiom:

Let B1, B2 ∈ B. For each x ∈ B1 \ B2, there exists y ∈ B2 \ B1 such

that B1 − x + y ∈ B.

A matroid can be defined as a pair M = (S,B), where B is a base family over

S. A member of B is called a base. It follows from the axiom above that all

bases are equicardinal. This cardinality is called the rank of the matroid M,

typically denoted by r.

Independent set family: This family I ⊆ 2S is defined as

I = { I : I ⊆ B for some B ∈ B } .

A member of I is called an independent set. Any subset of an independent

set is clearly also independent, and a maximum-cardinality independent set

is clearly a base.

The independent set family can also be characterized as a non-empty family

I ⊆ 2S satisfying

• A ⊆ B and B ∈ I =⇒ A ∈ I;

• A ∈ I and B ∈ I and |A| < |B| =⇒ ∃b ∈ B \ A such that A + b ∈ I.

Rank function: This function, r : 2S → N, is defined as

r(T ) = max
I∈I, I⊆T

|I|.
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A maximizer of this expression is called a base for T in M. A set I is in-

dependent iff r(I) = |I|. Rank functions satisfy the following important

inequality, known as the submodular inequality.

r(A) + r(B) ≥ r(A ∪B) + r(A ∩B) ∀ A,B ⊆ S (3.1)

This inequality is of particular importance, and it leads to the notion of sub-

modular functions, which we discuss further in Chapter 5.

Since all of the objects listed above can be used to characterize matroids, we

sometimes write M = (S, I), or M = (S, I,B), etc. To emphasize the matroid

associated to one of these objects, we often write BM, rM, etc.

Examples. Many matroids fall into several useful families.

• Linear matroids. Let Q be a matrix over a field F whose columns are indexed

by the set S. Define

I = { I ⊆ S : Q[∗, I] has full column-rank } .

Then M = (S, I) is a linear matroid and Q is called a linear representation

of M. There exist matroids which do not have a linear representation over

any field, although many interesting matroids can be represented over some

field.

• Laminar matroids. Let S be a ground set and let L ⊂ 2S be a laminar family.

That is, for A,B ∈ L, either A ⊆ B or B ⊆ A or A ∩ B = ∅. For each A ∈ L,

associate a value dA ∈ N. Define

IL,d = { I ⊆ S : |I ∩ A| ≤ dA ∀A ∈ L } .

Then (S, IL,d) is a laminar matroid [30, p43].

• Partition matroids. Let S = S1 ∪̇S2 ∪̇ · · · ∪̇Sk be a partition of the ground set.

and let d1, . . . , dk ∈ N. Define

I = { I ⊆ S : |I ∩ Si| ≤ di ∀i } .
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Then M = (S, I) is a partition matroid.

• Uniform matroids. Let S be a ground set, let k be an integer, and let

I = { I ⊆ S : |I| ≤ k } .

Then M = (S,B) is the uniform matroid of rank k on S.

One may easily verify that uniform matroids are a special case of partition ma-

troids, which are a special case of a laminar matroids, which are a special case of

linear matroids.

One important operation on matroids is contraction. Let M = (S,B) be a ma-

troid. Given a set T ⊆ S, the contraction of M by T , denoted M/T , is defined as

follows. Its ground set is S \ T . Next, fix a base BT for T in M, so BT ⊆ T and

rM(T ) = rM(BT ). The base family of M/T is defined as:

BM/T = { B ⊆ S \ T : B ∪BT ∈ BM } .

Thus, for I ⊆ S \ T , we have

I ∈ IM/T ⇐⇒ I ∪BT ∈ IM. (3.2)

The rank function of M/T satisfies:

rM/T (X) = rM(X ∪ T )− rM(T ). (3.3)

Suppose two matroids M1 = (S,B1) and M2 = (S,B2) are given. A set B ⊆ S is

called a common base if B ∈ B1∩B2. A common independent set (or an intersection)

is a set I ∈ I1∩I2. The matroid intersection problem is to construct a common base

of M1 and M2. The decision version of the problem is to decide whether a common

base exists. The optimization version of the problem is to construct an intersection

of M1 and M2 with maximum cardinality. Edmonds [24] proved the following

important min-max relation which gives a succinct certificate of correctness for the

matroid intersection problem.

Fact 3.1 (Matroid Intersection Theorem). Let M1 = (S, I1, r1) and M2 = (S, I2, r2)
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be given. Then

max
I∈I1∩I2

|I| = min
A⊆S

(
r1(A) + r2(S \ A)

)
.

Matroid Models. To specify a matroid requires, in general, space that is expo-

nential in the size of the ground set since there are 22O(n)
paving matroids — see

Section 4.3. With such an enormous representation, many matroid problems have

trivial algorithmic solutions whose running time is polynomial in the input length.

This observation motivates two different models for representing matroids, as

discussed in Chapter 1.

• Linear model. Instead of representing all matroids, this model restricts to

the class of linear matroids. This is a reasonable assumption since most of

the matroids that arise in practice are actually linear. Such matroids can

be represented by a matrix giving a linear representation of the matroid, as

described above. There always exists such a matrix of size at most r × n.

• Oracle model. In this model, a matroid M = (S, I) is represented by an oracle

— a subroutine which answers queries about the structure of M. The most

common such oracle is an independence oracle, which answers the following

queries: given a set A ⊆ S, is A ∈ I?

This chapter focuses exclusively on the linear model.

3.2 Overview of algorithm

We now give a high-level overview of the algorithms. First, some notation and

terminology are needed. Let M1 = (S,B1) and M2 = (S,B2). Our algorithms will

typically assume that M1 and M2 have a common base; the goal is to construct

one. Any subset of a common base is called an extensible set. If J is extensible,

i ∈ S \ J , and J + i is also extensible then i is called allowed (relative to J).

The general idea of our algorithm is to build a common base incrementally. For

example, suppose that {b1, . . . , br} is an arbitrary common base. Then

• ∅ is extensible,

• b1 is allowed relative to ∅,
• b2 is allowed relative to {b1},
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Algorithm 3.1 A general overview of our algorithm for constructing a common base of two
matroids M1 and M2.

MATROIDINTERSECTION(M1, M2)
Set J = ∅
For each i ∈ S, do

Invariant: J is extensible
Test if i is allowed (relative to J)
If so, set J := J + i

• b3 is allowed relative to {b1, b2}, etc.

So building a common base is straightforward, so long as we can test whether

an element is allowed, relative to the current set J . This strategy is illustrated in

Algorithm 3.1. The following section provides linear algebraic tools that we will

later use to test whether an element is allowed.

3.3 Formulation using linear algebra

Suppose that each Mi = (S,Bi) is a linear matroid representable over a common

field F. Let ri : S → N be the rank function of Mi. Let Q1 be an r× n matrix whose

columns represent M1 over F and let Q2 be a n× r matrix whose rows represent M2

over F. For notational convenience, we will let QJ
1 denote Q1[∗, J ] and QJ

2 denote

Q2[J, ∗]. So J ∈ I2 iff QJ
2 has full row-rank.

Let T be a diagonal matrix whose rows and columns are indexed by the set S

where entry Ti,i is an indeterminate ti. Define

Z :=

(

0 Q1

Q2 T

)

.

For J ⊆ S, let T (J) denote Tdel(J,J), the matrix obtained by deleting the rows and

columns in J . For each J ⊆ S, we also define the matrix

Z(J) :=






0 QJ
1 QJ

1

QJ
2 0 0

QJ
2 0 T (J)




 . (3.4)
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So Z and Z(∅) are identical. Let λ(J) denote the maximum cardinality of an in-

tersection in the contracted matroids M1/J and M2/J , which were defined in Sec-

tion 3.1.

The following theorem, whose proof is on page 49, gives a connection between

the matrix Z(J) and the quantity λ(J).

Theorem 3.2. For any J ⊆ S, we have rank Z(J) = n + r1(J) + r2(J)− |J |+ λ(J).

For the special case J = ∅, this result was stated by Geelen [34] and follows

from the connection between matroid intersection and the Cauchy-Binet formula,

as noted by Tomizawa and Iri [90]. Building on Theorem 3.2, we obtain the follow-

ing result which forms the foundation of our algorithms. Its proof is on page 50.

Let us now assume that both M1 and M2 have rank r, i.e., r = r1(S) = r2(S).

Theorem 3.3. Suppose that λ(∅) = r, i.e., M1 and M2 have a common base. For any

J ⊆ S (not necessarily an intersection), Z(J) is non-singular iff J is extensible.

The preceding theorems lead to the following lemma which characterizes al-

lowed elements. Here, we identify the elements of S\J with the rows and columns

of the submatrix of T (J) in Z(J).

Lemma 3.4. Suppose that J ⊆ S is an extensible set and that i ∈ S \ J . The element i is

allowed iff (Z(J)−1)i,i 6= t−1
i .

Proof. By Theorem 3.3, our hypotheses imply that Z(J) is non-singular. Then

element i is allowed iff Z(J + i) is non-singular, again by Theorem 3.3. Note that

Z(J + i) is identical to Z(J) except that Z(J + i)i,i = 0. Corollary 2.2 implies that

Z(J + i) is non-singular iff

det
(

1− Z(J)i,i ·
(
Z(J)−1

)

i,i

)

6= 0.

Eq. (3.4) shows that Z(J)i,i = ti, so the proof is complete. �

The structure of the matrix Z, and its inverse, will play a key role in our algo-

rithms below. To describe Z−1, let us introduce some properties of Schur comple-

ments, proofs of which are given on page 51.
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Fact 3.5 (Schur Complement). Let M be a square matrix of the form

M =

S1 S2

S1
( W X )

S2 Y Z

where Z is square. If Z is non-singular, the matrix C := W − XZ−1Y is known as the

Schur complement of Z in M . The Schur complement satisfies many useful properties,

two of which are:

• det M = det Z · det C.

• Let CA,B be a maximum rank square submatrix of C. Then MA∪S2,B∪S2 is a maxi-

mum rank square submatrix of M .

Let Y denote the Schur complement of T in Z, i.e., Y = −Q1 ·T−1 ·Q2. One may

verify (by multiplying with Z) that

Z−1 =

(

Y −1 −Y −1 ·Q1 · T−1

−T−1 ·Q2 · Y −1 T−1 + T−1 ·Q2 · Y −1 ·Q1 · T−1

)

. (3.5)

Our algorithms cannot directly work with the matrix Z(J) since its entries con-

tain indeterminates. A similar issue was encountered in Chapter 2: for example,

det Z(J) is a polynomial which may have exponential size. This issue is again

resolved through randomization. Suppose that Z(J) is non-singular over F, i.e.,

det Z(J) is a non-zero polynomial with coefficients in F. Suppose that F = Fpc is fi-

nite and let c′ ≥ c. Evaluate det Z(J) at a random point over the extension field Fpc′

by picking each ti ∈ Fpc′ uniformly at random. This evaluation is zero with prob-

ability at most n/q, where q = pc′ , as shown by the Schwartz-Zippel lemma [67].

This probability can be made arbitrarily small by choosing q as large as desired.

If F is infinite then we simply need to choose each ti uniformly at random from a

subset of F of size q.

3.4 An algorithm for matroids of large rank

This section presents an algorithm which behaves as follows. It is given two matri-

ces Q1 and Q2 over F representing matroids M1 and M2, as in the previous section.
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The algorithm will decide whether the two matroids have a common base and, if

so, construct one. The algorithm requires time O(nω), and is intended for the case

n = O(r), i.e., the rank is large.

For the sake of simplicity, let us henceforth assume that n and r are both powers

of two. To satisfy this assumption, we replace Q1 with the matrix

S S ′ S ′′

( Q1 0 0 )

0 I 0

where |S ′| := 2dlog re − r and |S ′′| := 2dlog|S∪S′|e − |S ∪ S ′|. In matroid terminology,

the elements in S ′ are coloops and the elements in S ′′ are loops. An analogous con-

struction is applied to Q2. It is clear that a common base of the resulting matroids

yields a common base of the original matroids.

The algorithm maintains an extensible set J , initially empty, and computes

Z(J)−1 to help decide which elements are allowed. As elements are added to J , the

matrix Z(J)−1 must be updated accordingly. A recursive scheme is used to do this,

as in the matching algorithm of Chapter 2. Pseudocode is shown in Algorithm 3.2.

First let us argue the correctness of the algorithm. The base cases of the algo-

rithm examine each element of the ground set in order. For each element i, the

algorithm decides whether i is allowed relative to J using Lemma 3.4; if so, i is

added to J . Thus the behavior of Algorithm 3.2 is identical to Algorithm 3.1, and

its correctness follows.

The algorithm decides whether i is allowed by testing whether
(
Z(J)−1

)

i,i
6= ti.

(Note that invariant 2 ensures Ni,i =
(
Z(J)−1

)

i,i
.) Lemma 3.4 shows that this test

is correct when the ti’s are indeterminates. When the ti’s are random numbers,

the probability that this test fails (i.e., i is allowed but
(
Z(J)−1

)

i,i
= ti) is at most

n/q, again by the Schwartz-Zippel lemma. By a union bound over all elements, the

probability of failure is at most δ so long as q ≥ n2/δ.

We now complete the description of the algorithm by explaining how to com-

pute the matrix M =
(
Z(J ∪ J1)

−1
)

S2,S2
during the recursive step. First, note that

NS2,S2 =
(
Z(J)−1

)

S2,S2
. Next, note that Z(J ∪ J1) is identical to Z(J) except that
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Algorithm 3.2 A recursive algorithm to compute a common base of two matroids M1 = (S,B1)
and M2 = (S,B2) when n = |S| = O(r). We assume that n and r are both powers of two.

MATROIDINTERSECTION(M1,M2)
Let S be the ground set of M1 and M2

Construct Z and assign random values to the indeterminates t1, . . . , tn
Compute N := (Z−1)S,S

J = BUILDINTERSECTION(S, ∅, N )
Return J

BUILDINTERSECTION( S, J, N )
Invariant 1: J is an extensible set
Invariant 2: N =

(
Z(J)−1

)

S,S

If |S| ≥ 2 then
Partition S = S1 ∪̇S2 where |S1| = |S2| = |S|/2
J1 = BUILDINTERSECTION(S1, J , NS1,S1)
Compute M :=

(
Z(J ∪ J1)

−1
)

S2,S2
, as described below

J2 = BUILDINTERSECTION(S2, J ∪ J1, M )
Return J1 ∪ J2

Else
This is a base case: S consists of a single element i = a = b
If Ni,i 6= t−1

i (i.e., element i is allowed) then
Return {i}

Else
Return ∅

Z(J ∪ J1)J1,J1 = 0. It follows from Corollary 2.2 that

Z(J ∪ J1)
−1

= Z(J)−1 +
(
Z(J)−1

)

∗,J1

(

I − Z(J)J1,J1

(
Z(J)−1

)

J1,J1

)−1

Z(J)J1,J1

(
Z(J)−1

)

J1,∗
.

Thus

(
Z(J ∪ J1)

−1
)

S2,S2
= NS2,S2 + NS2,J1

(

I − ZJ1,J1 NJ1,J1

)−1

ZJ1,J1 NJ1,S2 .

The matrix M is computed according to this equation, which requires time at most

O(|S|ω) since all matrices have size at most |S| × |S|.
We now argue that this algorithm requires O(nω) time. The work is dominated

by the matrix computations. Computing the initial matrix Z−1 clearly takes O(nω)
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Algorithm 3.3 The algorithm to compute a common base of two matroids M1 = (S,B1) and
M2 = (S,B2). We assume that n and r are both powers of two.

MATROIDINTERSECTION(M1,M2)
Construct Z and assign random values to the indeterminates t1, . . . , tn
Compute Y := −Q1T

−1Q2 (used below for computing N )
Partition S = S1 ∪ · · · ∪ Sn/r, where |Si| = r
Set J := ∅
For i = 1 to n/r do

Compute N := (Z(J)−1)Si,Si

J ′ = BUILDINTERSECTION(Si,J ,N )
Set J := J ∪ J ′

Return J

time since Z has size (n+r)× (n+r). As shown above, computing M requires time

O(|S|ω). Thus the running time of BUILDINTERSECTION is given by the recurrence

f(n) = 2 · f(n/2) + O(nω),

which has solution f(n) = O(nω).

3.5 An algorithm for matroids of any rank

This section builds upon the algorithm of the previous section and obtains an al-

gorithm with improved running time when r = o(n). As before, we assume than

n and r are both powers of two. The high-level idea is as follows: partition the

ground set S into parts of size r, then execute the BUILDINTERSECTION subroutine

from Algorithm 3.2 on each of those parts. For each part, executing BUILDINTER-

SECTION requires O(rω) time. Since there are n/r parts, the total time required is

O(nrω−1). More detailed pseudocode is given in Algorithm 3.3.

Algorithm 3.3 is correct for the same reasons that Algorithm 3.2 is: each element

i is examined exactly once, and the algorithm decides if i is allowed relative to

the current set J . Indeed, all decisions made by Algorithm 3.3 are performed in

the BUILDINTERSECTION subroutine, which was analyzed in the previous section.

Correctness follows immediately, and again the failure probability is δ so long as

q ≥ n2/δ.

