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Targeted problems

Consider the optimization problem of the form

minimize f (x) subject to x ∈ IRn (1)

with a continuously differentiable (C1-smooth) objective function
f : IRn → IR.
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Gradient descent finds stationary points

A necessary condition for x̄ ∈ IRn to be a minimizer of f is

∇f (x̄) = 0. (2)

The point x̄ satisfies (2) is called a stationary point. To find such a point
the gradient descent methods construct the iterative procedure

xk+1 := xk − tk∇f (xk) for all k ∈ IN, (3)

where tk ≥ 0 is a stepsize at the kth iteration, and where ∇f (xk) is the
gradient of f at xk .
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Stepsize selections - Backtracking stepsize

The stepsize sequence {tk} satisfies the Armijo rule if there exist a scalar
β ∈ (0, 1) and a reduction factor γ ∈ (0, 1) such that for all k ∈ IN we have the
representation

tk = max
t∈{1,γ,γ2,...}

{
t
∣∣ f (xk − t∇f (xk))− f (xk) ≤ −βt

∥∥∇f (xk)
∥∥2 }. (4)
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Stepsize selections - Constant and Diminishing

L−Lipschitz continuity

∥∇f (x)−∇f (y)∥ ≤ L ∥x − y∥ for all x , y ∈ IRn.

Constant stepsize: tk = τ ∈
(
0,

2

L

)
for all k ∈ IN. A smaller modulus L

gives a broader range of selections for τ.

Diminishing stepsize: tk ↓ 0 and
∞∑
k=1

tk = ∞, e.g., tk =
1

k
.

For more discussions on gradient descent methods and its variants, see
[Ber16, IS14, Nes18, NW16, Pol87, Rus06].
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Advantages and disadvantages of stepsize selections

Class of functions Compute L Speed fval
Backtracking C1 No Moderate Yes
Constant C1+∇f L−Lipschitz Yes Fast No
Diminishing C1+∇f L−Lipschitz No Slow No

Table: Comparison between stepsize selections
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A relaxation of L−Lipschitz continuity of ∇f

The L−Lipschitz continuity of ∇f yields the L−descent condition

f (y) ≤ f (x) + ⟨∇f (x), y − x⟩+ L

2
∥y − x∥2︸ ︷︷ ︸

Quadratic function fx,L(y) with amplitude L
2

for all x , y ∈ IRn. (5)

Figure: An L−descent function that does not have Lipschitz gradient
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A relaxation of L−Lipschitz continuity of ∇f

Consider the univariate function f , where

f (x) =


3
4x2 if |x | < 2

3 ,

− 3
2x2 + 3x − 1 if 2

3 ≤ x ≤ 1,

− 3
2x2 − 3x − 1 if − 1 ≤ x ≤ − 2

3 ,

|x | − x2

2 if |x | > 1.

Then ∇f is 3−Lipschitz while f satisfies the 3/2-descent proper.
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Gradient descent methods with errors

When the function f is a black-box function, i.e., does not have an
analytic form [ACL11] .
When the function f is noisy, [GK95].
When the function f is a smoothing version (Moreau
envelope/Forward-backward envelope) of another nonsmooth function
g [RW98,STP17,THP20].
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Main concerns

Question 1

Does the convergence results hold when errors appear in the calculation
∇f (xk)?

Answer 1 (Ber16, Section 1.2)

When the C1−smooth function f : IRn → IR has a Lipschitz gradient, the
gradient descent method with diminishing step-size has stationary
accumulation points.

Question 2

How about the other types of step-size and the general class of C1-smooth
functions?
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Main contributions

Design the novel Inexact reduced gradient (IRG) methods with 3
stepsize selections:

1 C1−smooth functions: backtracking stepsizes.

2 C1-smooth functions that satisfy L−descent condition: constant and
diminishing step stepsizes.

What we have achieved?

Stationary accumulation points for all methods.

Global convergence for all methods under the Kurdyka- Lojasiewicz
(KL) property of the objective functions.

Linear convergence rates for methods using backtracking stepsizes
and constant stepsize.
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Our ideas

1 Calculate an arbitrary inexact gradient gk satisfying∥∥∥∇f (xk)− gk
∥∥∥ ≤ δk .

2 Choose g̃k near gk that have a better property than gk .

3 Choose dk = −g̃k as a descent direction.
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Geometric representation
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Geometric representation
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General framework

Step 0. (initialization) Select an initial point x1 ∈ IRn, initial radii
ε1, r1 > 0, radius reduction factors µ, θ ∈ (0, 1), and a sequence of
gradient errors {ρk} ↓ 0.
Step 1. (inexact gradient and stopping criterion) Choose gk such that∥∥∥gk −∇f (xk)

∥∥∥ ≤ min {ρk , εk} . (6)

If
∥∥gk

∥∥ = ρk = 0, then stop.
Step 2. (radius update) If

∥∥gk
∥∥ ≤ rk + εk , then set

rk+1 := µrk , εk+1 := θεk , dk := 0, and go to Step 3. Otherwise, set
rk+1 := rk , εk+1 := εk , and

dk := −Proj(0,B(gk , εk)) = −
∥∥gk

∥∥− εk

∥gk∥
gk . (7)

Step 3. (stepsize) Choose tk > 0 by a specific rule.
Step 4. (iteration update) Set xk+1 := xk + tkdk . Increase k by 1 and go
back to Step 1.
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Our goals

Deriving the following assertions:

1 Every accumulation point of
{

xk
}
is a stationary point of f .

