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@ Multiblock optimization problem and BCD

© TITAN - an inertial block majorization minimization framework

© TITAN with composite surrogate and its application to matrix
completion

@ Numerical results
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Matrix completion

We would like to predict how much someone is going to like a product
based on their product preferences:
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Matrix completion

Given a data matrix A € R™*" and a positive integer r (factorization rank),
we would like to find U € R™*" and V € R"™*" by

1
[ ZIP(A = UV)||2 + R(U, V
UeRmmj\r}eRrxn{sz( )”F + ( ) )}7

where R is a regularization term, and P(Z); = Zj; if A is observed and is
equal to 0 otherwise.
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Nonnegative Matrix Factorization (NMF)

Given a data matrix X € R™*" and a positive integer r, find

1 1
min ~IX — WH||% := = X — WH)3.
W R TR 2|| I3 > ZJ:( i
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Nonnegative Matrix Factorization (NMF)

Given a data matrix X € R™*" and a positive integer r, find

1 1
min ~IX — WH||% := = X — WH)3.
W R TR 2|| I3 > ZJ:( i

@ NMF can be rewritten as Vn\}llr-]/ f(W,H) + g1(W) + g2(H),

where f(W, H) = 1||X — WH||Z, g1(W) = Tgmxr (W), and
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Nonnegative Matrix Factorization (NMF)

Given a data matrix X € R™*" and a positive integer r, find

1 1
min ~IX — WH||% := = X — WH)3.
W R TR 2|| I3 > ZJ:( i

e NMF can be rewritten as Vn\}llr-]/ f(W,H)+ g1(W) + g2(H),
where f(W, H) = 1||X — WH||Z, g1(W) = Tgmxr (W), and

o NMF: min f(W;,H;)+Zg,(W)+ Z gi(H.),
iyHi: i=1 i=r+1

where f(W,;, H;.) = 3||X — ZWH HF gi(W.) = Ipm(W5),
i=1,...,r, and g+ (Hi.) = IRn(H) i=1,.
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Multiblock optimization problem

min F(x):=f(x1,. .y xm) + Zg,—(Xf) (1)
i—1

subjectto x; € Xjfori=1,...,m,
where
@ X is a closed convex set of a finite dimensional real linear space E;,
@ x can be decomposed into m blocks x = (xi, ..., xm) with x; € A7,
@ f: X — R is continuous but possibly non-smooth non-convex,

@ g;(+) is a proper and lower semi-continuous function (possibly with
extended values), and

@ we assume domg; N X is a non-empty closed set and F is bounded
from below.

We denote by X :=[]/Z; &.
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Block Coordinate Descent Methods

Multiblock optimization problem

mXin F(x) :=f(x1,...,xm)+ Zgi(xi)

subjectto x; € Xjfori=1,...,m.

1: Initialize: Choosing initial point x° and other parameters.
2: for k=0,...do

33 fori=1,..., mdo
4: Fix the latest values of the blocks j # i:
(Xerl, .. ,Xik_ﬁl,x,-,xikﬂ, e ,x,l;,)
5: Update block i to get (x; ™, ..., x/ 1 x[ T xk Lo xK)
6: end for
7: end for
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Block Coordinate Descent Methods

Denote f,-k(x,-) =f (x{‘*l, e ,xf‘_ﬁl,x;,x,ﬁl, e ,x,’;). BCD methods can
typically be classified into three categories:
@ Classical BCD (also known as Alternating Optimization) methods
update each block of variables as follows

xKT € argmin £5 (%) + g (i) .
X,'EX,‘

@ Proximal BCD methods update each block of variables as follows

k+1
i

2
€ argmin f,-k (x;) + + gi (xi) .

X;EX

1
P
243!

© Proximal gradient BCD methods update each block of variables as
follows

1
xl.’”rl € argmin f,-k (x,-k) + <Vf,-k (x,-k),x,- - ,-k> + ’
X €X; 2Bl

12
Xj — Xj ' +gi (xi).
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Block surrogate function

Given y € X, a function u;(-,y) : Xi — R is called a block i surrogate

function of f if uj(x;, y) is lower semi-continuous in x; and the following
conditions are satisfied:

(a) uilyi,y) = f(y),
(b) wi(xi,y) = f(xi,yxi) for all x; € X, where

f(th;ﬁi) = f(yla s Vi1, Xih Yidly - - - 7Ym)-
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Block surrogate function

