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Positron Emission Tomography

max;ca, {F(x) = Dy ln(a;x)} (PET)

> Known as Positron Emission Tomography (PET) in medical imaging, but
has many other applications, e.g., inference of multi-dimensional Hawkes
processes [Z7S513] and log-optimal investment [Cov&4].

> For all j € [m], let p; >0 and 337, p; = 1.

> For all j € [m], a; #0, a; € R} (a; > 0) and can be “sparse”.
> Ay i={z eR%: X" x; =1} is the unit simplex in R™.

> Multiplicative gradient method: 2% € ri A,

T =20 VF(2') = M =2lV,F(zt), Vien). (MG)

> (MG) does not fall under any “well-known” optimization frameworks,
e.g., Newton-type method, mirror descent, etc.
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> Originally proposed by information theorists in the 1970s [Ari72] based on
the EM procedure.
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The Mystery of MG

maxgeA,, T) = 1Py na;x
an {F@) =57 pyIn(a] o)} (PET)

22 eri,, 2 =zt o VF(2?) ‘ (MG)

> Originally proposed by information theorists in the 1970s [Ari72] based on
the EM procedure.

> Impressive numerical performance: z° = (1/n)e

FW-A & FW-E [Dvu20; ZF22]: Frank-

M Wolfe (FW) method for logarithmically-
T 14 homogeneous self-concordant barriers
—_ (with adaptive stepsize and exact line
i\‘. o search)
=25
U,E RSGM-F & RSGM-LS [BBT17; LFN18]:
o Relatively smooth gradient method

) (with fixed stepsize and backtracking

20 25 30 35 40 45 line search)
log1o(k)
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The Mystery of MG

F* = maxen,, {F(m) =0 D ln(a;-rx)} (PET)

> However, MG only has asymptotic convergence guarantees, and the
convergence rate has been unknown for about 50 years.
> Zhao [Zha21] showed that (MG) has the following convergence rate:
F* — F(2") <1In(n)/t, Vi > 1.
The proof is relatively short, and is based on basic convex analysis.
> But immediately some questions arose:

® Why does (MG) work for PET?

® What are the essential structures of the problem the drive the success
of (MG)? Is there a general problem class that (MG) works well?

® And what is the interaction between the complexity of (MG) and the
problem structure?
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> We identify a broad problem class and develop a generalization of the MG
method, with computational guarantees.
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Our Main Contributions

>

We identify a broad problem class and develop a generalization of the MG
method, with computational guarantees.

® The problem class is best viewed via the notion of symmetric cones.

® The development and analysis of the generalized MG method are based on
the framework of Euclidean Jordan algebra.

To facilitate understanding, we first show our results when they are
specialized to the following applications:

® D-optimal design

® Quantum state tomography

® Semidefinite relaxation of Boolean QP

In all of these applications, the objective functions involve “In(-)”, and
hence are neither Lipschitz nor smooth (i.e., have Lipschitz gradients) on
the feasible sets.

Certain first-order methods for these applications have been developed
recently [Nesll; BBT17; LEN18; Dvu20; ZF22] — our generalized MG
method contributes to this line of research from a different viewpoint.
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> ai,...,a, € R™ whose linear span is R™.

> In statistics, D-OPT corresponds to maximizing the the determinant of
the Fisher information matrix [Fed72].

> In computational geometry, D-OPT arises as a Lagrangian dual problem
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Quantum State Tomography (QST)

maxx F(X):=m™! >y In((X, a;aj')) (QST)
s.t. X eH}, tr(X)=(,,X)=1

> In quantum physics, this problem aims to reconstruct the state of a
quantum system using the measured output of particles [Hra04].

> ay,...,0q € cr, Z?:l ajaf = I, and Z?:l nj =m.

> H denotes the cone of n X n complex Hermitian PSD matrices.

