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I Gross-Pitaevskii Free Energy Functional (non-dimensional form)

E (u) =

∫
D

[
1

2
|∇u|2 + Ctrap |u|2 +

1

2
Cg |u|4 − iCΩ u∗At · ∇u

]
dx,

‖u‖2
2 =

∫
D
|u(x)|2 dx = 1, D ⊆ Rd

where

u =
ψ√

N x
−d/2
s

, ψ — wavefunction, ψ : D → C

N — number of atoms in the condensate

xs — characteristic length scale

At = [y ,−x , 0], Ctrap(x , y , z) — trapping potential

Cg ,CΩ — constants

I CΩ characterizes the effect of rotation
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I Sobolev space E : H1
0 (D)→ R

H1
0 (D) :=

{
u : D → C |

∫
D
|u|+ |∇u|2 dx <∞, u = 0 on ∂D

}
I Variational optimization

min
u∈H1

0 (D)
E (u)

subject to ‖u‖L2(D) = 1

I Minimizers constrained to a nonlinear manifold M in H1
0 (D)

M :=
{
u ∈ H1

0 (D) : ‖u‖L2(D) = 1
}

I Computational approaches:
I Euler-Lagrange equation for E (u) =⇒ nonlinear eigenvalue problem

I Direct minimization of E (u) via a gradient method
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I Steepest-gradient approach

u(n+1) = u(n) − τn∇E
(
u(u)

)
, n = 0, 1, . . . ,

u(0) = u0, (initial guess),

where:

ũ = lim
n→∞

u(n) — the minimizer (“ground state”)

∇E
(
u(u)

)
— gradient of E (u) at u(n)

τn = argminτ>0 E
(
u(n) − τ ∇E

(
u(u)

))
— optimal step size

I Key issues:
I Regularity of the minimizers ũ ∈ H1

0 (D) =⇒ Sobolev gradients

I Enforcement of the constraint ũ ∈M =⇒ Riemannian optimization
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I Gâteaux differential of the Gross-Pitaevskii Energy Functional

E ′(u; v) = lim
ε→0

ε−1 [E (u + εv)− E (u)] , u, v ∈ X

X — some function space

I Riesz Representation Theorem:
E ′(u; ·) bounded linear functional on X

=⇒ ∀v∈X E ′(u; v) =
〈
∇XE (u), v

〉
X

I Relevant inner products (Danaila & Kazemi 2010)

〈u, v〉L2
=

∫
D
〈u, v〉 dx, where 〈u, v〉 = uv∗

〈u, v〉H1 =

∫
D
〈u, v〉+ 〈∇u,∇v〉 dx

〈u, v〉HA
=

∫
D
〈u, v〉+ 〈∇Au,∇Av〉 dx, ∇A = ∇+ iCΩA

t
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I Different Sobolev gradients (X = L2,H
1,HA)

E ′(u; v) = <
〈
∇L2

E (u), v
〉
L2

= <
〈
∇H1

E (u), v
〉
H1

= <
〈
∇HAE (u), v

〉
HA

I The L2 gradient

∇L2

E (u) = 2

(
−1

2
∇2u + Ctrapu + Cg |u|2u − iCΩA

t · ∇u
)
,

I The Sobolev gradient G = ∇HAE (u) obtained from the L2 gradient
via an elliptic boundary-value problem (Danaila & Kazemi 2010)

∀v∈H1
0 (D)

∫
D

[(
1 + C 2

Ω(x2 + y2)
)
Gv +∇G · ∇v − 2iCΩA

t · ∇Gv
]
dx

=

∫
D

1

2
∇u · ∇v +

[
Ctrapu + Cg |u|2u − iCΩA

t · ∇u
]
v dx
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I Riemannian Optimization — an “intrinsic” approach with
optimization performed directly on the manifold M without reference
to the embedding space H1

0 (D)
I optimization problem becomes unconstrained

I can apply more efficient optimization algorithms (conjugate gradients,
Newton’s method)