Given y € X, a function u;(-,y) : Xi — R is called a block i surrogate

function of f if uj(x;, y) is lower semi-continuous in x; and the following
conditions are satisfied:

(@) wilyi,y) = f(y),
(b) ui(xi,y) > f(xi, yxi) for all x; € X;, where

f(th;ﬁi) = f(yla s Vi1, Xih Yidly - - - 7Ym)-

Majorization-Minimization for Multiblock Optimization Problems:

m

iy f(x,- ., xm) + Zg,-(x,-).
i=1 )

Block MM update: x*™ ¢ argmin, ., ui(x;, x*'1) + gi(xi),

where xki = (Xf+17...,Xl-k+1,x,-/§r1,...,x,’§,) fori=1,...,m, x*0 = xk.
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Example. Suppose the block function x; — f(x;, y;) is L,(.y)—smooth. The
descent lemma gives us
L(Y)
f(xi, yzi) < f(Y)+<vif(Y),Xi—)/i>+IT||Xi_yiH2

uj(x;j,y)—Lipschitz gradient surrogate
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Example. Suppose the block function x; — f(x;, y;) is L,(.y)—smooth. The
descent lemma gives us
L(Y)
f(xi, yzi) < f(Y)+<vif(Y),Xi—)/i>+IT||Xi_yiH2

uj(x;j,y)—Lipschitz gradient surrogate

Proximal gradient BCD method: x™ € argmin, . ui(xi, x*"1) + gi(x;).
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Example. Suppose the block function x; — f(x;, y;) is L,(.y)—smooth. The
descent lemma gives us

L(Y)
fOxi,yei) < F(y) + (Vif (), xi — i) +’7||X;—y;!|2

uj(x;j,y)—Lipschitz gradient surrogate

Proximal gradient BCD method: x™ € argmin, ¢y, ui(x;, x*1) + gi(x;).

Proximal gradient BCD for NMF
min F(W, H) + Zgmxr (W) + Zyoxn(H), where £(W, H) = 3 || X — WH)|=.
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Example. Suppose the block function x; — f(x;, y;) is L,(.y)—smooth. The
descent lemma gives us
L(Y)
f(xi, yzi) < f(Y)+<vif(Y),Xi—)/i>+IT||XI_YIH2

uj(x;j,y)—Lipschitz gradient surrogate
Proximal gradient BCD method: x™ € argmin, ¢y, ui(x;, x*1) + gi(x;).
Proximal gradient BCD for NMF

le f(W,H) —|—IRTXr(W) —|—IRr+Xn(H), where f(W,H) = 5 || X — WH|£.
Proximal gradient BCD for NMF:

1
WK = max { W* — vaf(wk, H*),0},

1
HEE = max {H* — 2 Vif(WHE, HY), 0}
2
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Proximal gradient BCD for MCP

MCP: min (U, V) +R(U, V),
UERmMXr \/cRrxn

where ¢(U, V) = 3||P(A— UV)||?, and we take

R(U, V)! = )\(Z (1 — exp(—0]|uy])) + Z (1- exp(70|v,-j|))).

ij ij

P. S. Bradley and O. L. Mangasarian. Feature selection via concave minimization and support vector

machines. In Proceeding of international conference on machine learning ICML’'98, 1998.
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Proximal gradient BCD for MCP

MCP: min P(U, V) +R(U, V),

UERmXr,VgRrxn
where ¢(U, V) = 3||P(A— UV)||?, and we take
R(U, V)! = )\(Z (1 — exp(—0]|uy])) + Z (1- exp(70|v,-j|))).
] i

Proximal gradient BCD for MCP:

Lk
k+1 - k y/k Ly /)2 _ Al
U<+ e argmdn<VU1/J(U LV, U) + 5 lU— U] + A E (1 exp( 0|u,1|))

)

Lk
VL € argmin (Vyp(UH V9, V) 4+ 2V = VAP0 (1 - exp(—9|v,~j|)>

U]

P. S. Bradley and O. L. Mangasarian. Feature selection via concave minimization and support vector
machines. In Proceeding of international conference on machine learning ICML’'98, 1998.
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@ Can we design a block MM algorithm with convergence
guarantee, which applied to MCP have closed-form updates?

@ Can we incorporate acceleration techniques into block MM
algorithms?
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Iner al Block Majoriza ion Minimiz tio

TITAN with cyclic update

Require: Choose x71,x% € X (x~! can be chosen equal to x°).
Ensure: x* that apprOX|mate|y solves (1).

