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Linear optimization

Given an n-dimensional vector b and an n x d matrix A
find, in any, a d-dimensional vector x such that :

Ax = b Ax ≤ b

linear algebra linear optimization

“Can linear optimization be solved in strongly polynomial time?”
is listed by Smale as one of the top problems for the XXI century

Strongly polynomial : algorithm independent from
the input data length and polynomial in n and d.



Given an n-dimensional vector b and an n x d (full row-rank) matrix A
and a d-dimensional cost vector c, solve : max { cTx : Ax = b, x ≥ 0 }

Simplex methods (Dantzig 1947): pivot-based, combinatorial, 
not proven to be polynomial, efficient in practice 

Østart from a feasible basis
Øuse a pivot rule
Øfind an optimal solution after a finite number of iterations
Ømost known pivot rules are known to be exponential

(worst case); efficient implementations exist

Linear optimization algorithms 
simplex methods



Given an n-dimensional vector b and an n x d (full row-rank) matrix A
and a d-dimensional cost vector c, solve : max { cTx : Ax = b, x ≥ 0 }

Interior Point Methods :
path-following, polynomial, efficient in practice 

Østart from the analytic center
Ø follow the central path
Ø converge to an optimal solution in O(√nL) iterations

(L:  input data length)

_

µmax cΤx − ln(b− Ax)i
i
∑

µ : central path parameter
x ÎP : Ax ≤ b
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Linear optimization algorithms 
(central path following) interior point methods



Diameter (of a polytope) : 

lower bound for the number of iterations for pivoting
simplex methods

Curvature (of the central path associated to a polytope) :

large curvature indicates large number of iterations
for path following interior point methods

Linear optimization diameter and curvature 
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Linear optimization
Given an n-dimensional vector b and an n x d matrix A
find, in any, a d-dimensional vector x such that :

Ax = b Ax ≤ b

linear algebra linear optimization

“Can linear optimization be solved in strongly polynomial time?”
is listed by Smale as one of the top l problems for the XXI century

Ø [Allamigeon, Benchimol, Gaubert, Joswig 2018]
(logarithmic barrier) Interior point methods 
are not strongly polynomial 

Ø [Allamigeon, Gaubert, Vandame 2022]
(self-concordant barrier) Interior point methods 
are not strongly polynomial 

(tropical counterexample to continuous Hirsch conjecture [Deza-Terlaky-Zinchenko 2008])



Lattice polytopes with large diameter 

lattice (d,k)-polytope : convex hull of points drawn from {0,1,…,k}d

diameter d(P) of polytope P : smallest number such that any two 
vertices of P can be connected by a path with at most d(P) edges

d(d,k): largest diameter over all lattice (d,k)-polytopes 

ex. d(3,3) = 6 and is achieved 
by a truncated cube

Ø d(d,k) : lower bound on the number of simplex pivots required in 
the worst case to perform linear optimization on a lattice polytope

Ø [Del Pia-Michini 2018] preprocessing and scaling algorithm yielding 
simplex paths that are short relative to d(d,k)



Lattice polytopes with large diameter 

lattice (d,k)-polytope : convex hull of points drawn from {0,1,…,k}d

diameter d(P) of polytope P : smallest number such that any two 
vertices of P can be connected by a path with at most d(P) edges

d(d,k): largest diameter over all lattice (d,k)-polytopes 

Ø d(P) : lower bound for the worst-case number of iterations required 
by pivoting methods (simplex) to optimize a linear function over P

Ø Hirsch conjecture : d(P) ≤ n – d  (n number of inequalities)
was disproved [Santos 2012]

d(P) ≤ (n – d) log d - ... [Kalai-Kleitman 1992, Todd 2014, Sukegawa 2019]
v no polynomial upper bound known for d(P)



d(d,k): largest diameter of a convex hull of points drawn from {0,1,…,k}d

upper bounds :

d(d,1) ≤ d [Naddef 1989]

d(2,k) = O(k2/3) [Balog-Bárány 1991]

d(2,k) = 6(k/2π)2/3 +O(k1/3 log k) [Thiele 1991] 
[Acketa-Žunić 1995]

d(d,k) ≤ kd [Kleinschmid-Onn 1992]

d(d,k) ≤ kd - d/2    for k ≥ 2 [Del Pia-Michini 2016]

d(d,k) ≤ kd - 2d/3  - (k - 3) for k ≥ 3 [Deza-Pournin 2018]