Let us now analyze the time required by Algorithm 3.3. First, let us consider
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the matrix Y , which is computed in order to later compute the matrix N . Since Q1

has size r×n and T is diagonal of size n×n, their product Q1T
−1 can be computed

in O(nr) time. Since Q1T
−1 has size r × n and Q2 has size n × r, their product can

be computed in time O(nrω−1).

Now let us consider the time for each loop iteration. Each call to BUILDIN-

TERSECTION requires O(rω) time, as argued in the previous section. The following

claim shows that computing the matrix N also requires O(rω) time. Thus, the to-

tal time required by all loop iterations is (n/r) · O(rω) = O(nrω−1), and therefore

Algorithm 3.3 requires O(nrω−1) time in total.

Claim 3.6. In each loop iteration, the matrix N can be computed in O(rω) time.

To prove this, we need another claim.

Claim 3.7. Suppose that the matrix Y has already been computed. For any A,B ⊆ S

with |A| ≤ r and |B| ≤ r, the submatrix (Z−1)A,B can be computed in O(rω) time.

Proof. As shown in Eq. (3.5), we have

(Z−1)S,S = T−1 + T−1 Q2 Y −1 Q1 T−1.

Thus,

(Z−1)A,B = T−1
A,B + (T−1Q2)A,∗ Y −1 (Q1T

−1)∗,B.

The submatrices (T−1Q2)A,∗ and (Q1T
−1)∗,B can be computed in O(r2) time since

T is diagonal. The remaining matrices have size at most r × r, so all computations

require at most O(rω) time. �

Proof (of Claim 3.6). Note that Z(J) is identical to Z except that Z(J)J,J = 0. It

follows from Corollary 2.2 that

Z(J)−1 = Z−1 + (Z−1)∗,J

(

I − ZJ,J (Z−1)J,J

)−1

ZJ,J (Z−1)J,∗.

Thus,

(
Z(J)−1

)

Si,Si
= (Z−1)Si,Si

+ (Z−1)Si,J

(

I − ZJ,J (Z−1)J,J

)−1

ZJ,J (Z−1)J,Si
. (3.6)

By Claim 3.7, the submatrices (Z−1)Si,Si
, (Z−1)Si,J , (Z−1)J,J , and (Z−1)J,Si

can all be
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computed in O(rω) time. Thus the matrix N =
(
Z(J)−1

)

Si,Si
can be computed in

O(rω) time, as shown in Eq. (3.6). �

3.6 Extensions

3.6.1 Maximum cardinality intersection

The algorithms presented in the previous sections construct a common base of the

two given matroids, if one exists. If the matroids do not have a common base, then

the matrix Z is singular and the algorithm reports a failure. An alternative solution

would be to find a maximum cardinality intersection rather than a common base.

Algorithm 3.3 can be adapted for this purpose, while retaining the running time

of O(nrω−1). We will use the same approach used in Chapter 2 to get a maximum

matching algorithm: restrict attention to a maximum-rank submatrix of Z.

Suppose the two given matroids M1 = (S,B1) and M2 = (S,B2) do not have a

common base. By Theorem 3.2, rank Z = n+λ, where λ is the maximum cardinality

of an intersection of the two given matroids. Since T is non-singular, Fact 3.5 shows

that there exists a row-set A and column-set B, both disjoint from S, such that

|A| = |B| = rank Z − n and ZA∪S,B∪S is non-singular. The matrix ZA∪S,B∪S has the

following form.

ZA∪S, B∪S =

B S

A ( Q1[A, ∗] )

S Q2[∗, B] T

Now Algorithm 3.3 can be used to find a common base J for the matroids MA

corresponding to Q1[A, ∗] and MB corresponding to Q2[∗, B]. Then Q1[A, J ] has full

column-rank, which certainly implies that Q1[∗, J ] does too, so J ∈ I1. Similarly,

J ∈ I2. Since

|J | = |A| = rank Z − n = λ,

then |J | is a maximum cardinality intersection for M1 and M2.

To analyze the time required by this algorithm, it suffices to focus on the time

required to construct the sets A and B. Let Y = −Q1TQ2 be the Schur complement

of T in Z. By Fact 3.5, if YA,B is a maximum-rank square submatrix of Y then A
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and B give the desired sets. As remarked earlier, Y can be computed in O(nrω−1)

time, and a maximum-rank square submatrix can be found in O(rω) time, via the

algorithm of Appendix A. This shows that a maximum cardinality intersection can

be constructed in O(nrω−1) time.

3.6.2 A Las Vegas algorithm

The algorithms presented above are Monte Carlo. In this section, we show that

they can be made Las Vegas by constructing an optimal dual solution, i.e., a min-

imizing set A in Fact 3.1. This dual solution can also be constructed in O(nrω−1)

time. If an optimal dual solution is constructed then this certifies that the output

of the algorithm is correct. Since this event occurs with constant probability, the

expected number of trials before this event occurs is only a constant.

To construct a dual solution, we turn to the classical combinatorial algorithms

for matroid intersection, such as Lawler’s algorithm [56]. Expositions can also be

found in Cook et al. [14] and Schrijver [86]. Given an intersection, this algorithm

searches for augmenting paths in an auxiliary graph. If an augmenting path is

found, then the algorithm constructs a larger intersection. If no such path exists,

then the intersection has maximum cardinality and an optimal dual solution can

be constructed.

The first step is to construct a (purportedly maximum) intersection J using the

algorithm of Section 3.6.1. We then construct the auxiliary graph for J and search

for an augmenting path. If one is found, then J is not optimal, due to the algo-

rithm’s unfortunate random choices; this happens with only constant probability.

Otherwise, if there is no augmenting path, then we obtain an optimal dual solu-

tion. It remains to show that we can construct the auxiliary graph and search for

an augmenting path in O(nrω−1) time.

The auxiliary graph is defined as follows. We have two matroids M1 = (S, I1)
and M2 = (S, I2), and an intersection J ∈ I1∩I2. The auxiliary graph is a directed,

bipartite graph G = (V,A) with bipartition V = J ∪̇ (S \ J). The arcs are A =

A1 ∪̇A2 where

A1 := { (x, y) : y ∈ J, x 6∈ J, and J − y + x ∈ I1 }
A2 := { (y, x) : y ∈ J, x 6∈ J, and J − y + x ∈ I2 } .
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There are two distinguished subsets X1, X2 ⊆ S \ J , defined as follows.

X1 := { x : x 6∈ J and J + x ∈ I1 }
X2 := { x : x 6∈ J and J + x ∈ I2 }

It is possible that X1 ∩ X2 6= ∅. Any minimum-length path from X1 to X2 is an

augmenting path. So J is a maximum cardinality intersection iff G has no directed

path from X1 to X2. When this holds, the set U of vertices which have a directed

path to X2 satisfies |J | = r1(U) + r2(S \ U), so U is an optimum dual solution.

Schrijver [86, p706] gives proofs of these statements.

Since the auxiliary graph has only n vertices and O(nr) arcs, we can search for

a path from X1 to X2 in O(nr) time.

Claim 3.8. The auxiliary graph can be constructed in O(nrω−1) time.

Proof. Since J ∈ I1, the submatrix Q1[∗, J ] has full column-rank. Let Q1[I, J ] be a

non-singular square submatrix, and assume for notational simplicity that I = J =

{1, . . . , |J |}. So Q1 can be decomposed as follows.

Q1 =

J J

I ( W X )

I Y Z

For any non-singular matrix M , the matrix M ·Q1 is also a linear representation

of M1. We choose

M =

(

W−1 0

−Y W−1 I

)

,

so that

M ·Q1 =

(

I W−1X

0 Z − Y W−1X

)

.

Note that C := Z − Y W−1X is the Schur complement of Q1[I, J ] in Q1. It follows

from Fact 3.5 that Q1[∗, J +i] has full column-rank iff C∗,i contains a non-zero entry.

Thus we will add i to X1 iff C∗,i contains a non-zero entry.
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We now have the following scenario.

M ·Q1 =

J X1 J ∪X1

I ( I W−1X∗,X1 W−1X∗,X1

)

I 0 C∗,X1 0

(3.7)

Clearly Q1[∗, J− i+ j] has full column-rank iff (M ·Q1)[∗, J− i+ j] has full-column

rank. For j ∈ J ∪X1, it is clear from Eq. (3.7) that the latter condition holds iff

(M ·Q1)i,j 6= 0.

The arcs in A1 are constructed as follows. For any x ∈ X1, we have J + x ∈ I1,

which implies that J + x− y ∈ I1 ∀y ∈ J . Thus (x, y) ∈ A1 for all x ∈ X1 and y ∈ J .

For any x ∈ S \ (J ∪X1), we have (x, y) ∈ A1 iff (M ·Q1)i,j 6= 0, as argued above.

The computational cost of this procedure is dominated by the time to compute

M · Q1, which clearly takes O(nrω−1) time. A symmetric argument shows how to

build X2 and A2. �

3.7 Discussion

The material of this chapter raises questions for future study.

• Can fast rectangular matrix multiplication [15] be used to obtain more effi-

cient matroid intersection algorithms?

• Can the algorithms of this chapter and Chapter 2 be combined to solve the

matroid matching problem [56, 61, 86] in O(nω) time?

• Are there more efficient algorithms for special matroids, e.g., the intersection

of two graphic matroids?

3.8 Proofs

Proof of Theorem 3.2

The following result is useful for analyzing matrices of indeterminates.
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Lemma 3.9 (Murota [70, p139]). Let Q and X be matrices with row-set and column-set

S. Suppose that the entries of Q are numbers in some field, and the entries of X contain

either a distinct indeterminate or zero. Then

rank(Q + X) = max
Ar⊆S, Ac⊆S

(
rank Q[Ar, Ac] + rank X[S \ Ar, S \ Ac]

)
. (3.8)

Proof (of Theorem 3.2). The approach is to apply Lemma 3.9 to the matrix Z(J).

We have

R J S \ J

R ( QJ
1 QJ

1
)

J QJ
2

S \ J QJ
2 T (J)

︸ ︷︷ ︸

Z(J)

=

R J S \ J

R ( QJ
1 QJ

1
)

J QJ
2

S \ J QJ
2

︸ ︷︷ ︸

Q

+

R J S \ J

R ( )

J

S \ J T (J)
︸ ︷︷ ︸

X

where S = R ∪̇S indexes the rows and columns of Z.

Our proof successively adds constraints to the sets Ar and Ac in Eq. (3.8) with-

out changing the maximum value. First, we add the constraint R ∪ J ⊆ Ar be-

cause those rows clearly cannot contribute to rank X[S \ Ar,S \ Ac]. A similar

argument holds for Ac. Next, if i ∈ Ar \ Ac then column i cannot contribute to

rank X[S \ Ar,S \ Ac], since T (and hence X) are diagonal. The same argument

applies to Ac \ Ar, so we may assume without loss of generality that Ar = Ac. For

notational simplicity, we now drop the subscripts and simply write A = R ∪ A′,

where A′ ⊆ S.

Consider the rank Q[A,A] term of Eq. (3.8). Observe that Q1 and Q2 occupy

disjoint rows and columns of Z, so rank Q[A,A] = r1(A
′)+ r2(A

′). The second term

is rank X[S \ A,S \ A] = |S \ A| = |S \ A′| = n− |A′|. Thus we have

rank Z(J) = max
A′⊆S

(
r1(A

′) + r2(A
′) + n− |A′|

)
.



50 CHAPTER 3. MATROID INTERSECTION ALGORITHM

Recall that J ⊆ A′. Thus we may write A′ = I ∪̇ J , where I ∩ J = ∅. Using the

definition of rM1/J in Eq. (3.3), we obtain

rank Z(J) = max
I⊆S\J

(
rM1/J(I) + rM2/J(I)− |I|

)
+ n + r1(J) + r2(J)− |J |. (3.9)

We now argue that this expression is maximized when I is a maximum cardi-

nality intersection of M1/J and M2/J , so that λ(J) = |I| = rMi/J(I) for each i. This

shows that rank Z(J) ≥ λ(J) + n + r1(J) + r2(J)− |J |.
To complete the proof, we show the reverse inequality. To do so, let I be a max-

imizer of Eq. (3.9) that additionally minimizes 2|I| − rM1/J(I)− rM2/J(I). Suppose

that this latter quantity is not zero. Then for some i we have rMi/J(I) < |I|, so

there exists a ∈ I with rMi/J(I − a) = rMi/J(I). It follows that the set I − a is

also a maximizer of Eq. (3.9), contradicting our choice of I . Hence rMi/J(I) = |I|
for both i. Thus I is an intersection of M1/J and M2/J satisfying rank Z(J) =

|I|+ n + r1(J) + r2(J)− |J |. Since |I| ≤ λ(J), the desired inequality holds. �

Proof of Theorem 3.3

Claim 3.10. Let J be an intersection of M1 and M2. J is extensible iff λ(∅) = λ(J)+ |J |.

Proof. Suppose that J is an extensible intersection. This means that there exists an

intersection I with J ⊆ I and |I| = λ(∅). Since J ∈ Ii, it is a base for itself in Mi.

Thus, Eq. (3.2) shows that I \ J ∈ IMi/J for both i, implying that λ(J) ≥ |I \ J | =
λ(∅)− |J |.

To show the reverse inequality, let I be a maximum cardinality intersection of

M1/J and M2/J . So |I| = λ(J). Then I ∪ J is an intersection of M1 and M2,

showing that λ(∅) ≥ λ(J) + |J |. This establishes the forward direction.

Now suppose that λ(J) = λ(∅) − |J |. Then there exists an intersection I of

M1/J and M2/J with |I| = λ(∅) − |J |. Then I ∪ J is an intersection of M1 and

M2, of cardinality |I| + |J | = λ(∅). This shows that J is contained in a maximum

cardinality intersection of M1 and M2, and therefore is extensible. �

Claim 3.11. Assume that M1 and M2 have the same rank r. For any set J ⊆ S, we have

λ(J) ≤ r −maxi∈{1,2} ri(J).

Proof. Note that λ(J) is at most the rank of Mi/J , which is r − ri(J). �
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Suppose that J is an extensible intersection. This implies that r1(J) = |J | and

r2(J) = |J | and λ(J) = λ(∅)− |J |, by Claim 3.10. Theorem 3.2 then shows that

rank Z(J) = n + r1(J) + r2(J)− |J |+ λ(J)

= n + |J |+ |J | − |J |+ λ(∅)− |J |
= n + r,

and hence Z(J) is non-singular as required.

We now argue the converse. Clearly r2(J) ≤ |J | and, by Claim 3.11, we have

λ(J) + r1(J) ≤ r. Thus

rank Z(J) = n + r1(J) + r2(J)− |J |+ λ(J)

= n +
(
r1(J) + λ(J)

)
+
(
r2(J)− |J |

)

≤ n + r.

If Z(J) is non-singular then equality holds, so we have r2(J) = |J | and r1(J) +

λ(J) = r. By symmetry, we also have r1(J) = |J |, implying that J is an intersection.

Altogether this shows that |J |+ λ(J) = r, implying that J is also extensible.

Proof of Fact 3.5

Note that

(

W −XZ−1Y 0

0 Z

)

=

(

I −XZ−1

0 I

)

︸ ︷︷ ︸

N1

·
(

W X

Y Z

)

·
(

I 0

−Z−1Y I

)

︸ ︷︷ ︸

N2

. (3.10)

Taking the determinant of both sides gives

det
(
W −XZ−1Y

)
· det Z = det M,

since det N1 = det N2 = 1. This proves the first property.

Furthermore, since N1 and N2 have full rank, we have

rank M = rank
(
W −XZ−1Y

)
+ rankZ = rank C + |S2|. (3.11)
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Now suppose that CA,B is non-singular with |A| = |B| = rank C. Then we have

(

CA,B 0

0 Z

)

=

(

I −XA,∗Z
−1

0 I

)

·
(

WA,B XA,∗

Y∗,B Z

)

·
(

I 0

−Z−1Y∗,B I

)

. (3.12)

It follows from Eq. (3.11) and Eq. (3.12) that

rank M = rank C + rank Z = rank CA,B + rank Z = rankMA∪S2,B∪S2 ,

which proves the second property.



Chapter 4

Query lower bounds for matroid

intersection

This chapter considers the number of queries needed to solve matroid intersection

in the independence oracle model. To be more specific, we consider the decision

version of the problem: do two given matroids have a common base?

Let us review the known upper bounds. As stated earlier, the best result is

due to Cunningham [19]. He gives a matroid intersection algorithm using only

O(nr1.5) independence oracle queries for matroids of rank r. It would be truly

remarkable if one could show that this is optimal. (For example, it might suggest

that the Hopcroft-Karp algorithm [44] for bipartite matching is “morally” optimal.)

Unfortunately, we are very far from being able to show anything like that: even a

super-linear lower bound is not presently known.

How could one prove a super-linear lower bound on the number of queries

needed to solve matroid intersection? This would require that r = ω(1), since

Cunningham’s algorithm implies a bound of O(n) for any constant r. One can use

dual matroids to show that n − r = ω(1) is also necessary to obtain a super-linear

lower bound. So the rank cannot be too large or too small. Since one can adjust

the rank by padding arguments (for example, see Section 4.1.3 below), it suffices

to prove a super-linear lower bound for r = n/2.

