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Positron Emission Tomography

maxx∈∆n

{
F (x) :=

∑m
j=1 pj ln(a>j x)

}
(PET)

B Known as Positron Emission Tomography (PET) in medical imaging, but
has many other applications, e.g., inference of multi-dimensional Hawkes
processes [ZZS13] and log-optimal investment [Cov84].

B For all j ∈ [m], let pj > 0 and
∑m

j=1 pj = 1.

B For all j ∈ [m], aj 6= 0, aj ∈ Rn
+ (aj ≥ 0) and can be “sparse”.

B ∆n := {x ∈ Rn
+ :
∑n

i=1 xi = 1} is the unit simplex in Rn.

B Multiplicative gradient method: x0 ∈ ri ∆n

xt+1 = xt ◦ ∇F (xt) ≡≡ xt+1
i := xt

i∇iF (xt), ∀ i ∈ [n]. (MG)

B (MG) does not fall under any “well-known” optimization frameworks,
e.g., Newton-type method, mirror descent, etc.
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The Mystery of MG
maxx∈∆n

{
F (x) :=

∑m
j=1 pj ln(a>j x)

}
(PET)

x0 ∈ ri ∆n, xt+1 = xt ◦ ∇F (xt) (MG)

B Originally proposed by information theorists in the 1970s [Ari72] based on
the EM procedure.

B Impressive numerical performance: x0 = (1/n)e

FW-A & FW-E [Dvu20; ZF22]: Frank-
Wolfe (FW) method for logarithmically-
homogeneous self-concordant barriers
(with adaptive stepsize and exact line
search)

RSGM-F & RSGM-LS [BBT17; LFN18]:
Relatively smooth gradient method
(with fixed stepsize and backtracking
line search)
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The Mystery of MG

F ∗ = maxx∈∆n

{
F (x) :=

∑m
j=1 pj ln(a>j x)

}
(PET)

B However, MG only has asymptotic convergence guarantees, and the
convergence rate has been unknown for about 50 years.

B Zhao [Zha21] showed that (MG) has the following convergence rate:
F ∗ − F (xt) ≤ ln(n)/t, ∀t ≥ 1.

The proof is relatively short, and is based on basic convex analysis.

B But immediately some questions arose:
• Why does (MG) work for PET?
• What are the essential structures of the problem the drive the success

of (MG)? Is there a general problem class that (MG) works well?
• And what is the interaction between the complexity of (MG) and the

problem structure?
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Our Main Contributions

B We identify a broad problem class and develop a generalization of the MG
method, with computational guarantees.

• The problem class is best viewed via the notion of symmetric cones.
• The development and analysis of the generalized MG method are based on

the framework of Euclidean Jordan algebra.

B To facilitate understanding, we first show our results when they are
specialized to the following applications:

• D-optimal design
• Quantum state tomography
• Semidefinite relaxation of Boolean QP

B In all of these applications, the objective functions involve “ln(·)”, and
hence are neither Lipschitz nor smooth (i.e., have Lipschitz gradients) on
the feasible sets.

B Certain first-order methods for these applications have been developed
recently [Nes11; BBT17; LFN18; Dvu20; ZF22] — our generalized MG
method contributes to this line of research from a different viewpoint.
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D-Optimal Design (D-OPT)

maxx F (x) := m−1 ln det
(∑n

i=1 xiaia
>
i

)
s. t. x ∈ ∆n (D-OPT)

B a1, . . . , an ∈ Rm whose linear span is Rm.

B In statistics, D-OPT corresponds to maximizing the the determinant of
the Fisher information matrix [Fed72].

B In computational geometry, D-OPT arises as a Lagrangian dual problem
of the minimum volume enclosing ellipsoid problem [Tod16].

B MG method: x0 ∈ ri ∆n, xt+1 = xt ◦ ∇F (xt)
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Quantum State Tomography (QST)

maxX F (X) := m−1∑q
j=1 nj ln(〈X, aja

H
j 〉)

s. t. X ∈ Hn
+, tr(X) = 〈In, X〉 = 1

(QST)

B In quantum physics, this problem aims to reconstruct the state of a
quantum system using the measured output of particles [Hra04].

B a1, . . . , aq ∈ Cn,
∑q

j=1 aja
H
j = In and

∑q
j=1 nj = m.

B Hn
+ denotes the cone of n× n complex Hermitian PSD matrices.

B (Generalized) MG method: X0 � 0, tr(X0) = 1,

X̂t+1 = exp{ln(Xt) + ln(∇F (Xt))}
Xt+1 = X̂t+1/ tr(X̂t+1)

(For any X =
∑n

i=1 λiuiu
H
i � 0, ln(X) := ln(λi)uiu

H
i .)
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Semidefinite Relaxation of Boolean QP (RBQP)
B The Boolean QP (BQP): q∗ := maxx∈{±1}n x>Ax for some A � 0.

B Nesterov [Nes98] showed that the semidefinite relaxation
s∗ := miny 〈e, y〉 s. t. Diag(y) � A (SDP)

provides a (2/π)-approximation of the BQP.

