Dual Averaging for Decentralized Optimization 0000000000

Numerical Experiments

Summary 00

Decentralized Composite Optimization in Stochastic Networks: A Dual Averaging Approach

Zirui Zhou

Joint work with Changxin Liu, Jian Pei, Yong Zhang, Yang Shi

24th Midwest Optimization Meeting, Waterloo, Canada

About Huawei Technologies Canada

About me:

- Name: Zirui Zhou
- Senior Principal Researcher, Huawei Tehnologies Canada, 2020-present
- Assistant Professor, Hong Kong Baptist University, 2018–2020
- Research interest: convex optimization, numerical optimization, solver, ...

About Big Data & Intelligent Platform Lab at Vancouver, BC:

- Huawei's mathematical optimization solver: **OptVerse**
 - Linear programming, mixed-integer linear programming, quadratic programming, black-box optimization
- Smart decision cloud platform: Machine Learning + Decision making
 - ML4Opt, ML4Modeling
 - Federated learning, data valuation, digital asset pricing

Multiple research scientist positions available: FTE/Intern/Co-op

Huawei Mathematical Optimization Solver: OptVerse

Solves:

- Linear programming (simplex and interior-point)
- Mixed-integer linear programming
- Quadratic programming
- Black-box optimization

Supports Huawei's global supply chain network:

• OptVerse solves LPs of millions of variables and constraints in minutes.

Hans Mittelmann open benchmark: *http://plato.asu.edu/bench.html* scaled shifted (by 10 sec) geometric mean of runtimes

60 probs	10.6	1.80	1.01	1	2.	.70	16.9	14.4	28.0	44	.8 8	3.3	16.5
solved	43	59	60	59)	53	46	47	32		34	28	44
			=====	=====					=====				
probs	CLP	Gurob	COPT	MDOPT	I OI	PTV M	OSEK	HiGHS	GLOF	P SE	PLX G	LPK	MATL
			=====	=====				======	=====	====		=====	=====
Scaled and	shifte	d geome	etric	means	of r	untim	les.						
													\frown
				20.4 4	.71	27.6	16.	5 52.4	1.68	1.32	2 1	10.2	1.19
			=====	=====		=====	====	======				=====	
problem	nod	es	arcs	MOSEK	CLP	QSOPI	MAT	L SPLX	COPT	GUR	MDOPT	HGHS	OPTV

Introduction	Motivation

Machine Learning for Optimization Solvers

- ML for configuration: black-box optimization + clustering
 - Winner of 2021 NeurIPS ML4CO Competition Configuration Task
- ML for smart branching in B&B: GNN + Attention + Temporal
 - Runner-up of 2021 NeurIPS ML4CO Competition Dual Task
- ML for cut-generation: CutRank + Multiple Instance Learning
 - Average 15% speedup on our internal test set
- ML for basis selection: GNN + Filter Layer + Basis Repair
 - Average 70% speedup on our supply chain LP problems

- 2 Dual Averaging for Decentralized Optimization
- **3** Numerical Experiments
- **4** Summary

Dual Averaging for Decentralized Optimization 0000000000

Numerical Experiments

Decentralized convex composite optimization

Problem statement

$$\min_{\theta} \left\{ F(\theta) := \frac{1}{n} \sum_{i=1}^{n} f_i(\theta) + h(\theta) \right\}$$

- Agent-specific convex function: f_i
- ▶ Common convex regularizer: *h*
- Decision variable: θ
- ▶ Agent/Machine: $i \in [n]$

Multi-agent system

- Applications included in the framework
 - \blacktriangleright Constrained optimization when h is a convex indicator function
 - Sparse recovery when h is an l_1 -regularizer

...