2 The sequence
{

xk
}
is convergent.
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Backtracking step-size for inexact gradient

Choose a line search scalar β ∈ (0, 1), a reduction factor γ ∈ (0, 1), and an
artificial stepsize at stagnant iterations τ ∈ (0, 1).

Backtracking stepsize

If dk = 0, then put tk := τ . Otherwise, we set

tk := max
{

t
∣∣ f (xk + tdk) ≤ f (xk)− βt

∥∥dk
∥∥2, t = 1, γ, γ2, . . .

}
. (8)
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Key lemma

Lemma 1 (KMT22)

Let
{

xk
}

and
{

dk
}

be sequences satisfying

∞∑
k=1

∥∥∥xk+1 − xk
∥∥∥ ·

∥∥∥dk
∥∥∥ <∞. (9)

If x̄ is an accumulation point of
{

xk
}

and if 0 is an accumulation point of{
dk

}
, then there exists an infinite set J ⊂ IN such that

xk J→ x̄ and dk J→ 0. (10)

Dat Tran IRG methods for smooth optimization October 29th, 2022



21/33

Stationary accumulation points

When f is C1−smooth and step-size is backtracking, or when f satisfies
L−descent condition and step-size is constant or diminishing.

Theorem 2 (KMT22)

(i) Every accumulation point of
{

xk
}

is a stationary point of f .

(ii) If the sequence
{

xk
}

is bounded, then the set of accumulation points
of

{
xk

}
is nonempty, compact, and connected.

(iii) If
{

xk
}

has an isolated accumulation point, then the entire sequence{
xk

}
converges to this point.

Dat Tran IRG methods for smooth optimization October 29th, 2022



22/33

Kurdyka- Lojasiewicz property

Definition 3 (AMA6)

Let f : IRn → IR be a differentiable function. We say that f satisfies the
KL property at x̄ ∈ IRn if there exist a number η > 0, a neighborhood
U of x̄ , and a nondecreasing function ψ : (0, η) → (0,∞) such that the
function 1/ψ is integrable over (0, η) and we have

∥∇f (x)∥ ≥ ψ
(
f (x)− f (x̄)

)
(11)

for all x ∈ U with f (x̄) < f (x) < f (x̄) + η.

Remark 1

The KL property is satisfied at every point x ∈ IRn when f is either

analytic

semi-algebraic (graph is built up by polynomial inequalities)

definable in o-minimal structures
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Global convergence

From now, assume that the radius reduction factors satisfy θ < µ. When f is
C1−smooth and step-size is backtracking, or when f satisfies L−descent
condition and step-size is constant or diminishing.

Theorem 4 (KMT22)

Assume that f satisfies the KL property at some accumulation point x̄ of
{

xk
}
.

Then xk → x̄ .
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Rate of convergence

Definition 5

The kth iteration of Algorithm 1 is called a null iteration if xk+1 = xk .
The set of all null iterations is denoted by

N :=
{

k ∈ IN
∣∣ xk+1 = xk

}
.

Remark 2

If the set of non-null iterations is finite,
{

xk
}
converges finitely to some

stationary point x̄ . So we consider the case this set is infinite.

Assumption 1

The non-null iterations sequence
{

zk
}

has an accumulation point z̄, that
f satisfies the KL property at z̄ with ψ(t) = Mtq for some M > 0 and
q ∈ [0, 1).
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Rate of convergence

Theorem 6 (KMT22)

Suppose that the step-size considered is backtracking. Assume further that
f is bounded from below, and ∇f is locally Lipschitzian around z̄. Then

zk → x̄ R-linearly or Q-linearly.

Theorem 7 (KMT22)

The same rate of convergence holds when f satisfies the L−descent
condition and step-size is constant.
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Numerical experiments

Compare the efficiency of our new IRG methods with the reduced gradient
(RG) methods and the gradient descent (GD) method, and then check the
sensitivity of the IRG methods with respect to error accumulations in the
following settings:

1 The accuracy of inexact gradient gk is low, i.e.,
∥∥gk −∇f (xk)

∥∥ ≤ δk ,
where δk is not too small relative to

∥∥∇f (xk)
∥∥.

2 The accuracy
∥∥∇f (x last)

∥∥ ≤ ν required for the solution is increasing,

3 The dimension of the objective function is increasing.
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Testing functions

Test number Problem name Dimension Accuracy

1 Beale 2 0.01
2 Branin 2 0.01
3 Camel 2 0.01
4 Gol 2 0.01
5 Himmel 2 0.01

6 Beale 2 0.001
7 Branin 2 0.001
8 Camel 2 0.001
9 Gol 2 0.001
10 Himmel 2 0.001
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Testing functions

Test number Problem name Dimension ν

11 Dixon 20 20 0.01
12 Dixon 500 500 0.01
13 Dixon 2000 2000 0.01

14 Rosen 20 20 0.01
15 Rosen 500 500 0.01
16 Rosen 2000 2000 0.01

17 Dixon 20 20 0.001
18 Dixon 500 500 0.001
19 Dixon 2000 2000 0.001

20 Rosen 20 20 0.001
21 Rosen 500 500 0.001
22 Rosen 2000 2000 0.001
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Results

Figure: The ratio between number of iterations of IRGB and GD by tests
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Results

Figure: The ratio between number of iterations of IRGB when ν = 0.001 and when
ν = 0.01 by functions
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