
Chapter 11

Interior-point methods

11.1 Inequality constrained minimization problems

In this chapter we discuss interior-point methods for solving convex optimization
problems that include inequality constraints,

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b,
(11.1)

where f0, . . . , fm : Rn → R are convex and twice continuously differentiable, and
A ∈ Rp×n with rankA = p < n. We assume that the problem is solvable, i.e., an
optimal x⋆ exists. We denote the optimal value f0(x

⋆) as p⋆.
We also assume that the problem is strictly feasible, i.e., there exists x ∈ D that

satisfies Ax = b and fi(x) < 0 for i = 1, . . . ,m. This means that Slater’s constraint
qualification holds, so there exist dual optimal λ⋆ ∈ Rm, ν⋆ ∈ Rp, which together
with x⋆ satisfy the KKT conditions

Ax⋆ = b, fi(x
⋆) ≤ 0, i = 1, . . . ,m
λ⋆ � 0

∇f0(x⋆) +
∑m

i=1 λ
⋆
i∇fi(x

⋆) +AT ν⋆ = 0
λ⋆

i fi(x
⋆) = 0, i = 1, . . . ,m.

(11.2)

Interior-point methods solve the problem (11.1) (or the KKT conditions (11.2))
by applying Newton’s method to a sequence of equality constrained problems, or
to a sequence of modified versions of the KKT conditions. We will concentrate on
a particular interior-point algorithm, the barrier method, for which we give a proof
of convergence and a complexity analysis. We also describe a simple primal-dual

interior-point method (in §11.7), but do not give an analysis.
We can view interior-point methods as another level in the hierarchy of convex

optimization algorithms. Linear equality constrained quadratic problems are the
simplest. For these problems the KKT conditions are a set of linear equations,
which can be solved analytically. Newton’s method is the next level in the hierarchy.
We can think of Newton’s method as a technique for solving a linear equality
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constrained optimization problem, with twice differentiable objective, by reducing
it to a sequence of linear equality constrained quadratic problems. Interior-point
methods form the next level in the hierarchy: They solve an optimization problem
with linear equality and inequality constraints by reducing it to a sequence of linear
equality constrained problems.

Examples

Many problems are already in the form (11.1), and satisfy the assumption that the
objective and constraint functions are twice differentiable. Obvious examples are
LPs, QPs, QCQPs, and GPs in convex form; another example is linear inequality
constrained entropy maximization,

minimize
∑n

i=1 xi log xi

subject to Fx � g
Ax = b,

with domain D = Rn
++.

Many other problems do not have the required form (11.1), with twice differen-
tiable objective and constraint functions, but can be reformulated in the required
form. We have already seen many examples of this, such as the transformation of
an unconstrained convex piecewise-linear minimization problem

minimize maxi=1,...,m(aT
i x+ bi)

(with nondifferentiable objective), to the LP

minimize t
subject to aT

i x+ bi ≤ t, i = 1, . . . ,m

(which has twice differentiable objective and constraint functions).
Other convex optimization problems, such as SOCPs and SDPs, are not readily

recast in the required form, but can be handled by extensions of interior-point
methods to problems with generalized inequalities, which we describe in §11.6.

11.2 Logarithmic barrier function and central path

Our goal is to approximately formulate the inequality constrained problem (11.1)
as an equality constrained problem to which Newton’s method can be applied.
Our first step is to rewrite the problem (11.1), making the inequality constraints
implicit in the objective:

minimize f0(x) +
∑m

i=1 I−(fi(x))
subject to Ax = b,

(11.3)

where I− : R → R is the indicator function for the nonpositive reals,

I−(u) =

{
0 u ≤ 0
∞ u > 0.
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Figure 11.1 The dashed lines show the function I−(u), and the solid curves

show Î−(u) = −(1/t) log(−u), for t = 0.5, 1, 2. The curve for t = 2 gives
the best approximation.

The problem (11.3) has no inequality constraints, but its objective function is not
(in general) differentiable, so Newton’s method cannot be applied.

11.2.1 Logarithmic barrier

The basic idea of the barrier method is to approximate the indicator function I−
by the function

Î−(u) = −(1/t) log(−u), dom Î− = −R++,

where t > 0 is a parameter that sets the accuracy of the approximation. Like
I−, the function Î− is convex and nondecreasing, and (by our convention) takes

on the value ∞ for u > 0. Unlike I−, however, Î− is differentiable and closed:
it increases to ∞ as u increases to 0. Figure 11.1 shows the function I−, and

the approximation Î−, for several values of t. As t increases, the approximation
becomes more accurate.

Substituting Î− for I− in (11.3) gives the approximation

minimize f0(x) +
∑m

i=1 −(1/t) log(−fi(x))
subject to Ax = b.

(11.4)

The objective here is convex, since −(1/t) log(−u) is convex and increasing in u,
and differentiable. Assuming an appropriate closedness condition holds, Newton’s
method can be used to solve it.

The function

φ(x) = −
m∑

i=1

log(−fi(x)), (11.5)
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with domφ = {x ∈ Rn | fi(x) < 0, i = 1, . . . ,m}, is called the logarithmic barrier

or log barrier for the problem (11.1). Its domain is the set of points that satisfy
the inequality constraints of (11.1) strictly. No matter what value the positive
parameter t has, the logarithmic barrier grows without bound if fi(x) → 0, for
any i.

Of course, the problem (11.4) is only an approximation of the original prob-
lem (11.3), so one question that arises immediately is how well a solution of (11.4)
approximates a solution of the original problem (11.3). Intuition suggests, and we
will soon confirm, that the quality of the approximation improves as the parameter
t grows.

On the other hand, when the parameter t is large, the function f0 + (1/t)φ is
difficult to minimize by Newton’s method, since its Hessian varies rapidly near the
boundary of the feasible set. We will see that this problem can be circumvented
by solving a sequence of problems of the form (11.4), increasing the parameter t
(and therefore the accuracy of the approximation) at each step, and starting each
Newton minimization at the solution of the problem for the previous value of t.

For future reference, we note that the gradient and Hessian of the logarithmic
barrier function φ are given by

∇φ(x) =
m∑

i=1

1

−fi(x)
∇fi(x),

∇2φ(x) =

m∑

i=1

1

fi(x)2
∇fi(x)∇fi(x)

T +

m∑

i=1

1

−fi(x)
∇2fi(x)

(see §A.4.2 and §A.4.4).

11.2.2 Central path

We now consider in more detail the minimization problem (11.4). It will simplify
notation later on if we multiply the objective by t, and consider the equivalent
problem

minimize tf0(x) + φ(x)
subject to Ax = b,

(11.6)

which has the same minimizers. We assume for now that the problem (11.6) can
be solved via Newton’s method, and, in particular, that it has a unique solution
for each t > 0. (We will discuss this assumption in more detail in §11.3.3.)

For t > 0 we define x⋆(t) as the solution of (11.6). The central path associated
with problem (11.1) is defined as the set of points x⋆(t), t > 0, which we call
the central points. Points on the central path are characterized by the following
necessary and sufficient conditions: x⋆(t) is strictly feasible, i.e., satisfies

Ax⋆(t) = b, fi(x
⋆(t)) < 0, i = 1, . . . ,m,

and there exists a ν̂ ∈ Rp such that

0 = t∇f0(x⋆(t)) + ∇φ(x⋆(t)) +AT ν̂
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= t∇f0(x⋆(t)) +

m∑

i=1

1

−fi(x⋆(t))
∇fi(x

⋆(t)) +AT ν̂ (11.7)

holds.

Example 11.1 Inequality form linear programming. The logarithmic barrier function
for an LP in inequality form,

minimize cTx
subject to Ax � b,

(11.8)

is given by

φ(x) = −

m∑

i=1

log(bi − aT
i x), domφ = {x | Ax ≺ b},

where aT
1 , . . . , aT

m are the rows of A. The gradient and Hessian of the barrier function
are

∇φ(x) =

m∑

i=1

1

bi − aT
i x

ai, ∇2φ(x) =

m∑

i=1

1

(bi − aT
i x)

2
aia

T
i ,

or, more compactly,

∇φ(x) = AT d, ∇2φ(x) = AT
diag(d)2A,

where the elements of d ∈ Rm are given by di = 1/(bi − aT
i x). Since x is strictly

feasible, we have d ≻ 0, so the Hessian of φ is nonsingular if and only if A has rank n.

The centrality condition (11.7) is

tc+

m∑

i=1

1

bi − aT
i x

ai = tc+AT d = 0. (11.9)

We can give a simple geometric interpretation of the centrality condition. At a point
x⋆(t) on the central path the gradient ∇φ(x⋆(t)), which is normal to the level set of φ
through x⋆(t), must be parallel to −c. In other words, the hyperplane cTx = cTx⋆(t)
is tangent to the level set of φ through x⋆(t). Figure 11.2 shows an example with
m = 6 and n = 2.

Dual points from central path

From (11.7) we can derive an important property of the central path: Every central
point yields a dual feasible point, and hence a lower bound on the optimal value
p⋆. More specifically, define

λ⋆
i (t) = − 1

tfi(x⋆(t))
, i = 1, . . . ,m, ν⋆(t) = ν̂/t. (11.10)

We claim that the pair λ⋆(t), ν⋆(t) is dual feasible.
First, it is clear that λ⋆(t) ≻ 0 because fi(x

⋆(t)) < 0, i = 1, . . . ,m. By
expressing the optimality conditions (11.7) as

∇f0(x⋆(t)) +

m∑

i=1

λ⋆
i (t)∇fi(x

⋆(t)) +AT ν⋆(t) = 0,
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Figure 11.2 Central path for an LP with n = 2 and m = 6. The dashed
curves show three contour lines of the logarithmic barrier function φ. The
central path converges to the optimal point x⋆ as t→ ∞. Also shown is the
point on the central path with t = 10. The optimality condition (11.9) at
this point can be verified geometrically: The line cTx = cTx⋆(10) is tangent
to the contour line of φ through x⋆(10).

we see that x⋆(t) minimizes the Lagrangian

L(x, λ, ν) = f0(x) +

m∑

i=1

λifi(x) + νT (Ax− b),

for λ = λ⋆(t) and ν = ν⋆(t), which means that λ⋆(t), ν⋆(t) is a dual feasible pair.
Therefore the dual function g(λ⋆(t), ν⋆(t)) is finite, and

g(λ⋆(t), ν⋆(t)) = f0(x
⋆(t)) +

m∑

i=1

λ⋆
i (t)fi(x

⋆(t)) + ν⋆(t)
T
(Ax⋆(t) − b)

= f0(x
⋆(t)) −m/t.

In particular, the duality gap associated with x⋆(t) and the dual feasible pair λ⋆(t),
ν⋆(t) is simply m/t. As an important consequence, we have

f0(x
⋆(t)) − p⋆ ≤ m/t,

i.e., x⋆(t) is no more than m/t-suboptimal. This confirms the intuitive idea that
x⋆(t) converges to an optimal point as t→ ∞.

Example 11.2 Inequality form linear programming. The dual of the inequality form
LP (11.8) is

maximize −bTλ
subject to ATλ+ c = 0

λ � 0.

From the optimality conditions (11.9), it is clear that

λ⋆
i (t) =

1

t(bi − aT
i x

⋆(t))
, i = 1, . . . ,m,
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is dual feasible, with dual objective value

−bTλ⋆(t) = cTx⋆(t) + (Ax⋆(t) − b)Tλ⋆(t) = cTx⋆(t) −m/t.

Interpretation via KKT conditions

We can also interpret the central path conditions (11.7) as a continuous deformation
of the KKT optimality conditions (11.2). A point x is equal to x⋆(t) if and only if
there exists λ, ν such that

Ax = b, fi(x) ≤ 0, i = 1, . . . ,m
λ � 0

∇f0(x) +
∑m

i=1 λi∇fi(x) +AT ν = 0
−λifi(x) = 1/t, i = 1, . . . ,m.

(11.11)

The only difference between the KKT conditions (11.2) and the centrality condi-
tions (11.11) is that the complementarity condition −λifi(x) = 0 is replaced by
the condition −λifi(x) = 1/t. In particular, for large t, x⋆(t) and the associated
dual point λ⋆(t), ν⋆(t) ‘almost’ satisfy the KKT optimality conditions for (11.1).

Force field interpretation

We can give a simple mechanics interpretation of the central path in terms of
potential forces acting on a particle in the strictly feasible set C. For simplicity we
assume that there are no equality constraints.

We associate with each constraint the force

Fi(x) = −∇ (− log(−fi(x))) =
1

fi(x)
∇fi(x)

acting on the particle when it is at position x. The potential associated with the
total force field generated by the constraints is the logarithmic barrier φ. As the
particle moves toward the boundary of the feasible set, it is strongly repelled by
the forces generated by the constraints.

Now we imagine another force acting on the particle, given by

F0(x) = −t∇f0(x),

when the particle is at position x. This objective force field acts to pull the particle
in the negative gradient direction, i.e., toward smaller f0. The parameter t scales
the objective force, relative to the constraint forces.

The central point x⋆(t) is the point where the constraint forces exactly balance
the objective force felt by the particle. As the parameter t increases, the particle is
more strongly pulled toward the optimal point, but it is always trapped in C by the
barrier potential, which becomes infinite as the particle approaches the boundary.

Example 11.3 Force field interpretation for inequality form LP. The force field asso-
ciated with the ith constraint of the LP (11.8) is

Fi(x) =
−ai

bi − aT
i x

.
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Figure 11.3 Force field interpretation of central path. The central path is
shown as the dashed curve. The two points x⋆(1) and x⋆(3) are shown as
dots in the left and right plots, respectively. The objective force, which is
equal to −c and −3c, respectively, is shown as a heavy arrow. The other
arrows represent the constraint forces, which are given by an inverse-distance
law. As the strength of the objective force varies, the equilibrium position
of the particle traces out the central path.

This force is in the direction of the inward pointing normal to the constraint plane
Hi = {x | aT

i x = bi}, and has magnitude inversely proportional to the distance to
Hi, i.e.,

‖Fi(x)‖2 =
‖ai‖2

bi − aT
i x

=
1

dist(x,Hi)
.

In other words, each constraint hyperplane has an associated repulsive force, given
by the inverse distance to the hyperplane.

The term tcTx is the potential associated with a constant force −tc on the particle.
This ‘objective force’ pushes the particle in the direction of low cost. Thus, x⋆(t)
is the equilibrium position of the particle when it is subject to the inverse-distance
constraint forces, and the objective force −tc. When t is very large, the particle is
pushed almost to the optimal point. The strong objective force is balanced by the
opposing constraint forces, which are large because we are near the feasible boundary.

Figure 11.3 illustrates this interpretation for a small LP with n = 2 and m = 5. The
lefthand plot shows x⋆(t) for t = 1, as well as the constraint forces acting on it, which
balance the objective force. The righthand plot shows x⋆(t) and the associated forces
for t = 3. The larger value of objective force moves the particle closer to the optimal
point.

11.3 The barrier method

We have seen that the point x⋆(t) is m/t-suboptimal, and that a certificate of this
accuracy is provided by the dual feasible pair λ⋆(t), ν⋆(t). This suggests a very
straightforward method for solving the original problem (11.1) with a guaranteed
specified accuracy ǫ: We simply take t = m/ǫ and solve the equality constrained
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problem
minimize (m/ǫ)f0(x) + φ(x)
subject to Ax = b

using Newton’s method. This method could be called the unconstrained minimiza-

tion method, since it allows us to solve the inequality constrained problem (11.1) to
a guaranteed accuracy by solving an unconstrained, or linearly constrained, prob-
lem. Although this method can work well for small problems, good starting points,
and moderate accuracy (i.e., ǫ not too small), it does not work well in other cases.
As a result it is rarely, if ever, used.

11.3.1 The barrier method

A simple extension of the unconstrained minimization method does work well. It
is based on solving a sequence of unconstrained (or linearly constrained) mini-
mization problems, using the last point found as the starting point for the next
unconstrained minimization problem. In other words, we compute x⋆(t) for a se-
quence of increasing values of t, until t ≥ m/ǫ, which guarantees that we have an
ǫ-suboptimal solution of the original problem. When the method was first proposed
by Fiacco and McCormick in the 1960s, it was called the sequential unconstrained

minimization technique (SUMT). Today the method is usually called the barrier

method or path-following method. A simple version of the method is as follows.

Algorithm 11.1 Barrier method.

given strictly feasible x, t := t(0) > 0, µ > 1, tolerance ǫ > 0.

repeat

1. Centering step.

Compute x⋆(t) by minimizing tf0 + φ, subject to Ax = b, starting at x.
2. Update. x := x⋆(t).
3. Stopping criterion. quit if m/t < ǫ.
4. Increase t. t := µt.

At each iteration (except the first one) we compute the central point x⋆(t) starting
from the previously computed central point, and then increase t by a factor µ > 1.
The algorithm can also return λ = λ⋆(t), and ν = ν⋆(t), a dual ǫ-suboptimal point,
or certificate for x.

