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The Main Definitions



Circles in the plane

Let C be the extended complex plane
Let 21, 2, and u be distinct points in C

The unique circle through these three points can be parametrized as

1 _
7= U- , . wherere R
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Let C be the extended complex plane

Let 21, 2, and u be distinct points in C

The unique circle through these three points can be parametrized as

1 _
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This formula is continuous in C w.r.t. 1, and u
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Circles in the plane

Let C be the extended complex plane
Let 21, 2, and u be distinct points in C

The unique circle through these three points can be parametrized as

1

z=u+—— —, where € R

1 — U r—Uu

This formula is continuous in C w.r.t. 1, and u

If u = 0o, we have z = (1 — 1)z, + tz,, wheret € R




Circles in the plane

Let C be the extended complex plane

Let 21, 2, and u be distinct points in C

1 —1
i1 —Uu Hr—Uu

Denote by arc, [z, 2,] := {u | - — 1 E [O,l]}

If any of the points z;, Z, and u coincide with common value v, then define

arc,lzy, 2] := {v}




Polar Convexity

Definition: A set A C C is convex w.rt. the poleu € C

if for any z;,20 € A, we have arc,|z;,2,] C A

The set A is called u-convex, for short

| ey arcu[zl, ZQ}
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Polar Convexity

Definition: A set A C C is convex r.w.t. the poleu € C

if for any z;,20 € A, we have arc,|z;,2,] C A

The set A is called u-convex, for short

alrc
| o u[zlvzﬂ . .
When u = o0, u-convexity = convexity

Intersection of u-convex sets is u-convex

So, we can define

ForanyA C Candany u & intA

conv,(A) := the smallest u-convex set containing A



If D is a disk and u is not in its interior, then D is u-convex



If u, 2y, 2, 23 € C are distinct, then

convy,{z1, 29,23} =

Provided that u & conv{z;, 2y, 3}



If u, 2y, 25, 73 € C are distinct and u € conv{z;, 2y, 23}, then

7

convy, {21, 22,23} =



then
= 00,
i3 =

' and

re distinct

Ca

-

<3

ZZ,

Zl,

If u,

o0} =
A% {Z17Z27
conv,,

£l



Mobius Transformations
az+ b

Mobius transformation 7(z) = sends circles onto circles
cz+d

An easy consequence of that factis  T(conv,{z;, ..., z,}) = convr {1 T(zy), ..., 1(z,)}

In particular, if T(z) = then T(conv,{z,...,2,}) = conviT(zy), ..., 1(z,)}

— U

fu & {zy,...,2,}, then the set conv,{z;, ..., 2,} is the intersection of all closed circular

domains that contain zy, ..., g, and have u on the their boundary, with u removed

i=1

CONV, {215 -+ Ty} = {u +

I




Mobius Transformations

| | az+ b | |
Mobius transformation 7(z) = sends circles onto circles

cz+d

An easy consequence of that factis  T(conv,{z;, ..., z,}) = convr {1 T(zy), ..., 1(z,)}

In particular, if T(z) = then T(conv,{z,...,2,}) = conviT(zy), ..., 1(z,)}

— U

fu & {zy,...,2,}, then the set conv,{z;, ..., 2,} is the intersection of all closed circular

domains that contain zy, ..., g, and have u on the their boundary, with u removed

i=1

CONV, {215 -+ Ty} = {u +

I

Polya and Szego: Problems and Theorems in Analysis Il (1976)



Finishing the definition

fue{z,...,z,} thenconv,{z,...,z,} ={u}Uconv, iz :z Fufori=1,...,n}

In this way we have u € conv,{z,...,z,} ifandonlyifu € {z,...,2,}

The set conv,{z;, ..., 2, }does not behave in a continuous way

when u converges to a point in {z;, ..., 2,}



How polar convexity appears? - First example



The Gauss-Lucas theorem

Let p(z) be a complex polynomial of degree n
p(@) =a,z"+a, ;7" + - + a2+ a
Recall the classical Gauss-Lucas theorem:

The convex hull of the zeros of p(z), contains all zeros of p'(z)

That is: if a half-plane contains the zeros of p(z), then it contains the zeros of p'(2)



Polar Derivatives and Laguerre’s Theorem

Let p(z) be a polynomial of degree n
p)=az"+a, 7"+ - + a2+ ag
The polar derivative of p(z) with pole u € C is defined by

D,p(z) = np(z) — (z — u)p'(z)

. D,pz
tcan be shown degD,p(z) <n—1 and Lim P) = p'(2)

