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Linear optimization

Given an n-dimensional vector b and an n x d matrix A
find, in any, a d-dimensional vector x such that :

Ax=Db Ax<b
linear algebra linear optimization

“Can linear optimization be solved in strongly polynomial time?”
is listed by Smale as one of the top problems for the XXI century

Strongly polynomial : algorithm independent from
the input data length and polynomial in n and d.




Linear optimization algorithms
simplex methods

Given an n-dimensional vector b and an n x d (full row-rank) matrix A
and a d-dimensional cost vector ¢, solve : max{c'x: Ax=b,x20}

Simplex methods (Dantzig 1947): pivot-based, combinatorial,
not proven to be polynomial, efficient in practice

»start from a feasible basis
»use a pivot rule

»>find an optimal solution after a finite number of iterations
»most known pivot rules are known to be exponential

(worst case); efficient implementations exist



Linear optimization algorithms
(central path following) interior point methods

Given an n-dimensional vector b and an n x d (full row-rank) matrix A
and a d-dimensional cost vector ¢, solve : max{c'x: Ax=b,x20}

Interior Point Methods :

path-following, polynomial, efficient in practice

»start from the analytic center
» follow the central path

» converge to an optimal solution in O(VnL) iterations

(L: input data length)
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Linear optimization diameter and curvature

Diameter (of a polytope) :

lower bound for the number of iterations for pivoting
simplex methods

Curvature (of the central path associated to a polytope) -

large curvature indicates large number of iterations
for path following interior point methods
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Linear optimization

Given an n-dimensional vector b and an n x d matrix A
find, in any, a d-dimensional vector x such that :

Ax=Db Ax<b
linear algebra linear optimization

“Can linear optimization be solved in strongly polynomial time?”
is listed by Smale as one of the top | problems for the XXI century

» [Allamigeon, Benchimol, Gaubert, Joswig 2018]
(logarithmic barrier) Interior point methods
are not strongly polynomial

» [Allamigeon, Gaubert, Vandame 2022]
(self-concordant barrier) Interior point methods
are not strongly polynomial

(tropical counterexample to continuous Hirsch conjecture [Deza-Terlaky-Zinchenko 2008])



Lattice polytopes with large diameter

lattice (d,k)-polytope : convex hull of points drawn from {0,1,...,k}¢

diameter d(P) of polytope P : smallest number such that any two
vertices of P can be connected by a path with at most 5(P) edges

o(d,k): largest diameter over all lattice (d,k)-polytopes

ex. 8(3,3) = 6 and is achieved
by a truncated cube

> 0(d,k) : lower bound on the number of simplex pivots required in
the worst case to perform linear optimization on a lattice polytope

> [Del Pia-Michini 2018] preprocessing and scaling algorithm yielding
simplex paths that are short relative to 6(d,k)



Lattice polytopes with large diameter

lattice (d,k)-polytope : convex hull of points drawn from {0,1,...,k}¢

diameter &(P) of polytope P : smallest number such that any two
vertices of P can be connected by a path with at most 5(P) edges

o(d,k): largest diameter over all lattice (d,k)-polytopes
» O(P) : lower bound for the worst-case number of iterations required
by pivoting methods (simplex) to optimize a linear function over P

» Hirsch conjecture : 8(P)<n—d (n number of inequalities)
was disproved [Santos 2012]

8(P) < (n—d)'9d- - [Kalai-Kleitman 1992, Todd 2014, Sukegawa 2019]
% no polynomial upper bound known for &(P)



Lattice polytopes with large diameter

&(d,k): largest diameter of a convex hull of points drawn from {0,1,...,k}¢

upper bounds
o(d,1)=<d
8(2,k) = O(k?3)

8(2,k) = 6(k/272)23 +O(k'3log k)

8(d, k) < kd
8(d,k) < kd - [d/21 for k=2

8(d,k) < kd - 12d/31- (k-3) fork=3

[Naddef 1989]
[Balog-Barany 1991]

[Thiele 1991]
[Acketa-Zuni¢ 1995]