We refer to each execution of step 1 as a centering step (since a central point
is being computed) or an outer iteration, and to the first centering step (the com-
putation of x⋆(t(0))) as the initial centering step. (Thus the simple algorithm with
t(0) = m/ǫ consists of only the initial centering step.) Although any method for
linearly constrained minimization can be used in step 1, we will assume that New-
ton’s method is used. We refer to the Newton iterations or steps executed during
the centering step as inner iterations. At each inner step, we have a primal fea-
sible point; we have a dual feasible point, however, only at the end of each outer
(centering) step.
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Accuracy of centering

We should make some comments on the accuracy to which we solve the centering
problems. Computing x⋆(t) exactly is not necessary since the central path has no
significance beyond the fact that it leads to a solution of the original problem as
t→ ∞; inexact centering will still yield a sequence of points x(k) that converges to
an optimal point. Inexact centering, however, means that the points λ⋆(t), ν⋆(t),
computed from (11.10), are not exactly dual feasible. This can be corrected by
adding a correction term to the formula (11.10), which yields a dual feasible point
provided the computed x is near the central path, i.e., x⋆(t) (see exercise 11.9).

On the other hand, the cost of computing an extremely accurate minimizer of
tf0 + φ, as compared to the cost of computing a good minimizer of tf0 + φ, is
only marginally more, i.e., a few Newton steps at most. For this reason it is not
unreasonable to assume exact centering.

Choice of µ

The choice of the parameter µ involves a trade-off in the number of inner and outer
iterations required. If µ is small (i.e., near 1) then at each outer iteration t increases
by a small factor. As a result the initial point for the Newton process, i.e., the
previous iterate x, is a very good starting point, and the number of Newton steps
needed to compute the next iterate is small. Thus for small µ we expect a small
number of Newton steps per outer iteration, but of course a large number of outer
iterations since each outer iteration reduces the gap by only a small amount. In
this case the iterates (and indeed, the iterates of the inner iterations as well) closely
follow the central path. This explains the alternate name path-following method.

On the other hand if µ is large we have the opposite situation. After each
outer iteration t increases a large amount, so the current iterate is probably not
a very good approximation of the next iterate. Thus we expect many more inner
iterations. This ‘aggressive’ updating of t results in fewer outer iterations, since the
duality gap is reduced by the large factor µ at each outer iteration, but more inner
iterations. With µ large, the iterates are widely separated on the central path; the
inner iterates veer way off the central path.

This trade-off in the choice of µ is confirmed both in practice and, as we will
see, in theory. In practice, small values of µ (i.e., near one) result in many outer
iterations, with just a few Newton steps for each outer iteration. For µ in a fairly
large range, from around 3 to 100 or so, the two effects nearly cancel, so the total
number of Newton steps remains approximately constant. This means that the
choice of µ is not particularly critical; values from around 10 to 20 or so seem to
work well. When the parameter µ is chosen to give the best worst-case bound on
the total number of Newton steps required, values of µ near one are used.

Choice of t(0)

Another important issue is the choice of initial value of t. Here the trade-off is
simple: If t(0) is chosen too large, the first outer iteration will require too many it-
erations. If t(0) is chosen too small, the algorithm will require extra outer iterations,
and possibly too many inner iterations in the first centering step.

Since m/t(0) is the duality gap that will result from the first centering step, one
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reasonable choice is to choose t(0) so that m/t(0) is approximately of the same order
as f0(x

(0)) − p⋆, or µ times this amount. For example, if a dual feasible point λ,
ν is known, with duality gap η = f0(x

(0)) − g(λ, ν), then we can take t(0) = m/η.
Thus, in the first outer iteration we simply compute a pair with the same duality
gap as the initial primal and dual feasible points.

Another possibility is suggested by the central path condition (11.7). We can
interpret

inf
ν

∥∥∥t∇f0(x(0)) + ∇φ(x(0)) +AT ν
∥∥∥

2
(11.12)

as a measure for the deviation of x(0) from the point x⋆(t), and choose for t(0) the
value that minimizes (11.12). (This value of t and ν can be found by solving a
least-squares problem.)

A variation on this approach uses an affine-invariant measure of deviation be-
tween x and x⋆(t) in place of the Euclidean norm. We choose t and ν that minimize

α(t, ν) =
(
t∇f0(x(0)) + ∇φ(x(0)) +AT ν

)T

H−1
0

(
t∇f0(x(0)) + ∇φ(x(0)) +AT ν

)
,

where
H0 = t∇2f0(x

(0)) + ∇2φ(x(0)).

(It can be shown that infν α(t, ν) is the square of the Newton decrement of tf0 +φ
at x(0).) Since α is a quadratic-over-linear function of ν and t, it is convex.

Infeasible start Newton method

In one variation on the barrier method, an infeasible start Newton method (de-
scribed in §10.3) is used for the centering steps. Thus, the barrier method is ini-
tialized with a point x(0) that satisfies x(0) ∈ dom f0 and fi(x

(0)) < 0, i = 1, . . . ,m,
but not necessarily Ax(0) = b. Assuming the problem is strictly feasible, a full New-
ton step is taken at some point during the first centering step, and thereafter, the
iterates are all primal feasible, and the algorithm coincides with the (standard)
barrier method.

11.3.2 Examples

Linear programming in inequality form

Our first example is a small LP in inequality form,

minimize cTx
subject to Ax � b

with A ∈ R100×50. The data were generated randomly, in such a way that the
problem is strictly primal and dual feasible, with optimal value p⋆ = 1.

The initial point x(0) is on the central path, with a duality gap of 100. The
barrier method is used to solve the problem, and terminated when the duality gap
is less than 10−6. The centering problems are solved by Newton’s method with
backtracking, using parameters α = 0.01, β = 0.5. The stopping criterion for
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Figure 11.4 Progress of barrier method for a small LP, showing duality
gap versus cumulative number of Newton steps. Three plots are shown,
corresponding to three values of the parameter µ: 2, 50, and 150. In each
case, we have approximately linear convergence of duality gap.

Newton’s method is λ(x)2/2 ≤ 10−5, where λ(x) is the Newton decrement of the
function tcTx+ φ(x).

The progress of the barrier method, for three values of the parameter µ, is
shown in figure 11.4. The vertical axis shows the duality gap on a log scale. The
horizontal axis shows the cumulative total number of inner iterations, i.e., Newton
steps, which is the natural measure of computational effort. Each of the plots has
a staircase shape, with each stair associated with one outer iteration. The width of
each stair tread (i.e., horizontal portion) is the number of Newton steps required
for that outer iteration. The height of each stair riser (i.e., the vertical portion) is
exactly equal to µ, since the duality gap is reduced by the factor µ at the end of
each outer iteration.

The plots illustrate several typical features of the barrier method. First of all,
the method works very well, with approximately linear convergence of the duality
gap. This is a consequence of the approximately constant number of Newton steps
required to re-center, for each value of µ. For µ = 50 and µ = 150, the barrier
method solves the problem with a total number of Newton steps between 35 and 40.

The plots in figure 11.4 clearly show the trade-off in the choice of µ. For µ = 2,
the treads are short; the number of Newton steps required to re-center is around 2
or 3. But the risers are also short, since the duality gap reduction per outer iteration
is only a factor of 2. At the other extreme, when µ = 150, the treads are longer,
typically around 7 Newton steps, but the risers are also much larger, since the
duality gap is reduced by the factor 150 in each outer iteration.

The trade-off in choice of µ is further examined in figure 11.5. We use the
barrier method to solve the LP, terminating when the duality gap is smaller than
10−3, for 25 values of µ between 1.2 and 200. The plot shows the total number
of Newton steps required to solve the problem, as a function of the parameter µ.
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Figure 11.5 Trade-off in the choice of the parameter µ, for a small LP. The
vertical axis shows the total number of Newton steps required to reduce the
duality gap from 100 to 10−3, and the horizontal axis shows µ. The plot
shows the barrier method works well for values of µ larger than around 3,
but is otherwise not sensitive to the value of µ.

This plot shows that the barrier method performs very well for a wide range of
values of µ, from around 3 to 200. As our intuition suggests, the total number of
Newton steps rises when µ is too small, due to the larger number of outer iterations
required. One interesting observation is that the total number of Newton steps does
not vary much for values of µ larger than around 3. Thus, as µ increases over this
range, the decrease in the number of outer iterations is offset by an increase in
the number of Newton steps per outer iteration. For even larger values of µ, the
performance of the barrier method becomes less predictable (i.e., more dependent
on the particular problem instance). Since the performance does not improve with
larger values of µ, a good choice is in the range 10 – 100.

Geometric programming

We consider a geometric program in convex form,

minimize log
(∑K0

k=1 exp(aT
0kx+ b0k)

)

subject to log
(∑Ki

k=1 exp(aT
ikx+ bik)

)
≤ 0, i = 1, . . . ,m,

with variable x ∈ Rn, and associated logarithmic barrier

φ(x) = −
m∑

i=1

log

(
− log

Ki∑

k=1

exp(aT
ikx+ bik)

)
.

The problem instance we consider has n = 50 variables and m = 100 inequalities
(like the small LP considered above). The objective and constraint functions all
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Figure 11.6 Progress of barrier method for a small GP, showing duality gap
versus cumulative number of Newton steps. Again we have approximately
linear convergence of duality gap.

have Ki = 5 terms. The problem instance was generated randomly, in such a way
that it is strictly primal and dual feasible, with optimal value one.

We start with a point x(0) on the central path, with a duality gap of 100. The
barrier method is used to solve the problem, with parameters µ = 2, µ = 50, and
µ = 150, and terminated when the duality gap is less than 10−6. The centering
problems are solved using Newton’s method, with the same parameter values as in
the LP example, i.e., α = 0.01, β = 0.5, and stopping criterion λ(x)2/2 ≤ 10−5.

Figure 11.6 shows the duality gap versus cumulative number of Newton steps.
This plot is very similar to the plot for LP, shown in figure 11.4. In particular,
we see an approximately constant number of Newton steps required per centering
step, and therefore approximately linear convergence of the duality gap.

The variation of the total number of Newton steps required to solve the problem,
versus the parameter µ, is very similar to that in the LP example. For this GP,
the total number of Newton steps required to reduce the duality gap below 10−3

is around 30 (ranging from around 20 to 40 or so) for values of µ between 10 and
200. So here, too, a good choice of µ is in the range 10 – 100.

A family of standard form LPs

In the examples above we examined the progress of the barrier method, in terms of
duality gap versus cumulative number of Newton steps, for a randomly generated
instance of an LP and a GP, with similar dimensions. The results for the two
examples are remarkably similar; each shows approximately linear convergence of
duality gap with the number of Newton steps. We also examined the variation in
performance with the parameter µ, and found essentially the same results in the
two cases. For µ above around 10, the barrier method performs very well, requiring
around 30 Newton steps to bring the duality gap down from 102 to 10−6. In both
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cases, the choice of µ hardly affects the total number of Newton steps required
(provided µ is larger than 10 or so).

In this section we examine the performance of the barrier method as a function
of the problem dimensions. We consider LPs in standard form,

minimize cTx
subject to Ax = b, x � 0

with A ∈ Rm×n, and explore the total number of Newton steps required as a
function of the number of variables n and number of equality constraints m, for a
family of randomly generated problem instances. We take n = 2m, i.e., twice as
many variables as constraints.

The problems were generated as follows. The elements of A are independent and
identically distributed, with zero mean, unit variance normal distribution N (0, 1).
We take b = Ax(0) where the elements of x(0) are independent, and uniformly
distributed in [0, 1]. This ensures that the problem is strictly primal feasible, since
x(0) ≻ 0 is feasible. To construct the cost vector c, we first compute a vector
z ∈ Rm with elements distributed according to N (0, 1) and a vector s ∈ Rn with
elements from a uniform distribution on [0, 1]. We then take c = AT z + s. This
guarantees that the problem is strictly dual feasible, since AT z ≺ c.

The algorithm parameters we use are µ = 100, and the same parameters for the
centering steps in the examples above: backtracking parameters α = 0.01, β = 0.5,
and stopping criterion λ(x)2/2 ≤ 10−5. The initial point is on the central path
with t(0) = 1 (i.e., gap n). The algorithm is terminated when the initial duality
gap is reduced by a factor 104, i.e., after completing two outer iterations.

Figure 11.7 shows the duality gap versus iteration number for three problem
instances, with dimensions m = 50, m = 500, and m = 1000. The plots look very
much like the others, with approximately linear convergence of the duality gap.
The plots show a small increase in the number of Newton steps required as the
problem size grows from 50 constraints (100 variables) to 1000 constraints (2000
variables).

To examine the effect of problem size on the number of Newton steps required,
we generate 100 problem instances for each of 20 values of m, ranging from m = 10
to m = 1000. We solve each of these 2000 problems using the barrier method,
noting the number of Newton steps required. The results are summarized in fig-
ure 11.8, which shows the mean and standard deviation in the number of Newton
steps, for each value of m. The first comment we make is that the standard de-
viation is around 2 iterations, and appears to be approximately independent of
problem size. Since the average number of steps required is near 25, this means
that the number of Newton steps required varies only around ±10%.

The plot shows that the number of Newton steps required grows only slightly,
from around 21 to around 27, as the problem dimensions increase by a factor of
100. This behavior is typical for the barrier method in general: The number of
Newton steps required grows very slowly with problem dimensions, and is almost
always around a few tens. Of course, the computational effort to carry out one
Newton step grows with the problem dimensions.
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Figure 11.7 Progress of barrier method for three randomly generated stan-
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tive number of Newton steps. The number of variables in each problem is
n = 2m. Here too we see approximately linear convergence of the duality
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Figure 11.8 Average number of Newton steps required to solve 100 randomly
generated LPs of different dimensions, with n = 2m. Error bars show stan-
dard deviation, around the average value, for each value of m. The growth
in the number of Newton steps required, as the problem dimensions range
over a 100:1 ratio, is very small.
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11.3.3 Convergence analysis

Convergence analysis for the barrier method is straightforward. Assuming that
tf0 + φ can be minimized by Newton’s method for t = t(0), µt(0), µ2t(0), . . ., the
duality gap after the initial centering step, and k additional centering steps, is
m/(µkt(0)). Therefore the desired accuracy ǫ is achieved after exactly

⌈
log(m/(ǫt(0)))

log µ

⌉
(11.13)

centering steps, plus the initial centering step.
It follows that the barrier method works provided the centering problem (11.6)

is solvable by Newton’s method, for t ≥ t(0). For the standard Newton method, it
suffices that for t ≥ t(0), the function tf0+φ satisfies the conditions given in §10.2.4,
page 529: its initial sublevel set is closed, the associated inverse KKT matrix is
bounded, and the Hessian satisfies a Lipschitz condition. (Another set of sufficient
conditions, based on self-concordance, will be discussed in detail in §11.5.) If the
infeasible start Newton method is used for centering, then the conditions listed
in §10.3.3, page 536, are sufficient to guarantee convergence.

Assuming that f0, . . . , fm are closed, a simple modification of the original
problem ensures that these conditions hold. By adding a constraint of the form
‖x‖2

2 ≤ R2 to the problem, it follows that tf0 + φ is strongly convex, for every
t ≥ 0; in particular convergence of Newton’s method, for the centering steps, is
guaranteed. (See exercise 11.4.)

While this analysis shows that the barrier method does converge, under reason-
able assumptions, it does not address a basic question: As the parameter t increases,
do the centering problems become more difficult (and therefore take more and more
iterations)? Numerical evidence suggests that for a wide variety of problems, this
is not the case; the centering problems appear to require a nearly constant number
of Newton steps to solve, even as t increases. We will see (in §11.5) that this issue
can be resolved, for problems that satisfy certain self-concordance conditions.

11.3.4 Newton step for modified KKT equations

In the barrier method, the Newton step ∆xnt, and associated dual variable are
given by the linear equations

[
t∇2f0(x) + ∇2φ(x) AT

A 0

] [
∆xnt

νnt

]
= −

[
t∇f0(x) + ∇φ(x)

0

]
. (11.14)

In this section we show how these Newton steps for the centering problem can be
interpreted as Newton steps for directly solving the modified KKT equations

∇f0(x) +
∑m

i=1 λi∇fi(x) +AT ν = 0
−λifi(x) = 1/t, i = 1, . . . ,m

Ax = b
(11.15)

in a particular way.
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To solve the modified KKT equations (11.15), which is a set of n + p + m
nonlinear equations in the n + p +m variables x, ν, and λ, we first eliminate the
variables λi, using λi = −1/(tfi(x)). This yields

∇f0(x) +

m∑

i=1

1

−tfi(x)
∇fi(x) +AT ν = 0, Ax = b, (11.16)

which is a set of n+ p equations in the n+ p variables x and ν.
To find the Newton step for solving the set of nonlinear equations (11.16),

we form the Taylor approximation for the nonlinear term occurring in the first
equation. For v small, we have the Taylor approximation

∇f0(x+ v) +

m∑

i=1

1

−tfi(x+ v)
∇fi(x+ v)

≈ ∇f0(x) +
m∑

i=1

1

−tfi(x)
∇fi(x) + ∇2f0(x)v

+

m∑

i=1

1

−tfi(x)
∇2fi(x)v +

m∑

i=1

1

tfi(x)2
∇fi(x)∇fi(x)

T v.