Lattice polytopes with large diameter 



d(d,k): largest diameter of a convex hull of points drawn from {0,1,…,k}d

lower bounds :

d(d,1) ≥ d [Naddef 1989]

d(d,2) ≥ 3d/2 [Del Pia-Michini 2016]

d(d,k) = Ω(k2/3 d) [Del Pia-Michini 2016]

d(d,k) ≥  (k+1)d /2   for k < 2d [Deza-Manoussakis-Onn 2018]

d(d,k) = Ω(kd/d+1) for fixed d [Deza-Pournin-Sukegawa 2020]

Ø Lower bound of Ω(kd/d+1) obtained by counting primitive points within 
simplex and cross polytope blown up by an integer factor

[Manecke-Sanyal 2020]: primitive Ehrhart theory

Lattice polytopes with large diameter 



d(d,k)
k

1 2 3 4 5 6 7 8 9

d

2 2 3 4 4 5 6 6 7 8

3 3 4 6 7 9 10

4 4 6 8

5 5 7 10

d(d,1) = d [Naddef 1989]
d(2,k) : close form [Thiele 1991] [Acketa-Žunić 1995]
d(d,2) = 3d/2 [Del Pia-Michini 2016]
d(4,3)=8, d(3,4)=7, d(3,5)=9 [Deza-Pournin 2018], [Chadder-Deza 2017]
d(5,3)=10, d(3,6)=10 [Deza-Deza-Guan-Pournin 2019]

Lattice polytopes with large diameter 



d(d,k)
k

1 2 3 4 5 6 7 8 9

d

2 2 3 4 4 5 6 6 7 8

3 3 4 6 7 9 10 11+ 12+ 13+

4 4 6 8 10+ 12+ 14+ 16+ 17+ 18+

5 5 7 10 12+ 15+ 17+ 20+ 22+ 25+

Ø Conjecture [Deza-Manoussakis-Onn 2018]  d(d,k) ≤ (k+1)d /2

and d(d,k) is achieved, up to translation, by a Minkowski sum of primitive
lattice vectors. The conjecture holds for all known entries of d(d,k)

Lattice polytopes with large diameter 



Q. What is d(2,k) : largest diameter of a polygon which vertices are 
drawn form the k x k grid?

A polygon can be associated to a set of vectors (edges) summing up to 
zero, and without a pair of positively multiple vectors 

d(2,3) = 4 is achieved by the 8 vectors : (±1,0), (0,±1), (±1,±1)

Lattice polygons with large diameter



φ(p) : Euler totient function counting positive integers less or equal to p relatively prime with p
φ(1) = φ(2) = 1, φ(3) = φ(4) = 2,… x ≻ 0 : first nonzero coordinate of x is nonnegative 

H1(2,p) : Minkowski sum generated by {x Î Z2 : ||x||1 ≤ p, gcd(x)=1, x ≻ 0}

H1(2,p) has diameter d(2,k) = for k =  

Ex. H1(2,2) generated by (1,0), (0,1), (1,1), (1,-1) (fits, up to translation, in 3x3 grid)

!!(!)
!
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!2 !(!)

!

!!!
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||x||1 ≤ p

Primitive polygons



Hq(d,p) : Minkowski (x Î Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0)

x ≻ 0 : first nonzero coordinate of x is nonnegative 

Given a set G of m vectors (generators), 
Minkowski (G) : convex hull of all the 2m subsums of the m vectors in G

v Primitive zonotopes: Minkowski sum generated by short integer vectors 
which are pairwise linearly independent 

v Note: convex hull of all the signed subsums of the vectors of 
Hq(d,p) is a generalization of the permutahedron of type Bd 

Primitive zonotopes



Hq(d,p) : Minkowski (x Î Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0)

x ≻ 0 : first nonzero coordinate of x is nonnegative

Ø Hq(d, 1) : [0, 1]d cube for q ≠∞

Ø H1(d,2) : permutahedron of type Bd (up to a homothety)

Ø H1(3,2) : great rhombicuboctahedron

Ø H∞(3,1) : truncated small rhombicuboctahedron

Primitive zonotopes



v lattice polytopes with large diameter

Hq(d,p) : Minkowski (x Î Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0)

x ≻ 0 : first nonzero coordinate of x is nonnegative 

Ø For k < 2d, Minkowski sum of a subset of the generators of H1(d,2) is,
up to translation, a lattice (d,k)-polytope with diameter  (k+1)d/2