Dual Averaging for Decentralized Optimization

Numerical Experiments

Summary 00

Decentralized structure of message-passing

Centralized distributed structure

Decentralized structure

Advantages of the decentralized structure

- Balanced computation with each node
- Robustness to network change
- Preserved privacy

Lemma (Average Seeking)

If P is doubly stochastic and $x_i^{(0)} = r_i \text{, then}$

$$\sum_{i=1}^{m} x_i^{(t)} = \sum_{i=1}^{m} r_i, \forall t \ge 0.$$

In addition, if the graph is connected, then

$$x_i^{(\infty)} \to \theta^* = \frac{1}{m} \sum_{i=1}^m r_i, \forall i \in \mathcal{V}$$

Dual Averaging for Decentralized Optimization

Numerical Experiments

Summary 00

Decentralized projected subgradient method

$$\min_{\theta \in \mathcal{X}} \frac{1}{n} \sum_{i=1}^{n} F_i(\theta) \Leftrightarrow \min_{x_i \in \mathcal{X}, \forall i \in \mathcal{V}} \frac{1}{n} \sum_{i=1}^{n} F_i(x_i), \ x_1 = x_2 = \dots = x_n$$

• DPSM (Nedic and Ozdaglar, 2009)

• $g_i^{(t)} \in \partial F_i(x_i^{(t)})$: one of the subgradients of F_i over $x_i^{(t)}$

- ▶ ${a_t}_{t \ge 0}$: diminishing stepsize
- sublinear convergence

Dual Averaging for Decentralized Optimization

Numerical Experiments

Summary 00

A Summary of Research Directions

- Better rates: can decentralized algorithms achieve the nice convergence rate of its centralized counterparts?
 - first-order methods, second-order methods
- Handle more classes of functions
 - smooth, non-smooth, composite
- Robust to more complicated communication networks
 - ▶ fixed network, time-varying network, stochastic network

Introduction and Motivation	Dual Averaging for Decentralized Optimization	Numerical Experiments 000000	Summary 00
Literature revie	W		
	Deterministic network	Stochastic netw	ork
Unconstrained	GD+consensus (Linear) ^{1 2}	GD+consensus (Linear) ³	
	Primal-dual methods (Linear) ⁴⁵	Bregman method ($\mathcal{O}($	$(1/t))^{6}$
Constrained/ Projected GD+consensus ($O(1/t)$) ^{7 8} DA+consensus (DA+consensus ($O(1)$	$/\sqrt{t}))^9$
Composite	Primal-dual methods (Linear) ¹⁰		

Note: GD=Gradient descent, DA = Dual averaging

¹Nedic et al., DSM for multi-agent optimization, *TAC*, 2009 ²Qu and Li, Harness smoothness to accelerate DO, *IEEE TCNS*, 2017 ³Xu et al., Convergence of asynchronous DGM over stochastic networks, *TAC*, 2017 ⁴Yi et al., Linear convergence for DO without strong convexity, *IEEE CDC*, 2020 ⁵Shi et al., On the linear convergence of ADMM in DO, *IEEE TSP*, 2014 ⁶Xu et al., A Bregman splitting scheme for DO over networks, *TAC*, 2018 ⁷Nedic et al., Constrained consensus and optimization, *TAC*, 2010 ⁸Shi et al., A proximal gradient algorithm for DO, *TSP*, 2015 ⁹Duchi et al., Dual averaging for distributed optimization, *TAC*, 2011 ¹⁰Alghunaim et al., A linearly convergent PGM for DO, *NeurIPS*, 2019

Introduction and Motivation	Dual Averaging for Decentralized Optimization	Numerical Experiments 000000	Summary 00
Literature revie	W		
	Deterministic network	Stochastic netwo	rk
Unconstrained GD+consensus (Linear) ^{1 2} GD+cons		GD+consensus (Line	ar) ³
	Primal-dual methods (Linear) ⁴⁵	Bregman method ($\mathcal{O}(2)$	$(t/t))^{6}$
Constrained/	Projected GD+consensus ($\mathcal{O}(1/t)$) ^{7 8}	DA+consensus ($\mathcal{O}(1/$	$\sqrt{t}))^9$
Composite	Primal-dual methods (Linear) ¹⁰		

Note: GD=Gradient descent, DA = Dual averaging

Can we develop a linearly convergent algorithm for decentralized optimization with composite objective and stochastic network?