The Newton step is obtained by replacing the nonlinear term in equation (11.16)
by this Taylor approximation, which yields the linear equations

Hv +AT ν = −g, Av = 0, (11.17)

where

H = ∇2f0(x) +
m∑

i=1

1

−tfi(x)
∇2fi(x) +

m∑

i=1

1

tfi(x)2
∇fi(x)∇fi(x)

T

g = ∇f0(x) +

m∑

i=1

1

−tfi(x)
∇fi(x).

Now we observe that

H = ∇2f0(x) + (1/t)∇2φ(x), g = ∇f0(x) + (1/t)∇φ(x),

so, from (11.14), the Newton steps ∆xnt and νnt in the barrier method centering
step satisfy

tH∆xnt +AT νnt = −tg, A∆xnt = 0.

Comparing this with (11.17) shows that

v = ∆xnt, ν = (1/t)νnt.

This shows that the Newton steps for the centering problem (11.6) can be inter-
preted, after scaling the dual variable, as the Newton step for solving the modified
KKT equations (11.16).

In this approach, we first eliminated the variable λ from the modified KKT
equations, and then applied Newton’s method to solve the resulting set of equations.
Another variation on this approach is to directly apply Newton’s method to the
modified KKT equations, without first eliminating λ. This method yields the so-
called primal-dual search directions, discussed in §11.7.
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11.4 Feasibility and phase I methods

The barrier method requires a strictly feasible starting point x(0). When such a
point is not known, the barrier method is preceded by a preliminary stage, called
phase I, in which a strictly feasible point is computed (or the constraints are found
to be infeasible). The strictly feasible point found during phase I is then used as
the starting point for the barrier method, which is called the phase II stage. In
this section we describe several phase I methods.

11.4.1 Basic phase I method

We consider a set of inequalities and equalities in the variables x ∈ Rn,

fi(x) ≤ 0, i = 1, . . . ,m, Ax = b, (11.18)

where fi : Rn → R are convex, with continuous second derivatives. We assume
that we are given a point x(0) ∈ dom f1 ∩ · · · ∩ dom fm, with Ax(0) = b.

Our goal is to find a strictly feasible solution of these inequalities and equalities,
or determine that none exists. To do this we form the following optimization
problem:

minimize s
subject to fi(x) ≤ s, i = 1, . . . ,m

Ax = b
(11.19)

in the variables x ∈ Rn, s ∈ R. The variable s can be interpreted as a bound on
the maximum infeasibility of the inequalities; the goal is to drive the maximum
infeasibility below zero.

This problem is always strictly feasible, since we can choose x(0) as starting
point for x, and for s, we can choose any number larger than maxi=1,...,m fi(x

(0)).
We can therefore apply the barrier method to solve the problem (11.19), which is
called the phase I optimization problem associated with the inequality and equality
system (11.19).

We can distinguish three cases depending on the sign of the optimal value p̄⋆

of (11.19).

1. If p̄⋆ < 0, then (11.18) has a strictly feasible solution. Moreover if (x, s) is
feasible for (11.19) with s < 0, then x satisfies fi(x) < 0. This means we do
not need to solve the optimization problem (11.19) with high accuracy; we
can terminate when s < 0.

2. If p̄⋆ > 0, then (11.18) is infeasible. As in case 1, we do not need to solve
the phase I optimization problem (11.19) to high accuracy; we can terminate
when a dual feasible point is found with positive dual objective (which proves
that p̄⋆ > 0). In this case, we can construct the alternative that proves (11.18)
is infeasible from the dual feasible point.

3. If p̄⋆ = 0 and the minimum is attained at x⋆ and s⋆ = 0, then the set of
inequalities is feasible, but not strictly feasible. If p̄⋆ = 0 and the minimum
is not attained, then the inequalities are infeasible.
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In practice it is impossible to determine exactly that p̄⋆ = 0. Instead, an
optimization algorithm applied to (11.19) will terminate with the conclusion
that |p̄⋆| < ǫ for some small, positive ǫ. This allows us to conclude that the
inequalities fi(x) ≤ −ǫ are infeasible, while the inequalities fi(x) ≤ ǫ are
feasible.

Sum of infeasibilities

There are many variations on the basic phase I method just described. One method
is based on minimizing the sum of the infeasibilities, instead of the maximum
infeasibility. We form the problem

minimize 1T s
subject to fi(x) ≤ si, i = 1, . . . ,m

Ax = b
s � 0.

(11.20)

For fixed x, the optimal value of si is max{fi(x), 0}, so in this problem we are
minimizing the sum of the infeasibilities. The optimal value of (11.20) is zero and
achieved if and only if the original set of equalities and inequalities is feasible.

This sum of infeasibilities phase I method has a very interesting property when
the system of equalities and inequalities (11.19) is infeasible. In this case, the op-
timal point for the phase I problem (11.20) often violates only a small number,
say r, of the inequalities. Therefore, we have computed a point that satisfies many
(m − r) of the inequalities, i.e., we have identified a large subset of inequalities
that is feasible. In this case, the dual variables associated with the strictly satisfied
inequalities are zero, so we have also proved infeasibility of a subset of the inequal-
ities. This is more informative than finding that the m inequalities, together, are
mutually infeasible. (This phenomenon is closely related to ℓ1-norm regularization,
or basis pursuit, used to find sparse approximate solutions; see §6.1.2 and §6.5.4).

Example 11.4 Comparison of phase I methods. We apply two phase I methods to
an infeasible set of inequalities Ax � b with dimensions m = 100, n = 50. The first
method is the basic phase I method

minimize s
subject to Ax � b+ 1s,

which minimizes the maximum infeasibility. The second method minimizes the sum
of the infeasibilities, i.e., solves the LP

minimize 1T s
subject to Ax � b+ s

s � 0.

Figure 11.9 shows the distributions of the infeasibilities bi − aT
i x for these two values

of x, denoted xmax and xsum, respectively. The point xmax satisfies 39 of the 100
inequalities, whereas the point xsum satisfies 79 of the inequalities.



11.4 Feasibility and phase I methods 581

replacemen

bi − aT
i xmax

n
u
m

b
er

−1 −0.5 0 0.5 1 1.5
0

10

20

30

40

50

60

n
u
m

b
er

−1 −0.5 0 0.5 1 1.5
0

10

20

30

40

50

60

bi − aT
i xsum

Figure 11.9 Distributions of the infeasibilities bi − aT
i x for an infeasible set

of 100 inequalities aT
i x ≤ bi, with 50 variables. The vector xmax used in

the left plot was obtained by the basic phase I algorithm. It satisfies 39
of the 100 inequalities. In the right plot the vector xsum was obtained by
minimizing the sum of the infeasibilities. This vector satisfies 79 of the 100
inequalities.

Termination near the phase II central path

A simple variation on the basic phase I method, using the barrier method, has
the property that (when the equalities and inequalities are strictly feasible) the
central path for the phase I problem intersects the central path for the original
optimization problem (11.1).

We assume a point x(0) ∈ D = dom f0∩dom f1∩· · ·∩dom fm, with Ax(0) = b
is given. We form the phase I optimization problem

minimize s
subject to fi(x) ≤ s, i = 1, . . . ,m

f0(x) ≤M
Ax = b,

(11.21)

where M is a constant chosen to be larger than max{f0(x(0)), p⋆}.
We assume now that the original problem (11.1) is strictly feasible, so the

optimal value p̄⋆ of (11.21) is negative. The central path of (11.21) is characterized
by

m∑

i=1

1

s− fi(x)
= t̄,

1

M − f0(x)
∇f0(x) +

m∑

i=1

1

s− fi(x)
∇fi(x) +AT ν = 0,

where t̄ is the parameter. If (x, s) is on the central path and s = 0, then x and ν
satisfy

t∇f0(x) +
m∑

i=1

1

−fi(x)
∇fi(x) +AT ν = 0

for t = 1/(M − f0(x)). This means that x is on the central path for the original
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optimization problem (11.1), with associated duality gap

m(M − f0(x)) ≤ m(M − p⋆). (11.22)

11.4.2 Phase I via infeasible start Newton method

We can also carry out the phase I stage using an infeasible start Newton method,
applied to a modified version of the original problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b.

We first express the problem in the (obviously equivalent) form

minimize f0(x)
subject to fi(x) ≤ s, i = 1, . . . ,m

Ax = b, s = 0,

with the additional variable s ∈ R. To start the barrier method, we use an infeasible
start Newton method to solve

minimize t(0)f0(x) −
∑m

i=1 log(s− fi(x))
subject to Ax = b, s = 0.

This can be initialized with any x ∈ D, and any s > maxi fi(x). Provided the
problem is strictly feasible, the infeasible start Newton method will eventually
take an undamped step, and thereafter we will have s = 0, i.e., x strictly feasible.

The same trick can be applied if a point in D, the common domain of the
functions, is not known. We simply apply the infeasible start Newton method to
the problem

minimize t(0)f0(x+ z0) −
∑m

i=1 log(s− fi(x+ zi))
subject to Ax = b, s = 0, z0 = 0, . . . , zm = 0

with variables x, z0, . . . , zm, and s ∈ R. We initialize zi so that x+ zi ∈ dom fi.
The main disadvantage of this approach to the phase I problem is that there is

no good stopping criterion when the problem is infeasible; the residual simply fails
to converge to zero.

11.4.3 Examples

We consider a family of linear feasibility problems,

Ax � b(γ)

where A ∈ R50×20 and b(γ) = b + γ∆b. The problem data are chosen so that the
inequalities are strictly feasible for γ > 0 and infeasible for γ < 0. For γ = 0 the
problem is feasible but not strictly feasible.
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Figure 11.10 shows the total number of Newton steps required to find a strictly
feasible point, or a certificate of infeasibility, for 40 values of γ in [−1, 1]. We use
the basic phase I method of §11.4.1, i.e., for each value of γ, we form the LP

minimize s
subject to Ax � b(γ) + s1.

The barrier method is used with µ = 10, and starting point x = 0, s = −mini bi(γ)+
1. The method terminates when a point (x, s) with s < 0 is found, or a feasible
solution z of the dual problem

maximize −b(γ)T z
subject to AT z = 0

1T z = 1
z � 0

is found with −b(γ)T z > 0.
The plot shows that when the inequalities are feasible, with some margin, it

takes around 25 Newton steps to produce a strictly feasible point. Conversely,
when the inequalities are infeasible, again with some margin, it takes around 35
steps to produce a certificate proving infeasibility. The phase I effort increases as
the set of inequalities approaches the boundary between feasible and infeasible,
i.e., γ near zero. When γ is very near zero, so the inequalities are very near the
boundary between feasible and infeasible, the number of steps grows substantially.
Figure 11.11 shows the total number of Newton steps required for values of γ
near zero. The plots show an approximately logarithmic increase in the number
of steps required to detect feasibility, or prove infeasibility, for problems very near
the boundary between feasible and infeasible.

This example is typical: The cost of solving a set of convex inequalities and
linear equalities using the barrier method is modest, and approximately constant,
as long as the problem is not very close to the boundary between feasibility and
infeasibility. When the problem is very close to the boundary, the number of
Newton steps required to find a strictly feasible point or produce a certificate
of infeasibility grows. When the problem is exactly on the boundary between
strictly feasible and infeasible, for example, feasible but not strictly feasible, the
cost becomes infinite.

Feasibility using infeasible start Newton method

We also solve the same set of feasibility problems using the infeasible start Newton
method, applied to the problem

minimize −∑m
i=1 log si

subject to Ax+ s = b(γ).

We use backtracking parameters α = 0.01, β = 0.9, and initialize with x(0) = 0,
s(0) = 1, ν(0) = 0. We consider only feasible problems (i.e., γ > 0) and terminate
once a feasible point is found. (We do not consider infeasible problems, since in
that case the residual simply converges to a positive number.) Figure 11.12 shows
the number of Newton steps required to find a feasible point, as a function of γ.
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Figure 11.10 Number of Newton iterations required to detect feasibility or
infeasibility of a set of linear inequalities Ax � b + γ∆b parametrized by
γ ∈ R. The inequalities are strictly feasible for γ > 0, and infeasible for
γ < 0. For γ larger than around 0.2, about 30 steps are required to compute
a strictly feasible point; for γ less than −0.5 or so, it takes around 35 steps
to produce a certificate proving infeasibility. For values of γ in between, and
especially near zero, more Newton steps are required to determine feasibility.
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Figure 11.11 Left. Number of Newton iterations required to find a proof of
infeasibility versus γ, for γ small and negative. Right. Number of Newton
iterations required to find a strictly feasible point versus γ, for γ small and
positive.
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Figure 11.12 Number of iterations required to find a feasible point for a set
of linear inequalities Ax � b + γ∆b parametrized by γ ∈ R. The infeasible
start Newton method is used, and terminated when a feasible point is found.
For γ = 10, the starting point x(0) = 0 happened to be feasible (0 iterations).

The plot shows that for γ larger than 0.3 or so, it takes fewer than 20 Newton
steps to find a feasible point. In these cases the method is more efficient than a
phase I method, which takes a total of around 30 Newton steps. For smaller values
of γ, the number of Newton steps required grows dramatically, approximately as
1/γ. For γ = 0.01, the infeasible start Newton method requires several thousand
iterations to produce a feasible point. In this region the phase I approach is far
more efficient, requiring only 40 iterations or so.

These results are quite typical. The infeasible start Newton method works
very well provided the inequalities are feasible, and not very close to the boundary
between feasible and infeasible. But when the feasible set is just barely nonempty
(as is the case in this example with small γ), a phase I method is far better. Another
advantage of the phase I method is that it gracefully handles the infeasible case;
the infeasible start Newton method, in contrast, simply fails to converge.

11.5 Complexity analysis via self-concordance

Using the complexity analysis of Newton’s method for self-concordant functions
(§9.6.4, page 503, and §10.2.4, page 531), we can give a complexity analysis of
the barrier method. The analysis applies to many common problems, and leads
to several interesting conclusions: It gives a rigorous bound on the total number
of Newton steps required to solve a problem using the barrier method, and it
justifies our observation that the centering problems do not become more difficult
as t increases.
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11.5.1 Self-concordance assumption

We make two assumptions.

• The function tf0 + φ is closed and self-concordant for all t ≥ t(0).

• The sublevel sets of (11.1) are bounded.

The second assumption implies that the centering problem has bounded sublevel
sets (see exercise 11.3), and, therefore, the centering problem is solvable. The
bounded sublevel set assumption also implies that the Hessian of tf0 +φ is positive
definite everywhere (see exercise 11.14). While the self-concordance assumption
restricts the complexity analysis to a particular class of problems, it is important
to emphasize that the barrier method works well in general, whether or not the
self-concordance assumption holds.

The self-concordance assumption holds for a variety of problems, including all
linear and quadratic problems. If the functions fi are linear or quadratic, then

tf0 −
m∑

i=1

log(−fi)

is self-concordant for all values of t ≥ 0 (see §9.6). The complexity analysis given
below therefore applies to LPs, QPs, and QCQPs.

In other cases, it is possible to reformulate the problem so the assumption of
self-concordance holds. As an example, consider the linear inequality constrained
entropy maximization problem

minimize
∑n

i=1 xi log xi

subject to Fx � g
Ax = b.

The function

tf0(x) + φ(x) = t
n∑

i=1

xi log xi −
m∑

i=1

log(gi − fT
i x),

where fT
1 , . . . , f

T
m are the rows of F , is not closed (unless Fx � g implies x � 0), or

self-concordant. We can, however, add the redundant inequality constraints x � 0
to obtain the equivalent problem

minimize
∑n

i=1 xi log xi

subject to Fx � g
Ax = b
x � 0.

(11.23)

For this problem we have

tf0(x) + φ(x) = t

n∑

i=1

xi log xi −
n∑

i=1

log xi −
m∑

i=1

log(gi − fT
i x),
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which is self-concordant and closed, for any t ≥ 0. (The function ty log y − log y
is self-concordant on R++, for all t ≥ 0; see exercise 11.13.) The complexity
analysis therefore applies to the reformulated linear inequality constrained entropy
maximization problem (11.23).

As a more exotic example, consider the GP

minimize f0(x) = log
(∑K0

k=1 exp(aT
0kx+ b0k)

)

subject to log
(∑Ki

k=1 exp(aT
ikx+ bik)

)
≤ 0, i = 1, . . . ,m.

It is not clear whether or not the function

tf0(x) + φ(x) = t log

(
K0∑

k=1

exp(aT
0kx+ b0k)

)
−

m∑

i=1

log

(
− log

Ki∑

k=1

exp(aT
ikx+ bik)

)

is self-concordant, so although the barrier method works, the complexity analysis
of this section need not hold.

We can, however, reformulate the GP in a form that definitely satisfies the self-
concordance assumption. For each (monomial) term exp(aT

ikx+ bik) we introduce
a new variable yik that serves as an upper bound,

exp(aT
ikx+ bik) ≤ yik.

Using these new variables we can express the GP in the form

minimize
∑K0

k=1 y0k

subject to
∑Ki

k=1 yik ≤ 1, i = 1, . . . ,m
aT

ikx+ bik − log yik ≤ 0, i = 0, . . . ,m, k = 1, . . . ,Ki

yik ≥ 0, i = 0, . . . ,m, k = 1, . . . ,Ki.

