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Recall that for a convex function f : IRn → IR = [−∞,∞] and parameter
value r > 0, the proximal mapping of f , denoted by proxrf , is defined by

proxrf (x) = argmin
w∈IRn

{
f(w) + 1

2r‖w − x‖
2
}
, x ∈ IRn.

When f = δC , namely the indicator function of a convex set C ⊂ IRn,
this mapping reduces to he projection mapping of C, defined by

PC(x) = argmin
{
‖w − x‖2

∣∣ w ∈ C}, x ∈ IRn.

• Question. At what points is PC is continuously differentiable (C1)? 1

1“In spite of the elementary formulation of this question, a full answer is so far unknown.” J.-B.
Hiriart-Urruty, At what points is the projection mapping differentiable? Amer. Math. Monthly
89(7), 456–458 (1982) 4



What we know so far:

• The projection mapping PC may fail to be differentiable in general2.
For instance, assume that C is the unit ball and x is a vector that
‖x‖ = 1. Then PC fails to be continuously differentiable at x.

x

2R.B. Holmes, Smoothness of certain metric projections on Hilbert space. Trans. Amer.
Math. Soc. 183, 87–100 (1973) 5



What we know so far:

• R. Holmes 3 studied the smoothness of projection mapping onto a
closed convex set in Hilbert spaces. His main result states that if
C ⊂ IRn is a closed convex set, x ∈ IRn, the boundary of C is a C2

smooth manifold around y = PC(x), then the projection mapping PC is
C1 in a neighborhood of the open normal ray {y + t(x− y)| t > 0}.

x

C

y = PC(x)

x− y

• When the projection point y is a corner point, Holmes’s result fails
because the boundary of C is not a C2 smooth manifold around y.

3R.B. Holmes, Smoothness of certain metric projections on Hilbert space. Trans. Amer.
Math. Soc. 183, 87–100 (1973) 6



What we know so far:

Theorem. (Facchinei-Pang4) Assume that C is a polyhedral convex set.
Then the projection mapping PC is differentiable at x if and only if
x− y ∈ riNC(y)5, where y = PC(x).

x

C

y = PC(x)

x− y

• PC is not differentiable at y since 0 /∈ riNC(y).

4F. Facchinei, J.-S. Pang, Finite-Dimesional Variational Inequalities and Complementarity
Problems. Springer New York, New York (2003)

5NC(x̄) =
{

v ∈ IRn|〈v, x− x̄〉 ≤ 0 for all x ∈ C
}
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What we know so far:

• The projection mapping PC is always directionally differentiable if
we assume a second-order regularity on C such as parabolic
regularity 6. Recall that a function g : IRn → IRm is directionally
differentiable at x̄ if the following limit exists for any w ∈ IRn:

lim
t↓0

g(x̄+ tw)− g(x̄)
t

.

• We likely need a second-order regularity to ensure continuous
differentiability of the projection mapping onto a closed convex
(prox-regular) set.

6A. Mohammadi, B.S. Mordukhovich and M.E. Sarabi, Parabolic regularity via geometric
variational analysis. Trans. Amer. Soc. 374(3), 1711–1763 (2021) 8
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What we know so far:

Assume that C ⊂ IRn is a C2 smooth manifold around a point x̄ ∈ C,
meaning that there exists a neighborhood O of x̄ on which C has the
representation

C ∩O =
{
x ∈ O|Φ(x) = 0

}
,

where Φ : IRn → IRm is a C2 function with ∇Φ(x̄) having full rank.

• It is well-known that the projection mapping PC is locally
single-valued and Lipschitz continuous and directionally
differentiable.
• Lewis and Malick 7 showed that PC is C1 around x̄.

7 A.S. Lewis and J. Malick, Alternating projections on manifolds, Math. Oper. Res., 33
(2008) 216–234. 9
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• Given C ⊂ IRn and x̄ ∈ C, recall that the tangent cone and the
adjacent cone to C at x̄ are defined, respectively, by

TC(x̄) = lim sup
t↓0

C − x̄
t

8 and AC(x̄) = lim inf
t↓0

C − x̄
t

9,

where both limits are understood in the sense of Painlevé-Kuratowski.

