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Huawei Mathematical Optimization Solver: OptVerse

Solves:
• Linear programming (simplex and interior-point)
• Mixed-integer linear programming
• Quadratic programming
• Black-box optimization

Supports Huawei’s global supply chain network:
• OptVerse solves LPs of millions of variables and constraints in minutes.

Hans Mittelmann open benchmark: http://plato.asu.edu/bench.html



Introduction and Motivation Dual Averaging for Decentralized Optimization Numerical Experiments Summary

Machine Learning for Optimization Solvers

• ML for configuration: black-box optimization + clustering
• Winner of 2021 NeurIPS ML4CO Competition Configuration Task

• ML for smart branching in B&B: GNN + Attention + Temporal
• Runner-up of 2021 NeurIPS ML4CO Competition Dual Task

• ML for cut-generation: CutRank + Multiple Instance Learning
• Average 15% speedup on our internal test set

• ML for basis selection: GNN + Filter Layer + Basis Repair
• Average 70% speedup on our supply chain LP problems



Introduction and Motivation Dual Averaging for Decentralized Optimization Numerical Experiments Summary

1 Introduction and Motivation

2 Dual Averaging for Decentralized Optimization

3 Numerical Experiments

4 Summary



Introduction and Motivation Dual Averaging for Decentralized Optimization Numerical Experiments Summary

Decentralized convex composite optimization

• Problem statement

min
θ

{
F (θ) :=

1

n

n∑
i=1

fi(θ) + h(θ)

}

I Agent-specific convex function: fi
I Common convex regularizer: h
I Decision variable: θ
I Agent/Machine: i ∈ [n]
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Multi-agent system

• Applications included in the framework

I Constrained optimization when h is a convex indicator function
I Sparse recovery when h is an l1-regularizer
I ...
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Decentralized structure of message-passing

Centralized distributed structure Decentralized structure

Advantages of the decentralized structure

• Balanced computation with each node

• Robustness to network change

• Preserved privacy
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Average consensus (Olfati-Saber and Murray, 2004)
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• Average Consensus

x
(t)
i =

∑
j∈Ni∪{i}

pijx
(t−1)
j

Lemma (Average Seeking)

If P is doubly stochastic and

x
(0)
i = ri, then

m∑
i=1

x
(t)
i =

m∑
i=1

ri,∀t ≥ 0.

In addition, if the graph is
connected, then

x
(∞)
i → θ∗ =

1

m

m∑
i=1

ri,∀i ∈ V
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Decentralized projected subgradient method

min
θ∈X

1

n

n∑
i=1

Fi(θ)⇔ min
xi∈X ,∀i∈V

1

n

n∑
i=1

Fi(xi), x1 = x2 = · · · = xn

• DPSM (Nedic and Ozdaglar, 2009)

y
(t)
i =

∑
j∈Ni∪{i}

pijx
(t−1)
j︸ ︷︷ ︸

average consensus

− at−1g
(t−1)
i︸ ︷︷ ︸

gradient search

x
(t)
i = projX (y

(t)
i )

I g
(t)
i ∈ ∂Fi(x

(t)
i ): one of the subgradients of Fi over x

(t)
i

I {at}t≥0: diminishing stepsize

I sublinear convergence
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A Summary of Research Directions

• Better rates: can decentralized algorithms achieve the nice
convergence rate of its centralized counterparts?

I first-order methods, second-order methods

• Handle more classes of functions
I smooth, non-smooth, composite

• Robust to more complicated communication networks
I fixed network, time-varying network, stochastic network
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Literature review

Deterministic network Stochastic network
Unconstrained GD+consensus (Linear) 1 2 GD+consensus (Linear) 3

Primal-dual methods (Linear) 4 5 Bregman method (O(1/t)) 6

Constrained/ Projected GD+consensus ( O(1/t)) 7 8 DA+consensus (O(1/
√
t))9

Composite Primal-dual methods (Linear) 10

Note: GD=Gradient descent, DA = Dual averaging

Can we develop a linearly convergent algorithm for decentralized
optimization with composite objective and stochastic network?

1Nedic et al., DSM for multi-agent optimization, TAC, 2009
2Qu and Li, Harness smoothness to accelerate DO, IEEE TCNS, 2017
3Xu et al., Convergence of asynchronous DGM over stochastic networks, TAC, 2017
4Yi et al., Linear convergence for DO without strong convexity, IEEE CDC, 2020
5Shi et al., On the linear convergence of ADMM in DO, IEEE TSP, 2014
6Xu et al., A Bregman splitting scheme for DO over networks, TAC, 2018
7Nedic et al., Constrained consensus and optimization, TAC, 2010
8Shi et al., A proximal gradient algorithm for DO, TSP, 2015
9Duchi et al., Dual averaging for distributed optimization, TAC, 2011

10Alghunaim et al., A linearly convergent PGM for DO, NeurIPS, 2019
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Can we use existing approaches to tackle this problem?