The associated logarithmic barrier is

m∑

i=0

Ki∑

k=1

(
− log yik − log(log yik − aT

ikx− bik)
)
−

m∑

i=1

log

(
1 −

Ki∑

k=1

yik

)
,

which is closed and self-concordant (example 9.8, page 500). Since the objective is
linear, it follows that tf0 + φ is closed and self-concordant for any t.

11.5.2 Newton iterations per centering step

The complexity theory of Newton’s method for self-concordant functions, developed
in §9.6.4 (page 503) and §10.2.4 (page 531), shows that the number of Newton
iterations required to minimize a closed strictly convex self-concordant function f
is bounded above by

f(x) − p⋆

γ
+ c. (11.24)
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Here x is the starting point for Newton’s method, and p⋆ = infx f(x) is the optimal
value. The constant γ depends only on the backtracking parameters α and β, and
is given by

1

γ
=

20 − 8α

αβ(1 − 2α)2
.

The constant c depends only on the tolerance ǫnt,

c = log2 log2(1/ǫnt),

and can reasonably be approximated as c = 6. The expression (11.24) is a quite
conservative bound on the number of Newton steps required, but our interest in this
section is only to establish a complexity bound, concentrating on how it increases
with problem size and algorithm parameters.

In this section we use this result to derive a bound on the number of Newton
steps required for one outer iteration of the barrier method, i.e., for computing
x⋆(µt), starting from x⋆(t). To lighten the notation we use x to denote x⋆(t), the
current iterate, and we use x+ to denote x⋆(µt), the next iterate. We use λ and ν
to denote λ⋆(t) and ν⋆(t), respectively.

The self-concordance assumption implies that

µtf0(x) + φ(x) − µtf0(x
+) − φ(x+)

γ
+ c (11.25)

is an upper bound on the number of Newton steps required to compute x+ = x⋆(µt),
starting at x = x⋆(t). Unfortunately we do not know x+, and hence the upper
bound (11.25), until we actually compute x+, i.e., carry out the Newton algorithm
(whereupon we know the exact number of Newton steps required to compute x⋆(µt),
which defeats the purpose). We can, however, derive an upper bound on (11.25),
as follows:

µtf0(x) + φ(x) − µtf0(x
+) − φ(x+)

= µtf0(x) − µtf0(x
+) +

m∑

i=1

log(−µtλifi(x
+)) −m log µ

≤ µtf0(x) − µtf0(x
+) − µt

m∑

i=1

λifi(x
+) −m−m log µ

= µtf0(x) − µt

(
f0(x

+) +
m∑

i=1

λifi(x
+) + νT (Ax+ − b)

)
−m−m log µ

≤ µtf0(x) − µtg(λ, ν) −m−m log µ

= m(µ− 1 − log µ).

This chain of equalities and inequalities needs some explanation. To obtain the
second line from the first, we use λi = −1/(tfi(x)). In the first inequality we use
the fact that log a ≤ a− 1 for a > 0. To obtain the fourth line from the third, we
use Ax+ = b, so the extra term νT (Ax+ − b) is zero. The second inequality follows
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Figure 11.13 The function µ − 1 − log µ, versus µ. The number of Newton
steps required for one outer iteration of the barrier method is bounded by
(m/γ)(µ− 1 − log µ) + c.

from the definition of the dual function:

g(λ, ν) = inf
z

(
f0(z) +

m∑

i=1

λifi(z) + νT (Az − b)

)

≤ f0(x
+) +

m∑

i=1

λifi(x
+) + νT (Ax+ − b).

The last line follows from g(λ, ν) = f0(x) −m/t.
The conclusion is that

m(µ− 1 − log µ)

γ
+ c (11.26)

is an upper bound on (11.25), and therefore an upper bound on the number of
Newton steps required for one outer iteration of the barrier method. The function
µ − 1 − log µ is shown in figure 11.13. For small µ it is approximately quadratic;
for large µ it grows approximately linearly. This fits with our intuition that for µ
near one, the number of Newton steps required to center is small, whereas for large
µ, it could well grow.

The bound (11.26) shows that the number of Newton steps required in each
centering step is bounded by a quantity that depends mostly on µ, the factor by
which t is updated in each outer step of the barrier method, and m, the number of
inequality constraints in the problem. It also depends, weakly, on the parameters
α and β used in the line search for the inner iterations, and in a very weak way
on the tolerance used to terminate the inner iterations. It is interesting to note
that the bound does not depend on n, the dimension of the variable, or p, the
number of equality constraints, or the particular values of the problem data, i.e.,
the objective and constraint functions (provided the self-concordance assumption
in §11.5.1 holds). Finally, we note that it does not depend on t; in particular, as
t→ ∞, a uniform bound on the number of Newton steps per outer iteration holds.
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11.5.3 Total number of Newton iterations

We can now give an upper bound on the total number of Newton steps in the barrier
method, not counting the initial centering step (which we will analyze later, as part
of phase I). We multiply (11.26), which bounds the number of Newton steps per
outer iteration, by (11.13), the number of outer steps required, to obtain

N =

⌈
log(m/(t(0)ǫ))

log µ

⌉(
m(µ− 1 − log µ)

γ
+ c

)
, (11.27)

an upper bound on the total number of Newton steps required. This formula
shows that when the self-concordance assumption holds, we can bound the number
of Newton steps required by the barrier method, for any value of µ > 1.

If we fix µ and m, the bound N is proportional to log(m/(t(0)ǫ)), which is the
log of the ratio of the initial duality gap m/t(0) to the final duality gap ǫ, i.e., the
log of the required duality gap reduction. We can therefore say that the barrier
method converges at least linearly, since the number of steps required to reach a
given precision grows logarithmically with the inverse of the precision.

If µ, and the required duality gap reduction factor, are fixed, the bound N
grows linearly with m, the number of inequalities (or, more accurately, as m logm).
The bound N is independent of the other problem dimensions n and p, and the
particular problem data or functions. We will see below that by a particular choice
of µ, that depends on m, we can obtain a bound on the number of Newton steps
that grows only as

√
m, instead of m.

Finally, we analyze the bound N as a function of the algorithm parameter
µ. As µ approaches one, the first term in N grows large, and therefore so does
N . This is consistent with our intuition and observation that for µ near one, the
number of outer iterations is very large. As µ becomes large, the bound N grows
approximately as µ/ log µ, this time because the bound on the number of Newton
iterations required per outer iteration grows. This, too, is consistent with our
observations. As a result, the bound N has a minimum value as a function of µ.

The variation of the bound with the parameter µ is illustrated in figure 11.14,
which shows the bound (11.27) versus µ for the values

c = 6, γ = 1/375, m/(t(0)ǫ) = 105, m = 100.

The bound is qualitatively consistent with intuition, and our observations: it grows
very large as µ approaches one, and increases, more slowly, as µ becomes large. The
bound N has a minimum at µ ≈ 1.02, which gives a bound on the total number
of Newton iterations around 8000. The complexity analysis of Newton’s method is
conservative, but the basic trade-off in the choice of µ is reflected in the plot. (In
practice, far larger values of µ, from around 2 to 100, work very well, and require
a total number of Newton iterations on the order of a few tens.)

Choosing µ as a function of m

When µ (and the required duality gap reduction) is fixed, the bound (11.27) grows
linearly with m, the number of inequalities. It turns out we can obtain a better



11.5 Complexity analysis via self-concordance 591

µ

N

1 1.1 1.2
0

1 104

2 104

3 104

4 104

5 104

Figure 11.14 The upper bound N on the total number of Newton iterations,
given by equation (11.27), for c = 6, γ = 1/375, m = 100, and a duality gap

reduction factor m/(t(0)ǫ) = 105, versus the barrier algorithm parameter µ.

exponent for m by making µ a function of m. Suppose we choose

µ = 1 + 1/
√
m. (11.28)

Then we can bound the second term in (11.27) as

µ− 1 − log µ = 1/
√
m− log(1 + 1/

√
m)

≤ 1/
√
m− 1/

√
m+ 1/(2m)

= 1/(2m)

(using − log(1 + a) ≤ −a+ a2/2 for a ≥ 0). Using concavity of the logarithm, we
also have

log µ = log(1 + 1/
√
m) ≥ (log 2)/

√
m.

Using these inequalities we can bound the total number of Newton steps by

N ≤
⌈

log(m/(t(0)ǫ))

log µ

⌉(
m(µ− 1 − log µ)

γ
+ c

)

≤
⌈√

m
log(m/(t(0)ǫ))

log 2

⌉(
1

2γ
+ c

)

=
⌈√

m log2(m/(t
(0)ǫ))

⌉( 1

2γ
+ c

)

≤ c1 + c2
√
m, (11.29)

where

c1 =
1

2γ
+ c, c2 = log2(m/(t

(0)ǫ))

(
1

2γ
+ c

)
.
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Here c1 depends (and only weakly) on algorithm parameters for the centering
Newton steps, and c2 depends on these and the required duality gap reduction.
Note that the term log2(m/(t

(0)ǫ)) is exactly the number of bits of required duality
gap reduction.

For fixed duality gap reduction, the bound (11.29) grows as
√
m, whereas the

bound N in (11.27) grows like m, if the parameter µ is held constant. For this
reason the barrier method, with parameter value (11.28), is said to be an order√
m method.

In practice, we would not use the value µ = 1 + 1/
√
m, which is far too small,

or even decrease µ as a function of m. Our only interest in this value of µ is that
it (approximately) minimizes our (very conservative) upper bound on the number
of Newton steps, and yields an overall estimate that grows as

√
m, instead of m.

11.5.4 Feasibility problems

In this section we analyze the complexity of a (minor) variation on the basic phase I
method described in §11.4.1, used to solve a set of convex inequalities,

f1(x) ≤ 0, . . . , fm(x) ≤ 0, (11.30)

where f1, . . . , fm are convex, with continuous second derivatives. (We will consider
equality constraints later.) We assume that the phase I problem

minimize s
subject to fi(x) ≤ s, i = 1, . . . ,m

(11.31)

satisfies the conditions in §11.5.1. In particular we assume that the feasible set of
the inequalities (11.30) (which of course can be empty) is contained in a Euclidean
ball of radius R:

{x | fi(x) ≤ 0, i = 1, . . . ,m} ⊆ {x | ‖x‖2 ≤ R}.

We can interpret R as a prior bound on the norm of any points in the feasible set of
the inequalities. This assumption implies that the sublevel sets of the phase I prob-
lem are bounded. Without loss of generality, we will start the phase I method at the
point x = 0. We define F = maxi fi(0), which is the maximum constraint violation,
assumed to be positive (since otherwise x = 0 satisfies the inequalities (11.30)).

We define p̄⋆ as the optimal value of the phase I optimization problem (11.31).
The sign of p̄⋆ determines whether or not the set of inequalities (11.30) is feasible.
The magnitude of p̄⋆ also has a meaning. If p̄⋆ is positive and large (say, near F ,
the largest value it can have) it means that the set of inequalities is quite infeasible,
in the sense that for each x, at least one of the inequalities is substantially violated
(by at least p̄⋆). On the other hand, if p̄⋆ is negative and large, it means that
the set of inequalities is quite feasible, in the sense that there is not only an x for
which fi(x) are all nonpositive, but in fact there is an x for which fi(x) are all quite
negative (no more than p̄⋆). Thus, the magnitude |p̄⋆| is a measure of how clearly
the set of inequalities is feasible or infeasible, and therefore related to the difficulty
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of determining feasibility of the inequalities (11.30). In particular, if |p̄⋆| is small,
it means the problem is near the boundary between feasibility and infeasibility.

To determine feasibility of the inequalities, we use a variation on the basic
phase I problem (11.31). We add a redundant linear inequality aTx ≤ 1, to obtain

minimize s
subject to fi(x) ≤ s, i = 1, . . . ,m

aTx ≤ 1.
(11.32)

We will specify a later. Our choice will satisfy ‖a‖2 ≤ 1/R, so ‖x‖2 ≤ R implies
aTx ≤ 1, i.e., the extra constraint is redundant.

We will choose a and s0 so that x = 0, s = s0 is on the central path of the
problem (11.32), with a parameter value t(0), i.e., they minimize

t(0)s−
m∑

i=1

log(s− fi(x)) − log(1 − aTx).

Setting to zero the derivative with respect to s, we get

t(0) =

m∑

i=1

1

s0 − fi(0)
. (11.33)

Setting to zero the gradient with respect to x yields

a = −
m∑

i=1

1

s0 − fi(0)
∇fi(0). (11.34)

So it remains only to pick the parameter s0; once we have chosen s0, the vector a
is given by (11.34), and the parameter t(0) is given by (11.33). Since x = 0 and
s = s0 must be strictly feasible for the phase I problem (11.32), we must choose
s0 > F .

We must also pick s0 to make sure that ‖a‖2 ≤ 1/R. From (11.34), we have

‖a‖2 ≤
m∑

i=1

1

s0 − fi(0)
‖∇fi(0)‖ ≤ mG

s0 − F
,

where G = maxi ‖∇fi(0)‖2. Therefore we can take s0 = mGR+ F , which ensures
‖a‖2 ≤ 1/R, so the extra linear inequality is redundant.

Using (11.33), we have

t(0) =
m∑

i=1

1

mGR+ F − fi(0)
≥ 1

mGR
,

since F = maxi fi(0). Thus x = 0, s = s0 are on the central path for the phase I
problem (11.32), with initial duality gap

m+ 1

t(0)
≤ (m+ 1)mGR.
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To solve the original inequalities (11.30) we need to determine the sign of p̄⋆.
We can stop when either the primal objective value of (11.32) is negative, or the
dual objective value is positive. One of these two cases must occur when the duality
gap for (11.32) is less than |p̄⋆|.

We use the barrier method to solve (11.32), starting from a central point with
duality gap no more than (m + 1)mGR, and terminating when (or before) the
duality gap is less than |p̄⋆|. Using the results of the previous section, this requires
no more than ⌈√

m+ 1 log2

m(m+ 1)GR

|p̄⋆|

⌉(
1

2γ
+ c

)
(11.35)

Newton steps. (Here we take µ = 1 + 1/
√
m+ 1, which gives a better complexity

exponent for m than a fixed value of µ.)
The bound (11.35) grows only slightly faster than

√
m, and depends weakly on

the algorithm parameters used in the centering steps. It is approximately propor-
tional to log2((GR)/|p̄⋆|), which can be interpreted as a measure of how difficult
the particular feasibility problem is, or how close it is to the boundary between
feasibility and infeasibility.

Feasibility problems with equality constraints

We can apply the same analysis to feasibility problems that include equality con-
straints, by eliminating the equality constraints. This does not affect the self-
concordance of the problem, but it does mean that G and R refer to the reduced,
or eliminated, problem.

11.5.5 Combined phase I/phase II complexity

In this section we give an end-to-end complexity analysis for solving the problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

using (a variation on) the barrier method. First we solve the phase I problem

minimize s
subject to fi(x) ≤ s, i = 1, . . . ,m

f0(x) ≤M
Ax = b
aTx ≤ 1,

which we assume satisfies the self-concordance and bounded sublevel set assump-
tions of §11.5.1. Here we have added two redundant inequalities to the basic phase I
problem. The constraint f0(x) ≤ M is added to guarantee that the phase I cen-
tral path intersects the central path for phase II, as described in section §11.4.1
(see (11.21)). The number M is a prior bound on the optimal value of the problem.
The second added constraint is the linear inequality aTx ≤ 1, where a is chosen
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as described in §11.5.4. We use the barrier method to solve this problem, with
µ = 1 + 1/

√
m+ 2, and the starting points x = 0, s = s0 given in §11.5.4.

To either find a strictly feasible point, or determine the problem is infeasible,
requires no more than

NI =

⌈√
m+ 2 log2

(m+ 1)(m+ 2)GR

|p̄⋆|

⌉(
1

2γ
+ c

)
(11.36)

Newton steps, where G and R are as given in 11.5.4. If the problem is infeasible
we are done; if it is feasible, then we find a point in phase I, associated with s = 0,
that lies on the central path of the phase II problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b
aTx ≤ 1.

The associated initial duality gap of this initial point is no more than (m+1)(M −
p∗) (see (11.22)). We assume the phase II problem also satisfies the the self-
concordance and bounded sublevel set assumptions in §11.5.1.

We now proceed to phase II, again using the barrier method. We must reduce
the duality gap from its initial value, which is no more than (m + 1)(M − p∗), to
some tolerance ǫ > 0. This takes at most

NII =

⌈√
m+ 1 log2

(m+ 1)(M − p⋆)

ǫ

⌉(
1

2γ
+ c

)
(11.37)

Newton steps.
The total number of Newton steps is therefore no more than NI + NII. This

bound grows with the number of inequalities m approximately as
√
m, and includes

two terms that depend on the particular problem instance,

log2

GR

|p̄⋆| , log2

M − p⋆

ǫ
.

11.5.6 Summary

The complexity analysis given in this section is mostly of theoretical interest. In
particular, we remind the reader that the choice µ = 1 + 1/

√
m, discussed in this

section, would be a very poor one to use in practice; its only advantage is that it
results in a bound that grows like

√
m instead ofm. Likewise, we do not recommend

adding the redundant inequality aTx ≤ 1 in practice.
The actual bounds obtained from the analysis given here are far higher than the

numbers of iterations actually observed. Even the order in the bound appears to
be conservative. The best bounds on the number of Newton steps grow like

√
m,

whereas practical experience suggests that the number of Newton steps hardly
grows at all with m (or any other parameter, in fact).