B Nesterov [Nes11] later showed that (SDP) above can be equivalently
written in the dual form:

maxX F (X) := 2 ln
(∑n

i=1〈X, rir
>
i 〉1/2)

s. t. X ∈ Sn
+, 〈In, X〉 = 1

(RBQP)

where A = R>R and R := [r1 · · · rn], and Sn
+ denotes the cone of n× n

real symmetric PSD matrices.

B MG method: X0 � 0, tr(X0) = 1,

X̂t+1 = exp{ln(Xt) + ln(∇F (Xt))}
Xt+1 = X̂t+1/ tr(X̂t+1)
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Comparison of Computational Guarantees

RSGM [BBT17; LFN18]: Relatively smooth gradient method
FW [Dvu20; ZF22]: FW method for logarithmically-homogeneous self-concordant barriers
MG: (Generalized) Multiplicative gradient method (this work)
BSG [Nes11]: Barrier subgradient method

Table 1: Comparison of operations complexities (with x0 = (1/n)e or X0 = (1/n)In)

RSGM FW MG BSG Regime

PET O
(

mn2
ε ln

(
ln(n)

ε

))
O
(

m2n
ε

)
O
(

mn ln(n)
ε

)
O
(

mn2
ε2 ln2

(
n
ε

))
n = O(exp(m))

D-OPT O
(

mn2
ε ln

(
ln(n/m)

ε

))
O
(

m2n
ε

)
O
(

m2n ln(n)
ε

)†
O
(

m2n2
ε2 ln2

(
n
ε

))
QST x? O

(
m2n2

ε

)
O
(

mn2 ln(n)
ε

)‡
O
(

mn3
ε2 ln2

(
n
ε

))
n = O(exp(m))

RBQP x? x? O
(

n3 ln(n)
ε

)
O
(

n4
ε2 ln2

(
n
ε

))
† [Coh19] ‡ [LCL21]
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A General Problem Class

max F (x) := f(Ax)
s. t. x ∈ C := {x ∈ K1 : 〈e, x〉 = 1}

(P)

B K1 is a symmetric cone (self-dual and homogeneous) with rank n.

B e ∈ intK1 is the “center” of K1, e.g., e = 1n := (1, . . . , 1) if K1 = Rn
+ and

e = In if K1 = Sn
+.

B A : K1 → K2 is a linear operator, where K2 is any regular cone.
• We require both A : intK1 → intK2 and A∗ : intK∗

2 → intK1.

B f : K2 → R ∪ {−∞} is concave, and is three-times differentiable and
1-logarithmically-homogeneous (1-LH) on intK2, namely

f(ty) = f(y) + ln t, ∀ y ∈ intK2, ∀ t > 0.
Note that −f is not necessarily a self-concordant function (or barrier).
• Consider f(x) = 2 ln(

∑n

i=1
√
xi) for x ∈ Rn

+ \ {0} in RBQP.

B We require F to lie in the class of gradient log-convex functions.
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A General Problem Class
max F (x) := f(Ax)
s. t. x ∈ C := {x ∈ K1 : 〈e, x〉 = 1}

(P)

B (V, 〈·, ·〉) is a (finite-dimensional) inner-product space.

B K1 ⊆ V is a symmetric cone if it is
• self-dual: K1 = K∗

1 (the dual cone of K1)
• homogeneous: for all x, y ∈ intK1, there exists a linear automorphism T on
K1 such that Tx = y

B A symmetric cone is either one of the following five primitive cones:
• the second-order cone Qn+1,
• the cone of n× n Hermitian PSD matrices over reals, complexes and

quaternions,
• the cone of 3× 3 Hermitian PSD matrices over octonions (a.k.a. the

27-dimensional exceptional cone),
or the Cartesian product of these primitive cones, e.g.,Rm

+ .

B C is sometimes referred to as the “generalized unit simplex”, including
unit simplex, unit `2-ball and spectrahedron.
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The Class of Gradient Log-Convex Functions

We call F in (P) gradient log-convex if ∇F : intK1 → intK1 satisfies

ln(∇F (λx+ (1− λ)y)) �K1λ ln(∇F (x)) + (1− λ) ln(∇F (y))
∀x, y ∈ intK1, ∀λ ∈ [0, 1]

(GLC)

Recall that F = f ◦ A, some examples of f that satisfy (GLC):
B K1 = Rn

+, K2 is any symmetric cone with rank m, and
f(y) = m−1 ln det(y), ∀ y ∈ intK2

(includes PET and D-OPT).

B K1 is any representable symmetric cone (all except the 27-dimensional
exceptional one), K2 = Rm

+ and
• f(y) =

∑m

j=1 wj ln yj , for all y > 0 and w ∈ ri ∆m (includes QST).
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Introducing Euclidean Jordan Algebra (EJA)

B We have developed a Generalized MG (GMG) method for this problem
class.