[Kleinschmid-Onn 1992]
[Del Pia-Michini 2016]

[Deza-Pournin 2018]



Lattice polytopes with large diameter

&(d,k): largest diameter of a convex hull of points drawn from {0,1,...,k}¢

lower bounds
8(d,1) = d [Naddef 1989]
o(d,2) 2 |3d/2] [Del Pia-Michini 2016]
8(d,k) = Q(k23 d) [Del Pia-Michini 2016]

6(d,k) 2| (k+1)d /2| for k <2d [Deza-Manoussakis-Onn 2018]
&(d, k) = Q(k9'9+1) for fixed d [Deza-Pournin-Sukegawa 2020]

» Lower bound of Q(k99*1) obtained by counting primitive points within
simplex and cross polytope blown up by an integer factor

[Manecke-Sanyal 2020]: primitive Ehrhart theory



Lattice polytopes with large diameter

k

1 2 | 3|4 | 5|6 |7 |89

5(d, k)

d
4 | 4 | 6 | 8
S S | 7 |10
o(d,1) = Naddef 1989] )
o(2,k) : Close form ‘Thiele 1991] [Acketa-Zunic¢ 1995]
8(d,2) = |3d/2 ] Del Pia-Michini 2016]
0(4,3)=8, 68(3,4)=7, 8(3 5)=9 Deza-Pournin 2018], [Chadder-Deza 2017]
6(5,3)=10, 5(3,6)=1 [Deza-Deza-Guan-Pournin 2019]




Lattice polytopes with large diameter

k
5(d, k)

1 2 | 3|4 | 5|6 |7 |89

4 | 4 | 6 | 8

S | 5| 7 |10

» Conjecture [Deza-Manoussakis-Onn 2018] d(d,k) < L(k+1)d /2J

and 8(d,k) is achieved, up to translation, by a Minkowski sum of primitive
lattice vectors. The conjecture holds for all known entries of 8(d, k)



Lattice polygons with large diameter

Q. What is 6(2,k) : largest diameter of a polygon which vertices are
drawn form the k x k grid?

A polygon can be associated to a set of vectors (edges) summing up to
zero, and without a pair of positively multiple vectors

0(2,3) = 4 is achieved by the 8 vectors : (=1,0), (0,%£1), (£1,%£1)



Primitive polygons

IXlls = p

H,(2,p) : Minkowski sum generated by {x € Z>2 : ||x||4 < p, gcd(x)=1, x > 0}

p p
H,(2,p) has diameter 5(2,k) = 2 Z o(i) for k =2 io(i)
i=1 i=1

Ex. H,(2,2) generated by (1,0), (0,1), (1,1), (1,-1) (fits, up to translation, in 3x3 grid)

@(p) : Euler totient function counting positive integers less or equal to p relatively prime with p
(1) =0(2)=1,03)=094)=2,... x >0 : first nonzero coordinate of x is nonnegative



Primitive zonotopes

Hgy(d,p) : Minkowski (x € Z: ||x]|q < p, gcd(x)=1, x > 0)

x >0 : first nonzero coordinate of x is nonnegative

Given a set G of m vectors (generators),
Minkowski (G) : convex hull of all the 2™ subsums of the m vectors in G

“* Primitive zonotopes: Minkowski sum generated by short integer vectors
which are pairwise linearly independent

“* Note: convex hull of all the signed subsums of the vectors of
Hq(d.p) is a generalization of the permutahedron of type By



Primitive zonotopes

Hy(d,p) : Minkowski (x € Z° : ||x]|4 < p, gcd(x)=1, x > 0)

x >0 : first nonzero coordinate of x is nonnegative

> Hy(d, 1) : [0, 1]¢ cube for q #<
» H,(d,2) : permutahedron of type B, (up to a homothety)
> H,(3,2) : great rhombicuboctahedron

» H.(3,1) : truncated small rhombicuboctahedron




Primitive zonotopes

» lattice polytopes with /arge diameter
Hy(d,p) : Minkowski (x € Z° : ||x]|4 < p, gcd(x)=1, x > 0)

x >0 : first nonzero coordinate of x is nonnegative

» For k < 2d, Minkowski sum of a subset of the generators of H,(d,2) is,
up to translation, a lattice (d,k)-polytope with diameter I_(k+1)d/2 g