Primitive zonotopes



Hq(d,p) : Minkowski (x Î Zd : ||x||q ≤ p, gcd(x)=1, x ≻ 0)

x ≻ 0 : first nonzero coordinate of x is nonnegative 

Hq(d,p)+ : Minkowski (x Î Z+
d : ||x||q ≤ p, gcd(x)=1)

ØH1(d,2)+ : Minkowski sum permutahedron + unit cube  (graphical zonotope)

ØH∞(d,1)+ :  white whale   (hypergraphical zonotope)

a(d) = |H∞(d,1)+|

number a(d) of generalized retarded functions in quantum field theory
is equal to the number of vertices of H∞(d,1)+

Positive primitive zonotopes





Ø Ising model (spin glasses)  
maxcut, cut and metric polytopes [Deza-Laurent 1997]

Ø a(d) : number of generalized retarded functions in quantum field theory
(number of real-time Green functions) [Evans 1994]

a(d) = number of regions of the arrangement formed by the 2d -1 
hyperplanes with {0,1}-valued normals in dimension d

d = 2 2d -1 = 3 hyperplanes 

(0,1) 
(1,0) 
(1,1) 

Ø a(2)=6
6 regions

Discrete optimization and theoretical physics  



Discrete optimization and theoretical physics  

Ø Ising model (spin glasses)  
maxcut, cut and metric polytopes [Deza-Laurent 1997]

Ø a(d) : number of generalized retarded functions in quantum field theory
(number of real-time Green functions) [Evans 1994]

a(d) = number of regions of the arrangement formed by the 2d -1 
hyperplanes with {0,1}-valued normals in dimension d

Ø is a(d) ≥ d !  [question by Evans]

Ø a(d) determined till d = 9

Ø how to estimate a(d) ?

a(d)  regions <=> a(d)  vertices



Discrete optimization and theoretical physics  

Ø Ising model (spin glasses)  
maxcut, cut and metric polytopes [Deza-Laurent 1997]

Ø a(d) : number of generalized retarded functions in quantum field theory
(number of real-time Green functions) [Evans 1994]

a(d) = number of regions of the arrangement formed by the 2d -1 
hyperplanes with {0,1}-valued normals in dimension d

Ø is a(d) ≥ d !  [question by Evans]

Ø a(d) determined till d = 9

Ø how to estimate a(d) ?

Ø a(d) vertices of the white whale
a(2) = 6



Discrete optimization and theoretical physics  

Ø Ising model (spin glasses)  
maxcut, cut and metric polytopes [Deza-Laurent 1997]

Ø a(d) : number of generalized retarded functions in quantum field theory
(number of real-time Green functions) [Evans 1994]

a(d) = number of regions of the arrangement formed by the 2d -1 
hyperplanes with {0,1}-valued normals in dimension d

Ø is a(d) ≥ d !  [question by Evans]

Ø a(d) determined till d = 9

Ø how to estimate a(d) ?

Ø a(d) vertices of the white whale
a(3) = 32



Sloane OEI sequences
H∞(d,1)+ vertices : A034997 = number of generalized retarded functions in 
quantum Field theory (determined till d = 9)

H∞(d,1) vertices : A009997 = number of regions of hyperplane arrangements 
with {-1,0,1}-valued normals in dimension d (determined till d = 7)

Estimating the number of vertices of H∞(d,1)+ (white whale)

d(d-1)/2 ≤ log2 | H∞(d,1)+ | ≤ d 2 [Billera et al 2012]

d(d-1)/2 ≤ log2 | H∞(d,1)+ | ≤ d(d-3) [Deza-Pournin-Rakotonarivo 2021]

d 2 (1-εd) ≤ log2 | H∞(d,1)+ | ≤ d(d-3) [Gutekunst, Mészáros, Petersen 2021]

(root resonance arrangement, maximal unbalanced families...)