¹Nedic et al., DSM for multi-agent optimization, *TAC*, 2009 ²Qu and Li, Harness smoothness to accelerate DO, *IEEE TCNS*, 2017 ³Xu et al., Convergence of asynchronous DGM over stochastic networks, *TAC*, 2017 ⁴Yi et al., Linear convergence for DO without strong convexity, *IEEE CDC*, 2020 ⁵Shi et al., On the linear convergence of ADMM in DO, *IEEE TSP*, 2014 ⁶Xu et al., A Bregman splitting scheme for DO over networks, *TAC*, 2018 ⁷Nedic et al., Constrained consensus and optimization, *TAC*, 2010 ⁸Shi et al., A proximal gradient algorithm for DO, *TSP*, 2015 ⁹Duchi et al., Dual averaging for distributed optimization, *TAC*, 2011 ¹⁰Alghunaim et al., A linearly convergent PGM for DO, *NeurIPS*, 2019

Can we use existing approaches to tackle this problem?

- Decentralized primal-dual algorithms (Jakovetic et al. 2015)
- Step 1: Reformulation via lifting

$$\min_{\substack{x_1 \cdots, x_n \in \mathbb{R}^m \\ \text{s.t.}}} \frac{1}{n} \sum_{i=1}^n \left(f_i(x_i) + h(x_i) \right)$$

$$\underbrace{\text{consensus constraint}}_{\substack{\text{consensus constraint} \\ a \text{ priori known}}} \otimes I \right) \left([x_1^T, \cdots, x_n^T]^T \right) = 0$$

- Step 2: Solve the linearly constrained optimization problem via primal-dual algorithms (with coordinate change)
- When the network is random, i.e., $\mathcal L$ unknown, it does NOT fit in

Dual Averaging for Decentralized Optimization

Numerical Experiments

Can we use existing approaches to tackle this problem?

• Consensus-based decentralized gradient method (DGM) (Nedic et al. 2010)

$$y_i^{(t)} = \sum_{j \in \mathcal{N}_i \cup \{i\}} p_{ij} x_j^{(t-1)} - a_{t-1} g_i^{(t-1)}, \quad x_i^{(t)} = \arg\min_{x \in \mathcal{X}} \left\| x - y_i^{(t)} \right\|^2$$

Observation

• In DGM, **averaging** is tightly coupled with **projection** and they do NOT necessarily commute

2 Dual Averaging for Decentralized Optimization

3 Numerical Experiments

4 Summary

Introduction and Motivation	Dual Averaging for Decentralized Optimization	Numerical Experiments	Summary 00
Centralized dual av	veraging		

• Dual averaging for nonsmooth convex functions (Nesterov, 2009) $z^{(t)} = z^{(t-1)} + g^{(t-1)}, g^{(t-1)} \in \partial F(\theta^{(t-1)}), \quad \theta^{(t)} = \arg\min_{\theta \in \mathcal{X}} \left\{ a_t \langle z^{(t)}, \theta \rangle + \underbrace{d(\theta)}_{\frac{1}{2} \|\theta\|^2} \right\}$

• Dual averaging for smooth and (μ -strongly) convex functions (Lu et al., 2018) $\theta^{(t)} = \arg\min_{\theta \in \mathcal{X}} \left\{ \sum_{\tau=0}^{t-1} a_{\tau+1} \left(\left\langle \nabla f(\theta^{(\tau)}), \theta \right\rangle + \frac{\mu}{2} \|\theta - \theta^{(\tau)}\|^2 \right) + d(\theta) \right\}$

• Achieves linear convergence when $\mu > 0$ (Lu et al., 2018)

Dual Averaging for Decentralized Optimization

Numerical Experiments

Summary 00

Decentralized dual averaging

• Decentralized dual averaging (DDA) (Duchi et al., 2011)

$$z_i^{(t)} = \sum_{j \in \mathcal{N}_i \cup \{i\}} p_{ij} z_j^{(t-1)} + g_i^{(t-1)}, g_i^{(t-1)} \in \partial F_i(x_i^{(t-1)})$$
$$x_i^{(t)} = \arg\min_{\theta \in \mathcal{X}} \left\{ a_t \left\langle z_i^{(t)}, \theta \right\rangle + d(\theta) \right\}$$