This chapter describes three lower bounds on the number of queries needed,

as illustrated in Figure 4-1. Two of these are elementary: we show in Section 4.1

that 2n− 2 queries are needed for matroids of rank 1, and n queries are needed for

matroids of rank n − 1. In Section 4.2, we use more involved techniques to show

53
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Rank r

1 n-1n/2

2n

0

n

(log23)n

# queries

Figure 4-1: This chart reflects our knowledge concerning the number of independence or-
acle queries needed to solve matroid intersection for matroids with ground set size n and
rank r. The purple, dashed lines (which are not to scale) correspond to Cunningham’s up-
per bound of O(nr1.5) queries, and a “dual” algorithm which is more efficient for matroids
of large rank. The remaining lines correspond to lower bounds, proven in the following
sections: Section 4.1.1 (red, round dots), Section 4.1.2 (blue, square dots), and Section 4.2
(green, solid). The best lower bound, corresponding to the upper envelope of these lines,
is indicated with thick lines.

that (log2 3)·n−o(n) queries are necessary when r = n/2. This is, to our knowledge,

the only non-trivial progress on Welsh’s question from 1976, which we paraphrase

as: what is a lower bound on the number of oracle queries needed to solve matroid

intersection?

4.1 Elementary lower bounds

4.1.1 Adversary argument for rank-1 matroids

We begin with some easy observations using matroids of rank one. Let S be a

finite ground set with |S| = n. Let ∅ 6= X ⊆ S be arbitrary, and let B(X) =

{ {x} : x ∈ X }. It is easy to verify that B(X) is the family of bases of a rank one
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matroid, which we denote M(X). LetM = {M(X) : ∅ 6= X ⊆ S }. Given two sets

S0, S1 ⊆ S, the two matroids M(S0) and M(S1) have a common base iff S0∩S1 6= ∅.
We show the following simple theorem.

Theorem 4.1. Any deterministic algorithm that performs fewer than 2n − 2 queries

cannot solve the matroid intersection problem when given two matroids inM.

We will prove this theorem in a rather pedantic manner, since the following sec-

tion requires a similar proof for a slightly less obvious result. Let us first introduce

some terminology. Let Yi ⊆ S be the set of “yes” elements y for which we have

decided {y} ∈ B(Si). Similarly, let Ni ⊆ S be the set of “no” elements y for which

we have decided {y} 6∈ B(Si). Let us define the following predicates concerning

the adversary’s responses to the queries.

Consistent: ∀ i ∈ {0, 1} , Yi ∩Ni = ∅
No-Extensible: Y0 ∩ Y1 = ∅
Yes-Extensible: N0 ∪N1 6= S

Intuitively, the responses are Consistent if they are valid responses corresponding

to some matroid. They are No-Extensible if there exist matroids M(S0) and M(S1)

that do not have a common base and are consistent with the query responses given

so far. Yes-Extensible is analogous.

Proof. If n = 1 there is nothing to prove, so assume n ≥ 2. To prove the theorem,

we will describe an adversary which replies to the queries of the algorithm and

ensures that the responses are Consistent, No-Extensible and Yes-Extensible. The

adversary initially adds distinct elements to Y0 and Y1, thereby ensuring that |Y0| =
|Y1| = 1 and hence the two matroids do not have rank 0. Let q denote the number of

queries performed so far. The adversary maintains two additional properties:

Property 1: |Y0 ∪ Y1|+ |N0 ∪N1| ≤ q + 2

Property 2: Ni ⊆ Y1−i

The adversary behaves roughly as follows. The first time a singleton set {a} is

queried, it returns Yes. Whenever {a} is subsequently queried in the other matroid,

it returns No. A more formal description is given in the following pseudocode.
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Algorithm 4.1 Adversarial responses to the independence oracle queries. The ad-
versary decides whether A ∈ Ii.

QUERY(i, A)

If |A| = 0, return Yes

If |A| > 1, return No

Let a be the unique element in A

If a ∈ Y1−i, add a to Ni and return No

Add a to Yi and return Yes

Let us check the correctness of this adversary. First of all, the empty set is

independent in every matroid so if |A| = 0 then the adversary must return Yes.

The adversary is behaving as a rank one matroid, so every independent set has

size at most one. So if |A| > 1 then the adversary must return No.

So let us suppose that A = {a} and a ∈ Y1−i. The No-Extensible property

implies a 6∈ Yi. So adding a to Ni does not violate the Consistent property. Both Y0

and Y1 are unchanged so the No-Extensible property is preserved. The algorithm

adds a only to Ni so property 1 is preserved. Since a ∈ Y1−i, property 2 is preserved.

We now claim that the Yes-Extensible property is maintained, so long as q < 2n−2.

Combining property 1 and 2, we get

2 · |N0 ∪N1| ≤ |Y0 ∪ Y1|+ |N0 ∪N1| ≤ q + 2 =⇒ |N0 ∪N1| ≤ (q + 2)/2 < n.

Thus N0 ∪N1 6= S, so the responses are Yes-Extensible.

Similar arguments establish correctness for the case a 6∈ Y1−i. Since the adver-

sary’s responses are both No-Extensible and Yes-Extensible, the algorithm cannot

have decided whether the two matroids have a common base. �

The lower bound presented above is essentially tight.

Claim 4.2. There exists a deterministic algorithm using only 2n queries that decides the

matroid intersection problem for matroids inM.

Proof. For every s ∈ S, decide whether {s} ∈ B(S1) and {s} ∈ B(S2). This takes 2n

queries, and the algorithm completely learns the set S1 and S2. Deciding whether

they are disjoint is now trivial. �
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4.1.2 Adversary argument for large-rank matroids

For any ∅ 6= X ⊆ S, let B∗(X) = { S − x : x ∈ X }, let M
∗(X) = (S,B∗(X)), and

let M∗ = {M
∗(X) : ∅ 6= X ⊆ S }. (In matroid terminology, M

∗(X) is the dual

matroid for M(X).) The matroids inM∗ all have rank n−1. As above, M∗(S0) and

M
∗(S1) have a common base iff S0 ∩ S1 6= ∅. These matroids satisfy the following

useful property.

Claim 4.3. Let Z ⊆ S. Then S \ Z is an independent set in M
∗(X) iff X ∩ Z 6= ∅.

Proof. Suppose that z ∈ X ∩Z, so S− z ∈ B∗(X). Then S \Z is independent, since

S − Z ⊆ S − z. Conversely, suppose that S \ Z is independent. Then there exists

some set S − z ∈ B∗(X) with S \ Z ⊆ S − z. Thus z ∈ X and z ∈ Z, as required. �

Theorem 4.4. Let n = |S| ≥ 2. Any deterministic algorithm that performs fewer than n

queries cannot solve the matroid intersection problem when given two matroids inM∗.

As above, let Yi ⊆ S be the set of elements y for which we have decided that

S − y ∈ B∗(Si). And let Ni ⊆ S be the set of elements y for which we have decided

that S − y 6∈ B∗(Si). The predicates are again:

Consistent: ∀ i ∈ {0, 1} , Yi ∩Ni = ∅
No-Extensible: Y0 ∩ Y1 = ∅
Yes-Extensible: N0 ∪N1 6= S

Proof. Let q < n be the number of queries performed so far. The adversary also

maintains two properties:

Property 1: |Y0 ∪ Y1| ≤ q

Property 2: Ni ⊆ Y1−i

The adversary’s behavior is described in the following pseudocode.
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Algorithm 4.2 Adversarial responses to the independence oracle queries.

Query(i, A): Decide if S \A ∈ Ii
If A ∩ Yi 6= ∅, return Yes

If A 6⊆ Y1−i

Pick a ∈ A \ Y1−i, and add a to Yi

Return Yes

Set Ni ← Ni ∪A

Return No

Let us check that the stated properties are maintained by this algorithm.

Case 1: A ∩ Yi 6= ∅. Then, by Claim 4.3, S \ A ∈ Ii as required. The sets Yj and Nj

are not affected, so all properties are maintained.

Case 2: A∩Yi = ∅ and A 6⊆ Y1−i. In this case, we add a to Yi. We have a 6∈ Y1−i so the

responses are No-Extensible. Furthermore, a 6∈ Ni by property 2, and thus the

responses are Consistent. |Y0 ∪ Yi| increases by at most 1 so Property 1 holds.

Property 2 and the Yes-Extendibility are trivial.

Case 3: A∩Yi = ∅ and A ⊆ Y1−i. In this case, we add A to Ni. It is easy to verify that

Consistency, No-Extendibility, Property 1 and Property 2 are all maintained.

Let us consider Yes-Extendibility. By Properties 1 and 2,

|N0 ∪N1| ≤ |Y0 ∪ Y1| ≤ q.

So if q < n then the responses are Yes-Extensible.

Since the responses are both No-Extensible and Yes-Extensible, the algorithm

cannot have decided whether the two matroids have a common base. �

The lower bound presented above is essentially tight.

Claim 4.5. There exists a deterministic algorithm using only n + 1 queries that decides

the matroid intersection problem for matroids inM∗.

Proof. For every s ∈ S, decide whether S − s ∈ B∗(S1). In this way, the algorithm

completely learns the set S1. It must decide whether S0 ∩S1 = ∅. By Claim 4.3, this

can be decided by testing whether S \ S1 ∈ I(S0). �
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4.1.3 A padding argument

We now build on the previous two sections and give a lower bound for matroids

of any rank via a padding argument.

First we start by padding the matroids from Section 4.1.1. For any r ≥ 1, let

P be an arbitrary set such that |P | = r − 1 and S ∩ P = ∅. Let m = |S| and

n = |S ∪ P | = m + r − 1. For any ∅ 6= X ⊆ S, we define the matroid Mr(X)

as follows: it has ground set S ∪ P and base family Br(X) = { P + x : x ∈ X }.
(In matroid terminology, Mr(X) is obtained from M(X) by adding the elements in

P as coloops.) This family of matroids is denotedMr = {Mr(X) : ∅ 6= X ⊆ S }.
Clearly Mr(X) and Mr(Y ) have a common base if and only if M(X) and M(Y ) do.

Thus, the number of queries needed to solve matroid intersection for matroids in

Mr is at least 2m− 2 = 2(n− r), by Theorem 4.1.

Now we consider the matroids from Section 4.1.2. Let r satisfy 0 < r < n. Let

P and S be disjoint sets with |P | = n − r − 1 and |S| = r + 1, so |S ∪ P | = n. For

any ∅ 6= X ⊆ S, we define the matroid M
∗
r(X) as follows: it has ground set S ∪ P

and base family B∗
r(X) = { S − x : x ∈ X }. (In matroid terminology, the matroid

M
∗
r(X) is obtained from M

∗(X) by adding the elements in P as loops.) This family

of matroids is denotedM∗
r = {M

∗
r(X) : ∅ 6= X ⊆ S }. Clearly M

∗
r(X) and M

∗
r(Y )

have a common base if and only if M
∗(X) and M

∗(Y ) do. Thus, the number of

queries needed to solve matroid intersection for matroids inMr is at least r +1, by

Theorem 4.4.

We summarize this discussion with the following theorem.

Theorem 4.6. The number of independence oracle queries needed by any deterministic

algorithm that solves matroid intersection for matroids with ground set size n ≥ 2 and

rank 0 < r < n is at least

max {2(n− r), r + 1} .

4.2 An algebraic lower bound

This section improves on Theorem 4.6 by showing an improved lower bound for

matroids of rank close to n/2. Formally, we show the following theorem.

Theorem 4.7. The number of independence oracle queries needed by any deterministic

algorithm that solves matroid intersection for matroids with even ground set size n and
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rank n/2 + 1 is at least (log2 3) n− o(n).

Thus by combining Theorem 4.6 and Theorem 4.7 and using padding argu-

ments, we obtain the following result, which justifies Figure 4-1.

Corollary 4.8. The number of independence oracle queries needed by any deterministic

algorithm that solves matroid intersection is lower bounded as follows. Suppose the al-

gorithm is given two matroids with ground set size n ≥ 2 and rank 0 < r < n, with

r̃ = min {r, n− r}. Then the lower bound is

max { 2(n− r), r + 1, (log2 9)r̃ − o(r̃) } .

Proof. We consider the third term. LetM be the family of matroids for which the

lower bound of Theorem 4.7 is proven, where we choose their ground set size to

be S, with |S| = 2r − 2. Add n − 2r + 2 loops to the matroids inM; the resulting

matroids have ground set size n and rank |S|/2 + 1 = r. Then we have r̃ ≥ r − 2

and, by Theorem 4.7, the lower bound on the required number of queries is

(log2 3)(2r − 2)− o(r) = (log2 9)r̃ − o(r̃).

If we had added n − 2r + 2 coloops instead of loops, the resulting matroids

would have ground set size n and rank
(
|S|/2+1

)
+
(
n− 2r +2

)
= n− r +2. Then

we have r̃ = r − 2 and the lower bound is again

(log2 3)(2r − 2)− o(r) = (log2 9)r̃ − o(r̃).

This completes the proof. �

The remainder of this section proves Theorem 4.7. A high-level overview of the

proof is as follows. We describe a family of matroids that correspond to a “pointer

chasing” problem. Roughly speaking, M1 corresponds to a permutation π in the

symmetric group Sn and M2 corresponds to a permutation σ ∈ Sn. Both matroids

have rank n/2 + 1. The two matroids have a common base iff the cycle structure of

the composition σ−1 ◦ π satisfies a certain property. The difficulty of deciding this

property is analyzed using the communication complexity framework, which we

introduce next. Roughly speaking, the two given matroids are anthropomorphized

into two computationally unbounded players, Alice and Bob, and one analyzes
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the number of bits that must be communicated between them to solve the matroid

intersection problem. This yields a lower bound on the number of independence

queries required by any algorithm.

A standard technique for proving lower bounds in this framework is based on

the communication matrix C, which is the truth table of the function that Alice and

Bob must compute. It is known that log2 rank C gives a lower bound on the number

of bits which must be communicated between Alice and Bob. Since our instances

are derived from the symmetric group, it is natural to use representation theory to

analyze the matrix’s rank. Section 4.2.5 does this by viewing the communication

matrix as an operator in the group algebra. Surprisingly, we show that the matrix is

diagonalizable (in Young’s seminormal basis), its eigenvalues are all integers, and

their precise values can be computed by considering properties of Young tableaux.

4.2.1 Communication complexity

Our lower bound uses methods from the field of communication complexity. The

basics of this field are covered in the survey of Lovász [60], and further details can

be found in the book of Kushilevitz and Nisan [54]. This section briefly describes

the concepts that we will need.

A communication problem is specified by a function f(X,Y ), where X is Alice’s

input, Y is Bob’s input, and the range is {0, 1}. A communication problem is solved

by a communication protocol, in which Alice and Bob send messages to each other

until one of them can decide the solution f(X,Y ). The player who has found the

solution declares that the protocol has halted, and announces the solution.

The deterministic communication complexity of f is defined to be the mini-

mum total bit-length of the messages sent by any deterministic communication

protocol for f . This quantity is denoted D(f).

Nondeterminism also plays an important role in communication complexity.

This model involves a third party — a prover who knows both X and Y . In a

nondeterministic protocol for f , the prover produces a single certificate Z which

is delivered to both Alice and Bob. (Z is a function of both X and Y ). Alice and

Bob cannot communicate, other than receiving Z from the prover. If f(X,Y ) = 1,

then the certificate must suffice to convince Alice and Bob of this fact (Alice sees

only X and Z, Bob sees only Y and Z). Otherwise, if f(X,Y ) = 0, no certificate

should be able to fool both Alice and Bob. The nondeterministic communication
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complexity is defined to be the minimum length of the certificate (in bits) in any

nondeterministic protocol. We denote this quantity by N1(f).

A co-nondeterministic protocol is defined analogously, reversing the roles of

1 and 0. The co-nondeterministic complexity is also defined analogously, and is

denoted by N0(f).

Fact 4.9. N0(f) ≤ D(f) and N1(f) ≤ D(f).

Proof. See [54, §2.1]. Consider any deterministic communication protocol for f .

Since the prover has both Alice’s and Bob’s inputs, it can produce a certificate con-

taining the sequence of messages that would have been exchanged by this protocol

on the given inputs. Alice and Bob can therefore use this certificate to simulate exe-

cution of the protocol, without exchanging any messages. Therefore this certificate

acts both as a nondeterministic and co-nondeterministic proof. �

Fact 4.10. For any communication problem f , we have D(f) = O(N0(f) ·N1(f)).

Proof. See [54, p20] or [60, p244]. �

For any communication problem f , the communication matrix is a matrix C(f),

or simply C, whose entries are in {0, 1}, whose rows are indexed by Alice’s in-

puts X and whose columns are indexed by Bob’s inputs Y . The entries of C are

C(f)X,Y = f(X,Y ). There is a connection between algebraic properties of the

matrix C(f) and the communication complexity of f , as shown in the following

lemma.

Fact 4.11 (Mehlhorn and Schmidt [65]). Over any field (including the complex num-

bers), we have D(f) ≥ log2 rank C(f).

Proof. See [54, p13]. �

4.2.2 Communication complexity of matroid intersection

Let us now consider the matroid intersection problem in the communication com-

plexity framework.

Definition 4.12. The communication problem MATINT:
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• Alice’s Input: A matroid M1 = (S, I1).
• Bob’s Input: A matroid M2 = (S, I2).
• Output: If M1 and M2 have a common base then MATINT(M1,M2) = 1. Other-

wise, it is 0.