Still, it is comforting to know that when the self-concordance condition holds,
we can give a uniform bound on the number of Newton steps required in each
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centering step of the barrier method. An obvious potential pitfall of the barrier
method is the possibility that as t grows, the associated centering problems might
become more difficult, requiring more Newton steps. While practical experience
suggests that this is not the case, the uniform bound bolsters our confidence that
it cannot happen.

Finally, we mention that it is not yet clear whether or not there is a practical
advantage to formulating a problem so that the self-concordance condition holds.
All we can say is that when the self-concordance conditions holds, the barrier
method will work well in practice, and we can give a worst case complexity bound.

11.6 Problems with generalized inequalities

In this section we show how the barrier method can be extended to problems with
generalized inequalities. We consider the problem

minimize f0(x)
subject to fi(x) �Ki

0, i = 1, . . . ,m
Ax = b,

(11.38)

where f0 : Rn → R is convex, fi : Rn → Rki , i = 1, . . . , k, are Ki-convex, and
Ki ⊆ Rki are proper cones. As in §11.1, we assume that the functions fi are twice
continuously differentiable, that A ∈ Rp×n with rankA = p, and that the problem
is solvable.

The KKT conditions for problem (11.38) are

Ax⋆ = b
fi(x

⋆) �Ki
0, i = 1, . . . ,m

λ⋆
i �K∗

i
0, i = 1, . . . ,m

∇f0(x⋆) +
∑m

i=1Dfi(x
⋆)Tλ⋆

i +AT ν⋆ = 0

λ⋆
i
T fi(x

⋆) = 0, i = 1, . . . ,m,

(11.39)

where Dfi(x
⋆) ∈ Rki×n is the derivative of fi at x⋆. We will assume that prob-

lem (11.38) is strictly feasible, so the KKT conditions are necessary and sufficient
conditions for optimality of x⋆.

The development of the method is parallel to the case with scalar constraints.
Once we develop a generalization of the logarithm function that applies to general
proper cones, we can define a logarithmic barrier function for the problem (11.38).
From that point on, the development is essentially the same as in the scalar case.
In particular, the central path, barrier method, and complexity analysis are very
similar.
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11.6.1 Logarithmic barrier and central path

Generalized logarithm for a proper cone

We first define the analog of the logarithm, log x, for a proper cone K ⊆ Rq. We
say that ψ : Rq → R is a generalized logarithm for K if

• ψ is concave, closed, twice continuously differentiable, domψ = intK, and
∇2ψ(y) ≺ 0 for y ∈ intK.

• There is a constant θ > 0 such that for all y ≻K 0, and all s > 0,

ψ(sy) = ψ(y) + θ log s.

In other words, ψ behaves like a logarithm along any ray in the cone K.

We call the constant θ the degree of ψ (since expψ is a homogeneous function of
degree θ). Note that a generalized logarithm is only defined up to an additive
constant; if ψ is a generalized logarithm for K, then so is ψ+ a, where a ∈ R. The
ordinary logarithm is, of course, a generalized logarithm for R+.

We will use the following two properties, which are satisfied by any generalized
logarithm: If y ≻K 0, then

∇ψ(y) ≻K∗ 0, (11.40)

which implies ψ is K-increasing (see §3.6.1), and

yT∇ψ(y) = θ.

The first property is proved in exercise 11.15. The second property follows imme-
diately from differentiating ψ(sy) = ψ(y) + θ log s with respect to s.

Example 11.5 Nonnegative orthant. The function ψ(x) =
∑n

i=1
log xi is a generalized

logarithm for K = Rn
+, with degree n. For x ≻ 0,

∇ψ(x) = diag(1/x1, . . . , 1/xn),

so ∇ψ(x) ≻ 0, and xT∇ψ(x) = n.

Example 11.6 Second-order cone. The function

ψ(x) = log

(
x2

n+1 −

n∑

i=1

x2
i

)

is a generalized logarithm for the second-order cone

K =




x ∈ R
n+1

∣∣∣∣∣∣

(
n∑

i=1

x2
i

)1/2

≤ xn+1




 ,
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with degree 2. The gradient of ψ at a point x ∈ intK is given by

∂ψ(x)

∂xj
=

−2xj(
x2

n+1 −
∑n

i=1
x2

i

) , j = 1, . . . , n

∂ψ(x)

∂xn+1
=

2xn+1(
x2

n+1 −
∑n

i=1
x2

i

) .

The identities ∇ψ(x) ∈ intK∗ = intK and xT∇ψ(x) = 2 are easily verified.

Example 11.7 Positive semidefinite cone. The function ψ(X) = log detX is a gen-
eralized logarithm for the cone S

p
+. The degree is p, since

log det(sX) = log detX + p log s

for s > 0. The gradient of ψ at a point X ∈ S
p
++ is equal to

∇ψ(X) = X−1.

Thus, we have ∇ψ(X) = X−1 ≻ 0, and the inner product of X and ∇ψ(X) is equal
to tr(XX−1) = p.

Logarithmic barrier functions for generalized inequalities

Returning to problem (11.38), let ψ1, . . . , ψm be generalized logarithms for the
cones K1, . . . ,Km, respectively, with degrees θ1, . . . , θm. We define the logarithmic

barrier function for problem (11.38) as

φ(x) = −
m∑

i=1

ψi(−fi(x)), domφ = {x | fi(x) ≺ 0, i = 1, . . . ,m}.

Convexity of φ follows from the fact that the functions ψi are Ki-increasing, and
the functions fi are Ki-convex (see the composition rule of §3.6.2).

The central path

The next step is to define the central path for problem (11.38). We define the
central point x⋆(t), for t ≥ 0, as the minimizer of tf0 + φ, subject to Ax = b, i.e.,
as the solution of

minimize tf0(x) −
∑m

i=1 ψi(−fi(x))
subject to Ax = b

(assuming the minimizer exists, and is unique). Central points are characterized
by the optimality condition

t∇f0(x) + ∇φ(x) +AT ν

= t∇f0(x) +

m∑

i=1

Dfi(x)
T∇ψi(−fi(x)) +AT ν = 0, (11.41)

for some ν ∈ Rp, where Dfi(x) is the derivative of fi at x.
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Dual points on central path

As in the scalar case, points on the central path give dual feasible points for the
problem (11.38). For i = 1, . . . ,m, define

λ⋆
i (t) =

1

t
∇ψi(−fi(x

⋆(t))), (11.42)

and let ν⋆(t) = ν/t, where ν is the optimal dual variable in (11.41). We will
show that λ⋆

1(t), . . . , λ
⋆
m(t), together with ν⋆(t), are dual feasible for the original

problem (11.38).
First, λ⋆

i (t) ≻K∗

i
0, by the monotonicity property (11.40) of generalized loga-

rithms. Second, it follows from (11.41) that the Lagrangian

L(x, λ⋆(t), ν⋆(t)) = f0(x) +

m∑

i=1

λ⋆
i (t)

T fi(x) + ν⋆(t)T (Ax− b)

is minimized over x by x = x⋆(t). The dual function g evaluated at (λ⋆(t), ν⋆(t))
is therefore equal to

g(λ⋆(t), ν⋆(t)) = f0(x
⋆(t)) +

m∑

i=1

λ⋆
i (t)

T fi(x
⋆(t)) + ν⋆(t)T (Ax⋆(t) − b)

= f0(x
⋆(t)) + (1/t)

m∑

i=1

∇ψi(−fi(x
⋆(t)))T fi(x

⋆(t))

= f0(x
⋆(t)) − (1/t)

m∑

i=1

θi,

where θi is the degree of ψi. In the last line, we use the fact that yT∇ψi(y) = θi

for y ≻Ki
0, and therefore

λ⋆
i (t)

T fi(x
⋆(t)) = −θi/t, i = 1, . . . ,m. (11.43)

Thus, if we define

θ =
m∑

i=1

θi,

then the primal feasible point x⋆(t) and the dual feasible point (λ⋆(t), ν⋆(t)) have
duality gap θ/t. This is just like the scalar case, except that θ, the sum of the
degrees of the generalized logarithms for the cones, appears in place of m, the
number of inequalities.

Example 11.8 Second-order cone programming. We consider an SOCP with variable
x ∈ Rn:

minimize fTx
subject to ‖Aix+ bi‖2 ≤ cTi x+ di, i = 1, . . . ,m,

(11.44)

where Ai ∈ Rni×n. As we have seen in example 11.6, the function

ψ(y) = log

(
y2

p+1 −

p∑

i=1

y2
i

)
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is a generalized logarithm for the second-order cone in Rp+1, with degree 2. The
corresponding logarithmic barrier function for (11.44) is

φ(x) = −

m∑

i=1

log((cTi x+ di)
2 − ‖Aix+ bi‖

2
2), (11.45)

with domφ = {x | ‖Aix+ bi‖2 < cT
i x+ di, i = 1, . . . ,m}. The optimality condition

on the central path is tf + ∇φ(x⋆(t)) = 0, where

∇φ(x) = −2

m∑

i=1

1

(cTi x+ di)2 − ‖Aix+ bi‖2
2

(
(cTi x+ di)ci −AT

i (Aix+ bi)
)
.

It follows that the point

z⋆
i (t) = −

2

tαi
(Aix

⋆(t) + bi), w⋆
i (t) =

2

tαi
(cTi x

⋆(t) + di), i = 1, . . . ,m,

where αi = (cTi x
⋆(t) + di)

2 − ‖Aix
⋆(t) + bi‖

2
2, is strictly feasible in the dual problem

maximize −
∑m

i=1
(bTi zi + diwi)

subject to
∑m

i=1
(AT

i zi + ciwi) = f
‖zi‖2 ≤ wi, i = 1, . . . ,m.

The duality gap associated with x⋆(t) and (z⋆(t), w⋆(t)) is

m∑

i=1

(
(Aix

⋆(t) + bi)
T z⋆

i (t) + (cTi x
⋆(t) + di)w

⋆
i (t)
)

=
2m

t
,

which agrees with the general formula θ/t, since θi = 2.

Example 11.9 Semidefinite programming in inequality form. We consider the SDP
with variable x ∈ Rn,

minimize cTx
subject to F (x) = x1F1 + · · · + xnFn +G � 0,

where G,F1, . . . , Fn ∈ Sp. The dual problem is

maximize tr(GZ)
subject to tr(FiZ) + ci = 0, i = 1, . . . , n

Z � 0.

Using the generalized logarithm log detX for the positive semidefinite cone S
p
+, we

have the barrier function (for the primal problem)

φ(x) = log det(−F (x)−1)

with domφ = {x | F (x) ≺ 0}. For strictly feasible x, the gradient of φ is equal to

∂φ(x)

∂xi
= tr(−F (x)−1Fi), i = 1, . . . , n,

which gives us the optimality conditions that characterize central points:

tci + tr(−F (x⋆(t))−1Fi) = 0, i = 1, . . . , n.

Hence the matrix

Z⋆(t) =
1

t
(−F (x⋆(t)))

−1

is strictly dual feasible, and the duality gap associated with x⋆(t) and Z⋆(t) is p/t.
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11.6.2 Barrier method

We have seen that the key properties of the central path generalize to problems
with generalized inequalities.

• Computing a point on the central path involves minimizing a twice differ-
entiable convex function subject to equality constraints (which can be done
using Newton’s method).

• With the central point x⋆(t) we can associate a dual feasible point (λ⋆(t), ν⋆(t))
with associated duality gap θ/t. In particular, x⋆(t) is no more than θ/t-
suboptimal.

This means we can apply the barrier method, exactly as described in §11.3, to the
problem (11.38). The number of outer iterations, or centering steps, required to
compute a central point with duality gap ǫ starting at x⋆(t(0)) is equal to

⌈
log(θ/(t(0)ǫ))

log µ

⌉
,

plus one initial centering step. The only difference between this result and the
associated one for the scalar case is that θ takes the place of m.

Phase I and feasibility problems

The phase I methods described in §11.4 are readily extended to problems with
generalized inequalities. Let ei ≻Ki

0 be some given, Ki-positive vectors, for
i = 1, . . . ,m. To determine feasibility of the equalities and generalized inequalities

f1(x) �K1
0, . . . , fL(x) �Km

0, Ax = b,

we solve the problem

minimize s
subject to fi(x) �Ki

sei, i = 1, . . . ,m
Ax = b,

with variables x and s ∈ R. The optimal value p̄⋆ determines the feasibility
of the equalities and generalized inequalities, exactly as in the case of ordinary
inequalities. When p̄⋆ is positive, any dual feasible point with positive objective
gives an alternative that proves the set of equalities and generalized inequalities is
infeasible (see page 270).

11.6.3 Examples

A small SOCP

We solve an SOCP

minimize fTx
subject to ‖Aix+ bi‖2 ≤ cTi x+ di, i = 1, . . . ,m,
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Figure 11.15 Progress of barrier method for an SOCP, showing duality gap
versus cumulative number of Newton steps.

with x ∈ R50, m = 50, and Ai ∈ R5×50. The problem instance was randomly
generated, in such a way that the problem is strictly primal and dual feasible, and
has optimal value p⋆ = 1. We start with a point x(0) on the central path, with a
duality gap of 100.

The barrier method is used to solve the problem, using the barrier function

φ(x) = −
m∑

i=1

log
(
(cTi x+ di)

2 − ‖Aix+ bi‖2
2

)
.

The centering problems are solved using Newton’s method, with the same algorithm
parameters as in the examples of §11.3.2: backtracking parameters α = 0.01, β =
0.5, and a stopping criterion λ(x)2/2 ≤ 10−5.

Figure 11.15 shows the duality gap versus cumulative number of Newton steps.
The plot is very similar to those for linear and geometric programming, shown
in figures 11.4 and 11.6, respectively. We see an approximately constant number
of Newton steps required per centering step, and therefore approximately linear
convergence of the duality gap. For this example, too, the choice of µ has little
effect on the total number of Newton steps, provided µ is at least 10 or so. As in
the examples for linear and geometric programming, a reasonable choice of µ is in
the range 10 – 100, which results in a total number of Newton steps around 30 (see
figure 11.16).

A small SDP

Our next example is an SDP

minimize cTx
subject to

∑n
i=1 xiFi +G � 0

(11.46)
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Figure 11.16 Trade-off in the choice of the parameter µ, for a small SOCP.
The vertical axis shows the total number of Newton steps required to reduce
the duality gap from 100 to 10−3, and the horizontal axis shows µ.

with variable x ∈ R100, and Fi ∈ S100, G ∈ S100. The problem instance was
generated randomly, in such a way that the problem is strictly primal and dual
feasible, with p⋆ = 1. The initial point is on the central path, with a duality gap
of 100.

We apply the barrier method with logarithmic barrier function

φ(x) = − log det

(
−

n∑

i=1

xiFi −G

)
.

The progress of the barrier method for three values of µ is shown in figure 11.17.
Note the similarity with the plots for linear, geometric, and second-order cone
programming, shown in figures 11.4, 11.6, and 11.15. As in the other examples,
the parameter µ has only a small effect on the efficiency, provided it is not too
small. The number of Newton steps required to reduce the duality gap by a factor
105, versus µ, is shown in figure 11.18.

A family of SDPs

In this section we examine the performance of the barrier method as a function of
the problem dimensions. We consider a family of SDPs of the form

minimize 1Tx
subject to A+ diag(x) � 0,

(11.47)

with variable x ∈ Rn, and parameter A ∈ Sn. The matrices A are generated as
follows. For i ≥ j, the coefficients Aij are generated from independent N (0, 1)
distributions. For i < j, we set Aij = Aji, so A ∈ Sn. We then scale A so that its
(spectral) norm is one.
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Figure 11.17 Progress of barrier method for a small SDP, showing duality
gap versus cumulative number of Newton steps. Three plots are shown,
corresponding to three values of the parameter µ: 2, 50, and 150.
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Figure 11.18 Trade-off in the choice of the parameter µ, for a small SDP.
The vertical axis shows the total number of Newton steps required to reduce
the duality gap from 100 to 10−3, and the horizontal axis shows µ.
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Figure 11.19 Progress of barrier method for three randomly generated SDPs
of the form (11.47), with different dimensions. The plot shows duality gap
versus cumulative number of Newton steps. The number of variables in each
problem is n.

The algorithm parameters are µ = 20, and the same parameters for the center-
ing steps as in the examples above: backtracking parameters α = 0.01, β = 0.5,
and stopping criterion λ(x)2/2 ≤ 10−5. The initial point is on the central path
with t(0) = 1 (i.e., gap n). The algorithm is terminated when the initial duality
gap is reduced by a factor 8000, i.e., after completing three outer iterations.

Figure 11.19 shows the duality gap versus iteration number for three problem
instances, with dimensions n = 50, n = 500, and n = 1000. The plots look very
much like the others, and very much like the ones for LPs.