Dual Averaging for Decentralized Optimization 000000000000

Numerical Experiments

DDA versus DPGM

• DDA

$$z_i^{(t)} = \sum_{j \in \mathcal{N}_i \cup \{i\}} p_{ij} z_j^{(t-1)} + g_i^{(t-1)}$$

 $x_i^{(t)} = \arg\min\{a_t \langle z_i^{(t)}, \theta \rangle + d(\theta)\}$

$$a_{i}^{(t)} = \arg\min_{\theta \in \mathcal{X}} \left\{ a_{t} \left\langle z_{i}^{(t)}, \theta \right\rangle + d(\theta) \right\}$$

• DPGM

$$y_i^{(t)} = \sum_{j \in \mathcal{N}_i \cup \{i\}} p_{ij} x_j^{(t-1)} - a_{t-1} g_i^{(t-1)}$$

 $x_i^{(t)} = \operatorname{proj}_{\mathcal{X}}(y_i^{(t)})$

Comparison

DDA equally weights the (sub)gradients obtained so far

In DDA, consensus-building is decoupled from projection ۲

DDA has the advantange of handling stochastic networks and nonsmoothness simultaneously

1

Numerical Experiments

Summary 00

DDA versus DPGM

• DDA

$$z_i^{(t)} = \sum_{j \in \mathcal{N}_i \cup \{i\}} p_{ij} z_j^{(t-1)} + g_i^{(t-1)}$$

$$x_i^{(t)} = \arg\min_{\theta \in \mathcal{X}} \left\{ a_t \langle z_i^{(t)}, \theta \rangle + d(\theta) \right\}$$

• DPGM

$$y_i^{(t)} = \sum_{j \in \mathcal{N}_i \cup \{i\}} p_{ij} x_j^{(t-1)} - a_{t-1} g_i^{(t-1)}$$

 $x_i^{(t)} = \operatorname{proj}_{\mathcal{X}}(y_i^{(t)})$

Comparison

• DDA equally weights the (sub)gradients obtained so far

• In DDA, consensus-building is decoupled from projection

 DDA has the advantange of handling stochastic networks and nonsmoothness *simultaneously*

DDA and all later extensions considered nonsmooth problems, and have an $\mathcal{O}(1/\sqrt{t})$ rate of convergence

Introduction	Motivation

Dual Averaging for Decentralized Optimization

Numerical Experiments

Summary 00

Speeding up DDA

Decentralized composite optimization

• Reformulation of centralized dual averaging for composite functions

$$\begin{aligned} \theta^{(t)} &= \arg\min_{\theta} \left\{ \sum_{\tau=0}^{t-1} a_{\tau+1} \left(\left\langle \nabla f(\theta^{(\tau)}), x \right\rangle + \frac{\mu}{2} \| \theta - \theta^{(\tau)} \|_{2}^{2} + h(\theta) \right) + d(\theta) \right\} \\ &= \arg\min_{\theta} \left\{ \left\langle \sum_{\tau=0}^{t-1} a_{\tau+1} (\nabla f(\theta^{(\tau)}) - \mu \theta^{(\tau)}), \theta \right\rangle + \sum_{\tau=0}^{t-1} a_{\tau+1} \left(\frac{\mu}{2} \| \theta \|_{2}^{2} + h(\theta) \right) + d(\theta) \right\} \\ &= \arg\min_{\theta} \left\{ \left\langle z^{(t)}, \theta \right\rangle + \underbrace{\frac{\mu A_{t}}{2} \left(\| \theta \|^{2} + h(\theta) \right) + d(\theta) }_{\text{common knowledge to all agents}} \right\} \end{aligned}$$

• If $z^{(t)}$ can be accurately estimated by each agent, decentralized optimization may be achieved

Dual Averaging for Decentralized Optimization

Numerical Experiments

Summary 00

Speeding Up DDA (cont'd)