• Decentralized primal-dual algorithms (Jakovetic et al. 2015)

I Step 1: Reformulation via lifting

min
x1 ··· ,xn∈Rm

1

n

n∑
i=1

(fi(xi) + h(xi))

s.t.

consensus constraint︷ ︸︸ ︷
( L︸︷︷︸
a priori known

⊗I)([xT1 , · · · , xTn ]T ) = 0

I Step 2: Solve the linearly constrained optimization problem via
primal-dual algorithms (with coordinate change)

• When the network is random, i.e., L unknown, it does NOT fit in
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Can we use existing approaches to tackle this problem?

• Consensus-based decentralized gradient method (DGM) (Nedic
et al. 2010)

y
(t)
i =

∑
j∈Ni∪{i}

pijx
(t−1)
j − at−1g(t−1)i , x

(t)
i = argmin

x∈X

∥∥∥x− y(t)i ∥∥∥2
Observation
• In DGM, averaging is tightly coupled with projection and they do

NOT necessarily commute

Projection Average

Average Projection
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Centralized dual averaging

• Dual averaging for nonsmooth convex functions (Nesterov, 2009)

z(t) = z(t−1) + g(t−1), g(t−1) ∈ ∂F (θ(t−1)), θ(t) = argmin
θ∈X

{
at
〈
z(t), θ

〉
+ d(θ)︸︷︷︸

1
2‖θ‖2

}

• Dual averaging for smooth and (µ-strongly) convex functions (Lu et
al., 2018)

θ(t) = argmin
θ∈X

{ t−1∑
τ=0

aτ+1

(〈
∇f(θ(τ)), θ

〉
+
µ

2
‖θ − θ(τ)‖2

)
+ d(θ)

}

• Achieves linear convergence when µ > 0 (Lu et al., 2018)
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Decentralized dual averaging

• Decentralized dual averaging (DDA) (Duchi et al., 2011)

z
(t)
i =

∑
j∈Ni∪{i}

pijz
(t−1)
j + g

(t−1)
i , g

(t−1)
i ∈ ∂Fi(x(t−1)i )

x
(t)
i = argmin

θ∈X

{
at
〈
z
(t)
i , θ

〉
+ d(θ)

}

Projection
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DDA versus DPGM

• DDA

z
(t)
i =

∑
j∈Ni∪{i}

pijz
(t−1)
j + g

(t−1)
i

x
(t)
i = argmin

θ∈X

{
at
〈
z
(t)
i , θ

〉
+ d(θ)

}
• DPGM

y
(t)
i =

∑
j∈Ni∪{i}

pijx
(t−1)
j − at−1g(t−1)i

x
(t)
i = projX (y

(t)
i )

Comparison

• DDA equally weights the (sub)gradients obtained so far
• In DDA, consensus-building is decoupled from projection

I DDA has the advantange of handling stochastic networks and
nonsmoothness simultaneously

DDA and all later extensions considered nonsmooth problems, and have an
O(1/

√
t) rate of convergence
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DDA versus DPGM

• DDA

z
(t)
i =

∑
j∈Ni∪{i}

pijz
(t−1)
j + g

(t−1)
i

x
(t)
i = argmin

θ∈X

{
at
〈
z
(t)
i , θ

〉
+ d(θ)

}
• DPGM

y
(t)
i =

∑
j∈Ni∪{i}

pijx
(t−1)
j − at−1g(t−1)i

x
(t)
i = projX (y

(t)
i )

Comparison

• DDA equally weights the (sub)gradients obtained so far
• In DDA, consensus-building is decoupled from projection

I DDA has the advantange of handling stochastic networks and
nonsmoothness simultaneously

DDA and all later extensions considered nonsmooth problems, and have an
O(1/

√
t) rate of convergence
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Speeding up DDA

• Decentralized composite optimization

min
θ

{ 1

n

n∑
i=1

fi(θ)︸ ︷︷ ︸
f : smooth

+ h(θ)︸︷︷︸
nonsmooth

}

• Reformulation of centralized dual averaging for composite functions

θ(t) = arg min
θ

{ t−1∑
τ=0

aτ+1

(〈
∇f(θ(τ)), x

〉
+
µ

2
‖θ − θ(τ)‖22 + h(θ)

)
+ d(θ)