1: for k=0,1,...do
2. for i=1,..,mdo

3: Choose a block i surrogate function u; of f and an extrapolation
gk( I ) Ik ' )
4: Update block i by

XikJrl € argmin ui(Xl'vka_l) - <gik(Xik7Xik71)>Xf> +gi(Xi)' (2)

X, EX
5. end for
6:  Set xkt1l = xkm
7: end for

20/43



Example. Suppose x; — f(x;, yi) is Lsy)—Lipschitz smooth. Lipschitz gradient

ng
surrogate: ui(xi,y) = f(y) + (Vif(y),xi —y;) + = 5 |[xi — yill2.
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Example. Suppose x; — f(x;, yi) is Lgy)—Lipschitz smooth. Lipschitz gradient

ng
surrogate: ui(x;,y) = f(y) + (Vif(y), xi — yi) + £ > Ixi — yill.

Proximal gradient BCD: x™ € arg mi/r‘} ui(xi, x5 1) + gi(xq).
Xi €EXj
TITAN: X,-k” € arg nélérc/ ui(xi, x<1 1) — (g,-k(xik,xffl),x,) + gi(x)-
Xi i
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Example. Suppose x; — f(x;, yi) is L,(-y)—Lipschitz smooth. Lipschitz gradient
surrogate: ui(x;,y) = f(y) + (Vif(y), xi — yi) il

Proximal gradient BCD: x™ € arg mel/r‘} ui(x;, x* 1) + gi(x;).

TITAN: Xk’ € arg ml‘;l‘l u;i(x, X9 — (GR(xK, ,k 1),X,->—|—g,-(x,-).
X €X;

Let X; = E; and
G xf 1) = Vif (k1) = V(5 70) 4 w51 — 5t ),

I ? I
where XK = x¥ 4 7F(xk — xF71), 7K, B¥ are some extrapolation parameters and

Lk = L(X

kyi— 1)
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Example. Suppose x; — f(x;, yi) is Lsy)—Lipschitz smooth. Lipschitz gradient
surrogate: ui(x;,y) = f(y) + (Vif(y),xi — yi) |2

Proximal gradient BCD: x™ € arg m|2 ui(xi, X971 + gi(x).
€

TITAN: Xk' € arg ml‘;l‘l u;i(x, X9 — (GR(xK, ,k 1),X,->—|—g,-(x,-).
X €X;

Let X; = E; and
G(xf Xt ) = Vi (1) — Wif (6 i) il B (e — ),
K

where X/ = x¥ 4+ 7K(xk — x}71), 7/, 3K are some extrapolation parameters and

Lh— (67,
Proximal gradient BCD:
,L
xKT1 € argmin <V f(xK ,x;' 1),X,-> + o % — Xk||2 + gi(x)-
TITAN:
iLk
L ¢ argmin <V f(x, ,x;' 1),X,-> + %Hx,- — A,.’(H2 + gi(x),

Xi

ok _ ok o k(yk _ k=1 ok ok 1 pk(yk _ k=1
where X = x/ + 77 (x — x ") and X = x* + 57 (x — x* 7).

v
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Lipschitz gradient surrogate:

n,-L(.Y)
ui(xi,y) = f(y) + (Vif(y),xi — yi) + “5—|Ixi — yil|>.

Proximal gradient BCD: x,.kJrl € arg rry)r} ui(xi, x11) + gi(x).
Xi i
TITAN: x" € arg min u;(x;, x7) — (GF (x/f XK1, xi) + gi(xi)-

P\
Xi €A
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Lipschitz gradient surrogate:

ui(xi,y) = f(y) + (Vif (), xi — yi) ill2.

Proximal gradient BCD: x/*! € arg m|)r} ui(x;, x*1 1) + gi(x;)-

Xi€Xj

TITAN: xl-k’i € arg ml)r} wi(xj, x¥1 1) — (G (xK, xK71), xi) + gi(xi).

I 127
Xlel

Let X; = [E; and
GE = ok (ViF(x 1 XYy — WM 0) 4 i LA B (o — xE7Y),

where a, and Blk are some extrapolation parameters.
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Lipschitz gradient surrogate:

ui(xi,y) = f(y) + (Vif (), xi — yi) ill2.

Proximal gradient BCD: x<™! € arg m|)r} ui(xi, x5 + gi(x0).
Xj €A

TITAN: x" € arg ml)r} ui (X3, X171 — (GR (XK, X1, xi) + gi(x).