- How to estimate $z^{(t)} = \sum_{\tau=0}^{t-1} a_{\tau+1} (\nabla f(\theta^{(\tau)}) \mu \theta^{(\tau)})?$
- The scheme in conventional DDA (Duchi et al., 2011)

$$z_i^{(t)} = \sum_{j \in \mathcal{N}_i^{(t-1)} \cup \{i\}} p_{ij}^{(t-1)} z_j^{(t-1)} + a_t \left(\nabla f_i(x_i^{(t-1)}) - \mu x_i^{(t-1)} \right)$$

- Then, each agent uses $\boldsymbol{z}_i^{(t)}$ to run a local dual averaging step

$$x_i^{(t)} = \arg\min_{x \in \mathbb{R}^m} \left\{ \langle z_i^{(t)}, x \rangle + A_t \left(\frac{\mu}{2} \|x\|^2 + h(x) \right) + d(x) \right\}$$

• It is only guaranteed that $||z_i^{(t)} - \frac{1}{n}\sum_{j=1}^n z_j^{(t)}||$ is bounded (cannot achieve exact optimization if $\{a_t\}_{t\geq 0}$ is constant or increasing)

For fast convergence, a more accurate estimate is necessary to validate the use of constant or geometrically increasing $\{a_t\}_{t\geq 0}$

Dual Averaging for Decentralized Optimization

Numerical Experiments

Summary 00

Speeding up DDA (cont'd)

• A system of 5 agents, $a_t = 1$

•
$$\nabla f_i(x_i^{(t)}) - \mu x_i^{(t)} = i - \frac{5}{t}$$

• Error:
$$\|z_i^{(t)} - \sum_{\tau=0}^{t-1} \frac{\sum_{i=1}^5 \left(\nabla f_i(x_i^{(\tau)}) - \mu x_i^{(\tau)} \right)}{n} \|$$

Numerical Experiments

Summary 00

DDA algorithm

- Initialization: $a_0 = a > 0$, $A_0 = 0$, $x_i^{(0)} = x^{(0)}$, $s_i^{(0)} = \nabla f_i(x^{(0)}) \mu x^{(0)}$ and $z_i^{(0)} = 0$
- Parameter update: $a_t = \frac{a_{t-1}}{1-a_{\mu}}$ and $A_t = A_{t-1} + a_t$
- Consensus step:

$$z_i^{(t)} = \sum_{j=1}^n p_{ij}^{(t-1)} \left(z_j^{(t-1)} + a_t s_j^{(t-1)} \right)$$
$$s_i^{(t)} = \sum_{j=1}^n p_{ij}^{(t-1)} s_j^{(t-1)} + \left(\nabla f_i(x_i^{(t)}) - \mu x_i^{(t)} \right) - \left(\nabla f_i(x_i^{(t-1)}) - \mu x_i^{(t-1)} \right)$$

• Local dual averaging:

$$x_i^{(t)} = \arg\min_{x \in \mathbb{R}^m} \left\{ \langle z_i^{(t)}, x \rangle + A_t \left(\frac{\mu}{2} \|x\|^2 + h(x) \right) + d(x) \right\}$$

• Set t = t + 1 and go to **Parameter update**

roduction and Motivation	Dual Averaging for Decentralized Optimization	Numerical Experiments	Summary 00

Assumptions

- Assumptions for objective functions
 - f_i is (strongly) convex with modulus $\mu \ge 0$

$$f_i(x) - f_i(y) - \langle \nabla f_i(y), x - y \rangle \ge \frac{\mu}{2} ||x - y||^2$$

▶ $\nabla f_i(x)$ is Lipschitz continuous with constant L > 0

$$\|\nabla f_i(x) - \nabla f_i(y)\| \le L \|x - y\|$$

- Assumptions for the mixing matrix
 - $\blacktriangleright \ P^{(t)}$ is independent of the random events that occur up to time t-1
 - \blacktriangleright There exists a constant $\beta \in (0,1)$ such that

$$\sqrt{\rho\left(\mathbb{E}_t\left[P^{(t)^T}P^{(t)}\right] - \frac{\mathbf{1}\mathbf{1}^T}{n}\right)} \le \beta$$

where $\rho(\cdot)$ denotes the spectral radius.