}
= arg min

θ

{〈t−1∑
τ=0

aτ+1(∇f(θ(τ))− µθ(τ))︸ ︷︷ ︸
z(t)

, θ
〉

+

t−1∑
τ=0

aτ+1︸ ︷︷ ︸
At

(µ
2
‖θ‖22 + h(θ)

)
+ d(θ)

}

= arg min
θ

{〈
z(t), θ

〉
+
µAt

2

(
‖θ‖2 + h(θ)

)
+ d(θ)︸ ︷︷ ︸

common knowledge to all agents

}

• If z(t) can be accurately estimated by each agent, decentralized
optimization may be achieved
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Speeding Up DDA (cont’d)

• How to estimate z(t) =
∑t−1

τ=0 aτ+1(∇f(θ(τ))− µθ(τ))?
• The scheme in conventional DDA (Duchi et al., 2011)

z
(t)
i =

∑
j∈N (t−1)

i ∪{i}

p
(t−1)
ij z

(t−1)
j + at

(
∇fi(x(t−1)i )− µx(t−1)i

)

• Then, each agent uses z
(t)
i to run a local dual averaging step

x
(t)
i = arg min

x∈Rm

{
〈z(t)i , x〉+At

(µ
2
‖x‖2 + h(x)

)
+ d(x)

}
• It is only guaranteed that ‖z(t)i −

1
n

∑n
j=1 z

(t)
j ‖ is bounded (cannot

achieve exact optimization if {at}t≥0 is constant or increasing)

For fast convergence, a more accurate estimate is necessary to
validate the use of constant or geometrically increasing {at}t≥0
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Speeding up DDA (cont’d)

• Tailored dynamic average consensus for DDA

z
(t)
i =

∑
j∈N (t−1)

i ∪{i}

p
(t−1)
ij

(
z
(t−1)
j + at

���
���

���
���:

s
(t−1)
i(

∇fj(x(t−1)j )− µx(t−1)j

))
s
(t)
i =

∑
j∈N (t−1)

i ∪{i}

p
(t−1)
ij s

(t−1)
j +

(
∇fi(xti)− µx

(t)
i

)
−
(
∇fi(x(t−1)i )− µx(t−1)i

)
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I A system of 5 agents, at = 1

I ∇fi(x(t)i )− µx(t)i = i− 5
t

I Error:∥∥z(t)i −∑t−1
τ=0

∑5
i=1

(
∇fi(x

(τ)
i )−µx(τ)i

)
n

∥∥
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DDA algorithm

• Initialization: a0 = a > 0, A0 = 0, x
(0)
i = x(0), s

(0)
i = ∇fi(x(0))− µx(0)

and z
(0)
i = 0

• Parameter update: at =
at−1

1−aµ and At = At−1 + at

• Consensus step:

z
(t)
i =

n∑
j=1

p
(t−1)
ij

(
z
(t−1)
j + ats

(t−1)
j

)
s
(t)
i =

n∑
j=1

p
(t−1)
ij s

(t−1)
j +

(
∇fi(x(t)i )− µx(t)i

)
−
(
∇fi(x(t−1)i )− µx(t−1)i

)
• Local dual averaging:

x
(t)
i = arg min

x∈Rm

{
〈z(t)i , x〉+At

(µ
2
‖x‖2 + h(x)

)
+ d(x)

}
• Set t = t+ 1 and go to Parameter update
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Assumptions

• Assumptions for objective functions

I fi is (strongly) convex with modulus µ ≥ 0

fi(x)− fi(y)− 〈∇fi(y), x− y〉 ≥
µ

2
‖x− y‖2

I ∇fi(x) is Lipschitz continuous with constant L > 0

‖∇fi(x)−∇fi(y)‖ ≤ L‖x− y‖

• Assumptions for the mixing matrix

I P (t) is independent of the random events that occur up to time t− 1
I There exists a constant β ∈ (0, 1) such that√

ρ

(
Et
[
P (t)TP (t)

]
− 11T

n

)
≤ β

where ρ(·) denotes the spectral radius.
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Theoretical results

• Auxiliary variable

y(t) = arg min
x∈Rm

{〈
1

n

n∑
i=1

z
(t)
i , x

〉
+At

(µ
2
‖x‖2 + h(x)

)
+ d(x)

}

Theorem 1

Suppose that a

1

a
>

{
β(2L+ 3µ)

(1− β)2
+ µ, 2L− µ+

4L− 2µ

(1− aµ)(1− ρ(M))2

}
.

where

M =

[
β β

a(L+µ)
1−aµ

(
β + 1

1−aµ

)
β+aβ(L+µ)

1−aµ

]
.