To examine the effect of problem size on the number of Newton steps required,
we generate 100 problem instances for each of 20 values of n, ranging from n = 10
to n = 1000. We solve each of these 2000 problems using the barrier method, noting
the number of Newton steps required. The results are summarized in figure 11.20,
which shows the mean and standard deviation in the number of Newton steps, for
each value of n. The plot looks very much like the one for LPs, shown in figure 11.8.
In particular, the number of Newton steps required grows very slowly, from around
20 to 26 iterations, as the problem dimensions increase by a factor of 100.

11.6.4 Complexity analysis via self-concordance

In this section we extend the complexity analysis of the barrier method for problems
with ordinary inequalities (given in §11.5), to problems with generalized inequali-
ties. We have already seen that the number of outer iterations is given by

⌈
log(θ/t(0)ǫ)

log µ

⌉
,
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Figure 11.20 Average number of Newton steps required to solve 100 ran-
domly generated SDPs (11.47) for each of 20 values of n, the problem size.
Error bars show standard deviation, around the average value, for each value
of n. The growth in the average number of Newton steps required, as the
problem dimensions range over a 100:1 ratio, is very small.

plus one initial centering step. It remains to bound the number of Newton steps
required in each centering step, which we will do using the complexity theory of
Newton’s method for self-concordant functions. For simplicity, we will exclude the
cost of the initial centering.

We make the same assumptions as in §11.5: The function tf0 + φ is closed and
self-concordant for all t ≥ t(0), and the sublevel sets of (11.38) are bounded.

Example 11.10 Second-order cone programming. The function

−ψ(x) = − log

(
x2

p+1 −

p∑

i=1

x2
i

)
,

is self-concordant (see example 9.8), so the logarithmic barrier function (11.45) sat-
isfies the closedness and self-concordance assumption for the SOCP (11.44).

Example 11.11 Semidefinite programming. The self-concordance assumption holds
for general semidefinite programs, using log detX as generalized logarithm for the
positive semidefinite cone. For example, for the standard form SDP

minimize tr(CX)
subject to tr(AiX) = bi, i = 1, . . . , p

X � 0,

with variable X ∈ Sn, the function t(0) tr(CX) − log detX is self-concordant (and
closed), for any t(0) ≥ 0.
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We will see that, exactly as in the scalar case, we have

µtf0(x
⋆(t)) + φ(x⋆(t)) − µtf0(x

⋆(µt)) − φ(x⋆(µt)) ≤ θ(µ− 1 − log µ). (11.48)

Therefore when the self-concordance and bounded sublevel set conditions hold, the
number of Newton steps per centering step is no more than

θ(µ− 1 − log µ)

γ
+ c,

exactly as in the barrier method for problems with ordinary inequalities. Once
we establish the basic bound (11.48), the complexity analysis for problems with
generalized inequalities is identical to the analysis for problems with ordinary in-
equalities, with one exception: θ is the sum of the degrees of the cones, instead of
the number of inequalities.

Generalized logarithm for dual cone

We will use conjugates to prove the bound (11.48). Let ψ be a generalized logarithm
for the proper cone K, with degree θ. The conjugate of the (convex) function −ψ
is

(−ψ)∗(v) = sup
u

(
vTu+ ψ(u)

)
.

This function is convex, and has domain −K∗ = {v | v ≺K∗ 0}. Define ψ by

ψ(v) = −(−ψ)∗(−v) = inf
u

(
vTu− ψ(u)

)
, domψ = intK∗. (11.49)

The function ψ is concave, and in fact is a generalized logarithm for the dual cone
K∗, with the same parameter θ (see exercise 11.17). We call ψ the dual logarithm

associated with the generalized logarithm ψ.
From (11.49) we obtain the inequality

ψ(v) + ψ(u) ≤ uT v, (11.50)

which holds for any u ≻K 0, v ≻K∗ 0, with equality holding if and only ∇ψ(u) = v
(or equivalently, ∇ψ(v) = u). (This inequality is just a variation on Young’s
inequality, for concave functions.)

Example 11.12 Second-order cone. The second-order cone has generalized logarithm
ψ(x) = log(x2

p+1−
∑p

i=1
x2

i ), with domψ = {x ∈ Rp+1 | xp+1 > (
∑p

i=1
x2

i )
1/2}. The

associated dual logarithm is

ψ(y) = log

(
y2

p+1 −

p∑

i=1

y2
i

)
+ 2 − log 4,

with domψ = {y ∈ Rp+1 | yp+1 > (
∑p

i=1
y2

i )1/2} (see exercise 3.36). Except for
a constant, it is the same as the original generalized logarithm for the second-order
cone.
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Example 11.13 Positive semidefinite cone. The dual logarithm associated with
ψ(X) = log detX, with domψ = S

p
++, is

ψ(Y ) = log detY + p,

with domain domψ∗ = S
p
++ (see example 3.23). Again, it is the same generalized

logarithm, except for a constant.

Derivation of the basic bound

To simplify notation, we denote x⋆(t) as x, x⋆(µt) as x+, λ⋆
i (t) as λi, and ν⋆(t) as

ν. From tλi = ∇ψi(−fi(x)) (in (11.42)) and property (11.43), we conclude that

ψi(−fi(x)) + ψi(tλi) = −tλT
i fi(x) = θi, (11.51)

i.e., the inequality (11.50) holds with equality for the pair u = −fi(x) and v = tλi.
The same inequality for the pair u = −fi(x

+), v = µtλi gives

ψi(−fi(x
+)) + ψi(µtλi) ≤ −µtλT

i fi(x
+),

which becomes, using logarithmic homogeneity of ψi,

ψi(−fi(x
+)) + ψi(tλi) + θi log µ ≤ −µtλT

i fi(x
+).

Subtracting the equality (11.51) from this inequality, we get

−ψi(−fi(x)) + ψi(−fi(x
+)) + θi log µ ≤ −θi − µtλT

i fi(x
+),

and summing over i yields

φ(x) − φ(x+) + θ log µ ≤ −θ − µt

m∑

i=1

λT
i fi(x

+). (11.52)

We also have, from the definition of the dual function,

f0(x) − θ/t = g(λ, ν)

≤ f0(x
+) +

m∑

i=1

λT
i fi(x

+) + νT (Ax+ − b)

= f0(x
+) +

m∑

i=1

λT
i fi(x

+).

Multiplying this inequality by µt and adding to the inequality (11.52), we get

φ(x) − φ(x+) + θ log µ+ µtf0(x) − µθ ≤ µtf0(x
+) − θ,

which when re-arranged gives

µtf0(x) + φ(x) − µtf0(x
+) − φ(x+) ≤ θ(µ− 1 − logµ),

the desired inequality (11.48).
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11.7 Primal-dual interior-point methods

In this section we describe a basic primal-dual interior-point method. Primal-
dual interior-point methods are very similar to the barrier method, with some
differences.

• There is only one loop or iteration, i.e., there is no distinction between inner
and outer iterations as in the barrier method. At each iteration, both the
primal and dual variables are updated.

• The search directions in a primal-dual interior-point method are obtained
from Newton’s method, applied to modified KKT equations (i.e., the opti-
mality conditions for the logarithmic barrier centering problem). The primal-
dual search directions are similar to, but not quite the same as, the search
directions that arise in the barrier method.

• In a primal-dual interior-point method, the primal and dual iterates are not

necessarily feasible.

Primal-dual interior-point methods are often more efficient than the barrier
method, especially when high accuracy is required, since they can exhibit better
than linear convergence. For several basic problem classes, such as linear, quadratic,
second-order cone, geometric, and semidefinite programming, customized primal-
dual methods outperform the barrier method. For general nonlinear convex op-
timization problems, primal-dual interior-point methods are still a topic of active
research, but show great promise. Another advantage of primal-dual algorithms
over the barrier method is that they can work when the problem is feasible, but
not strictly feasible (although we will not pursue this).

In this section we present a basic primal-dual method for (11.1), without conver-
gence analysis. We refer the reader to the references for a more thorough treatment
of primal-dual methods and their convergence analysis.

11.7.1 Primal-dual search direction

As in the barrier method, we start with the modified KKT conditions (11.15),
expressed as rt(x, λ, ν) = 0, where we define

rt(x, λ, ν) =




∇f0(x) +Df(x)Tλ+AT ν
−diag(λ)f(x) − (1/t)1

Ax− b



 , (11.53)

and t > 0. Here f : Rn → Rm and its derivative matrix Df are given by

f(x) =




f1(x)

...
fm(x)



 , Df(x) =




∇f1(x)T

...
∇fm(x)T



 .

If x, λ, ν satisfy rt(x, λ, ν) = 0 (and fi(x) < 0), then x = x⋆(t), λ = λ⋆(t), and
ν = ν⋆(t). In particular, x is primal feasible, and λ, ν are dual feasible, with
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duality gap m/t. The first block component of rt,

rdual = ∇f0(x) +Df(x)Tλ+AT ν,

is called the dual residual, and the last block component, rpri = Ax − b, is called
the primal residual. The middle block,

rcent = −diag(λ)f(x) − (1/t)1,

is the centrality residual, i.e., the residual for the modified complementarity condi-
tion.

Now consider the Newton step for solving the nonlinear equations rt(x, λ, ν) =
0, for fixed t (without first eliminating λ, as in §11.3.4), at a point (x, λ, ν) that
satisifes f(x) ≺ 0, λ ≻ 0. We will denote the current point and Newton step as

y = (x, λ, ν), ∆y = (∆x,∆λ,∆ν),

respectively. The Newton step is characterized by the linear equations

rt(y + ∆y) ≈ rt(y) +Drt(y)∆y = 0,

i.e., ∆y = −Drt(y)−1rt(y). In terms of x, λ, and ν, we have



∇2f0(x) +

∑m
i=1 λi∇2fi(x) Df(x)T AT

−diag(λ)Df(x) −diag(f(x)) 0
A 0 0








∆x
∆λ
∆ν



 = −




rdual

rcent

rpri



 .

(11.54)
The primal-dual search direction ∆ypd = (∆xpd,∆λpd,∆νpd) is defined as the
solution of (11.54).

The primal and dual search directions are coupled, both through the coefficient
matrix and the residuals. For example, the primal search direction ∆xpd depends
on the current value of the dual variables λ and ν, as well as x. We note also that
if x satisfies Ax = b, i.e., the primal feasibility residual rpri is zero, then we have
A∆xpd = 0, so ∆xpd defines a (primal) feasible direction: for any s, x + s∆xpd

will satisfy A(x+ s∆xpd) = b.

Comparison with barrier method search directions

The primal-dual search directions are closely related to the search directions used
in the barrier method, but not quite the same. We start with the linear equa-
tions (11.54) that define the primal-dual search directions. We eliminate the vari-
able ∆λpd, using

∆λpd = −diag(f(x))−1 diag(λ)Df(x)∆xpd + diag(f(x))−1rcent,

which comes from the second block of equations. Substituting this into the first
block of equations gives

[
Hpd AT

A 0

] [
∆xpd

∆νpd

]

= −
[
rdual +Df(x)T diag(f(x))−1rcent

rpri

]

= −
[ ∇f0(x) + (1/t)

∑m
i=1

1
−fi(x)∇fi(x) +AT ν

rpri

]
, (11.55)
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where

Hpd = ∇2f0(x) +

m∑

i=1

λi∇2fi(x) +

m∑

i=1

λi

−fi(x)
∇fi(x)∇fi(x)

T . (11.56)

We can compare (11.55) to the equation (11.14), which defines the Newton step
for the centering problem in the barrier method with parameter t. This equation
can be written as [

Hbar AT

A 0

] [
∆xbar

νbar

]

= −
[
t∇f0(x) + ∇φ(x)

rpri

]

= −
[
t∇f0(x) +

∑m
i=1

1
−fi(x)∇fi(x)

rpri

]
, (11.57)

where

Hbar = t∇2f0(x) +
m∑

i=1

1

−fi(x)
∇2fi(x) +

m∑

i=1

1

fi(x)2
∇fi(x)∇fi(x)

T . (11.58)

(Here we give the general expression for the infeasible Newton step; if the current x
is feasible, i.e., rpri = 0, then ∆xbar coincides with the feasible Newton step ∆xnt

defined in (11.14).)
Our first observation is that the two systems of equations (11.55) and (11.57)

are very similar. The coefficient matrices in (11.55) and (11.57) have the same
structure; indeed, the matrices Hpd and Hbar are both positive linear combinations
of the matrices

∇2f0(x), ∇2f1(x), . . . ,∇2fm(x), ∇f1(x)∇f1(x)T , . . . ,∇fm(x)∇fm(x)T .

This means that the same method can be used to compute the primal-dual search
directions and the barrier method Newton step.

We can say more about the relation between the primal-dual equations (11.55)
and the barrier method equations (11.57). Suppose we divide the first block of
equation (11.57) by t, and define the variable ∆νbar = (1/t)νbar − ν (where ν is
arbitrary). Then we obtain
[

(1/t)Hbar AT

A 0

] [
∆xbar

∆νbar

]
= −

[ ∇f0(x) + (1/t)
∑m

i=1
1

−fi(x)∇fi(x) +AT ν

rpri

]
.

In this form, the righthand side is identical to the righthand side of the primal-dual
equations (evaluated at the same x, λ, and ν). The coefficient matrices differ only
in the 1, 1 block:

Hpd = ∇2f0(x) +

m∑

i=1

λi∇2fi(x) +

m∑

i=1

λi

−fi(x)
∇fi(x)∇fi(x)

T ,

(1/t)Hbar = ∇2f0(x) +
m∑

i=1

1

−tfi(x)
∇2fi(x) +

m∑

i=1

1

tfi(x)2
∇fi(x)∇fi(x)

T .

When x and λ satisfy −fi(x)λi = 1/t, the coefficient matrices, and therefore also
the search directions, coincide.
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11.7.2 The surrogate duality gap

In the primal-dual interior-point method the iterates x(k), λ(k), and ν(k) are not
necessarily feasible, except in the limit as the algorithm converges. This means
that we cannot easily evaluate a duality gap η(k) associated with step k of the
algorithm, as we do in (the outer steps of) the barrier method. Instead we define
the surrogate duality gap, for any x that satisfies f(x) ≺ 0 and λ � 0, as

η̂(x, λ) = −f(x)Tλ. (11.59)

The surrogate gap η̂ would be the duality gap, if x were primal feasible and λ, ν
were dual feasible, i.e., if rpri = 0 and rdual = 0. Note that the value of the
parameter t that corresponds to the surrogate duality gap η̂ is m/η̂.

11.7.3 Primal-dual interior-point method

We can now describe the basic primal-dual interior-point algorithm.

Algorithm 11.2 Primal-dual interior-point method.

given x that satisfies f1(x) < 0, . . . , fm(x) < 0, λ ≻ 0, µ > 1, ǫfeas > 0, ǫ > 0.

repeat

1. Determine t. Set t := µm/η̂.
2. Compute primal-dual search direction ∆ypd.
3. Line search and update.

Determine step length s > 0 and set y := y + s∆ypd.
until ‖rpri‖2 ≤ ǫfeas, ‖rdual‖2 ≤ ǫfeas, and η̂ ≤ ǫ.

In step 1, the parameter t is set to a factor µ times m/η̂, which is the value of t
associated with the current surrogate duality gap η̂. If x, λ, and ν were central,
with parameter t (and therefore with duality gap m/t), then in step 1 we would
increase t by the factor µ, which is exactly the update used in the barrier method.
Values of the parameter µ on the order of 10 appear to work well.

The primal-dual interior-point algorithm terminates when x is primal feasible
and λ, ν are dual feasible (within the tolerance ǫfeas) and the surrogate gap is
smaller than the tolerance ǫ. Since the primal-dual interior-point method often has
faster than linear convergence, it is common to choose ǫfeas and ǫ small.

Line search

The line search in the primal-dual interior point method is a standard backtracking
line search, based on the norm of the residual, and modified to ensure that λ ≻ 0
and f(x) ≺ 0. We denote the current iterate as x, λ, and ν, and the next iterate
as x+, λ+, and ν+, i.e.,

x+ = x+ s∆xpd, λ+ = λ+ s∆λpd, ν+ = ν + s∆νpd.
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The residual, evaluated at y+, will be denoted r+.
We first compute the largest positive step length, not exceeding one, that gives

λ+ � 0, i.e.,

smax = sup{s ∈ [0, 1] | λ+ s∆λ � 0}
= min {1, min{−λi/∆λi | ∆λi < 0}} .

We start the backtracking with s = 0.99smax, and multiply s by β ∈ (0, 1) until we
have f(x+) ≺ 0. We continue multiplying s by β until we have

‖rt(x+, λ+, ν+)‖2 ≤ (1 − αs)‖rt(x, λ, ν)‖2.

Common choices for the backtracking parameters α and β are the same as those for
Newton’s method: α is typically chosen in the range 0.01 to 0.1, and β is typically
chosen in the range 0.3 to 0.8.

One iteration of the primal-dual interior-point algorithm is the same as one step
of the infeasible Newton method, applied to solving rt(x, λ, ν) = 0, but modified to
ensure λ ≻ 0 and f(x) ≺ 0 (or, equivalently, with dom rt restricted to λ ≻ 0 and
f(x) ≺ 0). The same arguments used in the proof of convergence of the infeasible
start Newton method show that the line search for the primal-dual method always
terminates in a finite number of steps.