Dual Averaging for Decentralized Optimization ooooooooooooo

Numerical Experiment

Summary 00

Theoretical results

• Auxiliary variable

$$y^{(t)} = \arg\min_{x \in \mathbb{R}^m} \left\{ \left\langle \frac{1}{n} \sum_{i=1}^n z_i^{(t)}, x \right\rangle + A_t \left(\frac{\mu}{2} ||x||^2 + h(x) \right) + d(x) \right\}$$

Theorem 1

Suppose that $^{\mbox{a}}$

$$\frac{1}{a} > \left\{ \frac{\beta(2L+3\mu)}{(1-\beta)^2} + \mu, \quad 2L - \mu + \frac{4L - 2\mu}{(1-a\mu)(1-\rho(\mathbf{M}))^2} \right\}.$$

where

$$\mathbf{M} = \begin{bmatrix} \beta & \beta \\ \frac{a(L+\mu)}{1-a\mu} \left(\beta + \frac{1}{1-a\mu}\right) & \frac{\beta+a\beta(L+\mu)}{1-a\mu} \end{bmatrix}.$$

Then

$$\mathbb{E}[F(\tilde{y}^{(t)})] - F(x^*) \le \frac{C}{A_t}, \quad \mathbb{E}[\|\tilde{x}_i^{(t)} - \tilde{y}^{(t)}\|^2] \le \frac{D}{A_t}$$

where $\tilde{x}_i^{(t)} = A_t^{-1} \sum_{\tau=1}^t a_t x_i^{(\tau)}$ and $\tilde{y}^{(t)} = A_t^{-1} \sum_{\tau=1}^t a_t y^{(\tau)}.$
 $\overline{a}_a = \Theta((1-\beta)^2/\kappa)$ where $\kappa = L/\mu$.

Dual Averaging for Decentralized Optimization ${\tt 0000000000}$

Numerical Experiments

Summary 00

Consequences of Theorem 1

Corollary 1

Suppose the premise of Theorem 1 holds. If $\mu>0,$ then

$$\mathbb{E}[\|\tilde{x}_{i}^{(t)} - x^{*}\|^{2}] \leq \frac{2}{a} \left(\frac{2C}{\mu} + D\right) (1 - a\mu)^{t}$$

Corollary 2

Suppose the premise of Theorem 1 holds. If $\mu = 0$, then

$$\mathbb{E}[F(\tilde{y}^{(t)})] - F(x^*) \le \frac{C}{at}, \quad \mathbb{E}[\|\tilde{x}_i^{(t)} - \tilde{y}_i^{(t)}\|^2] \le \frac{D}{at}.$$

In addition, if $h\equiv 0, \ d(x)=\|x\|^2/2,$ and

$$\frac{1}{a} > 2L \cdot \max\left\{\frac{\beta}{(1-\beta)^2}, 1 + \frac{6}{(1-\nu)^2}\right\},\$$

then we further have

$$\mathbb{E}[F(\tilde{x}_i^{(t)})] - F(x^*) \le \frac{E}{t}.$$

2 Dual Averaging for Decentralized Optimization

3 Numerical Experiments

4 Summary

Introduction and Motivation	Dual Averaging for Decentralized Optimization	Numerical Experiments 00000	Summary 00

Numerical experiments I

 Decentralized logistic regression (Spambase Data Set in UCI Machine Learning Repository)

$$\min_{\theta \in \mathbb{R}^n} \frac{1}{n} \sum_{i=1}^n f_i(\theta) + \phi \|\theta\|_1$$

where
$$f_i(\theta) = \frac{1}{m_i} \sum_{i=1}^{m_i} \ln\left(1 + \exp\left(-y_j^i(M_j^{i\,T}\theta)\right)\right) + \frac{\chi}{2} \|\theta\|^2$$

• Parameters

n	30
m_i	100
M_j^i	features $M^i_j \in \mathbb{R}^{58}$
y_j^i	labels $y^i_j \in \{-1,1\}$
χ	0.02
ϕ	0.001
θ^*	ground truth by centralized Proximal gradient descent
Fixed graph	Erdos-Renyi graphs with connectivity ratios $0.2, 0.4$
Weight matrix P	Metropolis-Hastings rule