• Clearly we always have AC(x̄) ⊂ TC(x̄).
• Definition. Suppose that f : IRn → IR is a convex function and
(x̄, v̄) ∈ gph ∂f . We say ∂f is proto-differentiable at x̄ for v̄ if

Agph ∂f (x̄, v̄) = Tgph ∂f (x̄, v̄),

where
gph ∂f =

{
(x, v) ∈ IRn × IRn| v ∈ ∂f(x)

}
.

8TC(x̄) = {w ∈ IRn| ∃ tk↓0, wk → w as k →∞ with x̄ + tkwk ∈ C}
9AC(x̄) = {w ∈ IRn| ∀ tk↓0 ∃wk → w as k →∞ with x̄ + tkwk ∈ C} 11
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Theorem.( Rockafellar10 (1990)). Suppose that f : IRn → IR is a proper
convex function and (x̄, v̄) ∈ gph ∂f . Then the following properties are
equivalent:

• ∂f is proto-differentiable at x̄ for v̄;
• proxf is directionally differentiable at x̄+ v̄.

The proof is based on the identity

proxf = (I + ∂f)−1,

which holds for any convex functions.

Proto-differentiability holds for
many important sets and functions including

• polyhedral convex sets, the second-order cone, the cone of positive
semidefinite symmetric matrices;
• polyhedral functions; convex piecewise linear-quadratic functions,
spectral functions.

10R.T. Rockafellar, Generalized second derivatives of convex functions and saddle functions.
Trans. Amer. Math. Soc. 322(1), 51–77 (1990) 12
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• Given C ⊂ IRn and x̄ ∈ C, recall that the paratingent cone and the
regular (Clarke) tangent cone to C at x̄ are defined, respectively, by

T̂C(x̄) = lim sup
x→x̄t↓0

C − x̄
t

and T̃C(x̄) = lim inf
x→x̄,t↓0

C − x
t

,

where both limits are understood in the sense of Painlevé-Kuratowski.

• Clearly we always have T̃C(x̄) ⊂ T̂C(x̄).
• Definition. Suppose that f : IRn → IR is a convex function and
(x̄, v̄) ∈ gph ∂f . We say ∂f is strictly proto-differentiable 11 at x̄ for
v̄ if

T̂gph ∂f (x̄, v̄) = T̃gph ∂f (x̄, v̄).

11Poliquin, R.A., Rockafellar, R.T.: Prox-regular functions in variational analysis . Trans. Amer.
Math. Soc. 348(5), 1805–1838 (1996) 14
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Theorem.( Poliquin-Rockafellar12 (1996)). Suppose that f : IRn → IR is
a proper convex function and (x̄, v̄) ∈ gph ∂f . Then the following
properties are equivalent:

• ∂f is strictly proto-differentiable at x for v for any (x, v) ∈ gph ∂f
sufficiently close to (x̄, v̄);
• for any r > 0, proxrf is continuously differentiable in a
neighborhood of x̄+ rv̄.

Poliquin-Rockafellar showed that this result holds for prox-regular
functions at x̄ for v̄ = 0 provided that x̄ ∈ argmin f . It is, however,
possible to show that the latter condition can be dropped using the
stability properties of generalized equations.13.

Question. When does strict proto-differentiability hold?

12R.A. Poliquin and R.T. Rockafellar: Generalized Hessian properties of regularized nonsmooth
functions. SIAM J. Optim. 6(4), 1121–1137 (1996)

13N.T.V Hang and M. E. Sarabi, A Chain Rule for Strict Twice Epi-Differentiability and its
Applications, arXiv:2209.01489 (2022). 15
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Recall that f : IRn → IR is called polyhedral if epi f is a polyhedral
convex set. Important examples of polyhedral functions include

• the indicator function of a polyhedral convex set;
• f(x) = max{〈ai, x〉+ αi| i = 1, . . . ,m} with ai ∈ IRn and
αi ∈ IR.

Theorem.( Hang-S14 (2022)). Suppose that f : IRn → IR is a
polyhedral function and (x̄, v̄) ∈ gph ∂f . Then the following properties
are equivalent:

• ∂f is strictly proto-differentiable at x for v for any (x, v) ∈ gph ∂f
sufficiently close to (x̄, v̄);
• v̄ ∈ ri ∂f(x̄).