127
Xlel

Let X; = [E; and
GE = ok (ViF(x 1 XYy — WM 0) 4 i LA B (o — xE7Y),

where a, and 6,4( are some extrapolation parameters.

TITAN: Inertial Block Proximal with Hessian damping [2] @
! ¢ argmin (Vi (xF90) + 0 (ViF(1) = V(e i) )

e

o = O+ BECE = D) + &),

3[2] S. Adly and H. Attouch. Finite convergence of proximal-gradient inertial algorithms combining
dry friction with Hessian-driven damping. SIAM Journal on Optimization, 30(3):2134— 2162, 2020.
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Main results (see @Em@@s® for details)

@ Sub-sequential convergence.
@ Global convergence.
@ TITAN with proximal surrogate functions.
@ TITAN with Lipschitz gradient surrogate functions.
o TITAN recovers the Nesterov type acceleration as in [5, 6]. 2 3
e TITAN recovers the inertial block proximal gradient method that uses
two different extrapolation points in [4].
o TITAN leads to a new inertial block proximal gradient algorithm with
Hessian damping, that is a multiblock version of [7]. *
e TITAN with Bregman surrogate functions.
@ TITAN with quadratic surrogate functions.
@ TITAN leads to new inertial multi-block algorithms with composite

surrogate functions.

2
[5] Y. Xu and W. Yin. A block coordinate descent method for regularized multiconvex optimization with
applications to nonnegative tensor factorization and completion. SIAM Journal on Imaging Sciences,
6(3):1758-1789, 2013.
[6] Y. Xu and W. Yin. A globally convergent algorithm for nonconvex optimization based on block coordinate
update. Journal of Scientific Computing, 72(2):700-734, 2017.
4[7] S. Adly and H. Attouch. Finite convergence of proximal-gradient inertial algorithms combining dry friction
with Hessian-driven damping. SIAM Journal on Optimization, 30(3):2134— 2162, 2020.
28 /43


https://arxiv.org/abs/2010.12133

TITAN with composite surrogate

Problem: min f(x) + g(x), where f(x) = ¥(x) + ¢(r(x)), and
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TITAN with composite surrogate

Problem: min f(x) + g(x), where f(x) = ¥(x) + ¢(r(x)), and

@ Y : X — R is possibly nonsmooth nonconvex, which has block
surrogate functions uw(x,-,y), i=1,...,m,

i
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TITAN with composite surrogate

Problem: min f(x) + g(x), where f(x) = ¥(x) + ¢(r(x)), and

@ Y : X — R is possibly nonsmooth nonconvex, which has block

surrogate functions u}p(x,-,y), i=1,...,m,

o r={(rn,...,rm), where r; : X; — Y; C F; are Lipschitz continuous
(that is, ||ri(xi) — ri(yi)|l < L ||xi — yil| for xi,yi € Xi) and F;
(i=1,...,m) are finite dimensional real linear spaces, and
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TITAN with composite surrogate

Problem: min f(x) + g(x), where f(x) = ¥(x) + ¢(r(x)), and

@ Y : X — R is possibly nonsmooth nonconvex, which has block

surrogate functions u}p(x,-,y), i=1,...,m,

o r={(rn,...,rm), where r; : X; — Y; C F; are Lipschitz continuous
(that is, ||ri(xi) — ri(yi)|l < L ||xi — yil| for xi,yi € Xi) and F;
(i=1,...,m) are finite dimensional real linear spaces, and

@ ¢:Y: =1 X...xYn— Ry is a continuously differentiable and
block-wise concave function with Lipschitz gradient on the image of r.
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TITAN with composite surrogate

Problem: min f(x) + g(x), where f(x) = ¥(x) + ¢(r(x)), and

@ Y : X — R is possibly nonsmooth nonconvex, which has block
surrogate functions u}p(x,-,y), i=1,...,m

o r={(rn,...,rm), where r; : X; — Y; C F; are Lipschitz continuous

( ri(xi) — ri(yi)|l < Lyl[xi — yill for xi,yi € &i) and F;

(i=1,...,m) are finite dimensional real linear spaces, and

@ ¢:Y: =1 X...xYn— Ry is a continuously differentiable and
block-wise concave function with Lipschitz gradient on the image of r.