B Our GMG method was developed and analyzed under the framework of
EJA.

B To understand this method, we will briefly review some basics of EJA.
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Background of EJA

B We call (V, ◦, 〈·, ·〉) (or simply V) a EJA with rank n if

• V is a vector space
• ◦ : V× V→ V is a bilinear operation on V such that
x ◦ y = y ◦ x, x2 ◦ (x ◦ y) = x ◦ (x2 ◦ y), ∀x, y ∈ V.

• 〈·, ·〉 : V× V→ R is associative: 〈x, y ◦ z〉 = 〈x ◦ y, z〉, ∀x, y, z ∈ V.
• Let ‖ · ‖ be the norm induced by 〈·, ·〉.

B Let e be the identity element in V, so that x ◦ e = e ◦ x = x.

B Any x ∈ V has the spectral decomposition
∑n

i=1 λi(x)qi(x):
• the eigenvalues {λi(x)}n

i=1 are real
• the “eigenvectors” {qi(x)}n

i=1 ⊆ V form a Jordan frame.

B A Jordan frame {qi}n
i=1 ⊆ V satisfy

• (Completeness)
∑n

i=1 qi = e.
• (Orthogonality) qi ◦ qj = 0, ∀ i 6= j, i, j ∈ [n],
• (Primitiveness and Idempotency) ‖qi‖ = 1 and q2

i = qi, ∀ i ∈ [n],
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Background of EJA

B Define tr(x) :=
∑n

i=1 λi(x) and det(x) :=
∏n

i=1 λi(x).

B W.L.O.G., let 〈x, y〉 = tr(x ◦ y) so that 〈e, x〉 = tr(x).

Connection between symmetric cones and EJA:

For each symmetric cone K, there exists a unique EJA V
such that K ⊆ V and
B x ∈ K ⇐⇒ λ1(x), . . . , λn(x) ≥ 0
B x ∈ intK ⇐⇒ λ1(x), . . . , λn(x) > 0

The rank of K is defined to be the rank of V.
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Generalized MG Method

Input : x0 ∈ ri C
Iterate : x̂t+1 := exp{ln(xt) + ln(∇F (xt))},

xt+1 := x̂t+1/tr(x̂t+1).

Output : x̄T := (1/T )
∑T−1

t=0 xt

(GMG)

B For x ∈ intK1 with spectral decomposition
∑n

i=1 λi(x)qi(x):
exp(x) =

∑n
i=1 exp(λi(x))qi(x), ln(x) =

∑n
i=1 ln(λi(x))qi(x),

B If x0 ∈ ri C, then {xt}t≥0 ⊆ ri C.

B If K1 = Rn
+, then x =

∑n
i=1 xiei:

• both exp(·) and ln(·) are element-wise =⇒ x̂t+1 = xt ◦ ∇F (xt), ∀ i ∈ [n]
• tr(x̂t+1) = 〈∇F (xt), xt〉 = 1 (since F is 1-LH)
• (GMG) becomes (MG), which only updates eigenvalues

B In general, (GMG) updates both eigenvalues and the “eigenvectors”, and
specializes to all the methods we’ve seen earlier.
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B For x ∈ intK1 with spectral decomposition
∑n

i=1 λi(x)qi(x):
exp(x) =

∑n
i=1 exp(λi(x))qi(x), ln(x) =

∑n
i=1 ln(λi(x))qi(x),

B If x0 ∈ ri C, then {xt}t≥0 ⊆ ri C.

B If K1 = Rn
+, then x =

∑n
i=1 xiei:

• both exp(·) and ln(·) are element-wise =⇒ x̂t+1 = xt ◦ ∇F (xt), ∀ i ∈ [n]
• tr(x̂t+1) = 〈∇F (xt), xt〉 = 1 (since F is 1-LH)
• (GMG) becomes (MG), which only updates eigenvalues

B In general, (GMG) updates both eigenvalues and the “eigenvectors”, and
specializes to all the methods we’ve seen earlier.
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Convergence Rate of (GMG)

Input : x0 ∈ ri C
Iterate : x̂t+1 := exp

(
ln(xt) + ln(∇F (xt))

)
,

xt+1 := x̂t+1/tr(x̂t+1).

Output : x̄T := (1/T )
∑T−1

t=0 xt

(GMG)

Theorem (Convergence rate of (GMG))

F ∗ − F (x̄T ) ≤ lnλ−1
min(x0)
T

, ∀T ≥ 1.

B The convergence rate is data independent — it does not depend on A.

B The optimal choice for the above bound is x0 = (1/n)e, and we have

F ∗ − F (x̄T ) ≤ ln(n)
T

, ∀T ≥ 1

Recall that n is the rank of K1.
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Future Work

B Develop other forms of the generalized MG method.

B Discover more applications of (P), particularly when K1 or K2 is a
Cartesian product of second-order cones.

B Modify the GMG method to accommodate more complicated feasible sets.

B Efficient numerical implementation of GMG method for problems
involving matrix variables.
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Thank you!
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