Positive primitive zonotopes

Hy(d,p) : Minkowski (x € Z° : ||x]|4 < p, gcd(x)=1, x > 0)
x > 0 : first nonzero coordinate of x is nonnegative

Hy(d,p)* : Minkowski (x € Z.9 : ||x]|4 < p, gcd(x)=1)

»H,(d,2)*" : Minkowski sum permutahedron + unit cube (graphical zonotope)

»H.(d,1)* : white whale (hypergraphical zonotope)
a(d) = |H.(d,1)*|

number a(d) of generalized retarded functions in quantum field theory
is equal to the number of vertices of H.(d,1)*
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In pursuit of a white whale: On the real linear
algebra of vectors of zeros and ones

We are interested in the real linear relations (the real matroid) on the set
of all 0-1 n-vectors. This fundamental combinatorial object is behind
questions arising over the past 50 years in a variety of fields, from eco-
nomics, circuit theory and integer programming to quantum physics,
and has connections to an 1893 problem of Hadamard. Yet there has
been little real progress on some of the most basic questions.

Some applications seek the number of regions in R” that are determi-
ned by the 2" - 1 linear hyperplanes having 0-1 normals. This number,
asymptotically 27, can be obtained exactly from the characteristic
polynomial of the geometric lattice of all real subspaces spanned by
these 0-1 vectors. These polynomials are known only through n = 7,
while the number of regions is known through n = 8.




Discrete optimization and theoretical physics

» Ising model (spin glasses)
maxcut, cut and metric polytopes [Deza-Laurent 1997]

» a(d) : number of generalized retarded functions in quantum field theory
(number of real-time Green functions) [Evans 1994]

a(d) = number of regions of the arrangement formed by the 29 -1
hyperplanes with {0,1}-valued normals in dimension d

d=2 29 -1 = 3 hyperplanes

6 regions



Discrete optimization and theoretical physics

a(d) = number of regions of the arrangement formed by the 29 -1
hyperplanes with {0,1}-valued normals in dimension d

» isa(d)=d! [question by Evans]

» a(d) determined tilld =9

» how to estimate a(d) ?

a(d) regions <=> a(d) vertices



Discrete optimization and theoretical physics

a(d) = number of regions of the arrangement formed by the 29 -1
hyperplanes with {0,1}-valued normals in dimension d

» isa(d)=d! [question by Evans]

o A
> a(d) determined till d =9 \\
» how to estimate a(d) ? \‘\ s
e
» al(d) vertices of the white whale

a(2)=6



Discrete optimization and theoretical physics

a(d) = number of regions of the arrangement formed by the 29 -1
hyperplanes with {0,1}-valued normals in dimension d

» isa(d)=d! [question by Evans]
» a(d) determined tilld =9
» how to estimate a(d) ?

» al(d) vertices of the white whale




Vertices of primitive zonotopes

Sloane OEI sequences
H.(d,1)* vertices : A034997 = number of generalized retarded functions in
quantum Field theory (determined till d = 9)

H.(d,1) vertices : AO09997 = number of regions of hyperplane arrangements
with {-1,0,1}-valued normals in dimension d (determined till d = 7)

Estimating the number of vertices of H.(d,1)* (white whale)

d(d-1)/2 <log, | He(d,1)* | < d 2 [Billera et al 2012]
d(d-1)/2 <log, | Ho(d,1)* | < d(d-3) [Deza-Pournin-Rakotonarivo 2021]

d?(1-e4) <log, | Ho(d,1)* | < d(d-3) [Gutekunst, Mészaros, Petersen 2021]

(root resonance arrangement, maximal unbalanced families...)