> (Generalized) MG method: X° = 0, tr(XY) =1,

Xt = exp{In(X?) + In(VF(X*))}
Xt+1 — Xt+1/tr(Xt+1)

(For any X = 31" | iwjull = 0, In(X) == In(\;)w;ul )

7
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Comparison of Computational Guarantees

RSGM [BBT17; LFN18]: Relatively smooth gradient method
FW [Dvu20; ZF22]: FW method for logarithmically-homogeneous self-concordant barriers

MG: (Generalized) Multiplicative gradient method (this work)

BSG [Nesl1]: Barrier subgradient method

Table 1: Comparison of operations complexities (with 2° = (1/n)e or X° = (1/n)I,,)
RSGM FW MG BSG Regime
PET | O(m22in () |o(m2e) | o(zr2m) | o242 0% (2)) |n = O(exp(m))
070 (=2 (202 [ (222 [o(2220) o (w22 1 (=)
QST x? o(m2n2) |o(m22tm) | o (ma® 1n2 (2)) |n = O(exp(m))
RBQP x? x? o= | oz m? (2))

t [Coh19] t [LCL21]

Renbo Zhao (MIT ORC)



A General Problem Class

max F(x):= f(Ax)
s.t. zelC:={zeky:(e,x)=1}

Renbo Zhao (MIT ORC)



A General Problem Class

max F(x):= f(Ax)
s.t. zelC:={zeky:(e,x)=1}

> Ky is a symmetric cone (self-dual and homogeneous) with rank n.

Renbo Zhao (MIT ORC)



A General Problem Class

max F(x):= f(Ax)
sit. zeC:={xek;:(ez)=1} (P)

> Ky is a symmetric cone (self-dual and homogeneous) with rank n.

> e € intK; is the “center” of Ky, e.g., e =1, :=(1,...,1) if £ =R} and
e=1I,if K =S7.

Renbo Zhao (MIT ORC)



A General Problem Class

max F(x):= f(Ax)

sit. zeC:={xek;:(ez)=1} (P)

> Ky is a symmetric cone (self-dual and homogeneous) with rank n.

> e € intK; is the “center” of Ky, e.g., e =1, :=(1,...,1) if £ =R} and
e=1I,if K =S7.

> A:K; — Ks is a linear operator, where Ky is any regular cone.

Renbo Zhao (MIT ORC)



A General Problem Class

max F(x):= f(Ax)
sit. zeC:={xek;:(ez)=1} (P)

> Ky is a symmetric cone (self-dual and homogeneous) with rank n.

> e € intK; is the “center” of Ky, e.g., e =1, :=(1,...,1) if £ =R} and
e=1I,if K =S7.

> A:K; — Ks is a linear operator, where Ky is any regular cone.
® We require both A : int 1 — int K2 and A* : int K5 — int Ky.

Renbo Zhao (MIT ORC)



A General Problem Class

max F(x):= f(Ax)

s.t. zelC:={zeky:(ex)=1} (P)
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> A:K; — Ks is a linear operator, where Ky is any regular cone.
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> f: Ky - RU{—oo} is concave, and is three-times differentiable and
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> e € intK; is the “center” of Ky, e.g., e =1, :=(1,...,1) if £ =R} and
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A General Problem Class

max F(x):= f(Ax)
s.t. zelC:={zeky:(e,x)=1}

> Ky is a symmetric cone (self-dual and homogeneous) with rank n.

> e € intK; is the “center” of Ky, e.g., e =1, :=(1,...,1) if £ =R} and
e=1I,if K =S7.

> A:K; — Ks is a linear operator, where Ky is any regular cone.
® We require both A :int K1 — int K2 and A : int K5 — int Ky

> f: Ky = RU{—o00} is concave, and is three-times differentiable and
1-logarithmically-homogeneous (1-LH) on int Ko, namely
fity) = f(y) +Int, Vyeintky, V> 0.
Note that — f is not necessarily a self-concordant function (or barrier).
® Consider f(z) =2In(}_"" | /z;) for z € R} \ {0} in RBQP.