Fact 4.13. D(MATINT) gives a lower bound on the number of oracle queries made by any

deterministic matroid intersection algorithm.

Proof. See [54, Lemma 9.2]. The proof is a simulation argument: any deterministic

matroid intersection algorithm which uses q independence oracle queries can be

transformed into a deterministic communication protocol for MATINT that uses q

bits of communication. Both Alice and Bob can independently simulate the given

algorithm, and they only need to communicate whenever an oracle query is made,

so the number of bits of communication is exactly q. �

The remainder of this section focuses on analyzing the communication com-

plexities of MATINT. Some easy observations can be made using matroids of rank

one, as defined in Section 4.1.1. Recall that for two matroids M(X),M(Y ) ∈ M,

they have a common base iff X ∩ Y 6= ∅. Thus, for the family M, the MATINT

problem is simply the complement of the well-known disjointness problem (de-

noted DISJ) [54]. It is known that D(DISJ) ≥ n and N1(DISJ) ≥ n− o(n). Although

we will not discuss randomized complexity in any detail, it is also known [81] that

the randomized communication complexity of DISJ is Ω(n), and consequently the

same is true of MATINT.

Thus we have shown that D(MATINT) ≥ n and N0(MATINT) ≥ n − o(n). In

Section 4.3, we will also show that N1(MATINT) = Ω(n). As it turns out, these

lower bounds for N0 and N1 are essentially tight. To show this, we will use the

matroid intersection theorem (Fact 3.1).

Lemma 4.14. N1(MATINT) ≤ n and N0(MATINT) ≤ n + blog nc+ 1.

Proof. To convince Alice and Bob that their two matroids have a common base, it

suffices to present them with that base B. Alice and Bob independently check that

B is a base for their respective matroids. The set B can be represented using n bits,

hence N1(MATINT) ≤ n.

To convince Alice and Bob that their two matroids do not have a common base,

we invoke the matroid intersection theorem. The prover computes a set A ⊆ S
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which is a minimizing set in Fact 3.1. The co-nondeterministic certificate Z consists

of the set A and an integer z. Alice checks that z = r1(A). Bob checks that z +r2(S \
A) < r. If this holds then the two matroids cannot have a common base. The length

of this certificate is at most n + blog nc+ 1. �

Lemma 4.14 is an unfortunate obstacle in our quest to prove a super-linear

lower bound on D(MATINT). The fact that both the nondeterministic and co-

nondeterministic communication complexities are O(n) makes our task more diffi-

cult, for two reasons. First, we must use techniques that can separate the determin-

istic complexity from the nondeterministic complexities: we need a super-linear

lower bound for D(MATINT) which does not imply that either N0(MATINT) or

N1(MATINT) is super-linear (since this is false!). Second, the nondeterministic and

co-nondeterministic communication complexities provably constrain the quality

of any lower bound on the deterministic complexity, as shown in Fact 4.10. Thus,

the communication complexity technique cannot prove a super-quadratic lower

bound for the matroid intersection problem; at least, not in the present formula-

tion.

4.2.3 The IN-SAME-CYCLE problem

One interesting category of communication problems is pointer chasing problems

[10, 20, 76, 77, 80]. We now show that matroid intersection leads to an interesting

pointer chasing problem.

The motivating example to keep in mind is the class of almost 2-regular bi-

partite graphs. Let G be a graph with a bipartition of the vertices into U and V .

Each vertex in U (resp., in V ) has degree 2, except for two distinguished vertices

u1, u2 ∈ U (resp., v1, v2 ∈ V ), which have degree 1. (So |U | = |V |.) The connected

components of G are two paths with endpoints in {u1, u2, v1, v2}, and possibly some

cycles. One can argue that G has a perfect matching iff G does not contain a path

from u1 to u2 (equiv., from v1 to v2). The main idea of the argument is that odd-

length paths have a perfect matching whereas even-length paths do not.

Let us now reformulate this example slightly. Let S = U ∪ V where |U | = |V | =
N := n/2. Let P be a partition of S into pairs, where each pair contains exactly one

element of U and one element of V . We can writeP as
{ {

ui, vπ(i)

}
: i = 1, . . . , N

}
,

where π : U → V is a bijection. Now P can be used to define a matroid. Fix
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arbitrarily 1 ≤ k ≤ N , and let Bπ
k be the family of all B such that

|B ∩
{
ui, vπ(i)

}
| =







2 (if i = k)

1 (otherwise).

One may verify that Bπ
k is the family of bases of a partition matroid, which we

denote M
π
k . LetMk be the set of all such matroids (keeping k fixed, and letting π

vary).

Lemma 4.15. Let M
π
1 ∈ M1 and M

σ
2 ∈ M2. Note that σ−1 ◦ π is a permutation on

U . We claim that M
π
1 and M

σ
2 have a common base iff elements u1 and u2 are in the same

cycle of σ−1 ◦ π.

The proof of this lemma mirrors the argument characterizing when almost 2-

regular bipartite graphs have a perfect matching. A formal proof is in Section 4.5.

Let us now interpret Lemma 4.15 in the communication complexity framework.

Definition 4.16. The IN-SAME-CYCLE, or ISC, problem:

• Alice’s input: A permutation π ∈ SN .

• Bob’s input: A permutation σ ∈ SN .

• Output: If elements 1 and 2 are in the same cycle of σ−1 ◦ π, then ISC(X,Y ) = 1.

Otherwise it is 0.

We will show hardness for MATINT by analyzing ISC. First, Lemma 4.15 shows

that ISC reduces to MATINT. Next, we will argue that ISC is a “hard” problem.

Intuitively, it seems that Alice and Bob cannot decide the ISC problem unless one

of them has learned the entire cycle containing 1 and 2, which might have length

Ω(N). So it is reasonable to believe that Ω(N log N) bits of communication are

required. The remainder of this section proves the following theorem.

Theorem 4.17. Let C denote the communication matrix for ISC. Then rank C equals

1 +
∑

1≤i≤N−1

∑

1≤j≤min{i,N−i}

(
N

i, j, N − i− j

)2

· j2 (i− j + 1)2

N (N − 1) (N − i) (N − j + 1)
.

Corollary 4.18. D(ISC) ≥ (log2 9)N − o(N). Consequently, any deterministic algo-



66 CHAPTER 4. QUERY LOWER BOUNDS FOR MATROID INTERSECTION

rithm solving the matroid intersection problem for matroids with rank n/2+1 and ground

set size n must use at least (log2 3)n− o(n) queries.

Proof. Stirling’s approximation shows that

e
(n

e

)n

< n! < e n
(n

e

)n

.

Thus,

(
N

N/3, N/3, N/3

)

=
N !

(
(N/3)!

)3 ≥
e (N/e)N

(
e (N/3) (N/3e)N/3

)3 = 3N−o(N).

In Theorem 4.17, considering just the term i = j = N/3 shows that rank C ≥
9N−o(N). Fact 4.11 therefore implies the lower bound on D(ISC). The lower bound

for matroid intersection follows since the matroids inMk have rank n/2+1 = N+1

and ground set size n. �

This corollary establishes Theorem 4.7.

4.2.4 Group theory

To prove Theorem 4.17, we need to introduce several notions from group theory.

We recommend Artin [2], James-Kerber [48], Naı̆mark [72], Sagan [83] and Stan-

ley [87] for a more detailed exposition of this material.

Definition 4.19. A representation of a group is a homomorphism φ : G→ GLd, where

GLd denotes the general linear group of non-singular d × d matrices over C. In other

words, to every element g in G, φ(g) gives a matrix Mg such that:

• M1 = I , where 1 is the identity element of G and I is the identity matrix.

• Mg ·Mh = Mgh.

The dimension of φ is defined to be d.

Definition 4.20. Let φ be a representation of G into GLd. A subspace V of Cd is called

invariant under φ if, for all g ∈ G, v ∈ V =⇒ φ(g) · v ∈ V . If the only two sub-

spaces invariant under φ are {0} and Cd itself then φ is called irreducible. An irreducible

representation is often abbreviated to irrep.
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Fact 4.21. For any finite group G, there are only finitely many irreps that are not isomor-

phic under a change of basis. Moreover, the number of non-isomorphic irreps equals the

number of distinct conjugacy classes of G.

Fact 4.22 (Maschke’s Theorem). Let G be a finite group and let φ be a representation

of G into GLd. Then there exist a matrix B and irreps ρ1, . . . , ρk of G (possibly identical)

such that, for all g ∈ G,

Bφ(g)B−1 =






ρ1(g)
. . .

ρk(g)




 .

That is, there exists an isomorphic representation Bφ(·)B−1 which is decomposed into a

direct sum of irreps.

Regular representation. Let G be an arbitrary finite group. Consider the set of

formal linear combinations of elements of G, i.e., the set

C[G] :=

{
∑

g∈G

αg · g : αg ∈ C

}

.

Clearly C[G] is a vector space, and is isomorphic to C|G|. One may define a multi-

plication operation on C[G] as follows:

(
∑

g∈G

αg · g
)

·
(
∑

g′∈G

βg′ · g′

)

=
∑

h∈G

(
∑

g·g′=h

αgβg′

)

· h.

Thus C[G] is an algebra, known as the group algebra of G.

Define an action of G on C[G] as follows. For h ∈ G, let

h ·
(∑

g∈G

αg · g
)

=
∑

g∈G

αg ·
(
g · h

)
.

Thus, the action of h amounts to a permutation of the coordinates of C|G|, and
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therefore it can be represented as a permutation matrix

R(h)g,g′ =







1 if g′ · h = g

0 otherwise.

The mapping from elements of G to the matrices R is a homomorphism of G into

GL|G|, and hence it is a representation of G, known as the regular representation.

Fact 4.23. Let G be a finite group. By Fact 4.22, the regular representation decomposes

into a direct sum of irreps {ρ1, . . . , ρk}. Every irrep of G appears in this list, and moreover

the number of occurrences in this list of an irrep ρi equals the dimension of ρi.

Symmetric group. We now discuss the symmetric group SN of all permutations

on [N ], i.e., bijections from [N ] to [N ] under the operation of function composition.

Let π ∈ SN . The cycle type of π is a sequence of integers in which the number

of occurrences of k equals the number of distinct cycles of length k in π. Without

loss of generality, we may assume that this sequence is in non-increasing order.

Thus, the cycle type of π is a partition of N , which is defined as a non-increasing

sequence λ = (λ1, . . . , λ`) of positive integers such that N =
∑`

i=1 λi. The value ` is

called the length of λ, and it is also denoted `(λ). The notation λ ` N denotes that

the sequence λ is a partition of N .

Let C(λ) ⊆ SN be the set of all permutations with cycle type λ ` N . The set C(λ)

is a conjugacy class of SN . Moreover, every conjugacy class of SN is obtained in this

way, so the number of conjugacy classes of SN equals the number of partitions of

N . Thus, by Fact 4.21, we see that the non-isomorphic irreps of SN can be indexed

by the partitions of N . Henceforth, the irreps of SN will be denoted ρλ where λ ` N .

A Ferrers diagram of λ ` N is a left-aligned array of boxes in the plane for

which the ith row contains λi boxes. An example is shown in Figure 4-2 (a). A

Young tableau of shape λ is a bijective assignment of the integers in [N ] to the

boxes of the Ferrers diagram for λ. An example is shown in Figure 4-2 (b). A

standard Young tableau, or SYT, is one in which

• for each row, the values in the boxes increase from left to right, and

• for each column, the values in the boxes increase from top to bottom.

An example is shown in Figure 4-2 (c).
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(a)

8 11 14 16 17

6 9 12 15

4

3

2

1

7 10 13

5

(b)

1 2 4 6 8

3 11 12 13

5

7

9

10

14 15 17

16

(c)

Figure 4-2: (a) The Ferrers diagram for the partition (5, 4, 4, 2, 1, 1) ` 17. (b) A Young
tableau. (c) A standard Young tableau.

v

Figure 4-3: A box v and its hook hv.

Let λ ` N . Let v be a box in the Ferrers diagram of λ. The hook of box v,

denoted hv, is the set of boxes in the same row as v but to its right or in the same

column as v but beneath it (including v itself). This is illustrated in Figure 4-3.

Fact 4.24 (Hook Length Formula). The number of SYT of shape λ is denoted fλ, and

has value

fλ :=
N !

∏

v |hv|
,

where the product is over all boxes in the Ferrers diagram for λ.

Fact 4.25. The dimension of irrep ρλ equals fλ, the number of SYT of shape λ. Thus

Fact 4.24 provides a formula for the dimension of ρλ.

There exist several canonical ways of defining the irrep associated to partition

λ, since a change of basis produces an isomorphic representation. In this thesis, we

will fix Young’s seminormal basis [48] as the specific basis in which each irrep is

presented. The formal definition of this basis is not crucial for us, but we will need

some of its properties.

First, we introduce some notation. Let Yλ denote the irrep corresponding to
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0 1 2 3 4

-1 0 1 2

-2

-3

-4

-5

-1 0 1

-2

Figure 4-4: The “content” of all boxes in this Ferrers diagram.

partition λ in Young’s seminormal basis. For any π ∈ SN , the notation Yλ(π) de-

notes the matrix associated with π by this irrep. For any set S ⊆ SN , let Yλ(S) =
∑

π∈S Yλ(π).

For 1 ≤ j ≤ N , the jth Jucys-Murphy element is the member of the group

algebra defined by Jj =
∑

1≤i<j (i, j). (Here, (i, j) denotes a transposition in SN .)

For convenience, we may also view Jj as a subset of SN , namely the set of j − 1

transpositions which appear with non-zero coefficient in Jj .

For a Ferrers diagram of shape λ, the content of the box (a, b) (i.e., the box in

row a and column b) is the integer b − a. This is illustrated in Figure 4-4; note

that the content values are constant on each negative-sloping diagonal. For any

standard Young tableau t and 1 ≤ j ≤ N , define cont(t, j) to be the content of the

box occupied by element j in tableau t.

Fact 4.26. Yλ(Jj) is a diagonal matrix and the diagonal entries are Yλ(Jj)t,t = cont(t, j),

where t is a tableau of shape λ.

A proof of this fact can be found in the book of James and Kerber [48].

4.2.5 Analysis of IN-SAME-CYCLE

In this section, we compute the rank of the communication matrix for the ISC

problem, and thereby prove Theorem 4.17. Surprisingly, we will show that this

matrix is diagonalizable, and that the values of those diagonal entries (i.e., the

spectrum) are integers that can be precisely computed.

Overview of Proof. Our argument proceeds as follows.

• Step 1. The matrix C can be written as a sum of matrices in the regular
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representation.

• Step 2. There exists a change-of-basis matrix which block-diagonalizes the

matrices of the regular representation (i.e., decomposes them into irreps).

Thus C can also be block-diagonalized.

• Step 3. The blocks of C can be expressed as a polynomial in the matrices

corresponding to the Jucys-Murphy elements. Thus each block is actually a

diagonal matrix (if the change-of-basis matrix is chosen properly).

• Step 4. The diagonal entries of each block (i.e., eigenvalues of C) are given

by a polynomial in the content values, so they can be explicitly computed.

The rank of C is simply the number of non-zero eigenvalues, so a closed

form expression for the rank can be given.

Step 1. Let π ∈ SN be the permutation corresponding to Alice’s input and let

σ ∈ SN correspond to Bob’s input. Define KN , or simply K, to be

KN = { τ ∈ SN : 1 and 2 are in the same cycle of τ } .

Note that K is closed under taking inverses: π ∈ K =⇒ π−1 ∈ K. Recall the

definition of the communication matrix C:

Cπ,σ =







1 if σ−1 ◦ π ∈ K,

0 otherwise.

This leads to the following easy lemma.

Lemma 4.27. C =
∑

τ∈K R(τ), where R(τ) denotes a matrix of the regular representa-

tion.

Proof. Let ρ = σ−1 ◦π, implying that π = σ ◦ρ. Clearly ρ is the unique permutation

with this property. Thus R(τ)π,σ = 1 iff τ = ρ. Thus, the entry in row π and column

σ of
∑

τ∈K R(τ) is 1 if ρ ∈ K and 0 otherwise. This matches the definition of C. �

Step 2. Now let B be the change-of-basis matrix which decomposes the regular

representation into irreps, as mentioned in Fact 4.22. We will analyze the rank of
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C by considering the contribution from each irrep. We have

rank C = rank B C B−1 = rank
(∑

τ∈K

B R(τ) B−1
)

=
∑

λ`N

fλ · rank Yλ(K), (4.1)

where the second equality follows from Lemma 4.27. To see the third equality, re-

call that each B R(τ) B−1 is decomposed into blocks of the form Yλ(τ) (see Fact 4.23),

so each block of BCB−1 is of the form Yλ(K). Furthermore, each irrep λ appears fλ

times (see Fact 4.25.)

Step 3. The following lemma gives the reason that the communication matrix for

ISC can be analyzed so precisely. It gives a direct connection between the ISC

problem and the Jucys-Murphy elements.

Lemma 4.28.
∑

π∈K π = J2 ·
∏N

j=3(1 + Jj), where 1 denotes the identity permutation.

Proof. The proof is by induction on N , the trivial case being N = 2. So let N > 2.