Composite surrogate function for f:

ui(xi,y) = o} (xi.y) + 6(r(y)) + (Vid(r(y)), i) = ri()).
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Problem: mXin f(x) + g(x), where f(x) = ¥(x) + ¢(r(x)).
Composite surrogate for f:

ui(xi, y) = uf (i, ) + S(r(y)) + (Vig(r(y)), ri(xi) = ri(yi))-
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Problem: min f(x) 4+ g(x), where f(x) = ¥(x) + ¢(r(x)).
Composite surrogate for f:

ui(xi,y) = uf' (xi,y) + o(r(y)) + (Vig(r(y)), ri(xi) — ri(v))-

TITAN for the case v is block-wise Lipschitz smooth

Suppose X; — (Xj, y+i) is Lgy)—Lipschitz smooth. We choose Lipschitz
gradient surrogate for ¢» and take G¥ as

G (K, XE71) = Vip(xi=2) = T i(RE, ™)+ LEBI (e = 57,

TITAN:

k
xlkJr = argmin <V Y(RE, k' 1),x,-> + %HXi - A,kH
Xi

+ <Vf¢(f(xk’i_1))> ri(xi)) + &i(xi),

sk _ ok o _k( k _ k=1 ok — ok 4 gk(yk _ k=1
where X = x{ + 77(x — X7 7) and X = x 4+ B (x — X 7).
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Applying TITAN to solve MCP.

Recall - MCP

MCP solves min (U, V)+R(U, V),
UERMXr \/cRrxn

where ¥(U, V) = |P(A - UV)|%, and

R(U, V) = A( D (1 - exp(~Bluy)) + > - exp(—0]vy ) ).

y U
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Applying TITAN to solve MCP.

Recall - MCP

MCP solves min (U, V)+R(U, V),
UERMXr \/cRrxn

where ¥(U, V) = |P(A - UV)|%, and

R(U. V) = A2 (1~ exp(—bluzl)) + 3 (1~ exp(~blv3)) ).

y U

- We observe that 1) is block-wise Lipschitz smooth and R = ¢ o r, where
¢ and r are given by

o(U,V) = )\(Zij (1 — exp(—9u,-j)) + Zu (1 — exp(—0v,-j))), 3)
r(U,V) = (n(U),n(V))=(U],|V]),

- Hence, we select the Lipschitz gradient surrogate for 1) and the composite
surrogate function for f =) + ¢ or.
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TITAN for MCP.
Update of U:

. - Lk -
Ukt — arglznln (Vuyp(UF, V), U) + 71||U — UM 4 (Vuo(r(UX, V), U],

= Syt (P*, Vuo(r(US, V9))),
where
L = VAV, 0F = UF 4 U = UF0), P = O = (04, V)
and S, is the soft-thresholding with parameter 7:
S (P, W) = [Ipy| — 7wi]+sign(pj)-

Update of V:
Vk+1 _ Sl/L; (Qk,VV¢(r(Uk+1, Vk))) ,

where

_ 1 _ _
LI2< — ||(Uk+1)TUk+l||, Qk — Vk_ﬁvvw(uk-}—l, \/k)7 Vk _ Vk+5é<(vk_vk—1).
In our experiments, we choose 2

C =0.99992, 110 = 1, pu = (1 + \/m)’
g = min { =ty Je(—w)L ik}
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Datasets and code

@ The code is available from https://github.com/nhatpd/TITAN.

Table: The number of users, items, and ratings used in each data set.

Data set #users  Fitems #ratings
MovielLens 1M 6,040 3,449 999,714
v 10M 69,878 10,677 10,000,054

Netflix 480,189 17,770 100,480,507
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https://github.com/nhatpd/TITAN

netflix movielensim
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Figure: TITAN and PALM applied on the MCP. Evolution of the average value of the root mean squared error

RMSE = \/||P1(A — UV)||2/Nt, where P1(Z);j = Z;j if Ajj belongs to the test set and 0 otherwise, Nt is the
number of ratings in the test set.
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@ TITAN for solving multiblock optmization problems:

Xt e arger?(i“ i (i, X' — (G (X)) + gilxi).
Xi i

@ TITAN unifies the convergence analysis of many known accelerated
block coordinate descent methods.

@ TITAN leads to new accelerated block coordinate descent methods.

o Extend TITAN for solving multiblock optimization problems with
linear coupling constraint.

@ Applications to NMF, MCP and a latent low-rank representation
problem strongly confirm the acceleration effect of inertial technique.
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THANK YOU FOR YOUR ATTENTION.
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