I Riemannian structure at various levels:
I retraction back to the constraint manifold ⇐=

I vector transport along the constraint manifold ⇐=

I Riemannian metric on the constraint manifold

I Here the formulation made simple by the constraint ‖u‖L2(D) = 1

I Reference: P.-A. Absil, R. Mahony and R. Sepulchre, “Optimization
Algorithms on Matrix Manifolds”, Princeton University Press, (2008).
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I Projection of the gradient G on the tangent subspace TuM

Pun,HA
G = G − < (〈un,G 〉L2)

< (〈un, vHA
〉L2)

vHA
, where

〈vHA
, v〉HA

= 〈un, v〉L2 , ∀v ∈ HA

I There is some freedom in choosing the subtracted field (vHA
)

I Approach equivalent to constraint enforcement via Lagrange
multipliers
I Error in constraint satisfaction O(τn)
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I Retraction
Ru : TuM→M

maps a tangent vector ξ ∈ TuM back to the manifold M

B. Protas Ground States of GP Functional via Riemannian Optimization



Minimization of the Gross-Pitaevskii Energy Functional
Riemannian Optimization

Computational Results

First-Order Geometry
Second-Order Geometry
Riemannian Conjugate Gradients

I For our constraint manifold M

Ru(ξ) =
u + ξ

‖u + ξ‖L2(D)

retraction = normalization

I Riemannian steepest descent approach

un+1 = Run (τnPun,HA
G (un)) , n = 0, 1, 2, . . .

u0 = u0

where
τn = argminτ>0 E (Run(τPun,HA

G (un)))
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b

b

b

u
n−1 un+1 =

un−τnGn
‖un−τnGn‖2

un

−τ n
G n

(a)

b

b

b

u
n−1

un

−G
n

−τnPunGn

(b)

=Run(−τnPunGn)

un+1 =
un−τnPunGn

‖un−τnPunGn‖2

(a) The simple (“unprojected”) gradient method.

(b) The projected gradient (PG) method.
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I Consider minx∈RN f (x), where f : RN → R

I Nonlinear Conjugate Gradients Method

xn+1 = xn + τn dn, n = 0, 1, . . .

x0 = x0

I descent direction dn is defined as

dn = −gn + βn dn−1, n = 1, 2, . . .

d0 = −g0, gn = ∇f (xn)

I “momentum” coefficients βn ensure conjugacy of decent directions

βn = βFR
n :=

〈gn, gn〉X
〈gn−1, gn−1〉X

(Fletcher-Reeves),

βn = βPR
n :=

〈gn, (gn − gn−1)〉X
〈gn−1, gn−1〉X

(Polak-Ribiére)
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I In the Riemannian setting

gn−1,dn−1 ∈ Txn−1 and gn,dn ∈ Txn ,
hence cannot be added or multiplied ...

I Need a mapping between the tangent spaces Tun−1M and TunM

I Vector transport Tη(ξ) : TM× TM→ TM, ξ, η ∈ TM
describing how the vector field ξ is transported along the manifold M
by the field η
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I For our constraint manifold M:

I vector transport via differentiated retraction

Tηx (ξx) =
d

dt
Rx(ηx +tξx)

∣∣
t=0

=
1

‖x + ηx‖

[
Id − (x + ηx)(x + ηx)T

‖x + ηx‖2

]
ξx

I vector transport on Riemannian submanifolds (“parallel” transport)

Tηx (ξx) = PRx (ηx )ξx =

[
Id − (x + ηx)(x + ηx)T

‖x + ηx‖2

]
ξx

I The two definitions differ by a scalar factor only
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I Riemannian Conjugate Gradients

un+1 = Run (τn dn) , n = 0, 1, . . .

u0 = u0, where

dn = −Pun,HA
G (un) + βn T−τn−1dn−1(dn−1), n = 1, 2, . . .

d0 = −Pu0,HA
G

βn =

〈
Pun,HA

G (un),
(
Pun,HA

G (un)− T−τn−1dn−1Pun,HA
G (un−1)

) 〉
HA(D)〈

Pun,HA
G (un−1),Pun,HA

G (un−1)
〉
HA(D)

(Polak-Ribiére)

I Approach straightforward to implement
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b

b

u
n−1

un

−T−τn−1dn−1dn−1

(a)

b

u
n−1

un

−PunGn

(b)

−τ
n−

1
d n
−1 −G

n

−d
n−

1

b −βnT−τn−1dn−1dn−1

(a) Riemannian vector transport of the anterior conjugate
direction dn−1; the transport of the anterior gradient
Gn−1 is performed in a similar way.