U— 00 u

So, define D_p(z) = p'(z)
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Polar Derivatives and Laguerre’s Theorem

Let p(z) be a polynomial of degree n
p)=az"+a, 7"+ - + a2+ ag
The polar derivative of p(z) with pole u € C is defined by

D,p(z) = np(z) — (z — u)p'(z)

D, p(z
It can be shown deg D, p(z) < n—1and lim P) = p'(2)

U—> 00 u

So, define D_p(z) = p'(z)

Theorem (Laguerre). Every circular domain containing the zeros of p(z), but not the

pole u, contains all zeros of D, p(z)

Gauss-Lukas is a corollary of Laguerre: fix a half plane containing the zeros

of p(z) and letu — o



An Extention of Laguerre's Theorem

Theorem: Let p(z) be a polynomial of degree at most n and zeros z;, ..., 2, € C

Let u € C. Then, the zeros of D, p(z) are in conv,{zy, .-, 2,}



An Extention of Laguerre's Theorem

Theorem: Let p(z) be a polynomial of degree at most n and zeros z;, ..., 2, € C

Let u € C. Then, the zeros of D, p(z) are in conv,{zy, .-, 2,}

Laguerre is a corollary of this theorem: fix a circular domain D containing the zeros
215 --+» 2, Of p(2). Letu & D. Then, the zeros of
D, p(z) are in conv,{zy, ..., 2,} CD



How polar convexity appears? - Second example



Example 10

Take any polynomial of degree 3 with complex coefficients
p(Z) — Z3 + a222 + az -+ ap

Symmetrize it with 3 complex variables
dy a
P(Zl, 6r Z3) — {14943 + ?(Z1Z2 + <143 + 2223) + ?(Zl + X + Z3) + A

Note that P(z, z,2) = p(2)
Fix z3, then solve P(z;, 2o, 23) = 0 for z,, we get the Mobius transformation in z;:

(ayz3 + ay)z; + (a;23 + 3a)
(ap + 323)7y + (az3 + ay)

TZ3(Z1) =

Recall that Mobius transformation map circles into circles



Example 10

(ClzZ3 + al)Zl ~+ (Cl1Z3 ~+ 3610)

T (77) ;= —
@) (ay + 323)z21 + (ayz3 + ay)

et C be the circle with centre 0 and radius 1

Consider the family of circles {TZ3(C) : 73 € C}

Here are two striking facts

1. The circles {TZ3(C) : 73 € C} pass through a common point, call it u

2. Each connected component of

(U{T.(C):z; € C})" is u-convex



How polar convexity appears? - Third example

A refinement of Gauss-Lucas



The Gauss-Lucas theorem

Let p(z) be a complex polynomial of degree n
p(@) =a,z"+a, ;7" + - + a2+ a
Recall the classical Gauss-Lucas theorem:

The convex hull of the zeros of p(z), contains all zeros of p'(z)

That is: if a half-plane contains the zeros of p(z), then it contains the zeros of p'(2)



Krawtchouk’s lemma

Consider the polynomial p(z) = (z — z)%++(z — z,)" of degree n

The distinct zeros z,,...,z, have respective multiplicities ki, ...,k

((n—kj)zj + kjzi)/m L j#k

For all 1 < j,k <m, define the points v, := { 50 if j =k

Krawtchouk (1929): Let M be an open disk such that i € cl M, but Yils oo Vim & M
Then M does not contain non-trivial critical points of p(z)



Krawtchouk’s lemma

Consider the polynomial p(z) = (z — z)%++(z — z,)" of degree n

The distinct zeros z,,...,z, have respective multiplicities ki, ...,k

(n—kj)zj +kjzg)/n it g #Ek

For all 1 < j,k <m, define the points v, := { 50 if j =k

Krawtchouk (1929): Let M be an open disk such that i € cl M, but Yils oo Vim ¢ M
Then M does not contain non-trivial critical points of p(z)
Example: p(z) = (z — z1)*(z — z22)*(z — z3) has two non-trivial critical points

(6 —3)z1 + 322 (6 —3)z1 + 323 s
6 I/ }/1,3 — 6

'iai=, V2=

There are many disks, containing Z; and none of Vil Yim

A natural problem is to find the union of all such disks 23

z2



Krawtchouk’s lemma

Consider the degree n polynomial p(z) = (z —z)"--(z — z,)"

The distinct zeros z,,...,z, have respective multiplicities ki, ...,k

((n—kj)zj + kjzi)/m L j#k

For all 1 < j,k <m, define the points v, := { 50 if j =k

Krawtchouk (1929): Let M be an open disk such that i € cl M, but Yils oo Vim ¢ M
Then M does not contain non-trivial critical points of p(z)
Example: p(z) = (z — z1)*(z — z22)*(z — z3) has two non-trivial critical points