14N.T.V Hang and M. E. Sarabi, A Chain Rule for Strict Twice Epi-Differentiability and its
Applications, arXiv:2209.01489 (2022). 16
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Theorem.(Hang-S15 (2022)). Suppose that f : IRn → IR is a polyhedral
function and (x̄, v̄) ∈ gph ∂f . Then the following properties are
equivalent:

• for any r > 0, proxrf is continuously differentiable in a
neighborhood of x̄+ rv̄;
• v̄ ∈ ri ∂f(x̄).

Corollary. (Hang-S (2022)). Assume that C ⊂ IRn is a polyhedral
convex set and x ∈ IRn. Then PC is continuously differentiable in a
neighborhood of x if and only if x− y ∈ riNC(z), where y = PC(x).

15N.T.V Hang and M. E. Sarabi, A Chain Rule for Strict Twice Epi-Differentiability and its
Applications, arXiv:2209.01489 (2022). 17
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For the polyhedral set C, PC is continuously differentiable at x̄+ v̄1 but
is not continuously differentiable at x̄+ v̄2.

C

NC(x̄)
x̄

v̄1

v̄2

18



• Similar results16 were established recently for the composite function

f ◦ Φ,

where f is a polyhedral function and Φ is a C2 function, and the
constraint qualification

par{∂f(Φ(x̄))}17 ∩ ker∇Φ(x̄)∗ = {0}

is satisfied at x̄ ∈ IRn with Φ(x̄) ∈ dom f .

• The condition above boils down to the classical linear independent
constraint qualification when f = δIRm

−×{0}n−m with 0 ≤ m ≤ n.
• This composite function is prox-regular and thus its proximal
mapping is locally single-valued and Lipschitz continuous.18.

16N.T.V Hang and M. E. Sarabi, A Chain Rule for Strict Twice Epi-Differentiability and its
Applications, arXiv:2209.01489 (2022).

17the linear subspace parallel to the affine hull of ∂f(Φ(x̄)).
18 R.A. Poliquin and R.T. Rockafellar, Prox-regular functions in variational analysis . Trans.

Amer. Math. Soc. 348(5), 1805–1838 (1996) 19
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Theorem.( Hang-S (2022)). Given the composite function g = f ◦ Φ
with (x̄, v̄) ∈ gph ∂g, the following properties are equivalent:
• ∂g19 is strictly proto-differentiable at x for v for any
(x, v) ∈ gph ∂g sufficiently close to (x̄, v̄);
• v̄ ∈ ri ∂g(x̄).

Theorem( Hang-S (2022)). For the composite function g = f ◦ Φ with
(x̄, v̄) ∈ gph ∂g, the following properties are equivalent:

• v̄ ∈ ri ∂g(x̄);
• for any r > 0 sufficiently small, the proximal mapping proxrg is
continuously differentiable in a neighborhood of x̄+ rv̄.

19the limiting subdifferential of g 21
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Assume that C ⊂ IRn is fully amenable around a point x̄ ∈ C, meaning
that there exists a neighborhood O of x̄ on which C has the
representation

C ∩O =
{
x ∈ O|Φ(x) ∈ Θ

}
,

where Φ : IRn → IRm is a C2 function and Θ ⊂ IRm is a polyhedral
convex set, and the condition

span{NC(Φ(x̄))}20 ∩ ker∇Φ(x̄)∗ = {0}

holds.

Theorem( Hang-S (2022)). For a fully amenable set C with
(x̄, v̄) ∈ gphNC , the following properties are equivalent:

• v̄ ∈ riNC(x̄);
• for any r > 0 sufficiently small, the projection mapping PC is
continuously differentiable in a neighborhood of x̄+ rv̄.

20the linear subspace NC(Φ(x̄)). 22
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Example. Assume that C is the unit ball in IRn. Then C is full
amenable at every point x ∈ C since

C =
{
x ∈ IRn| Φ(x) ≤ 0

}
with Φ(x) = ‖x‖2 − 1.

If ‖x‖ = 1, then we have 0 /∈ riNC(x) and thus PC can’t be
continuously differentiable around x.

x
NC(x)

23
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Thank you for you attention!
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