Sizing the White Whale

d a(d)

2 6 [Evans 1995]

3 32 [Evans 1995]

4 370 [Evans 1995]

5 11 292 [Evans 1995, van Eijck 1995]

6 1 066 044 [Evans 1995, van Eijck 1995]

7 347 326 352 [van Eijck 1995, Kamiya, Takemura, Terao 2011]
8 419 172 756 930 [Evans 2011]

9 1 955 230 985 997 140 [Brysiewicz, Eble, Kiihne 2021]

[Chroman-Singhal 2021]
[Deza-Hao-Pournin 2021]

Generating and counting the vertices of the White Whale

> [Deza-Hao-Pournin 2021] : Generating all the edges of White While till d = 9,
and exhibiting a family of White While vertices of degree roughly 29



Convex matroid optimization

The optimal solution of max { f(Wx) : x € S} is attained at a vertex of the
projection integer polytope in R? : conv(WS) = Wconv(S)

S : set of feasible pointin Z"  (inthetalk S € {0,1}")
W : integer d x n matrix (Wis {0,1,..., p}-valued)
f : convex function from R? to R

Q. What is the maximum number v(d,n) of vertices of conv(WS) when
S € {0,1}"and W is a {0,1}-valued d x n matrix ?

obviously v(d,n) < |WS| = O(n9)
in particular v(2,n) = O(n?), and v(2,n) = Q(n°>)

> [Hunkenschroder, Pokutta, Weismantel 2022] : min { g(Wx) : x € {0,1} "

Machine Learning setting with W unknow, but ||W]||.. and the number
of rows m « n are revealed, some conditions on g such as having
Lipschitz continuous gradients



Convex matroid optimization

[Melamed-Onn 2014] Given matroid S of order n and {0,1,...,p}-valued
d x n matrix W, the maximum number m(d,p) of vertices of conv(WS) is
independent of nand S

Ex: maximum number m(2,1) of vertices of a planar projection conv(WS)

of matroid S by a binary matrix W is attained by the following matrix and
uniform matroid of rank 3 and order 8:

w=(00110011
00001111
11100000

S = U(3.8) =

00 00O0T1T11

conv(WS)



Convex matroid optimization

The optimal solution of max { f(Wx) : x € S} is attained at a vertex of the
projection integer polytope in R? : conv(WS) = Wconv(S)

S : set of feasible pointin Z"  (inthetalk S € {0,1}")
W : integer d x n matrix (W is mostly {0,1,..., p}-valued)
f : convex function from R? to R

Q. What is the maximum number v(d,n) of vertices of conv(WS) when
S € {0,1}"and W is a {0,1}-valued d x n matrix ?

v(d,n) < |WS| = O(n9)
v(2,n) = O(n?), and v(2,n) = Q(n°>)

[Melamed-Onn 2014] Given matroid S of order n and {0,1,...,p}-valued
d x n matrix W, the maximum number m(d,p) of vertices of conv(WS) is
independent of nand S



Convex matroid optimization

[Melamed-Onn 2014] Given matroid S of order n and {0,1,...,p}-valued
d x n matrix W, the maximum number m(d,p) of vertices of conv(WS) is
independent of nand S

[Deza-Manoussakis-Onn 2018] Given matroid S of order n, {0,1,...,p}-

valued d x n matrix W, maximum number m(d,p) of vertices of conv(WS)
is equal to the number of vertices of H..(d,p)

m(d’p) = | Hw(dip) |
[Melamed-Onn 2014] [Deza-Pournin-Rakotonarivo 2021]
d2¢<m(d,1) < zz ((3" ~3/ 2) 342 < m(d,1) < 39(-2)

24 <m(3,1) < 158 m(3,1) = 96
64 < m(4,1) < 19840 m(4,1) = 5376
p

m(2,1) = 8 m(2,p)=8 ) (i)



Geometric scaling

(IP) integer optimization max {c'x:x e PN {0,1}9}

[Schultz-Weismantel-Ziegler 1995] optimization and augmentation
are equivalent (bit scaling)

[Schulz-Weismantel 2002] geometric scaling solves (IP) by
O(d log d ||c]||..) augmentation oracle calls

[Le Bodic-Pavelka-Pfetsch-Pokutta 2018] geomefric scaling
solves (IP) by O(d log ||c||.) augmentation oracle calls