Vertices of primitive zonotopes



d a(d)

2 6 [Evans 1995]
3 32 [Evans 1995]
4 370 [Evans 1995]
5 11 292 [Evans 1995, van Eijck 1995] 
6 1 066 044 [Evans 1995, van Eijck 1995] 
7 347 326 352 [van Eijck 1995, Kamiya, Takemura, Terao 2011] 
8 419 172 756 930 [Evans 2011]
9 1 955 230 985 997 140 [Brysiewicz, Eble, Kühne 2021]

[Chroman-Singhal 2021]
[Deza-Hao-Pournin 2021]

Generating and counting the vertices of the White Whale 

Ø [Deza-Hao-Pournin 2021] : Generating all the edges of White While till d = 9, 
and exhibiting a family of White While vertices of degree roughly  2d 

Sizing the White Whale



Convex matroid optimization

The optimal solution of max { f(Wx) : x Î S} is attained at a vertex of the 
projection integer polytope in Rd  : conv(WS) = Wconv(S) 

S : set of feasible point in Zn (in the talk S Î {0,1} n )
W : integer d x n matrix (W is {0,1,…, p}-valued)
f : convex function from Rd to R

Q. What is the maximum number v(d,n) of vertices of conv(WS) when 
S Î {0,1} n and W is a {0,1}-valued d x n matrix ?

obviously v(d,n) ≤ |WS| = O(nd)
in particular v(2,n) = O(n2), and v(2,n) = Ω(n0.5)

Ø [Hunkenschröder, Pokutta, Weismantel 2022] : min { g(Wx) : x Î {0,1} n

Machine Learning setting with W unknow, but ||W||∞  and the number
of rows m ≪ n are revealed, some conditions on g such as having
Lipschitz continuous gradients



[Melamed-Onn 2014] Given matroid S of order n and {0,1,…,p}-valued 
d x n matrix W, the maximum number m(d,p) of vertices of conv(WS) is 
independent of n and S

Ex: maximum number m(2,1) of vertices of a planar projection conv(WS) 
of matroid S by a binary matrix W is attained by the following matrix and 
uniform matroid of rank 3 and order 8:

W =

S = U(3,8) =

conv(WS) 

2 30 1

1

2

3

Convex matroid optimization



Convex matroid optimization

The optimal solution of max { f(Wx) : x Î S} is attained at a vertex of the 
projection integer polytope in Rd  : conv(WS) = Wconv(S) 

S : set of feasible point in Zn (in the talk S Î {0,1} n )
W : integer d x n matrix (W is mostly {0,1,…, p}-valued)
f : convex function from Rd to R

Q. What is the maximum number v(d,n) of vertices of conv(WS) when 
S Î {0,1} n and W is a {0,1}-valued d x n matrix ?

v(d,n) ≤ |WS| = O(nd)
v(2,n) = O(n2), and v(2,n) = Ω(n0.5)

[Melamed-Onn 2014] Given matroid S of order n and {0,1,…,p}-valued 
d x n matrix W, the maximum number m(d,p) of vertices of conv(WS) is 
independent of n and S
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[Melamed-Onn 2014] Given matroid S of order n and {0,1,…,p}-valued 
d x n matrix W, the maximum number m(d,p) of vertices of conv(WS) is 
independent of n and S

[Deza-Manoussakis-Onn 2018] Given matroid S of order n, {0,1,…,p}-
valued d x n matrix W, maximum number m(d,p) of vertices of conv(WS) 
is equal to the number of vertices of H∞(d,p)

m(d,p) = | H∞(d,p) |

[Melamed-Onn 2014] [Deza-Pournin-Rakotonarivo 2021]

d 2d ≤ m(d,1) ≤  3d(d-1)/2 ≤ m(d,1) ≤ 3d(d-2)

24 ≤ m(3,1) ≤ 158 m(3,1) = 96
64 ≤ m(4,1) ≤ 19840 m(4,1) = 5376

m(2,1) = 8 

Convex matroid optimization

m(2,p) = 8



(IP) integer optimization max {cTx : x Î P ∩ {0,1}d } 

[Schultz-Weismantel-Ziegler 1995] optimization and augmentation 
are equivalent (bit scaling)

[Schulz-Weismantel 2002] geometric scaling solves (IP) by 
O(d log d ||c||∞) augmentation oracle calls  

[Le Bodic-Pavelka-Pfetsch-Pokutta 2018] geometric scaling 
solves (IP) by O(d log ||c||∞) augmentation oracle calls

[Deza-Pournin-Pokutta 2022] geometric scaling may require 
d + log ||c||∞ +1 iterations over a simplex  

[Le Bodic-Pavelka-Pfetsch-Pokutta 2018] tight upper and lower bound 
for bit scaling 