11.7.4 Examples

We illustrate the performance of the primal-dual interior-point method for the
same problems considered in §11.3.2. The only difference is that instead of starting
with a point on the central path, as in §11.3.2, we start the primal-dual interior-
point method at a randomly generated x(0), that satisfies f(x) ≺ 0, and take

λ
(0)
i = −1/fi(x

(0)), so the initial value of the surrogate gap is η̂ = 100. The
parameter values we use for the primal-dual interior-point method are

µ = 10, β = 0.5, ǫ = 10−8, α = 0.01.

Small LP and GP

We first consider the small LP used in §11.3.2, with m = 100 inequalities and
n = 50 variables. Figure 11.21 shows the progress of the primal-dual interior-point
method. Two plots are shown: the surrogate gap η̂, and the norm of the primal
and dual residuals,

rfeas =
(
‖rpri‖2

2 + ‖rdual‖2
2

)1/2
,

versus iteration number. (The initial point is primal feasible, so the plot shows the
norm of the dual feasibility residual.) The plots show that the residual converges
to zero rapidly, and becomes zero to numerical precision in 24 iterations. The
surrogate gap also converges rapidly. Compared to the barrier method, the primal-
dual interior-point method is faster, especially when high accuracy is required.

Figure 11.22 shows the progress of the primal-dual interior-point method on the
GP considered in §11.3.2. The convergence is similar to the LP example.
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Figure 11.21 Progress of the primal-dual interior-point method for an LP,
showing surrogate duality gap η̂ and the norm of the primal and dual resid-
uals, versus iteration number. The residual converges rapidly to zero within
24 iterations; the surrogate gap also converges to a very small number in
about 28 iterations. The primal-dual interior-point method converges faster
than the barrier method, especially if high accuracy is required.
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Figure 11.22 Progress of primal-dual interior-point method for a GP, show-
ing surrogate duality gap η̂ and the norm of the primal and dual residuals
versus iteration number.
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Figure 11.23 Number of iterations required to solve randomly generated
standard LPs of different dimensions, with n = 2m. Error bars show stan-
dard deviation, around the average value, for 100 instances of each dimen-
sion. The growth in the number of iterations required, as the problem di-
mensions range over a 100:1 ratio, is approximately logarithmic.

A family of LPs

Here we examine the performance of the primal-dual method as a function of
the problem dimensions, for the same family of standard form LPs considered
in §11.3.2. We use the primal-dual interior-point method to solve the same 2000
instances, which consist of 100 instances for each value of m. The primal-dual
algorithm is started at x(0) = 1, λ(0) = 1, ν(0) = 0, and terminated using tolerance
ǫ = 10−8. Figure 11.23 shows the average, and standard deviation, of the number
of iterations required versus m. The number of iterations ranges from 15 to 35,
and grows approximately as the logarithm of m. Comparing with the results for
the barrier method shown in figure 11.8, we see that the number of iterations in
the primal-dual method is only slightly higher, despite the fact that we start at
infeasible starting points, and solve the problem to a much higher accuracy.

11.8 Implementation

The main effort in the barrier method is computing the Newton step for the cen-
tering problem, which consists of solving sets of linear equations of the form

[
H AT

A 0

] [
∆xnt

νnt

]
= −

[
g
0

]
, (11.60)

where

H = t∇2f0(x) +

m∑

i=1

1

fi(x)2
∇fi(x)∇fi(x)

T +

m∑

i=1

1

−fi(x)
∇2fi(x)
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g = t∇f0(x) +

m∑

i=1

1

−fi(x)
∇fi(x).

The Newton equations for the primal-dual method have exactly the same structure,
so our observations in this section apply to the primal-dual method as well.

The coefficient matrix of (11.60) has KKT structure, so all of the discussion
in §9.7 and §10.4 applies here. In particular, the equations can be solved by elimi-
nation, and structure such as sparsity or diagonal plus low rank can be exploited.
Let us give some generic examples in which the special structure of the KKT equa-
tions can be exploited to compute the Newton step more efficiently.

Sparse problems

If the original problem is sparse, which means that the objective and every con-
straint function each depend on only a modest number of variables, then the gradi-
ents and Hessian matrices of the objective and constraint functions are all sparse,
as is the coefficient matrix A. Provided m is not too big, the matrix H is then
likely to be sparse, so a sparse matrix method can be used to compute the Newton
step. The method will likely work well if there are a few relatively dense rows and
columns in the KKT matrix, which would occur, for example, if there were a few
equality constraints involving a large number of variables.

Separable objective and a few linear inequality constraints

Suppose the objective function is separable, and there are only a relatively small
number of linear equality and inequality constraints. Then ∇2f0(x) is diagonal,
and the terms ∇2fi(x) vanish, so the matrix H is diagonal plus low rank. Since H
is easily inverted, we can solve the KKT equations efficiently. The same method
can be applied whenever ∇2f0(x) is easily inverted, e.g., banded, sparse, or block
diagonal.

11.8.1 Standard form linear programming

We first discuss the implementation of the barrier method for the standard form
LP

minimize cTx
subject to Ax = b, x � 0,

with A ∈ Rm×n. The Newton equations for the centering problem

minimize tcTx−∑n
i=1 log xi

subject to Ax = b

are given by

[
diag(x)−2 AT

A 0

] [
∆xnt

νnt

]
=

[
−tc+ diag(x)−11

0

]
.
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These equations are usually solved by block elimination of ∆xnt. From the first
equation,

∆xnt = diag(x)2(−tc+ diag(x)−11 −AT νnt)

= −tdiag(x)2c+ x− diag(x)2AT νnt.

Substituting in the second equation yields

Adiag(x)2AT νnt = −tAdiag(x)2c+ b.

The coefficient matrix is positive definite since by assumption rankA = m. More-
over if A is sparse, then usually Adiag(x)2AT is sparse, so a sparse Cholesky
factorization can be used.

11.8.2 ℓ1-norm approximation

Consider the ℓ1-norm approximation problem

minimize ‖Ax− b‖1

with A ∈ Rm×n. We will discuss the implementation assuming m and n are large,
and A is structured, e.g., sparse, and compare it with the cost of the corresponding
least-squares problem

minimize ‖Ax− b‖2
2 .

We start by expressing the ℓ1-norm approximation problem as an LP by intro-
ducing auxiliary variables y ∈ Rm:

minimize 1T y

subject to

[
A −I
−A −I

] [
x
y

]
�
[

b
−b

]
.

The Newton equation for the centering problem is

[
AT −AT

−I −I

] [
D1 0
0 D2

] [
A −I
−A −I

] [
∆xnt

∆ynt

]
= −

[
AT g1
g2

]

where
D1 = diag(b−Ax+ y)−2, D2 = diag(−b+Ax+ y)−2

and

g1 = diag(b−Ax+ y)−11 − diag(−b+Ax+ y)−11

g2 = t1 − diag(b−Ax+ y)−11 − diag(−b+Ax+ y)−11.

If we multiply out the lefthand side, this can be simplified as

[
AT (D1 +D2)A −AT (D1 −D2)
−(D1 −D2)A D1 +D2

] [
∆xnt

∆ynt

]
= −

[
AT g1
g2

]
.
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Applying block elimination to ∆ynt, we can reduce this to

ATDA∆xnt = −AT g (11.61)

where
D = 4D1D2(D1 +D2)

−1 = 2(diag(y)2 + diag(b−Ax)2)−1

and
g = g1 + (D1 −D2)(D1 +D2)

−1g2.

After solving for ∆xnt, we obtain ∆ynt from

∆ynt = (D1 +D2)
−1(−g2 + (D1 −D2)A∆xnt).

It is interesting to note that (11.61) are the normal equations of a weighted least-
squares problem

minimize ‖D1/2(A∆x+D−1g)‖2.

In other words, the cost of solving the ℓ1-norm approximation problem is the cost
of solving a relatively small number of weighted least-squares problems with the
same matrix A, and weights that change at each iteration. If A has structure
that allows us to solve the least-squares problem fast (for example, by exploiting
sparsity), then we can solve (11.61) fast.

11.8.3 Semidefinite programming in inequality form

We consider the SDP

minimize cTx
subject to

∑n
i=1 xiFi +G � 0,

with variable x ∈ Rn, and parameters F1, . . . , Fn, G ∈ Sp. The associated centering
problem, using the log-determinant barrier function, is

minimize tcTx− log det(−∑n
i=1 xiFi −G).

The Newton step ∆xnt is found from H∆xnt = −g, where the Hessian and gradient
are given by

Hij = tr(S−1FiS
−1Fj), i, j = 1, . . . , n

gi = tci + tr(S−1Fi), i = 1, . . . , n,

where S = −∑n
i=1 xiFi − G. One standard approach is to form H (and g), and

then solve the Newton equation via Cholesky factorization.
We first consider the unstructured case, i.e., we assume all matrices are dense.

We will also just keep track of the order in the flop count, with respect to the
problem dimensions n and p. We first form S, which costs order np2 flops. We
then compute the matrices S−1Fi, for each i, via Cholesky factorization of S, and
then back substitution with the columns of Fi (or forming S−1 and multiplying
by Fi). This cost is order p3 for each i, so the total cost is order np3. Finally,



11.8 Implementation 619

we form Hij as the inner product of the matrices S−1Fi and S−1Fj , which costs
order p2 flops. Since we do this for n(n + 1)/2 such pairs, the cost is order n2p2.
Solving for the Newton direction costs order n3. The dominating order is thus
max{np3, n2p2, n3}.

It is not possible, in general, to exploit sparsity in the matrices Fi and G, since
H is often dense, even when Fi and G are sparse. One exception is when Fi and G
have a common block diagonal structure, in which case all the operations described
above can be carried out block by block.

It is often possible to exploit (common) sparsity in Fi and G to form the (dense)
Hessian H more efficiently. If we can find an ordering that results in S having
a reasonably sparse Cholesky factor, then we can compute the matrices S−1Fi

efficiently, and form Hij far more efficiently.
One interesting example that arises frequently is an SDP with matrix inequality

diag(x) � B.

This corresponds to Fi = Eii, where Eii is the matrix with i, i entry one and all
others zero. In this case, the matrix H can be found very efficiently:

Hij = (S−1)2ij ,

where S = B − diag(x). The cost of forming H is thus the cost of forming S−1,
which is at most (i.e., when no other structure is exploited) order n3.

11.8.4 Network rate optimization

We consider a variation on the optimal network flow problem described in §10.4.3
(page 550), which is sometimes called the network rate optimization problem. The
network is described as a directed graph with L arcs or links. Goods, or packets
of information, travel on the network, passing through the links. The network
supports n flows, with (nonnegative) rates x1, . . . , xn, which are the optimization
variables. Each flow moves along a fixed, or pre-determined, path (or route) in the
network, from a source node to a destination node. Each link can support multiple
flows passing through it. The total traffic on a link is the sum of the flow rates of
the flows that travel over the link. Each link has a positive capacity, which is the
maximum total traffic it can handle.

We can describe these link capacity limits using the flow-link incidence matrix

A ∈ RL×n, defined as

Aij =

{
1 flow j passes through link i
0 otherwise.

The total traffic on link i is then given by (Ax)i, so the link capacity constraints
can be expressed as Ax � c, where ci is the capacity of link i. Usually each path
passes through only a small fraction of the total number of links, so the matrix A
is sparse.

In the network rate problem the paths are fixed (and encoded in the matrix A,
which is a problem parameter); the variables are the flow rates xi. The objective
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is to choose the flow rates to maximize a separable utility function U , given by

U(x) = U1(x1) + · · · + Un(xn).

We assume that each Ui (and hence, U) is concave and nondecreasing. We can
think of Ui(xi) as the income derived from supporting the ith flow at rate xi; U(x)
is then the total income associated with the flows. The network rate optimization
problem is then

maximize U(x)
subject to Ax � c, x � 0,

(11.62)

which is a convex optimization problem.
Let us apply the barrier method to solve this problem. At each step we must

minimize a function of the form

−tU(x) −
L∑

i=1

log(c−Ax)i −
n∑

j=1

log xj ,

using Newton’s method. The Newton step ∆xnt is found by solving the linear
equations

(D0 +ATD1A+D2)∆xnt = −g,
where

D0 = −tdiag(U ′′

1 (x), . . . , U ′′

n (x))

D1 = diag(1/(c−Ax)21, . . . , 1/(c−Ax)2L)

D2 = diag(1/x2
1, . . . , 1/x

2
n)

are diagonal matrices, and g ∈ Rn. We can describe the sparsity structure of this
n× n coefficient matrix precisely:

(D0 +ATD1A+D2)ij 6= 0

if and only if flow i and flow j share a link. If the paths are relatively short, and
each link has relatively few paths passing through it, then this matrix is sparse, so
a sparse Cholesky factorization can be used. We can also solve the Newton system
efficiently when some, but not too many, of the rows and columns are relatively
dense. This occurs when a few of the flows intersect with a large number of the
other flows, which might occur if a few flows are relatively long.

We can also use the matrix inversion lemma to compute the Newton step by
solving a system with L× L coefficient matrix, with form

(D−1
1 +A(D0 +D2)

−1AT )y = −A(D0 +D2)
−1g,

and then computing

∆xnt = −(D0 +D2)
−1(g +AT y).

Here too we can precisely describe the sparsity pattern:

(D−1
1 +A(D0 +D2)

−1AT )ij 6= 0

if and only if there is a path that passes through link i and link j. If most paths
are short, this matrix is sparse. This matrix will be sparse, with a few dense rows
and columns, if there are a few bottlenecks, i.e., a few links over which many flows
travel.
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Other authors adopt the cone programming framework as starting point for extending
primal-dual interior-point methods for linear programming to convex optimization (see
for example, Nesterov and Todd [NT98]). This approach has resulted in efficient and
accurate primal-dual methods for semidefinite and second-order programming (see the
surveys by Todd [Tod01] and Alizadeh and Goldfarb [AG03]).

As for linear programming, primal-dual methods for semidefinite programming are usually
described as variations of Newton’s method applied to modified KKT equations. Unlike
in linear programming, however, the linearization can be carried out in many different
ways, which lead to different search directions and algorithms; see Helmberg, Rendl,
Vanderbei, and Wolkowicz [HRVW96], Kojima, Shindo, and Harah [KSH97], Monteiro
[Mon97], Nesterov and Todd [NT98], Zhang [Zha98], Alizadeh, Haeberly, and Overton
[AHO98], and Todd, Toh, and Tütüncü [TTT98].

Great progress has also been made in the area of initialization and infeasibility detection.
Homogeneous self-dual formulations provide an elegant and efficient alternative to the
classical two-phase approach of §11.4; see Ye, Todd, and Mizuno [YTM94], Xu, Hung,
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and Ye [XHY96], Andersen and Ye [AY98] and Luo, Sturm, and Zhang [LSZ00] for details.

The primal-dual interior-point methods for semidefinite and second-order cone program-
ming have been implemented in a number of software packages, including SeDuMi [Stu99],
SDPT3 [TTT02], SDPA [FKN98], CSDP [Bor02], and DSDP [BY02], A user-friendly in-
terface to several of these codes is provided by YALMIP [Löf04].

The following books document the recent developments in this rapidly advancing field
in greater detail: Vanderbei [Van96], Wright [Wri97], Roos, Terlaky, and Vial [RTV97]
Ye [Ye97], Wolkowicz, Saigal, and Vandenberghe [WSV00], Ben-Tal and Nemirovski,
[BTN01], Renegar [Ren01], and Peng, Roos, and Terlaky [PRT02].
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Exercises

The barrier method

11.1 Barrier method example. Consider the simple problem

minimize x2 + 1
subject to 2 ≤ x ≤ 4,

which has feasible set [2, 4], and optimal point x⋆ = 2. Plot f0, and tf0 + φ, for several
values of t > 0, versus x. Label x⋆(t).

11.2 What happens if the barrier method is applied to the LP

minimize x2

subject to x1 ≤ x2, 0 ≤ x2,

with variable x ∈ R2?

11.3 Boundedness of centering problem. Suppose the sublevel sets of (11.1),

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b,

are bounded. Show that the sublevel sets of the associated centering problem,

minimize tf0(x) + φ(x)
subject to Ax = b,

are bounded.

11.4 Adding a norm bound to ensure strong convexity of the centering problem. Suppose we
add the constraint xTx ≤ R2 to the problem (11.1):

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b
xTx ≤ R2.

Let φ̃ denote the logarithmic barrier function for this modified problem. Find a > 0 for
which ∇2(tf0(x) + φ̃(x)) � aI holds, for all feasible x.

11.5 Barrier method for second-order cone programming. Consider the SOCP (without equality
constraints, for simplicity)

minimize fTx
subject to ‖Aix+ bi‖2 ≤ cTi x+ di, i = 1, . . . ,m.

(11.63)

The constraint functions in this problem are not differentiable (since the Euclidean norm
‖u‖2 is not differentiable at u = 0) so the (standard) barrier method cannot be applied.
In §11.6, we saw that this SOCP can be solved by an extension of the barrier method
that handles generalized inequalities. (See example 11.8, page 599, and page 601.) In this
exercise, we show how the standard barrier method (with scalar constraint functions) can
be used to solve the SOCP.