[Deza-Pournin-Pokutta 2022] geomefric scaling may require
d +log ||c||. +1 iterations over a simplex

[Le Bodic-Pavelka-Pfetsch-Pokutta 2018] tight upper and lower bound
for bit scaling



Maximum ratio augmentation based geometric scaling

(IP) integer optimization max {c'x:x e PN {0,1}9}

Input: P, c € Z9, vertex x° € P, u,=||c||.
Output: vertex x” maximizing c'x

Mo po X — X°
repeat
compute vertex x* € P maximizing c™(x*-x") /|| x* - x ||
if x*=xorc’(x*-x")<ul||x*-x"||4 then u— u/2 (halving step)
else x" < x*(augmenting step)
end
until z <1/d
return x

PN WN

P = convex hull (V°, v1,....,v?) where v/ = (0,...0,1...1) with / ones
c=(1,23,...,d),x0 =0

» requires d augmenting steps and log ||c||. + 1 halving steps



Feasibility test based geometric scaling

(IP) integer optimization max {c'x:x e PN {0,1}9}

Input: P, c € Z9, vertex x° € P, u,=||c||.
Output: vertex x” maximizing c'x

Mo po X — X°
repeat
compute a vertex x* e Psuch that c"(x*-x") > u || x* - X ||4
if there is no such vertex then u «— /2 (halving step)
else x" < x*(augmenting step)
end
until z <1/d
return x

PN WN

P = convex hull (V°, v1,....,v?) where v/ = (0,...0,1...1) with / ones
c=(24,8,...,29), x0 =V

» requires d /3 augmenting steps and log ||c||. + 1 halving steps



Feasibility test based geometric scaling

(IP) integer optimization max {¢'x:x e PN {0,1}9}

Input: P, c € Z9, vertex x° € P, u,=||c||.
Output: vertex x” maximizing c'x

Mo po X — X°
repeat
compute a vertex x* e Psuch that e"(x*- x") > u || x* - x||4
if there is no such vertex then x4 «— 3u/4 (halving step)
else x" < x*(augmenting step)
end
until ¢z < 1/d
return x

PN WN

P = convex hull (V°, v1,....,v?) where v/ = (0,...0,1...1) with / ones
c=(24,8,...,29), x0 =V

» requires d augmenting steps and log ||c||. + 1 halving steps



Primitive zonotopes
(degree sequences)

D, : convex hull of the degree sequences of all hypergraphs on d nodes
D, =H.(d1)*

D, (k) : convex hull of the degree sequences of all k-uniform hypergraphs
on d nodes

Q: check whether x e D, (k) N Z9 is the degree sequence of a k-uniform
hypergraph. Necessary condition: sum of the coordinates of x is multiple of k.

[Erd6s-Gallai 1960]: for k = 2 (graphs) necessary condition is sufficient
[Liu 2013] exhibited counterexamples (holes) for k = 3 (Klivans-Reiner Q.)
»Answer to Colbourn-Kocay-Stinson Q. (1986)

Deciding whether a given integer sequence is the degree sequence of a

3-uniform hypergraph is NP-complete [Deza-Levin-Meesum-Onn 2018]

(reduction to 3-partition problem)



Primitive zonotopes, convex matroid optimization,
and degree sequences of hypergraphs

o(d,k): largest diameter over all lattice (d,k)-polytopes

»Conjecture : 8(d,k) = |(k+1)d/2] and &(d,k) is achieved, up to translation,
by a Minkowski sum of primitive lattice vectors (holds for all known &(d, k) )

= 8(d,k) = |(k+1)d/2 | for k < 2d
»m(d,p) =| H.(d,p)| (convex matroid optimization complexity)
»>tightening of the bounds for m(d,1) =| H.(d,1) |
»>tightening of the bounds for a(d) =| H.(d,1)*| (white whale)
»Answer to [Colbourn-Kocay-Stinson 1986] question:

Deciding whether a given integer sequence is the degree sequence of a
3-hypergraph is NP-complete [Deza-Levin-Meesum-Onn 2018]
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