Geometric scaling



Maximum ratio augmentation based geometric scaling 
(IP) integer optimization max {cTx : x Î P ∩ {0,1}d } 

Input: P, c Î Zd , vertex xo Î P, µo ≥ ||c||∞ 
Output: vertex x* maximizing cTx

1. µ ← µo , x* ← xo

2. repeat
3. compute vertex x+ Î P maximizing cT(x+ - x* ) / || x+ - x* ||1 
4. if x+ = x* or cT(x+ - x* ) < µ || x+ - x* ||1  then µ ← µ /2 (halving step)
5. else x* ← x+ (augmenting step)
6. end
7. until µ < 1/d
8. return x*

P = convex hull (v0, v1,….,vd) where vi = (0,…0,1…1) with i ones
c = (1,2,3,…, d), x0 = v0

Ø requires d augmenting steps and log ||c||∞  + 1 halving steps



(IP) integer optimization max {cTx : x Î P ∩ {0,1}d } 

Input: P, c Î Zd , vertex xo Î P, µo ≥ ||c||∞ 
Output: vertex x* maximizing cTx

1. µ ← µo , x* ← xo

2. repeat
3. compute a vertex x+ Î P such that cT(x+ - x* ) > µ || x+ - x* ||1 
4. if there is no such vertex then µ ← µ /2 (halving step)
5. else x* ← x+ (augmenting step)
6. end
7. until µ < 1/d
8. return x*

P = convex hull (v0, v1,….,vd) where vi = (0,…0,1…1) with i ones
c = (2,4,8,…,2d), x0 = v0

Ø requires d /3 augmenting steps and log ||c||∞  + 1 halving steps

Feasibility test based geometric scaling 



(IP) integer optimization max {cTx : x Î P ∩ {0,1}d } 

Input: P, c Î Zd , vertex xo Î P, µo ≥ ||c||∞ 
Output: vertex x* maximizing cTx

1. µ ← µo , x* ← xo

2. repeat
3. compute a vertex x+ Î P such that cT(x+ - x* ) > µ || x+ - x* ||1 
4. if there is no such vertex then µ ← 3µ /4 (halving step)
5. else x* ← x+ (augmenting step)
6. end
7. until µ < 1/d
8. return x*

P = convex hull (v0, v1,….,vd) where vi = (0,…0,1…1) with i ones
c = (2,4,8,…,2d), x0 = v0

Ø requires d augmenting steps and log ||c||∞  + 1 halving steps

Feasibility test based geometric scaling 



Dd : convex hull of the degree sequences of all hypergraphs on d nodes
Dd  = H∞(d,1)+

Dd (k) : convex hull of the degree sequences of all k-uniform hypergraphs 
on d nodes

Q: check whether x Î Dd (k) ∩ Zd is the degree sequence of a k-uniform 
hypergraph. Necessary condition: sum of the coordinates of x is multiple of k.

[Erdős-Gallai 1960]: for k = 2 (graphs) necessary condition is sufficient

[Liu 2013] exhibited counterexamples (holes) for k = 3 (Klivans-Reiner Q.) 

ØAnswer to Colbourn-Kocay-Stinson Q. (1986) 
Deciding whether a given integer sequence is the degree sequence of a 
3-uniform hypergraph is NP-complete [Deza-Levin-Meesum-Onn 2018]

(reduction to 3-partition problem) 

Primitive zonotopes
(degree sequences) 



d(d,k): largest diameter over all lattice (d,k)-polytopes 

ØConjecture : d(d,k) ≤  (k+1)d/2   and d(d,k) is achieved, up to translation, 
by a Minkowski sum of primitive lattice vectors (holds for all known d(d,k) )

⇒ d(d,k) =  (k+1)d/2   for k < 2d

Øm(d,p) = | H∞(d,p) |   (convex matroid optimization complexity)

Øtightening of the bounds for m(d,1) = | H∞(d,1) |

Øtightening of the bounds for a(d) = | H∞(d,1)+ | (white whale)

ØAnswer to [Colbourn-Kocay-Stinson 1986] question:
Deciding whether a given integer sequence is the degree sequence of a 
3-hypergraph is NP-complete [Deza-Levin-Meesum-Onn 2018]

Primitive zonotopes, convex matroid optimization, 
and degree sequences of hypergraphs
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