(6 —3)z1 + 322 (6 —3)z1 + 323 s
6 I/ y1,3 — 6

'iai=, V2=

Answer: The union of all such disks is (conv, {7, ....7ju})°

z3

z2



The main result

Consider the degree n polynomial p(z) = (z —z)"-(z — z,)"

((n—kj)zj + kjzi)/m i j#k

Define the points v;x := { o if j =k

Theorem (2021): All non-trivial critical points of p(z) are in

m
COnV{Zl, ...,Zm} ﬂ ﬂ COanj{}’j,p cees }/],m}
j=1



The main result

Consider the degree n polynomial p(z) = (z —z)"-(z — z,)"

((n—kj)zj + kjzi)/m i j#k

Define the points v;x := { o if j =k

Theorem (2021): All non-trivial critical points of p(z) are in .
CONV{Zys --r 2, ) q ﬂ CONV Y1 o> Vjm)
j=1

Example: p(z) = (z - z))(z — 2,)(z — z3)(z — z,) has two non-trivial critical points

z
<

3z1 + 22
}/1,1 = 00, }/1,2 = ,
4 ST Ve
V2,10 :
3z1 + 23 3z1+ 74
Y13 = 4 r V14 = 4 yo




Corollary

Consider the degree n polynomial p(z) = (z —z)"-(z — z,)"

((n—kj)zj + kjzi)/m i j#k
o' if 1 =k

Define the points ;% := {

Theorem (2021): All non-trivial critical points of p(z) are in

m
convizy, ...z, [ [ ) CONVL %1 s ¥yn)
=1

Corollary (2021): Let { be a non-trivial critical point of p(z). Forall j,k € {1,...,m}

there are numbers 7;, > 0, satisfying )" 5, = 1 such that

k=1
. m .
k] 1 _Z ik
nE=z ST uTy
k#j

If z; is not an extreme point of conv{z, ..., z,}, then ; ; can be taken to be 0 above



The set of all poles of a set



The set of all poles of a set

Denote by FP(A) the set of all poles of aset A C C

Realization: If the zeros of p(z) are in A and u € 9P(A), then the zeros of D, p(z) are in A

Thus, of interest is to calculate the set of poles of a given set

Note that if T is a Mobius transformation such that 7(#) = oo

then T(A) is a convex set if and only if u € SP(A)

Thus, if we know the poles P(A) of a set A we have a description of all Mobius

transformations that map A onto a convex set



A few simple examples

P(A)
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A few simple examples

A
P(A) '

A = P(PA))



A few simple examples

NV
NV

A = P(PA))



Boundary of A is, piece-wise smooth. In fact the boundary is made of circular arcs

P(A) is the set of all poles of A
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Some properties of polar convexity

Denote by P(A) the set of all poles of A C C

It is easy to see that P(A) N (intA) = &, whenever A € C
Take any sets A, U C C
Define convy(A) to be the smallest set containing and convex w.r.t. every u € U

Theorem: Let {u;, ..., u, } and {z;, ..., z,} be non-intersecting sets in C, then
CONV (... so 11215 -2 20} = CONV, {CONV o {205 s 20} )
Theorem: Let {u, v} and {zy, ..., 2, } be non-intersecting sets in C, then

v € conv,{z,...,z,} ifand only if u € conv,{z,...,Z2,}

Theorem: For every set A C C, we have A C P(P(A))



Examples: all Poles of a Set



What are the poles of the inside of an ellipse?




What are the poles of the inside of an ellipse?




What are the poles of the outside of an ellipse?

Qa2

a3

07!

an



What are the poles of the outside of an ellipse?



What are the poles of the outside of an ellipse?

It may happen that the intersection is empty



What are the poles of the inside of a hyperbola?

Qa2
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What are the poles of the inside of a hyperbola?

Qa2

an
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What are the poles of the outside of a hyperbola?

Qa2

a1

a3



What are the poles of the outside of a hyperbola?

PA) =

Qa2

a1

a3



What are the poles of the inside of a parabola?



What are the poles of the inside of a parabola?

P(A) = {0}



What are the poles of the inside of a parabola?

P(A) = {0}

The outside of a parabola has no poles



The red curve in is the graph of

(6(303(75)7 6Sim(t)) e R

The grey area is the set of
poles of its interior
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The black curve is the graph of

(62 COS(t), o2 Sin(t)) teR

The grey area is the set of all poles of its interior