For any π ∈ KN−1 and transposition (i, N), we have π ◦ (i, N) ∈ KN . Conversely,

for any π ∈ KN , there is a unique way to obtain π as a product of π′ ∈ KN−1 and a

transposition (i, N), by taking i = π−1(N) and π′ = π ◦ (i, N) (restricted to SN−1).

�

Here is a simple, but interesting, corollary of this lemma.

Corollary 4.29. |KN | = |SN |/2. In other words, for any π,

Prσ [ ISC(π, σ) = 1 ] = 1/2,

where σ is chosen uniformly from SN .

Proof. Viewing the Jucys-Murphy elements as sets, we have |Ji| = i − 1. Since

the permutations arising in the product J2 ·
∏N

j=3(1 + Jj) are distinct, we have

|KN | = 1 ·∏N
j=3 j = N !/2. �

Lemma 4.28 shows that the sum
∑

π∈K π can be expressed as a polynomial in

the Jucys-Murphy elements. In other words, for every λ ` N , the matrix Yλ(K)

can be expressed as a polynomial in the matrices { Yλ(Jj) : 2 ≤ j ≤ N }. It follows

directly from Fact 4.26 that Yλ(K) is diagonal. Furthermore, we can determine the

diagonal entries explicitly. For every SYT t of shape λ, the corresponding diagonal
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entry of Yλ(K) satisfies the expression

Yλ(K)t,t = Yλ(J2)t,t ·
N∏

j=3

(
1 + Yλ(Jj)t,t

)
. (4.2)

As mentioned above, the blocks of B C B−1 are all of the form Yλ(K). Thus

B C B−1 is actually diagonal, and Eq. (4.2) completely determines the spectrum of

C, since the values Yλ(Jj)t,t are known (see Fact 4.26).

Step 4. In the remainder of this section, we will analyze Eq. (4.2) more closely.

Our main goal is to determine when its value is non-zero. This holds whenever

Yλ(J2)t,t 6= 0 and Yλ(Jj)t,t 6= −1 for all j ≥ 3. By Fact 4.26, Yλ(J2)t,t = 0 only

when 2 lies on the main diagonal of t, which is impossible in any SYT. Similarly,

Yλ(Jj)t,t = −1 only when j lies on the first subdiagonal. So we have the following

fact, which is crucial to the analysis. For an SYT t,

Yλ(K)t,t 6= 0 ⇐⇒ in tableau t, all values j ≥ 3 avoid the first subdiagonal. (4.3)

Let us now consider three cases.

Case 1: λ3 > 1. Fix an arbitrary SYT t of shape λ. The box in position (3, 2) (row 3,

column 2) of t contains some value j ≥ 6. Since this box is on the first subdiag-

onal, Eq. (4.3) shows that Yλ(K)t,t = 0.

Case 2: λ2 = 0, i.e., λ = (N). There is a unique SYT of shape λ, in which every box

(1, j) contains j. Thus Yλ(Jj) = j− 1 for all j, so Eq. (4.2) shows that the unique

entry of Yλ(K) has value N !/2.

Case 3: λ2 ≥ 1 and λ3 ≤ 1. In the Ferrers diagram of shape λ, only the box (2, 1)

is on the first subdiagonal. Consider now an SYT t of shape λ. If the box (2, 1)

contains j ≥ 3 then Yλ(K)t,t = 0 by Eq. (4.3).

On the other hand, if the box (2, 1) contains the value 2 then all values j ≥ 3

avoid the first subdiagonal, implying that Yλ(K)t,t 6= 0. In fact, the precise

value of Yλ(K)t,t can be determined. Since the value 2 is in box (2, 1) we have

Yλ(J2)t,t = −1. The multiset { Yλ(Jj)t,t : j ≥ 3 } is simply the multiset of all

content values in boxes excluding (1, 1) and (2, 1). Let B denote this set of



74 CHAPTER 4. QUERY LOWER BOUNDS FOR MATROID INTERSECTION

N − 2 boxes. Then

Yλ(K)t,t = Yλ(J2)t,t ·
N∏

j=3

(
1 + Yλ(Jj)t,t

)

= −
∏

(a,b)∈B

(1 + b− a)

= λ1! · (λ2 − 1)! · (N − λ1 − λ2)! · (−1)N−λ1−λ2+1

We have now computed the entire spectrum of C. The remaining task is to

compute the rank (i.e., count the number of non-zero eigenvalues). As argued

above, any shape λ with λ3 > 1 contributes zero to the rank, and the shape λ = (N)

contributes exactly 1. It remains to consider shapes with λ2 ≥ 1 and λ3 ≤ 1. As

argued above, the number of non-zero diagonal entries in Yλ(K) equals the number

of SYT in which box (2, 1) contains the value 2; let us denote this quantity by gλ.

Furthermore, there are precisely fλ copies of the block corresponding to shape λ

(by Fact 4.25). Thus,

rank C = 1 +
∑

λ s.t.
λ2≥1 and λ3≤1

fλ · gλ. (4.4)

The value of this expression is obtained by the following lemma.

Lemma 4.30. Let λ ` N satisfy λ2 ≥ 1 and λ3 ≤ 1. Then

fλ =

(
N

λ1, λ2, N − λ1 − λ2

)

· λ2 (λ1 − λ2 + 1)

(N − λ1) (N − λ2 + 1)
.

gλ =

(
N

λ1, λ2, N − λ1 − λ2

)

· λ2 (λ1 − λ2 + 1)

N(N − 1)
.

Substituting into Eq. (4.4) yields

1 +
∑

1≤λ1≤N−1

∑

1≤λ2≤min{λ1,N−λ1}

(
N

λ1, λ2, N−λ1−λ2

)2

· λ2
2 (λ1 − λ2 + 1)2

N(N−1)(N−λ1)(N−λ2+1)
.

This concludes the proof of Theorem 4.17.
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4.3 Paving matroids

In this section, we introduce “one-alternation” matroid intersection algorithms,

which first M1, then query M2, but do not again query M1. We show that any

such algorithm requires 2n−o(n) queries to solve matroid intersection. This implies

another linear lower bound for ordinary matroid intersection algorithms.

Our arguments are based on the use of paving matroids, which we now in-

troduce. To do so, we first describe another operation on matroids which we call

puncturing, although this is probably not standard terminology.

Lemma 4.31. Let M = (S,B) be a matroid. Let B ∈ B be a base such that, for all A ⊆ S

with |A| = |B| and |A⊕B| = 2, we have A ∈ B. Then (S,B −B) is also a matroid.

Proof. Let r be the rank function of M. Define the function r̃ : S → N as follows.

r̃(A) =







r(A)− 1 if A = B

r(A) otherwise

We now claim that r̃ is the rank function of the matroid (S,B−B). To show this, it

suffices to show that it is submodular, i.e., satisfies

r̃(A) + r̃(B) ≥ r̃(A ∪B) + r̃(A ∩B) ∀ A,B ⊆ S.

It is known [95] [86, Theorem 44.1] that this is equivalent to

r̃(A + a) + r̃(A + b) ≥ r̃(A ∪ {a, b}) + r̃(A) ∀A ⊆ S and ∀a, b ∈ S \ A.

Since r̃ differs from r only in that r̃(B) = r(B)− 1, it suffices to verify whether

r(B) + r(B − j + i)
?

≥ r(B + i) + r(B − j).

We have

r̃(B) + r̃(B − j + i) = (|B| − 1) + |B|,

by definition of r̃ and since |B ⊕ (B − j + i)| = 2. Also,

r̃(B + i) + r̃(B − j) = |B|+ (|B| − 1)
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since B is a base. Thus the desired inequality is satisfied (with equality). �

Now let S be a ground set of cardinality n, where n is even. Let M = (S,B) be

the uniform matroid of rank n/2. Let C∗ ⊆ 2S be a code of minimum distance 4

for which all codewords have weight n/2. That is, C∗ ⊂ B, and for all A,B ∈ C we

have |A⊕B| ≥ 4. A greedy code construction shows that we may take

|C∗| ≥
(

n

n/2

)

/n2 = 2n−o(n).

For any subcode C ⊆ C∗, we obtain a new matroid by puncturing M at every set

C ∈ C. Formally, we define PC = (S,B \ C). Lemma 4.31 shows that PC is indeed a

matroid. Such matroids are known as paving matroids [53] [94, §16.6].

Suppose that Alice is given a matroid PC where C ⊆ C∗ and Bob is given a

matroid MB = (S, {B}) where B ∈ C∗. It is clear that PC and MB have a common

base iff B 6∈ C. This shows a connection to the INDEX problem in communication

complexity, in which Alice is given a vector x ∈ {0, 1}m and Bob is given an index

i ∈ [m]. Their task is to compute the value xi. The INDEX problem reduces to

matroid intersection in the following way. First, we identify C∗ with [m]. Alice,

given x, constructs the corresponding subset C ⊆ C∗, and the matroid PC . Bob,

given i, Bob constructs the corresponding set B ∈ C∗ and MB. We have xi = 1

precisely when PC and MB have a common base.

This reduction implies a few results. The first result relates to one-round com-

munication protocols, in which Alice can send messages to Bob, but Bob cannot

reply to Alice. These protocols correspond to “one-alternation algorithms” for ma-

troid intersection: algorithms which first make some number of queries to M1,

then make some number of queries to M2, then halt without querying M1 again.

Lemma 4.32. Any (randomized or deterministic) one-alternation matroid intersection

algorithm must perform 2n−o(n) queries to M1.

Proof. It is known [54] that any randomized or deterministic one-round protocol

for the INDEX problem must use Θ(m) bits of communication. It follows that the

communication complexity of any one-round protocol for MATINT is Θ(|C∗|) =

2n−o(n). The desired result then follows by a simulation argument similar to the

one in Fact 4.13. �

Lemma 4.32 yields yet another linear lower bound on the number of queries
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needed by any matroid intersection algorithm, even randomized algorithms. This

result is a consequence of the following fact.

Fact 4.33. The deterministic (multi-round) communication complexity of any function f

is at least the logarithm (base 2) of the deterministic one-round communication complexity.

This also holds for randomized protocols.

Proof. See Kushilevitz and Nisan [54, p49]. �

Finally, it holds that N0(INDEX) ≥ log m and N1(INDEX) ≥ log m. (This fol-

lows via a trivial reduction from the EQ and NEQ functions on log m bits; these

functions are defined and analyzed in Kushilevitz and Nisan [54].) Our reduction

therefore shows that N0(MATINT) ≥ n− o(n) and N1(MATINT) ≥ n− o(n).

4.4 Discussion

Queries vs Communication. Can one prove better lower bounds by directly ana-

lyzing query complexity rather than resorting to communication complexity? It is

conceivable that matroid intersection requires Ω(nr1.5) queries but D(MATINT) =

O(n). In Section 4.1, we presented an analysis of the query complexity for very

elementary matroids. Extending such an analysis to general matroids seems quite

difficult as the independence oracle queries are very powerful compared to queries

that have been successfully analyzed in other work, e.g., Rivest and Vuillemin [82].

IN-SAME-CYCLE. Section 4.2 analyzed the ISC problem, using a rank argument

to lower bound D(ISC). We conjecture that the rank lower bound is weak for this

problem, and that actually D(ISC) = ω(n) holds. This seems difficult to prove,

due to the paucity of techniques for proving gaps between the deterministic and

non-deterministic complexities.

We were able to show an Ω(n log n) lower bound on the communication com-

plexity of (randomized or deterministic) one-round communication protocols for

this problem. We have also shown that N0(ISC) = Ω(n) and N1(ISC) = Ω(n).

The definition of ISC involved a partition P of a ground set S = U ∪ V into

pairs such that each pair has exactly one element of U and one of V . This “bipar-

tite restriction” of P allows us to draw a connection to permutations, and conse-

quently to the representation theory of Sn. However, from a matroid perspective,
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the assumption is unnecessary. We could have defined the ISC problem simply

to involve a partition P of the ground set S into pairs, without respecting any bi-

partition. This definition does not result in a connection to Sn, but rather to the

Brauer algebra [3, 79], whose representation theory is also well-studied. However,

we have shown that the rank of the resulting communication matrix is only 2O(n).

Are there other families of matroids for which matroid intersection reduces to a

permutation problem that can be analyzed by similar techniques? Could this lead

to stronger lower bounds? We were unable to find other interesting families of ma-

troids which give a clean connection to Jucys-Murphy elements, as in Lemma 4.28.

However, we did find a different approach to analyzing the ISC problem, using

characters rather than directly computing the spectrum. We precisely computed

the number of non-zero characters using tools from the theory of symmetric func-

tions [87]. It is possible that this approach may be less brittle than the approach

using Jucys-Murphy elements, and might allow a broader class of problems to be

analyzed.

Raz and Spieker. Our arguments in Section 4.2 are inspired by the work of Raz

and Spieker [80], who used representation theory to analyze a similar pointer chas-

ing problem. Define L to be the set of all permutations in SN whose cycle structure

consists of a single cycle of length N . Raz and Spieker analyze the communication

complexity of deciding whether σ−1 ◦ π ∈ L, where Alice has π ∈ SN and Bob has

σ ∈ SN . Their analysis is somewhat easier than ours because L is a conjugacy class

of SN and the communication matrix is in the center of the commutant algebra of

SN . An immediate consequence is that the communication matrix is diagonaliz-

able.

Interestingly, their result can easily be recovered using our framework of Jucys-

Murphy elements. We observe that an analog of Lemma 4.28 holds for their prob-

lem, namely
∏N

j=2 Jj =
∑

π∈L π. Thus, for any λ ` N ,

Yλ(L)t,t =
N∏

j=2

Yλ(Jj)t,t, for all SYT t of shape λ.

Thus Yλ(L)t,t 6= 0 iff in tableau t, every value j ≥ 2 avoids the main diagonal.

This clearly holds iff λ2 ≤ 1. Furthermore, the precise value of Yλ(L)t,t can be
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determined using content values, as we have done in Section 4.2.5.

We remark that the work of Raz and Spieker has different motivations than our

work. They compute the rank of the communication matrix in order to show that

the rank lower bound can be much smaller than the non-deterministic complexity

(by a log log factor). In our case, the non-deterministic complexities are both known

to be n + o(n), but we show that the rank lower bound is strictly larger than the

non-deterministic complexities.

Stronger communication lower bounds. How might one prove stronger com-

munication lower bounds for MATINT? Can one prove an ω(n log n) lower bound?

This is certainly not possible for partition matroids, laminar matroids, or graphic

matroids. One can show that the number of such matroids is 2O(n log n), and conse-

quently MATINT can be decided using O(n log n) bits of communication. (Alice just

needs to describe her matroid to Bob.) The number of paving matroids is enormous

— 22O(n)
— but it is not clear how they can be used to obtain a strong lower bound

because any two paving matroids always have a common base, so the decision

problem is trivial. Another important family of matroids is the binary matroids,

which are linear matroids representable over F2. The number of such matroids is

2O(n2), as can be seen by considering matrices of the form
(

I M
)

, where I is the

identity matrix and M is arbitrary. (See Wild [96] for a more precise result.) The

number of transversal matroids is also 2O(n2), as was shown by Brylawski [7], by a

similar argument. It is possible that one could show that D(MATINT) = Ω(n2) by

using either binary or transversal matroids.

Bounded-Alternation Matroid Intersection Algorithms. In Section 4.3, we de-

fined the notion of one-alternation algorithms for matroid intersection, and proved

that such algorithms must perform 2n−o(n) queries. The definition generalizes in

the natural way to algorithms with only k alternations. Can one prove a query

lower bound for k-alternation matroid intersection algorithms? Is it true that 2Ω(n)

queries are required for any constant k?
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Figure 4-5: (a) The bipartite graph G. Black edges represent the parts of π and grey edges
represent the parts of σ. (b) The black edges are oriented from U to V and the grey edges
are oriented from V to U . Thus, we may think of the edges from V to U as representing
σ−1. (c) By contracting each edge (ui, π(ui)), we obtain a permutation on U , namely σ−1◦π.
There is a bijection between cycles in G and cycles of σ−1 ◦ π.

4.5 Proofs

Proof of Lemma 4.15

Recall that π and σ can be viewed as partitions of S for which each part has size 2.

We construct a bipartite (multi-)graph G with left-vertices U , right-vertices V , and

edges given by the parts of π and σ. Each vertex of G has degree 2, and therefore

each connected component of G is a cycle. Let C1, . . . , C` denote the edge sets of

these ` cycles, and assume that cycle C1 contains vertex u1. If F is a set of edges,

let U(F ) and V (F ) respectively denote the U -vertices and V -vertices covered by F .

An edge which corresponds to a part of π is called a π-edge; otherwise, it is called

a σ-edge. An illustration is given in Figure 4-5.

Consider traversing the cycles of G as follows. Begin with a vertex ua. Follow

the π-edge incident with ua, arriving at a vertex va. Next, follow the σ-edge inci-

dent with va, arriving at a vertex ub. Repeat this process until returning to ua. The

U -vertices traversed in this process form a cycle of σ−1 ◦ π. Furthermore, this pro-

cess gives a bijection between cycles of G and cycles of σ−1 ◦ π, and the ordering of

vertices within each cycle is preserved by this bijection.