Introduction	Motivation	

Dual Averaging for Decentralized Optimization

Numerical Experiments

Summary 00

Compared Algorithms and Network Configurations

• Compared algorithms and their parameters

PG-EXTRA (Shi et al. 2015)	a = 0.1, 0.2, 0.0001
P2D2 (Alghunaim et al. 2019)	a = 0.1, 0.2, 0.0001
DSM (Lobel & Ozdaglar 2010)	$a_t = 1/\sqrt{t+1}$
C-DDA (Duchi et al. 2010)	$a_t = 1/\sqrt{t+1}$
DDA (this work)	$a_t = 0.1/(0.998)^t, 0.2/(0.996)^t, 0.1/(0.998)^t$
d(x) for DA-type algorithms	$ x ^2/2$
Relative square error (RSE)	$\frac{\sum_{i=1}^{n} \ x_{i}^{(t)} - \theta^{*}\ ^{2}}{\sum_{i=1}^{n} \ x_{i}^{(0)} - \theta^{*}\ ^{2}}$

• Network configurations

Bernoulli protocol	each link is activated with probability $arpi=0.1, 0.2$
Randomized gossip	a single link (i,j) is sampled at each t with probability $rac{1}{n(\mathcal{N}_i +1)}$

Dual Averaging for Decentralized Optimization

Numerical Experiments

Summary 00

Comparison Results

Numerical experime	ents II		
Introduction and Motivation	Dual Averaging for Decentralized Optimization	Numerical Experiments	Summary 00

• Decentralized LASSO (Synthetic Data Set)

$$\min_{\theta \in \mathbb{R}^m} \frac{1}{n} \sum_{i=1}^n \frac{1}{2} \|b_i - C_i\theta\|^2, \quad \text{s.t. } \|\theta\|_1 \le R,$$

• Parameters

n	30
(C_i, b_i)	$C_i \in \mathbb{R}^{60 imes 50}$, $b_i \in \mathbb{R}^{60}$ randomly generated
x^{\sharp}	$x^{\sharp} \in \mathbb{R}^{50}$ randomly generated
R	$R = 1.1 \ x^{\sharp}\ _1$
L	1
μ	0.5
Graph	Erdos-Renyi graph with connection probability 0.3
Weight matrix P	Metropolis-Hastings rule

Introduction and Motivation	Dual Averaging for Decentralized Optimization	Numerical Experiments	Summary 00

Compared algorithms and results

• Compared algorithms and their parameters

PG-EXTRA (Shi et al. 2015)	a = 1
P2D2 (Alghunaim et al. 2019)	a = 1
DSM (Lobel & Ozdaglar 2010)	$a_t = 1/\sqrt{t+1}$
C-DDA (Duchi et al. 2010)	$a_t = 1/\sqrt{t+1}$
DDA (this work)	$a_t = 1/(0.5)^t$
d(x) for DA-type algorithms	$ x ^2/2$
Stochastic communication	each link is activated with probability 0.6
Relative square error (RSE)	$\frac{\sum_{i=1}^{n} \ x_{i}^{(t)} - \theta^{*}\ ^{2}}{\sum_{i=1}^{n} \ x_{i}^{(0)} - \theta^{*}\ ^{2}}$

Table 1: Mean and standard deviation of the number of iterations to achieve an accuracy of 10^{-10} for 100 random instances of the decentralized LASSO problem.

Algorithms	DDA (Bernoulli network)	C-DDA	DDA	PG-EXTRA	P2D2
No. of Iterations	318.85(±86.70)	N/A	$125.54(\pm 41.67)$	157.30(±41.86)	337.88(±88.43)

- 1 Introduction and Motivation
- 2 Dual Averaging for Decentralized Optimization
- **3** Numerical Experiments

Introduction		Motivation

Summary of this work

- Proposed a dual averaging method for decentralized optimization with composite objective and stochastic communication network
- Proved linear convergence for the proposed method

Thank You!