Then
E[F (ỹ(t))]− F (x∗) ≤ C

At
, E[‖x̃(t)i − ỹ

(t)‖2] ≤ D

At

where x̃(t)i = A−1t
∑t
τ=1 atx

(τ)
i and ỹ(t) = A−1t

∑t
τ=1 aty

(τ).

aa = Θ((1− β)2/κ) where κ = L/µ.
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Consequences of Theorem 1

Corollary 1

Suppose the premise of Theorem 1 holds. If µ > 0, then

E[‖x̃(t)i − x
∗‖2] ≤ 2

a

(
2C

µ
+D

)
(1− aµ)t

Corollary 2

Suppose the premise of Theorem 1 holds. If µ = 0, then

E[F (ỹ(t))]− F (x∗) ≤ C

at
, E[‖x̃(t)i − ỹ

(t)
i ‖

2] ≤ D

at
.

In addition, if h ≡ 0, d(x) = ‖x‖2/2, and

1

a
> 2L ·max

{
β

(1− β)2
, 1 +

6

(1− ν)2

}
,

then we further have
E[F (x̃

(t)
i )]− F (x∗) ≤ E

t
.
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Numerical experiments I

• Decentralized logistic regression (Spambase Data Set in UCI Machine
Learning Repository)

min
θ∈Rn

1

n

n∑
i=1

fi(θ) + φ‖θ‖1

where
fi(θ) =

1

mi

mi∑
i=1

ln
(
1 + exp

(
−yij(M i

j

T
θ)
))

+
χ

2
‖θ‖2

• Parameters

n 30

mi 100

M i
j features M i

j ∈ R58

yij labels yij ∈ {−1, 1}
χ 0.02

φ 0.001

θ∗ ground truth by centralized Proximal gradient descent

Fixed graph Erdos-Renyi graphs with connectivity ratios 0.2, 0.4

Weight matrix P Metropolis-Hastings rule
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Compared Algorithms and Network Configurations

• Compared algorithms and their parameters

PG-EXTRA (Shi et al. 2015) a = 0.1, 0.2, 0.0001

P2D2 (Alghunaim et al. 2019) a = 0.1, 0.2, 0.0001

DSM (Lobel & Ozdaglar 2010) at = 1/
√
t+ 1

C-DDA (Duchi et al. 2010) at = 1/
√
t+ 1

DDA (this work) at = 0.1/(0.998)t, 0.2/(0.996)t, 0.1/(0.998)t

d(x) for DA-type algorithms ‖x‖2/2

Relative square error (RSE)
∑n
i=1‖x

(t)
i −θ

∗‖2∑n
i=1‖x

(0)
i −θ∗‖2

• Network configurations

Bernoulli protocol each link is activated with probability $ = 0.1, 0.2

Randomized gossip a single link (i, j) is sampled at each t with probability 1
n(|Ni|+1)
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Comparison Results
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Numerical experiments II

• Decentralized LASSO (Synthetic Data Set)

min
θ∈Rm

1

n

n∑
i=1

1

2
‖bi − Ciθ‖2, s.t. ‖θ‖1 ≤ R,

• Parameters

n 30

(Ci, bi) Ci ∈ R60×50, bi ∈ R60 randomly generated

x] x] ∈ R50 randomly generated

R R = 1.1‖x]‖1
L 1

µ 0.5

Graph Erdos-Renyi graph with connection probability 0.3

Weight matrix P Metropolis-Hastings rule
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Compared algorithms and results

• Compared algorithms and their parameters

PG-EXTRA (Shi et al. 2015) a = 1

P2D2 (Alghunaim et al. 2019) a = 1

DSM (Lobel & Ozdaglar 2010) at = 1/
√
t+ 1

C-DDA (Duchi et al. 2010) at = 1/
√
t+ 1

DDA (this work) at = 1/(0.5)t

d(x) for DA-type algorithms ‖x‖2/2
Stochastic communication each link is activated with probability 0.6

Relative square error (RSE)
∑n
i=1‖x

(t)
i −θ

∗‖2∑n
i=1‖x

(0)
i −θ∗‖2

Table 1: Mean and standard deviation of the number of iterations to achieve an
accuracy of 10−10 for 100 random instances of the decentralized LASSO problem.

Algorithms DDA (Bernoulli network) C-DDA DDA PG-EXTRA P2D2

No. of Iterations 318.85(±86.70) N/A 125.54(±41.67) 157.30(±41.86) 337.88(±88.43)
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Summary of this work

• Proposed a dual averaging method for decentralized optimization
with composite objective and stochastic communication network

• Proved linear convergence for the proposed method

Thank You!
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