(b) Projection of the new Sobolev gradient Gn onto the
tangent subspace TunM resulting in Pun,HA

Gn.
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I Implementation in FreeFEM++:
I P2 (piecewise quadratic) finite elements used to approximate the

solution u

I P4 (piecewise quartic) finite elements used to represent the nonlinear
terms in the gradients

I Discretization of domain D
I fixed triangulation

I Mesh I: 24,454 triangles with hmin = 0.0118

I Mesh II: 99,329 triangles with hmin = 0.0059

I Adaptive mesh refinement (Danaila & Hecht, 2010)

I Arc-search for optimal τn = argminτ>0 E (Run(−τdn))
using Brent’s method
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uex(x , y) = U(r) exp(imθ), U(r) =
2
√

21√
π

r2 (R − r)

R4
, m ∈ N

3D-rendering of the modulus |uex | color-coded with

(a) the modulus itself,

(b) the modulus itself and (b) the phase of the solution for m = 3.
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I Constants Ae and Au (Au ≈
√
Ae)

Mesh 1 Mesh 2

Ae

√
Ae Au Ae

√
Ae Au

(RG) 0.9167 0.9574 0.9496 0.9268 0.9627 0.9538

(RCG) 0.2909 0.5394 0.5275 0.2924 0.5408 0.5238

I Relation to the “condition number” κ (Euclidean case)
I simple gradients: Au = (κ− 1)/(κ+ 1)

I conjugate gradients: Au = (
√
κ− 1)/(

√
κ+ 1)

I Estimate κ from Au

I RG: κ ≈ 42.37

I RCG: κ ≈ 3.2

I Speed-up in the Riemannian Conjugate Gradient approach exceeds
the theoretical prediction!
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The step size τn in the Projected Gradient (PG) and Riemannian Gradient
(RG) methods exhibits oscillatory behavior

=⇒ iterates un trapped in long narrow “valleys”

steepest descent for the “banana function” (from Wikipedia)
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BEC trapped in a harmonic potential and rotating at low angular velocities

Ctrap = r2/2, Cg = 500, CΩ = 0.4

3D rendering of the atomic density ρ = |u|2 for:

(a) the initial guess u0 (Thomas-Fermi approximation)

(b) the converged ground state.
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I For comparison, semi-implicit backward Euler (BE) method to solve
the normalized gradient flow

ũ − un
δt

=
1

2
∇2ũ − Ctrapũ − Cg |un|2ũ + iCΩA

t · ∇ũ

un+1 =
ũ(tn+1)

‖ũ(tn+1)‖2
.

I Additional diagnostic quantities

angular momentum: L = i

∫
D
u∗At · ∇u dx

drift away from

the constraint manifold: δn =
∣∣1− ‖ûn‖L2(D)

∣∣
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Evolution of |φ| with iterations
Riemannian Conjugate-Gradient (RCG) Approach with Adaptive Grid Refinement
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Conclusions

I Riemannian approach accelerates solution of equality-constrained
optimization problems (computation of ground states in BEC)
I better performance than other first-order methods

I comparable performance to some second-order methods (Ipopt, which
however cannot take advantage of grid adaptation)

I Key enablers for Riemannian Conjugate Gradients:
I projections onto TunM
I retractions from TunM onto M,

I vector transport between Tun−1 and Tun
I Ongoing work:

I Riemannian metric on the constraint manifold

I Riemannian Newton’s method
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