We first reformulate the SOCP as

minimize fTx
subject to ‖Aix+ bi‖

2
2/(c

T
i x+ di) ≤ cTi x+ di, i = 1, . . . ,m

cTi x+ di ≥ 0, i = 1, . . . ,m.

(11.64)
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The constraint function

fi(x) =
‖Aix+ bi‖

2
2

cTi x+ di
− cTi x− di

is the composition of a quadratic-over-linear function with an affine function, and is twice
differentiable (and convex), provided we define its domain as dom fi = {x | cTi x+di > 0}.
Note that the two problems (11.63) and (11.64) are not exactly equivalent. If cT

i x
⋆+di = 0

for some i, where x⋆ is the optimal solution of the SOCP (11.63), then the reformulated
problem (11.64) is not solvable; x⋆ is not in its domain. Nevertheless we will see that
the barrier method, applied to (11.64), produces arbitrarily accurate suboptimal solutions
of (11.64), and hence also for (11.63).

(a) Form the log barrier φ for the problem (11.64). Compare it to the log barrier that
arises when the SOCP (11.63) is solved using the barrier method for generalized
inequalities (in §11.6).

(b) Show that if tfTx+ φ(x) is minimized, the minimizer x⋆(t) is 2m/t-suboptimal for
the problem (11.63). It follows that the standard barrier method, applied to the
reformulated problem (11.64), solves the SOCP (11.63), in the sense of producing
arbitrarily accurate suboptimal solutions. This is the case even though the optimal
point x⋆ need not be in the domain of the reformulated problem (11.64).

11.6 General barriers. The log barrier is based on the approximation −(1/t) log(−u) of the

indicator function Î−(u) (see §11.2.1, page 563). We can also construct barriers from
other approximations, which in turn yield generalizations of the central path and barrier
method. Let h : R → R be a twice differentiable, closed, increasing convex function,
with domh = −R++. (This implies h(u) → ∞ as u → 0.) One such function is
h(u) = − log(−u); another example is h(u) = −1/u (for u < 0).

Now consider the optimization problem (without equality constraints, for simplicity)

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m,

where fi are twice differentiable. We define the h-barrier for this problem as

φh(x) =

m∑

i=1

h(fi(x)),

with domain {x | fi(x) < 0, i = 1, . . . ,m}. When h(u) = − log(−u), this is the usual
logarithmic barrier; when h(u) = −1/u, φh is called the inverse barrier. We define the
h-central path as

x⋆(t) = argmin tf0(x) + φh(x),

where t > 0 is a parameter. (We assume that for each t, the minimizer exists and is
unique.)

(a) Explain why tf0(x) + φh(x) is convex in x, for each t > 0.

(b) Show how to construct a dual feasible λ from x⋆(t). Find the associated duality gap.

(c) For what functions h does the duality gap found in part (b) depend only on t and
m (and no other problem data)?

11.7 Tangent to central path. This problem concerns dx⋆(t)/dt, which gives the tangent to the
central path at the point x⋆(t). For simplicity, we consider a problem without equality
constraints; the results readily generalize to problems with equality constraints.

(a) Find an explicit expression for dx⋆(t)/dt. Hint. Differentiate the centrality equa-
tions (11.7) with respect to t.
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(b) Show that f0(x
⋆(t)) decreases as t increases. Thus, the objective value in the barrier

method decreases, as the parameter t is increased. (We already know that the duality
gap, which is m/t, decreases as t increases.)

11.8 Predictor-corrector method for centering problems. In the standard barrier method, x⋆(µt)
is computed using Newton’s method, starting from the initial point x⋆(t). One alternative
that has been proposed is to make an approximation or prediction x̂ of x⋆(µt), and then
start the Newton method for computing x⋆(µt) from x̂. The idea is that this should
reduce the number of Newton steps, since x̂ is (presumably) a better initial point than
x⋆(t). This method of centering is called a predictor-corrector method, since it first makes
a prediction of what x⋆(µt) is, then corrects the prediction using Newton’s method.

The most widely used predictor is the first-order predictor, based on the tangent to the
central path, explored in exercise 11.7. This predictor is given by

x̂ = x⋆(t) +
dx⋆(t)

dt
(µt− t).

Derive an expression for the first-order predictor x̂. Compare it to the Newton update
obtained, i.e., x⋆(t) + ∆xnt, where ∆xnt is the Newton step for µtf0(x) + φ(x), at x⋆(t).
What can you say when the objective f0 is linear? (For simplicity, you can consider a
problem without equality constraints.)

11.9 Dual feasible points near the central path. Consider the problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m,

with variable x ∈ Rn. We assume the functions fi are convex and twice differentiable. (We
assume for simplicity there are no equality constraints.) Recall (from §11.2.2, page 565)
that λi = −1/(tfi(x

⋆(t))), i = 1, . . . ,m, is dual feasible, and in fact, x⋆(t) minimizes
L(x, λ). This allows us to evaluate the dual function for λ, which turns out to be g(λ) =
f0(x

⋆(t)) −m/t. In particular, we conclude that x⋆(t) is m/t-suboptimal.

In this problem we consider what happens when a point x is close to x⋆(t), but not quite
centered. (This would occur if the centering steps were terminated early, or not carried
out to full accuracy.) In this case, of course, we cannot claim that λi = −1/(tfi(x)),
i = 1, . . . ,m, is dual feasible, or that x is m/t-suboptimal. However, it turns out that
a slightly more complicated formula does yield a dual feasible point, provided x is close
enough to centered.

Let ∆xnt be the Newton step at x of the centering problem

minimize tf0(x) −
∑m

i=1
log(−fi(x)).

Define

λi =
1

−tfi(x)

(
1 +

∇fi(x)
T ∆xnt

−fi(x)

)
, i = 1, . . . ,m.

You will show that for small ∆xnt (i.e., for x nearly centered), λ is dual feasible (i.e.,
λ � 0 and L(x, λ) is bounded below).

In this case, the vector x does not minimize L(x, λ), so there is no general formula for the
dual function value g(λ) associated with λ. (If we have an analytical expression for the
dual objective, however, we can simply evaluate g(λ).)

Hint. Use the results in exercise 3.41 to show that when ∆xnt is small enough, there exist
x0, x1, . . . , xm such that

∇f0(x0) = ∇f0(x) + ∇2f0(x)∆xnt

∇fi(xi) = ∇fi(x) + (1/λi)∇
2fi(x)∆xnt, i = 1, . . . ,m.
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This implies that

∇f0(x0) +

m∑

i=1

λi∇fi(xi) = 0.

Now use fi(z) ≥ fi(xi) + ∇fi(xi)
T (z − xi), i = 0, . . . ,m, to derive a lower bound on

L(z, λ).

11.10 Another parametrization of the central path. We consider the problem (11.1), with central
path x⋆(t) for t > 0, defined as the solution of

minimize tf0(x) −
∑m

i=1
log(−fi(x))

subject to Ax = b.

In this problem we explore another parametrization of the central path.

For u > p⋆, let z⋆(u) denote the solution of

minimize − log(u− f0(x)) −
∑m

i=1
log(−fi(x))

subject to Ax = b.

Show that the curve defined by z⋆(u), for u > p⋆, is the central path. (In other words,
for each u > p⋆, there is a t > 0 for which x⋆(t) = z⋆(u), and conversely, for each t > 0,
there is an u > p⋆ for which z⋆(u) = x⋆(t)).

11.11 Method of analytic centers. In this problem we consider a variation on the barrier method,
based on the parametrization of the central path described in exercise 11.10. For simplic-
ity, we consider a problem with no equality constraints,

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m.

The method of analytic centers starts with any strictly feasible initial point x(0), and any
u(0) > f0(x

(0)). We then set

u(1) = θu(0) + (1 − θ)f0(x
(0)),

where θ ∈ (0, 1) is an algorithm parameter (usually chosen small), and then compute the
next iterate as

x(1) = z⋆(u(1))

(using Newton’s method, starting from x(0)). Here z⋆(s) denotes the minimizer of

− log(s− f0(x)) −

m∑

i=1

log(−fi(x)),

which we assume exists and is unique. This process is then repeated.

The point z⋆(s) is the analytic center of the inequalities

f0(x) ≤ s, f1(x) ≤ 0, . . . , fm(x) ≤ 0,

hence the algorithm name.

Show that the method of centers works, i.e., x(k) converges to an optimal point. Find a
stopping criterion that guarantees that x is ǫ-suboptimal, where ǫ > 0.

Hint. The points x(k) are on the central path; see exercise 11.10. Use this to show that

u+ − p⋆ ≤
m+ θ

m+ 1
(u− p⋆),

where u and u+ are the values of u on consecutive iterations.
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11.12 Barrier method for convex-concave games. We consider a convex-concave game with
inequality constraints,

minimizew maximizez f0(w, z)
subject to fi(w) ≤ 0, i = 1, . . . ,m

f̃i(z) ≤ 0, i = 1, . . . , m̃.

Here w ∈ Rn is the variable associated with minimizing the objective, and z ∈ Rñ is
the variable associated with maximizing the objective. The constraint functions fi and f̃i

are convex and differentiable, and the objective function f0 is differentiable and convex-
concave, i.e., convex in w, for each z, and concave in z, for each w. We assume for
simplicity that dom f0 = Rn × Rñ.

A solution or saddle-point for the game is a pair w⋆, z⋆, for which

f0(w
⋆, z) ≤ f0(w

⋆, z⋆) ≤ f0(w, z
⋆)

holds for every feasible w and z. (For background on convex-concave games and functions,
see §5.4.3, §10.3.4 and exercises 3.14, 5.24, 5.25, 10.10, and 10.13.) In this exercise we
show how to solve this game using an extension of the barrier method, and the infeasible
start Newton method (see §10.3).

(a) Let t > 0. Explain why the function

tf0(w, z) −

m∑

i=1

log(−fi(w)) +

m̃∑

i=1

log(−f̃i(z))

is convex-concave in (w, z). We will assume that it has a unique saddle-point,
(w⋆(t), z⋆(t)), which can be found using the infeasible start Newton method.

(b) As in the barrier method for solving a convex optimization problem, we can derive
a simple bound on the suboptimality of (w⋆(t), z⋆(t)), which depends only on the
problem dimensions, and decreases to zero as t increases. Let W and Z denote the
feasible sets for w and z,

W = {w | fi(w) ≤ 0, i = 1, . . . ,m}, Z = {z | f̃i(z) ≤ 0, i = 1, . . . , m̃}.

Show that

f0(w
⋆(t), z⋆(t)) ≤ inf

w∈W

f0(w, z
⋆(t)) +

m

t
,

f0(w
⋆(t), z⋆(t)) ≥ sup

z∈Z

f0(w
⋆(t), z) −

m̃

t
,

and therefore

sup
z∈Z

f0(w
⋆(t), z) − inf

w∈W

f0(w, z
⋆(t)) ≤

m+ m̃

t
.

Self-concordance and complexity analysis

11.13 Self-concordance and negative entropy.

(a) Show that the negative entropy function x log x (on R++) is not self-concordant.

(b) Show that for any t > 0, tx log x− log x is self-concordant (on R++).

11.14 Self-concordance and the centering problem. Let φ be the logarithmic barrier function of
problem (11.1). Suppose that the sublevel sets of (11.1) are bounded, and that tf0 + φ is
closed and self-concordant. Show that t∇2f0(x) + ∇2φ(x) ≻ 0, for all x ∈ domφ. Hint.
See exercises 9.17 and 11.3.
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Barrier method for generalized inequalities

11.15 Generalized logarithm is K-increasing. Let ψ be a generalized logarithm for the proper
cone K. Suppose y ≻K 0.

(a) Show that ∇ψ(y) �K∗ 0, i.e., that ψ is K-nondecreasing. Hint. If ∇ψ(y) 6�K∗ 0,
then there is some w ≻K 0 for which wT∇ψ(y) ≤ 0. Use the inequality ψ(sw) ≤
ψ(y) + ∇ψ(y)T (sw − y), with s > 0.

(b) Now show that ∇ψ(y) ≻K∗ 0, i.e., that ψ is K-increasing. Hint. Show that
∇2ψ(y) ≺ 0, ∇ψ(y) �K∗ 0 imply ∇ψ(y) ≻K∗ 0.

11.16 [NN94, page 41] Properties of a generalized logarithm. Let ψ be a generalized logarithm
for the proper cone K, with degree θ. Prove that the following properties hold at any
y ≻K 0.

(a) ∇ψ(sy) = ∇ψ(y)/s for all s > 0.

(b) ∇ψ(y) = −∇2ψ(y)y.

(c) yT∇ψ2(y)y = −θ.

(d) ∇ψ(y)T∇2ψ(y)−1∇ψ(y) = −θ.

11.17 Dual generalized logarithm. Let ψ be a generalized logarithm for the proper cone K, with
degree θ. Show that the dual generalized logarithm ψ, defined in (11.49), satisfies

ψ(sv) = ψ(v) + θ log s,

for v ≻K∗ 0, s > 0.

11.18 Is the function

ψ(y) = log

(
yn+1 −

∑n

i=1
y2

i

yn+1

)
,

with domψ = {y ∈ Rn+1 | yn+1 >
∑n

i=1
y2

i }, a generalized logarithm for the second-

order cone in Rn+1?

Implementation

11.19 Yet another method for computing the Newton step. Show that the Newton step for the
barrier method, which is given by the solution of the linear equations (11.14), can be
found by solving a larger set of linear equations with coefficient matrix




t∇2f0(x) +

∑
i

1
−fi(x)

∇2fi(x) Df(x)T AT

Df(x) −diag(f(x))2 0
A 0 0





where f(x) = (f1(x), . . . , fm(x)).
For what types of problem structure might solving this larger system be interesting?

11.20 Network rate optimization via the dual problem. In this problem we examine a dual method
for solving the network rate optimization problem of §11.8.4. To simplify the presentation
we assume that the utility functions Ui are strictly concave, with domUi = R++, and
that they satisfy U ′

i(xi) → ∞ as xi → 0 and U ′

i(xi) → 0 as xi → ∞.

(a) Express the dual problem of (11.62) in terms of the conjugate utility functions
Vi = (−Ui)

∗, defined as
Vi(λ) = sup

x>0

(λx+ Ui(x)).

Show that domVi = −R++, and that for each λ < 0 there is a unique x with
U ′

i(x) = −λ.

(b) Describe a barrier method for the dual problem. Compare the complexity per iter-
ation with the complexity of the method in §11.8.4. Distinguish the same two cases
as in §11.8.4 (ATA is sparse and AAT is sparse).
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Numerical experiments

11.21 Log-Chebyshev approximation with bounds. We consider an approximation problem: find
x ∈ Rn, that satisfies the variable bounds l � x � u, and yields Ax ≈ b, where b ∈ Rm.
You can assume that l ≺ u, and b ≻ 0 (for reasons we explain below). We let aT

i denote
the ith row of the matrix A.

We judge the approximation Ax ≈ b by the maximum fractional deviation, which is

max
i=1,...,n

max{(aT
i x)/bi, bi/(a

T
i x)} = max

i=1,...,n

max{aT
i x, bi}

min{aT
i x, bi}

,

when Ax ≻ 0; we define the maximum fractional deviation as ∞ if Ax 6≻ 0.

The problem of minimizing the maximum fractional deviation is called the fractional
Chebyshev approximation problem, or the logarithmic Chebyshev approximation problem,
since it is equivalent to minimizing the objective

max
i=1,...,n

| log aT
i x− log bi|.

(See also exercise 6.3, part (c).)

(a) Formulate the fractional Chebyshev approximation problem (with variable bounds)
as a convex optimization problem with twice differentiable objective and constraint
functions.

(b) Implement a barrier method that solves the fractional Chebyshev approximation

problem. You can assume an initial point x(0), satisfying l ≺ x(0) ≺ u, Ax(0) ≻ 0, is
known.

11.22 Maximum volume rectangle inside a polyhedron. Consider the problem described in exer-
cise 8.16, i.e., finding the maximum volume rectangle R = {x | l � x � u} that lies in
a polyhedron described by a set of linear inequalities, P = {x | Ax � b}. Implement a
barrier method for solving this problem. You can assume that b ≻ 0, which means that
for small l ≺ 0 and u ≻ 0, the rectangle R lies inside P.

Test your implementation on several simple examples. Find the maximum volume rect-
angle that lies in the polyhedron defined by

A =





0 −1
2 −4
2 1

−4 4
−4 0




, b = 1.

Plot this polyhedron, and the maximum volume rectangle that lies inside it.

11.23 SDP bounds and heuristics for the two-way partitioning problem. In this exercise we
consider the two-way partitioning problem (5.7), described on page 219, and also in ex-
ercise 5.39:

minimize xTWx
subject to x2

i = 1, i = 1, . . . , n,
(11.65)

with variable x ∈ Rn. We assume, without loss of generality, that W ∈ Sn satisfies
Wii = 0. We denote the optimal value of the partitioning problem as p⋆, and x⋆ will
denote an optimal partition. (Note that −x⋆ is also an optimal partition.)

The Lagrange dual of the two-way partitioning problem (11.65) is given by the SDP

maximize −1T ν
subject to W + diag(ν) � 0,

(11.66)