⇐=: For consistency with our example, let us consider u3 instead of u2. So

suppose that u1 and u3 are in the same cycle of σ−1 ◦ π. We will show that M
π
1 and
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Figure 4-6: (a) The path P . The vertices V (P ) are shown in bold. (b) The path P ′. The
vertices U(P ′) are shown in bold. (c) The vertices B are shown in bold. (d) The cycle C.
(e) The set of vertices A is shown in bold and A is shown in grey.

M
σ
3 have a common base. By our earlier remarks, u1 and u3 are also in the same

cycle of G, namely C1. This cycle can be decomposed into two edge-disjoint paths

both of which have endpoints u1 and u3. Let P be the path which contains the π-

edge incident with u1, and let P ′ be the other path. Note that P must also contain

the σ-edge incident with u3. Define

B = V (P ) ∪ U(P ′) ∪
⋃̀

i=2

U(Ci).

Figure 4-6 (a)-(c) give an illustration.

Consider an arbitrary part of π, say
{
ui, vπ(i)

}
. The following cases are easy to

verify.

Case 1: i = 1. Then u1 and vπ(1) are both in B.
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Case 2: i > 1 and
{
ui, vπ(i)

}
is on path P . Then ui 6∈ B and vπ(i) ∈ B.

Case 3: i > 1 and
{
ui, vπ(i)

}
is not on path P . Then ui ∈ B and vπ(i) 6∈ B.

It follows that B is a base for M
π
1 . A symmetric argument shows that B is also a

base for M
σ
3 .

=⇒: For consistency with our example, let us consider u5 instead of u2. Suppose

that u1 and u5 are not in the same cycle of σ−1 ◦ π. We will show that M
π
1 and M

σ
3

do not have a common base. Let C be the cycle of G containing u5. Let A be the set

of all vertices covered by C. Figure 4-6 (d)-(e) give an illustration. Then we claim

that rankMπ
1
(A) = |A|/2. This follows because:

• |A ∩
{
ui, vπ(i)

}
| is either 0 or 2.

• If |A∩
{
ui, vπ(i)

}
| = 0 then these vertices obviously contribute 0 to rankMπ

1
(A).

• If |A ∩
{
ui, vπ(i)

}
| = 2 then these vertices contribute only 1 to rankMπ

1
(A) by

definition of M
π
1 . (Note that A does not intersect

{
u1, vπ(1)

}
.)

Similarly, rankMσ
5
(A) = |A|/2. Thus rankMπ

1
(A)+rankMσ

5
(A) = n, although both M

π
1

and M
σ
5 have rank n + 1. The weak direction of the matroid intersection theorem

(Fact 3.1) therefore implies that M
π
1 and M

σ
5 cannot have a common base.

Proof of Lemma 4.30

Let λ ` n and µ ` n be such that µi ≤ λi for all i. Consider the set of boxes that are

contained in the Ferrers diagram of λ but not of µ. This set is called a skew shape,

and is denoted λ \ µ. The definition of a standard Young tableau generalizes to

skew shapes in the obvious way.

We seek to understand gλ, the number of SYT of shape λ in which the value 2 is

in box (2, 1). (Note that the box (1, 1) contains the value 1 in any SYT.) Equivalently,

gλ equals the number of SYT of skew shape λ\µ where µ is the partition (1, 1). This

is illustrated in Figure 4-7.

The SYT of shape λ \ µ are easily enumerated. First, one chooses the elements

from {3, . . . , n}which will occupy the first two rows. (The remaining elements will

occupy the vertical bar, i.e., the rows other than the first two.) There are
(

n−2
λ1+λ2−2

)

ways to choose these elements. If the final arrangement is to be an SYT, then there

is a single way to arrange the remaining elements in the vertical bar, i.e., increasing

downwards. It remains to enumerate the number of SYT on the first two rows. It
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1

2

(a) Shape λ (b) Shape λ \ µ

Figure 4-7: The SYT of shape λ in which box (2, 1) contains element 2 correspond to SYT
of shape λ \ µ.

follows from the Hook Length Formula (Fact 4.24) that the number of SYT of shape

(a, b) is
(

a+b
a

)
−
(

a+b
a+1

)
.

Thus a simple manipulation shows that

gλ =

(
n− 2

λ1 + λ2 − 2

)

·
((

λ1+λ2−2

λ1 − 1

)

−
(

λ1+λ2−2

λ1

))

=

(
n

λ1, λ2, n− λ1 − λ2

)

· λ2 (λ1 − λ2 + 1)

n(n− 1)
.

An even simpler application of the Hook Length Formula shows that

fλ =

(
n

λ1, λ2, n− λ1 − λ2

)

· λ2 (λ1 − λ2 + 1)

(n− λ1) (n− λ2 + 1)
,

as required.
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Chapter 5

Submodular functions

The submodular inequality, introduced in Eq. (3.1), is a very natural structural

property of a function. Functions which satisfy this inequality are known as sub-

modular functions. As mentioned in Chapter 1, submodular functions arise natu-

rally in many areas, particularly in combinatorial optimization.

In this chapter, we discuss two problems relating to submodular functions. The

first is submodular function minimization (SFM). It is known that this problem

can be solved using only a polynomial number of queries to the function. In Sec-

tion 5.2, we prove lower bounds on the number of queries needed to solve SFM.

We give three distinct proofs that, given a submodular function f : 2E → R, at

least n = |E| queries are needed to find a minimizer. We also show that finding all

minimizers requires at least Ω(n2/ log n) queries.

In Section 5.3, we consider the question of “learning” (or “approximating”) a

given submodular function f : 2E → R. Let n = |E|. Can we make only poly(n)

queries to f , then approximate the value of f on every subset of E? We show that

any such algorithm must have (worst-case) approximation ratio Ω(
√

n/ log n).

5.1 Preliminaries

In this section, we state some of the key definitions and results concerning sub-

modular functions. Further information may be found in Lovász’s survey [59],

McCormick’s survey [63], Fujishige’s monograph [30], or Schrijver’s book [86].

Let E be a finite set and let f be a function that assigns a real value to each

85
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subset of E, i.e., f : 2E → R. We say that f is submodular if, for every two sets

U, V ⊆ E, we have

f(U) + f(V ) ≥ f(U ∪ V ) + f(U ∩ V ). (5.1)

We say that f is non-decreasing (or monotone) if f(A) ≤ f(B) whenever A ⊆ B.

We say that f is non-negative if f(A) ≥ 0 for all A ⊆ E.

Example 5.1 (Graph cut functions). One prototypical example of a submodular

function comes from graph theory. Let G = (V,E) be an undirected graph. For

A ⊆ V , let δ(A) denote the set of edges with one endpoint in A and the other in

A. Define f : 2V → N to be the cut function: f(A) = |δ(A)|. To see that f is

submodular, one may verify that edges with one endpoint in A \ B and the other

in B \ A contribute to f(A) + f(B) but not to f(A ∪B) + f(A ∩B); all other edges

contribute equally to both.

A similar example arises from a directed graph G = (V,A). Similar reasoning

shows that the function |δ+(·)| : 2V → R≥0 is a submodular function, where δ+(U)

denotes the set of arcs with their tail in U and head in U . �

The following basic facts are easy to verify.

Fact 5.2. If f and g are submodular functions then f + g is submodular.

Fact 5.3. Suppose that f : 2E → R is submodular. Then g(A) := f(E \ A) is also

submodular. Moreover, if f is non-decreasing then g is non-increasing (and vice-versa).

5.1.1 Minimization

Submodular functions are, in several ways, analogous to convex functions. One

similarity is that a minimizer of a submodular function can be efficiently com-

puted. Formally, the submodular function minimization (SFM) problem is:

min
F⊆E

f(F ) where f : 2E → R is submodular. (5.2)

In order to discuss the computational efficiency of solving this problem, we

must specify the computational model. As was the case with matroids, one dif-

ficulty is that submodular functions may, in general, require exponential space to
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represent. Thus, we will again use an oracle model of computation. The most com-

mon such oracle is a value oracle, which answers the following queries: given a

set A ⊆ S, what is f(A)?

Grötschel, Lovász, and Schrijver showed that the ellipsoid method can be used

to solve SFM in polynomial time [39], and even in strongly polynomial time [40].

According to McCormick [63, Theorem 2.7], this strongly polynomial algorithm

has running time Õ(n7) and uses Õ(n5) oracle queries. Cunningham [18] posed

the question of finding a combinatorial, strongly polynomial time algorithm to solve

SFM; here, a “combinatorial” algorithm means one which does not rely on the el-

lipsoid method. This question was resolved by Iwata, Fleischer and Fujishige [47],

and by Schrijver [85]. The fastest known algorithm is due to Orlin [74]; it has run-

ning time O(n6) and uses O(n5) oracle queries.

Why would one be interested in minimizing a submodular function? It turns

out that many combinatorial optimization problems are special cases of SFM. For

example, matroid intersection is a special case. Let M1 = (S, r1) and M = (S, r2)

be matroids. As stated in Eq. (3.1), both ri are submodular. Thus, using Fact 5.2

and Fact 5.3, the function f : 2S → Z defined by f(A) = r1(A) + r2(S \ A) is

also submodular. Edmonds’ min-max relation (Fact 3.1) shows that the maximum

cardinality of an intersection of M1 and M2 can be found by minimizing f .

One interesting fact concerning submodular functions is that their minimizers

form a ring family (sublattice of the Boolean lattice). This is analogous to the sim-

ple fact that the minimizers of a convex function form a convex set.

Fact 5.4. Let f : 2E → R be submodular. Then the collection of minimizers of f is closed

under unions and intersections.

5.2 Lower bounds for minimization

As mentioned above, a submodular function f : 2E → R can be minimized using

only O(n5) oracle queries, where n = |E|. It has been an outstanding open ques-

tion to prove a lower bound on the number of queries needed (see the surveys of

Iwata [46] or McCormick [63, p387]). Our lower bound for matroid intersection

given in Chapter 4 resulted from an attempt to prove strong lower bounds for sub-

modular function minimization. In this section, we give several proofs that Ω(n)

queries are needed.
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5.2.1 Linear functions

We begin by giving an adversary argument that at least n queries are needed even

to minimize a linear function. (Linear functions are trivially submodular.) Sup-

pose that the algorithm performs q < n queries. The adversary’s behavior is very

simple: it returns 0 to each of those queries.

We now argue that the algorithm cannot yet have decided the minimum value

of the function, since there exist two functions f and g, both consistent with the

current queries, such that the minimum of f is 0, and the minimum of g is strictly

negative. The existence of f is trivial: it is the zero function. To argue the existence

of g requires more work.

The function g : 2E → R will have the form g(S) = χ(S)Ta =
∑

s∈S as, for

some vector a ∈ RE . Let the sets queried by the algorithm be S1, S2, . . . , Sq. The

responses to the queries require that χ(Si)
Ta = 0, for all i. In other words, the

vector a is required to be orthogonal to q specific vectors. Since q < n, there exists a

subspace H (of dimension at least 1) such that all vectors a ∈ H satisfy the required

orthogonality conditions. In particular, we may choose a such that aj < 0 for some

j, and hence the minimum of g is strictly negative.

Suppose that we restrict our attention to integer-valued functions. How large

do the values of g need to be? Let X be the matrix whose ith row is the vector

χ(Si). Then we seek a non-zero, integer solution to the linear system Xa = 0. Let

us define a new matrix X̃ by choosing a linearly independent set of r := rankX

rows from X , then adding additional n − r rows such that X̃ is non-singular, and

the new rows have entries in {0, 1}. Let b ∈ RE have its first r entries equal to

zero, and last n − r entries equal to −1. The vector a := X̃−1b satisfies the desired

orthogonality conditions, but it is not necessarily integer-valued. Each entry of

X̃−1 is of the form

(X̃−1)i,j = ± det X̃del(j,i) / det X̃,

by Eq. (2.1), and hence (det X̃)·a is integer-valued. We may bound det X̃ as follows.

Fact 5.5. Let M be an n× n real matrix with entries in {0, 1}. Then |det M | ≤ nn/2.

Proof. Since the entries of M are in {0, 1}, we have ‖M∗,i‖ ≤
√

n. Hadamard’s

inequality [40, Eq. 0.1.28] states that |det M | ≤∏n
i=1 ‖M∗,i‖, so the result follows. �

Thus |det X̃del(j,i)| ≤ nn/2, and thus each entry of (det X̃) · a has absolute value
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at most nn/2+1. The desired integer-valued function g is obtained by setting

g(S) = (det X̃) · χ(S)Ta.

We summarize this discussion with the following theorem.

Theorem 5.6. Any deterministic algorithm which decides whether an integer-valued,

linear function f : 2E → [−nO(n), nO(n)] has minimum value zero requires at least n

queries.

5.2.2 Intersection of rank-1 matroids

In this section, we show a matching lower bound for submodular functions which

take a significantly smaller range of values.

Theorem 5.7. Let E be a ground set with |E| = n. Any deterministic algorithm which

finds a minimizer of an integer-valued, submodular function f : 2E → {0, 1, 2} requires

at least n queries.

Recall from Section 5.1.1 that the matroid intersection problem is a special case

of submodular function minimization. We will construct a family of hard instances

for SFM through the use of matroids. Let X ⊆ S be arbitrary. Let M(X) and M(X)

be rank-1 matroids, using the notation of Section 4.1.1. The corresponding rank

functions are

rM(X)(A) =







1 if X ∩ A 6= ∅
0 otherwise

and r
M(X)(A) =







1 if X ∩ A 6= ∅
0 otherwise.

Following Edmonds’ min-max relation, let fX : 2S → Z be defined by

fX(A) = rM(X)(A) + r
M(X)(A).

Then fX is submodular and fX(A) ∈ {0, 1, 2} for all A ⊆ S. Furthermore, fX(A) = 0

if A = X and fX is strictly positive on all other points.

Let F = { fX : X ⊆ S }. Consider any algorithm which, given f ∈ F , attempts

to construct the (unique) minimizer of f using at most n− 1 queries. Without loss

of generality, we may assume that the algorithm has the following behavior: if it
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receives a query response of 0, it immediately halts and announces the solution.

Therefore all query responses except the last one are in {1, 2}, and the last query

response is in {0, 1, 2}. It follows that the number of different response sequences

is at most 2n−2 ·3 < 2n = |F|. So, by the pigeonhole principle, two distinct functions

fX , fY ∈ F have the same response sequences and are therefore indistinguishable

to the algorithm. Since fX and fY have distinct minimizers, it follows that the al-

gorithm cannot correctly identify the minimizer for at least one of those functions.

This completes the proof of Theorem 5.7.

5.2.3 Graph cut functions

Let G = (V,E) be an undirected graph and let f : 2V → N be the cut function, i.e.,

f(U) equals the number of edges with one endpoint in U and the other in U . This

is a symmetric function, meaning that f(U) = f(V \ U) for all U ⊆ V . Finding a

minimizer of a symmetric, submodular function is trivial.

Fact 5.8. If f : 2V → R is symmetric and submodular then ∅ and V are minimizers.

Proof. If A is a minimizer then symmetry implies that V \ A is too. Their inter-

section and union are both minimizers since minimizers form a ring family, by

Fact 5.4. This proves the claim. �

Thus, for a symmetric, submodular function, the interesting problem is to find

a “non-trivial” minimizer: a set ∅ 6= A ( V such that A ∈ arg min f . We now

show that communication complexity can be used to give a lower bound for this

problem, by building on a result of Hajnal-Maass-Turán [41] and Lovász-Saks [62].

The requisite definitions are in Section 4.2.1.

Theorem 5.9. Let |V | = n. Any algorithm that constructs a non-trivial minimizer of a

symmetric, submodular function f : 2V → R requires Ω(n) queries, even if f is a graph

cut function.

Proof. Let GA and GB be graphs with vertex set V such that every possible edge

{u, v} with u, v ∈ V is in exactly one of GA and GB. (So we have partitioned the

complete graph into subgraphs GA and GB .) The edges in GA are “owned” by

Alice and those in GB are owned by Bob. Alice is given a subgraph HA = (V,EA)

of GA and Bob is given a subgraph HB = (V,EB) of GB. The problem CONN is for

Alice and Bob to decide whether H = (V,EA ∪ EB) is connected. Hajnal et al. [41]
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prove that the deterministic communication complexity D(CONN) = Ω(n log n).

This yields a lower bound on the number of queries performed by any algo-

rithm that finds a non-trivial minimizer of a graph cut function. Let

f(U) = |δH(U)| = |δHA
(U)|+ |δHB

(U)|.

Any algorithm that finds a non-trivial minimizer of f using q queries can be trans-

formed into a communication protocol for CONN using 4q log n bits of communica-

tion. This protocol works as follows. Alice and Bob both independently simulate

the given algorithm. Every time the algorithm performs a query f(U), Alice trans-

mits |δHA
(U)| to Bob, and Bob transmits |δHB

(U)| to Alice. Since HA and HB each

have less than n2 edges, each transmission requires less than 2 log n bits.

The lower bound for D(CONN) implies that q = Ω(n). �

The following theorem shows an upper bound for deciding graph connectivity.

Theorem 5.10. Let |V | = n and let f : 2V → R be the cut function corresponding to

graph G = (V,E). There exists an algorithm using O(n log n) queries to f which can

decide whether G is connected.

Proof. The algorithm proceeds as follows. We maintain a set U ⊆ V on which we

have found a spanning tree. Initially U contains a single vertex.

A general step of the algorithm seeks to find an edge {u, v} ∈ E[U,U ] by bi-

nary search. First we compute |E[U,U ]| = f(U). If this value is zero, then G is

disconnected and the algorithm halts. Otherwise, we partition U = U1 ∪̇U2 where

|U1| = b|U |/2c and |U2| = d|U |/2e, then compute |E[U1, U ]| and |E[U2, U ]|. This is

done as follows: for any I, J ⊆ V with I ∩ J = ∅, we have

|E[I, J ]| =
(
f(I) + f(J)− f(I ∪ J)

)
/2. (5.3)

So |E[U1, U ]| and |E[U2, U ]| can each be computed with three queries to f . At least

one of these two values must be non-zero, say |E[U1, U ]| > 0. The algorithm con-

tinues partitioning U1 until it finds a vertex u ∈ U such that |E[{u} , U ]| > 0. Then,

the set U is similarly partitioned to find v ∈ U such that |E[{u} , {v}]| > 0, i.e.,

{u, v} is an edge. Thus O(log n) queries suffice to find the edge {u, v}.
The algorithm then augments U := U + v and repeats the above step. The

algorithm halts when U = V . Thus, the total number of queries is O(n log n). �
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5.2.4 Finding all minimizers

Let f : 2S → R be a submodular function. As shown in Fact 5.4, the collection

arg min f is a ring family. It is known [6] that any ring family can be represented

compactly, as follows. First, note that there is a minimal minimizer Tmin (this fol-

lows from Fact 5.4). There exists a directed graph G = (V,A) and a collection of

pairwise-disjoint subsets Tv ⊆ S ∀v ∈ V such that

arg min f =

{

Tmin ∪
⋃

v∈U

Tv : U is a sink set for G

}

.

A sink set is a subset of the vertices which has no leaving arcs.

Given a submodular function f , this compact representation of arg min f can

be explicitly constructed using only O(n5) oracle queries to f , via Orlin’s algo-

rithm [74]; see Murota [70, p290] for details. The following theorem shows a super-

linear lower bound on the number of queries needed to solve this problem.

Theorem 5.11. Any deterministic algorithm which constructs arg min f (or any compact

representation thereof) must perform Ω(n2/ log n) queries.

Suppose that n is even and let U and V be disjoint sets of vertices with |U | =

|V | = n/2. Let S = U ∪̇V . Let G be the family of all directed graphs on vertex set S

for which all arcs have their tail in U and head in V . Clearly |G| = 2n2/4.

Claim 5.12. If G,H ∈ G are distinct then there exists a set T ⊆ S such that T is a sink

set for G but not for H (or vice-versa).

Proof. Without loss of generality, there exists an arc e = (u, v) of G that is not an

arc of H , with u ∈ U and v ∈ V . Let AH be the set of all arcs in H . Let

T = { w : (u,w) ∈ AH } + u,

so v 6∈ T . Then T is a sink set for H but not a sink set for G. �

For any digraph G ∈ G, let fG : 2S → N be the cut function, namely fG(U) =

|δ+
G(U)|. As argued in Example 5.1, fG is submodular. The minimizers of fG are

precisely the sink sets, since fG is non-negative. So Claim 5.12 shows that, if G,H ∈
G are distinct, then arg min fG 6= arg min fH .
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Let F = { fG : G ∈ G }. Consider any algorithm which, given f ∈ F , attempts

to construct arg min f using fewer than n2/(8 log n) queries. Each query response

is an integer between 0 and n2/4. So the number of different response sequences is

less than
(
n2
)n2/(8 log n)

= 2n2/4 = |G| = |F|.

So, by the pigeonhole principle, two distinct functions fG, fH ∈ F have the same

response sequences and are therefore indistinguishable to the algorithm. As ar-

gued above, arg min fG 6= arg min fH , and therefore the algorithm cannot correctly

compute the set of minimizers for at least one function in F . This completes the

proof of Theorem 5.11.

5.3 Learning a submodular function

In this section, we investigate another fundamental question concerning the struc-

ture of submodular functions. How much information is contained in a submodu-

lar function? How much of that information can be learned in just a few queries?

To address these questions, we consider a framework in which an algorithm at-

tempts to “learn” a submodular function approximately using only a polynomial

number of queries. Formally, we consider the following problem.

Problem 5.13. Let f : 2E → R≥0 be a submodular function with n = |E|. Can one

make nO(1) queries to f and construct a function f̂ which is an approximation of f , in

the sense that f̂(S) ≤ f(S) ≤ g(n) · f̂(S) for all S ⊆ E. The quantity g(n) is called

the approximation ratio. What approximation ratios can be obtained? Can one obtain a

constant approximation ratio (independent of n)?

This problem can be solved exactly (i.e., with approximation ratio 1) for certain

classes of submodular functions. As a simple example, Lemma 5.14 shows this for

graph cut functions. In contrast, Section 5.3.1 shows that, for general submodular

functions, one needs to take g(n) = Ω(
√

n/ log n). Even when restricting to mono-

tone functions, we show that g(n) = Ω(
√

n/ log n). By a slightly different choice of

parameters, Svitkina and Fleischer [89] have improved our analysis to show that

g(n) = Ω(
√

n/ log n) for monotone functions.

Lemma 5.14. Let G = (V,E) be a graph and let f : 2V → N be the cut function, i.e.,
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f(U) = |δ(U)|. Given f , the graph G can be constructed using O(|V |2) queries.

Proof. Let I, J ⊆ V satisfy I ∩ J = ∅. We showed earlier in Eq. (5.3) that |E[I, J ]|
can be computed using only three queries to f . This leads to the following proce-

dure for reconstructing G given f . For each pair of vertices u and v, we compute

|E[{u} , {v}]| using Eq. (5.3). If this value is 1 then {u, v} ∈ E, otherwise {u, v} 6∈ E.

Thus O(|V |2) queries suffice. �

5.3.1 Lower bound via laminar matroids

The bulk of this section shows that Problem 5.13 requires an approximation ratio of

Ω
(√

n/ log n
)
, even when restricting f to be a matroid rank function (and hence a

monotone, submodular function). At the end of the section, we discuss the slightly

stronger result obtained without the monotonicity assumption.

Our construction depends on two parameters 0 < β < α < n, to be specified

later. Let U be the uniform rank-α matroid on E. We will construct another ma-

troid M which cannot easily be distinguished from U. Let rU and rM be these

matroids’ respective rank functions. Let R be a fixed set of cardinality α, and note

that rU(R) = α.

We now construct MR such that rMR
(R) = β. Define the laminar family L =

{R,E}, with dR = β and dE = α. Let MR = (E, IL,d), be the corresponding laminar

matroid. (Recall the definition from page 35.) When we do not wish to emphasize

the parameter R, we denote this matroid simply by M = (E, IM).

Consider any algorithm for approximating a monotone submodular function.

We will give it as input either f = rU or f = rM, for some choice of R. If the

algorithm cannot distinguish between these two possibilities, then it cannot ap-

proximate f better than
rU(R)

rMR
(R)

=
α

β
. (5.4)

Our objective is to maximize this ratio, while ensuring the algorithm cannot dis-

tinguish between f = rU or f = rM.

Suppose that the algorithm’s first step is to query a set S. If f(S) 6= rU(S) then

the algorithm knows that f = rMR
for some R, and we will pessimistically assume

that it can also identify R at this point. Otherwise, suppose that f(S) = rU(S).

Then the algorithm knows that either f = rU, or that f = rMR
but there are now
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some restrictions on what R can be. Let us now explore these restrictions on R. For

convenience, let s = |S|.

Case 0: s ≤ β. In this case, we have f(S) = rU(S) = rMR
(S) for all R, so the

algorithm learns nothing.

Case 1: β < s ≤ α. In this case, rU(S) 6= rM(S) iff S 6∈ IM, which holds iff

|R ∩ S| > β. So if rU(S) = rM(S) then the algorithm has learned that R cannot be

any of the sets of size α that intersect S in more than β elements. We will choose α

and β such that an n−ω(1) fraction of possible sets R is eliminated.

The analysis proceeds using the language of probability. We wish to analyze

the probability Pr [ |R ∩ S| > β ], where R is chosen uniformly at random among all

sets of size α. This is precisely Pr [ |R ∩ S| > β | |R| = α ], where R is now chosen

by picking each element independently with probability α/n. Now we use the

standard trick

Pr [ |R ∩ S| > β | |R| = α ] =
Pr [ |R ∩ S| > β ∧ |R| = α ]

Pr [ |R| = α ]

≤ (n + 1) · Pr [ |R ∩ S| > β ] .

where the last inequality follows since the binomial distribution with parameter

α/n has its mode equal to α.

The probability Pr [ |R ∩ S| > β ] (where elements are chosen independently)

can easily be analyzed using Chernoff bounds. Let µ = E [ |R ∩ S| ] = sα/n ≤ α2/n.

Let us take α =
√

n, so that µ ≤ 1. Then taking β = ω(log n), independent of s,

implies that Pr [ |R ∩ S| > β ] ≤ n−ω(1).

To summarize Case 1, if we take α =
√

n and β = ω(log n), the number of

possible sets R eliminated by a query is a n−ω(1) fraction of the possible sets R.

Case 2: s > α. Since rM(S) ≤ rU(S) = α for all such sets, we wish to understand

when rM(S) < α. Note that S 6∈ IM (it is too big) and that rM(S) = maxI⊂S, I∈IM
|I|.

Let t = |R∩S|−β. If t ≤ 0 then any α-element subset I of S is in IM, so rM(S) = α.

Otherwise, suppose we modify S by eliminating t elements from R ∩ S; call the

resulting set J . The resulting set might not be independent (it may have cardinality

bigger than α). In any case, we have rM(S) = α iff |J | ≥ α. Since |J | = s−|R∩S|+β,
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we have argued that rM(S) = rU(S) iff |R ∩ S| ≤ s − α + β. Since |R| = α, this

condition is always satisfied if s ≥ 2α− β. So we may assume that α < s ≤ 2α− β.

The analysis is now similar to the analysis of Case 1. We wish to bound the

probability Pr [ |R ∩ S| > s− α + β ], where R is picked uniformly at random from

sets of size α. This is upper bounded by (n+1)·Pr [ |R ∩ S| > s− α + β ], where ele-

ments of R are picked independently with probability α/n. Now µ = E [ |R ∩ S| ] =

sα/n ≤ 2α2/n. As above, we may take β = ω(log n), and conclude that a query

eliminates a n−ω(1) fraction of the possible sets R.

Summary. After nO(1) queries, the total fraction of possible sets R that have been

eliminated is

nO(1) · n−ω(1) = n−ω(1).

Since at least one possible set R remains, the algorithm cannot have distinguished

between f = rU and f = rM. By Eq. (5.4), we conclude that no adaptive algorithm

can approximate a monotone submodular function to within Ω
(√

n/ log n
)
.

A non-monotone variant. The previous construction can be modified to obtain

an interesting non-monotone submodular function. The main idea is to “tilt” f

downwards by subtracting a linear function. This allows us to choose α and β

slightly differently. Formally, we define f according to one of the following defini-

tions.

Definition A: f(S) = rU(S)− |S|/2
Definition B: f(S) = rMR

(S)− |S|/2

We will now set α = n/2 and β = n/4 + ω(
√

n log n). Under Definition A, we have

f(R) = n/4, but under Definition B we have f(R) ≈ √n log n. By similar proba-

bilistic arguments, one can show that no algorithm using only polynomially many

queries can distinguish between Definitions A and B. In summary, no algorithm

can approximate a non-monotone submodular function to within Ω
(√

n/ log n
)
.

This gives a slightly stronger lower bound than the previous result, although the

previous result holds even for monotone functions.
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5.4 Discussion

Matroid intersection. As discussed in Section 5.1.1 and Section 5.2.2, matroid

intersection is a special case of SFM. Thus query lower bounds for matroid inter-

section can lead to query lower bounds for submodular function minimization as

well, depending on the precise oracle models used. Specifically, Edmonds’ min-

max relation and a standard simulation argument shows that D(MATINT)/2 log r

gives a lower bound on the number of queries needed to minimize a submodular

function. This may be a fruitful approach to proving lower bounds for SFM.

Graph connectivity. Section 5.2.3 considers the problem of finding a non-trivial

minimizer of a graph cut function, i.e., deciding whether the corresponding graph

is connected. It shows that Ω(n) queries are necessary and O(n log n) queries are

sufficient. What is the exact number of queries needed?

Learning. Can one show an upper bound of g(n) = Õ(
√

n) for learning a sub-

modular function? Svitkina and Fleischer [89] solve this problem for for a class of

monotone submodular functions which contains the monotone functions used in

our lower bound. Can such arguments be extended to a broader class of submod-

ular functions?
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Appendix A

Fast triangular factorization

In this chapter, we give an algorithm to factorize a n × n matrix A into lower-

and upper-triangular matrices in O(nω) time. This algorithm applies even if A is

singular. It can also be used to compute a maximum-rank submatrix of A, the

determinant of A, and to invert A if it is non-singular, all in O(nω) time.

Such algorithms have been known for decades, so the material of this chapter

should not be considered novel. However, it seems difficult to find a concise ex-

planation of fast matrix factorization in the literature. Since Chapters 2 and 3 use

these algorithms extensively, this appendix provides a self-contained discussion.

The algorithm we present here is similar in spirit to the algorithm of Bunch

and Hopcroft [8] for finding the LUP decomposition of a matrix. However the

algorithms are not identical — for example, the Bunch-Hopcroft algorithm requires

that the given matrix is non-singular.

A.1 Overview

First, some definitions are needed. We say that a matrix D is a generalized permu-

tation matrix if each row and each column contains at most one non-zero entry. In

other words, D is the product of a diagonal matrix and a permutation matrix.

The objective is as follows. We are given an n × n matrix A. Our goal is to

compute D = L · A · U , where L is lower-triangular, U is upper-triangular, and D

is a generalized permutation matrix.

Intuitively, the algorithm makes progress towards making D a generalized per-

99
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Algorithm A.1 A sketch of the recursive algorithm for triangular factorization of
a matrix.

• Set D(1) := A and partition D(1) into four submatrices D(1) =
(

W (1) X(1)

Y (1) Z(1)

)

.

• Recursively factor W (1), obtaining d(1) = l(1) ·W (1) · u(1).

• Use this to get factorization D(2) = L(2) · A · U (2), where D(2) =
(

W (2) X(2)

Y (2) Z(2)

)

,

and W (2) is a generalized permutation matrix.

• Recursively factor X(2), obtaining d(2) = l(2) ·X(2) · u(2).

• Use this to get factorization D(3) = L(3) · A · U (3), where D(3) =
(

W (3) X(3)

Y (3) Z(3)

)

,

and W (3) and X(3) are generalized permutation matrices.

• Recursively factor Y (3), obtaining d(3) = l(3) · Y (3) · u(3).

• Use this to get factorization D(4) = L(4) · A · U (4), where D(4) =
(

W (4) X(4)

Y (4) Z(4)

)

,

and W (4), X(4) and Y (4) are generalized permutation matrices.

• Recursively factor Z(4), obtaining d(4) = l(4) · Z(4) · u(4).

• Use this to get the desired factorization D = L · A · U .

mutation matrix by performing pivot operations. Roughly speaking, a pivot op-

eration on an entry Di,j 6= 0 is a sequence of elementary row and column opera-

tions which ensure that row Di,j is the only non-zero entry in row i and column

j. Ordinary Gaussian elimination follows essentially the same strategy, iteratively

performing pivot operations one-by-one.

Our algorithm works recursively rather than iteratively. A sketch of the algo-

rithm is shown in Algorithm A.1. The algorithm recursively factors four smaller

matrices, each one half the size of A. After each recursive step, it updates the fac-

torization and the matrix D. A concrete implementation of this algorithm is given

in Algorithm A.2, and the following section explains the algorithm in detail.

A.2 Algorithm

Formally, the algorithm maintains n× n matrices L, U and D, and sets R and C of

row and column indices such that the following properties hold.

P1: D = L · A · U ,
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Algorithm A.2 Matlab code for the algorithm to compute a triangular factorization of
a matrix. It finds L, U, D such that L is lower-triangular with unit diagonal, U is upper-
triangular with unit diagonal, D is a generalized permutation matrix, and D = L ·A · U .

%%% FactorMatrix %%%
function [L,D,U,R,C] = FactorMatrix(A)

% Base case
n = size(A,1);
if n==1

L=[1]; D=A; U=[1];
if abs(A(1,1))<100 * eps R=[]; C=[];
else R=[1]; C=[1]; end;
return;

end

m = floor(n/2);
L=eye(n); U=L; D=A;
indices{1}=1:m; indices{2}=m+1:n;
R=[]; C=[];

for i=1:2
I=indices{i}; IComp=indices{3-i};

for j=1:2
J=indices{j}; JComp=indices{3-j};

[l,d,u,r,c] = FactorMatrix( D(I,J) );
r=I(r); c=J(c); % Translate indices
R=[R,r]; C=[C,c];

% Extend l and u to operators L’ and U’
newL=zeros(n); newL(I,I)=l; newL(IComp,IComp)=eye(len gth(IComp));
newU=zeros(n); newU(J,J)=u; newU(JComp,JComp)=eye(len gth(JComp));
L=newL* L; U=U* newU; D=newL* D* newU;

% invdrc = inverse of submatrix of D in which we pivoted
invdrc = InvertGenPerm(D(r,c));

% Eliminate in rows r and cols c
newL=eye(n); newL(IComp,r)=-D(IComp,c) * invdrc;
newU=eye(n); newU(c,JComp)=-invdrc * D(r,JComp);
L=newL* L; U=U* newU; D=newL* D* newU;

end
end

%%% InvertGenPerm %%%
function B = InvertGenPerm(A)
n = size(A,1);
B = zeros(n);
for i=1:n

for j=1:n
if abs(A(i,j))>.0001

B(j,i) = 1/A(i,j);
end;

end;
end;
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P2: L is lower-triangular with unit-diagonal,

P3: U is upper-triangular with unit-diagonal, and

P4: DR,C is a non-singular, generalized permutation matrix,

P5: DR,C = 0 and DR,C = 0,

P6: if i 6∈ C then Ui,∗ = eT
i ,

P7: if A∗,j = 0 then U∗,j = ej ,

P8: if j 6∈ R then L∗,j = ej ,

P9: if Ai,∗ = 0 then Li,∗ = eT
i .

Let Pi(A,L,D,U,R,C) denote the predicate that property i holds for those spe-

cific matrices. Let P (A,L,D,U,R,C), or simply P , denote the predicate that all

properties P1-P9 hold for those matrices.

The meaning of these properties is as follows. P1-P3 give the definition of our

desired factorization. P4-P5 capture the algorithm’s aim of making D more like

a generalized permutation matrix. P6 ensures that only columns on which the

algorithm has pivoted (i.e., those in C) are added to other columns. P7 ensures

that no column operations are applied to columns which are already zero. P8-P9

are analogous to P6-P7.

The initial values for the algorithm’s parameters are

L := I, D := A, U := I, R = ∅, C = ∅.

These values trivially satisfy P . The algorithm halts when the following property

is satisfied:

Ph: DR,C = 0, which implies that D is a generalized permutation matrix.

Thus, when property Ph is satisfied, the desired factorization has been found. Let

H(A,L,D,U,R,C) be the predicate that properties P1-P9 and Ph are all satisfied.

We now explain the recursive steps. Let us write

D =

(

W X

Y Z

)

,

where the submatrices have size m ×m and m = n/2. As explained in the sketch

above, the algorithm recurses on a submatrix, then updates D, and so on. The
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algorithm ensures that P and the following two properties hold throughout the

algorithm.

P10: DR,C contains non-zero entries only in submatrices into which the algorithm

has already recursed.

P11: For every submatrix M ∈ {W,X, Y, Z}, if the algorithm has already recursed

on M then either Mi,∗ = 0 or i ∈ R. Similarly, either M∗,j = 0 or j ∈ C.

Let us now consider the situation where the algorithm has just recursively fac-

tored a submatrix and we wish to update the parameters accordingly. Rather than

separately considering the scenarios in which submatrices W , X , Y and Z have just

been factored, we will instead consider the equivalent situation where W has just

been factored but the algorithm may have already factored some of X , Y and Z.

It is important to point out that the algorithm cannot handle the scenario in which

first Z is factored, followed immediately by W ; as illustrated in Algorithm A.1, this

scenario does not arise.

Henceforth, we do not assume that R = C = ∅ or that L = U = I .

The recursive factorization of W produces three m×m matrices1 l, u and d, and

sets of row and column indices r and c. Furthermore, H(W, l, d, u, r, c) holds. By

properties P4, P5 and Ph, we may write

d =

(

dr,c 0

0 0

)

, (A.1)

where dr,c is a non-singular, generalized permutation matrix. It is not necessarily

the case that dr,c is the north-west submatrix of d, but for notational simplicity we

will make this assumption. It follows that W can be decomposed as

W =

(

Wr,c Wr,c

Wr,c Wr,c

)

, where Wr,c is a full-rank, square submatrix. (A.2)

1Regrettably, we are now using lower-case letters for matrices and sets. This violates usual
conventions, but does seem appropriate for the present discussion since, for example, the matrix l
is analogous to L but smaller.
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We now show how to use l, u, and d to make progress on factoring D. First of

all, we have (

l 0

0 I

)

︸ ︷︷ ︸

L′

·
(

W X

Y Z

)

︸ ︷︷ ︸

D

·
(

u 0

0 I

)

︸ ︷︷ ︸

U ′

=

(

d X̂

Ŷ Z

)

︸ ︷︷ ︸

D′

, (A.3)

where X̂ = l ·X and Ŷ = Y ·u, for notational simplicity. We now wish to eliminate

non-zeros from the rows in r and columns in c. This has already been done within

submatrix d, as shown in Eq. (A.1). It remains to deal with X̂ and Ŷ . This is done

as follows:






I 0 0

0 I 0

−Ŷ∗,c · (dr,c)
−1 0 I






︸ ︷︷ ︸

L′′

·






dr,c 0 X̂r,∗

0 0 X̂r,∗

Ŷ∗,c Ŷ∗,c Z






︸ ︷︷ ︸

D′

·






I 0 −(dr,c)
−1 · X̂r,∗

0 I 0

0 0 I






︸ ︷︷ ︸

U ′′

=






dr,c 0 0

0 0 X̂r,∗

0 Ŷ∗,c Z − Ŷ∗,c · (dr,c)
−1 · X̂r,∗






︸ ︷︷ ︸

D′′

.

(A.4)

We use Eq. (A.3) and Eq. (A.4) to update the algorithm’s parameters as follows:

L := L′′ ·L′ ·L, U := U ·U ′ ·U ′′, D := L′′ ·L′ ·D·U ′ ·U ′′, R := R∪r, C := C∪c. (A.5)

This concludes the description of an update. As illustrated in Algorithm A.1, the

algorithm then continues to recurse on the next submatrix, and halts when all four

recursions are complete.

A.3 Analysis

Given a matrix of size n, the algorithm recursively factors four matrices of size

n/2. After each recursive step, the algorithm must compute the matrices L′, L′′,

U ′, and U ′′, and apply the update shown in Eq. (A.5). This involves inverting dr,c

and performing only a constant number of matrix multiplications. Since dr,c is a

generalized permutation matrix, it can be inverted in O(n2) time.
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Thus, the algorithm can be analyzed as follows. Let f(n) denote the time re-

quired to execute the algorithm on a matrix of size n. Then f(n) satisfies the recur-

rence

f(n) = 4 · f
(

n
2

)

+ O
(

nω
)

. (A.6)

By standard arguments [17], the solution of this recurrence is f(n) = O(nω) if ω > 2,

and f(n) = Õ(n2) if ω = 2.

A.4 Correctness

To argue correctness of the algorithm, we must show that

• P (A,L,D,U,R,C) continues to hold after the update in Eq. (A.5),

• P10 and P11 also hold after each update, and

• H(A,L,D,U,R,C) holds after the algorithm recurses on all submatrices.

P1 follows directly from the new definition of L, U , and D. P2 and P3 follow

from the definition of L′, L′′, U ′ and U ′′, and the fact that products of lower- (resp.,

upper-) triangular matrices are lower- (resp., upper-) triangular.

To prove the remaining properties, some technical claims are needed.

Claim A.1. R ∩ r = ∅ and C ∩ c = ∅.

Proof. Let i ∈ R. Consider the situation before recursing on submatrix W . P5 and

P10 imply that Wi,∗ = 0. However, Wr,c is non-singular by Eq. (A.2), and thus i 6∈ r.

Hence R ∩ r = ∅. Similarly, C ∩ c = ∅. �

The following claim establishes the intuitive fact that rows on which the al-

gorithm pivots are unaffected by subsequent pivots. Let L, D, U , R and C now

denote their values before applying Eq. (A.5), and let D′′ denote the updated value

of matrix D.

Claim A.2. Let R′ = R ∪ r and C ′ = C ∪ c. Then

• D′′
R′,C′ is a non-singular, generalized permutation matrix,

• D′′
R′,C′

= 0 and D′′
R′,C′

= 0.
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Proof. By Claim A.1, R ∩ r = ∅ and C ∩ c = ∅. We wish to show that

D′′ =

c C C ′

r ( dr,c 0 0 )

R 0 DR,C 0

R′ 0 0 ?

. (A.7)

(The submatrix D′′
R′,C′

is not relevant for this claim.)

From Eq. (A.4), it is clear that

D′′
r,c = dr,c, D′′

r,c = 0, and D′′
r,c = 0. (A.8)

To complete the proof, we now argue that D′′
R,∗ = DR,∗. To prove this, let i ∈ R

be arbitrary. By P4 and P5, there exists exactly one non-zero entry in Di,∗, say

Di,k 6= 0 where k ∈ C. Thus k ∈ c and i ∈ r. We wish to show that D′′
i,j = Di,j ,

where j is an arbitrary column. There are four cases to consider.

Case 1: Entry Di,j is in submatrix W . Since i ∈ R, P4, P5 and P10 imply that Wi,∗ = 0.

Thus k 6= j, and Di,j = 0. If j ∈ c then Eq. (A.8) shows that D′′
i,j = 0 as required.

Since entry (i, j) is in the north-west submatrix but i ∈ r, Eq. (A.4) shows that

D′′
i,j = 0.

Case 2: Entry Di,j is in submatrix X . As observed above, Wi,∗ = 0. By property

P9(W, l, d, u, r, c), we have li,∗ = eT
i . Thus D′′

i,j = X̂i,j = li,∗ ·X∗,j = Xi,j = Di,j .

Case 3: Entry Di,j is in submatrix Y . Then D′′
i,j = Ŷi,j = Yi,∗ · u∗,j . If k is not a

column of Y then j 6= k and Yi,∗ = 0, so D′′
i,j = 0 = Di,j as required. Otherwise,

D′′
i,j = Yi,k uk,j . Since k 6∈ c, P6(W, l, d, u, r, c) implies that uk,∗ = eT

k . Thus, if j = k

we have D′′
i,j = Yi,j = Di,j , and if j 6= k we have D′′

i,j = 0 = Di,j , as required.

Case 4: Entry Di,j is in submatrix Z. Note that Ŷi,c = Yi,∗ u∗,c = Yi,c uc,c + Yi,c uc,c.

Since k ∈ c, Yi,c = 0. By P6(W, l, d, u, r, c), uc,c = 0. Thus Ŷi,c = 0, and

D′′
i,j = Zi,j − Ŷi,c · (dr,c)

−1 · X̂r,j = Zi,j = Di,j.

This concludes the argument that D′′
R,∗ = DR,∗. By P5(A,L,D,U,R,C), it fol-

lows that D′′
R,C

= 0, as required. A symmetric argument shows that D′′
∗,C = D∗,C ,

and hence that D′′
R,C

= 0. This establishes the desired block-decomposition of
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Eq. (A.7).

Now by P4(W, l, d, u, r, c), D′′
r,c = dr,c is a non-singular, generalized permutation

matrix. Similarly, by P4(A,L,D,U,R,C), D′′
R,C = DR,C is a non-singular, general-

ized permutation matrix. Thus, by Eq. (A.7), it follows that D′′
R′,C′ is also a non-

singular, generalized permutation matrix. �

Claim A.2 directly shows that P4 and P5 are satisfied after the update in Eq. (A.5).

The following claim shows that P6 holds after the update. Let C ′ = C ∪ c and

let U ′ and U ′′ be as defined in Eq. (A.3) and Eq. (A.4).

Claim A.3. If i 6∈ C ′ then (U · U ′ · U ′′)i,∗ = eT
i .

Proof. Let i 6∈ C ′ be arbitrary. By P6(A,L,D,U,R,C), we have Ui,∗ = eT
i . We claim

that U ′
i,∗ = eT

i . If i is not a column of W then this is immediate from the definition

of U ′. Otherwise, since i 6∈ c, this holds by P6(W, l, d, u, r, c). Next we claim that

U ′′
i,∗ = eT

i . This is also immediate from the definition of U ′′, since U ′′
i,∗ 6= eT

i only if

i ∈ c. Since Ui,∗ = eT
i , U ′

i,∗ = eT
i , and U ′′

i,∗ = eT
i , it follows that (U · U ′ · U ′′)i,∗ = eT

i , as

required. �

The following claim show that P7 holds after the update.

Claim A.4. If A∗,j = 0 then (U · U ′ · U ′′)∗,j = eT
j .

Proof. Since A∗,j = 0, P7(A,L,D,U,R,C) implies that U∗,j = ej . Thus P1 implies

that D∗,j = 0. Next, by considering two cases, we show that U ′
∗,j = U ′′

∗,j = ej , which

proves the claim.

First suppose that j is a column of W . Then W∗,j = 0 and, by P7(W, l, d, u, r, c),

u∗,j = ej . Thus by definition (in Eq. (A.3)), U ′
∗,j = ej . Also, by definition (in

Eq. (A.4)), U ′′
∗,j = ej .

Next suppose that j is not a column of W . Then, by definition, U ′
∗,j = ej . Since

D∗,j = 0, we have X∗,j = 0. Thus (dr,c)
−1 · X̂∗,j = (dr,c)

−1 · l · X∗,j = 0, and hence

U ′′
∗,j = ej . �

Clearly properties P8 and P9 are symmetric to P6 and P7, so they also hold after

the update.

We now argue that P10 holds after the update. Suppose that i ∈ R ∪ r and

j ∈ C ∪ c but the algorithm has not yet recursed on the submatrix containing

row i and column j. We cannot have (i, j) ∈ r × c as the algorithm has already

recursed on submatrix W . On the other hand, if (i, j) ∈ (R × c) ∪ (r × C) then



108 APPENDIX A. FAST TRIANGULAR FACTORIZATION

Eq. (A.4) shows that D′′
i,j = 0 as required. Finally, if (i, j) ∈ R × C then, as argued

in Claim A.2, D′′
R,C = DR,C . Thus, since P10 held before recursing on submatrix W ,

D′′
i,j = Di,j = 0.

Claim A.5. Let the matrices before and after updating be, respectively,

D =

(

W X

Y Z

)

and D′′ =

(

W ′′ X ′′

Y ′′ Z ′′

)

.

We claim that:

1. if the algorithm has already recursed on X , then X = X ′′,

2. if the algorithm has already recursed on Y , then Y = Y ′′,

3. if the algorithm has already recursed on Z, and on either X or Y , then Z = Z ′′.

Proof. We prove the second claim; the proof of the first claim is symmetric. We

show Y ′′
∗,j = Y∗,j for any column j. If j ∈ c then Y ′′

∗,j = 0 by Eq. (A.4) and j 6∈ C

by Claim A.1. Thus, since P11 held before recursing on W , Y∗,j = 0 as required. If

j 6∈ c then Y ′′
∗,j =

∑

i Y∗,iui,j . If i ∈ c then i 6∈ C so Y∗,i = 0 by P11 again. But if i 6∈ c

then P6(W, l, d, u, r, c) implies that ui,j is 1 if i = j and 0 otherwise. Thus Y ′′
∗,j = Y∗,j

as required.

Now we consider the third claim. Suppose the algorithm has already recursed

on Y . Since C ∩ c = ∅, P11 again shows that Y∗,c = 0. As argued above, Y ′′ = Y ,

so Ŷ∗,c = Y∗,c = 0. Thus Z ′′ = Z − Ŷ∗,c(dr,c)
−1X̂r,∗ = Z, as required. A symmetric

argument holds if the algorithm has already recursed on X . �

Claim A.6. P11 holds after the update of Eq. (A.5).

Proof. We just consider columns; the argument for rows is identical. Consider

some submatrix in {W,X, Y, Z}, let M be the value of that submatrix before re-

cursing on W , and let M ′′ be the value after recursing on W . If M = W , then it is

clear from Eq. (A.4) that either M ′′
∗,j = 0 or j ∈ c, as required. Now suppose that

M 6= W and the algorithm has already recursed on M before recursing on W . Since

P11 held before recursing on W , we have either M∗,j = 0 or j ∈ C, as required. By

Claim A.5, M ′′ = M , so the claim follows. �

Finally, we show that property Ph holds after the algorithm has recursed on

every submatrix. Let i 6∈ R be arbitrary. By P11, the entries of this row are zero in



A.5. INVERSION, ETC. 109

both submatrices containing this row. Thus DR,∗ = 0, as required.

A.5 Inversion, etc.

Given the factorization of A satisfying H(A,L,D,U,R,C), we now explain how to

compute a maximum-rank submatrix, to compute the determinant, and to invert

A if it is non-singular.

First, rank A is simply |R|; this holds by P4, P5 and Ph, and since L and U are

non-singular. Furthermore, AR,C is a maximum-rank submatrix of A. If |R| < n

then det A = 0. Otherwise, let π be the permutation corresponding to the general-

ized permutation matrix D. Then det A is the product of the non-zero entries of D,

multiplied by sign(π).

Now suppose that A is non-singular, and thus D is also. We have

D = L · A · U =⇒ I = U ·D−1 · L · A.

Since D is a generalized permutation matrix, it can be inverted in O(n2) time. Thus

A−1 = U ·D−1 · L can be computed in O(nω) time.
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[60] László Lovász. Communication complexity: A survey. In B. H. Korte, editor,
Paths, Flows, and VLSI Layout, pages 235–265. Springer Verlag, 1990.
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