> We require I to lie in the class of gradient log-convex functions.
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A General Problem Class

max F(x):= f(Ax)
s.t. zeC:={zeki:(ex) =1}

> (V,(,,-)) is a (finite-dimensional) inner-product space.

> K1 CV is a symmetric cone if it is

® self-dual: K1 = K7 (the dual cone of K1)
® homogeneous: for all z,y € int K1, there exists a linear automorphism T on
K1 such that Tx =y

> A symmetric cone is either one of the following five primitive cones:
® the second-order cone Q"“,
® the cone of n x n Hermitian PSD matrices over reals, complexes and
quaternions,
® the cone of 3 x 3 Hermitian PSD matrices over octonions (a.k.a. the
27-dimensional exceptional cone),

or the Cartesian product of these primitive cones, e.g.,R’".

>> C is sometimes referred to as the “generalized unit simplex”, including
unit simplex, unit £5-ball and spectrahedron.
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The Class of Gradient Log-Convex Functions

We call F in (P) gradient log-convex if VF : int K1 — int Ky satisfies
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The Class of Gradient Log-Convex Functions

We call F in (P) gradient log-convex if VF : int K1 — int Ky satisfies

In(VFAz + (1 = A)y)) 2k, AIn(VF(x)) + (1 = A)In(VF(y))

GLC
Yo,y € intKy, Ve [0,1] ( )

Recall that F' = f o A, some examples of f that satisfy (GLC):
> Ky =R7%, Ky is any symmetric cone with rank m, and
f(y) =m tindet(y), Yy €intks,
(includes PET and D-OPT).

> K is any representable symmetric cone (all except the 27-dimensional
exceptional one), IOy = R’ and
° fly) = Z;’;l wjIny;, for all y > 0 and w € ri A, (includes QST).
* fly)=Wmlyll, :=p" In(3>", y7), for all y > 0 and p € (0,1] (includes
RBQP).
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Introducing Euclidean Jordan Algebra (EJA)

> We have developed a Generalized MG (GMG) method for this problem
class.
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Introducing Euclidean Jordan Algebra (EJA)

> We have developed a Generalized MG (GMG) method for this problem
class.

> Our GMG method was developed and analyzed under the framework of
EJA.

> To understand this method, we will briefly review some basics of EJA.
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> We call (V,o0,(-,-)) (or simply V) a EJA with rank n if

® V is a vector space
® 0:V XV — Vis a bilinear operation on V such that
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Background of EJA

> Define tr(z) := Y~ , \i(z) and det(z) := [, Xi(z).

i=1

> W.L.O.G., let (z,y) = tr(z o y) so that (e, x) = tr(z).

Connection between symmetric cones and EJA:

For each symmetric cone KC, there exists a unique EJA V
such that £ C V and

>z e <<= A(x),....,. \(z) >0
>z €intk < A\ (z),..., A\ () >0
The rank of K is defined to be the rank of V.
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Generalized MG Method

Input: 2% eriC

1= exp{ln(z') + In(VF(z"))},
1. i,t—&-l/tr(AH'l).

Iterate: =
(GMG)
T

Output : = (1/7T) Et o !
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Generalized MG Method

Input: 2% eriC
TIterate : 2" := exp{In(z’) + In(VF(2!))},
o= 2 (2.

Output :  z7 := (1/T) Ef:_ol xt

(GMG)

> For € int Ky with spectral decomposition Y ., A;(z)gi(x):
exp(z) = 3 iy exp(Ai())gi(z), In(x) = 321, n(Ai(7))gi (=),
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> For € int Ky with spectral decomposition Y ., A;(z)gi(x):
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> If 2° € riC, then {a'};>¢ C riC.
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Generalized MG Method

Input: 2% eriC

1= exp{ln(z') + In(VF(z"))},
1. :%t-&-l/tr(AH'l).

Iterate: =
(GMG)
T

Output : = (1/7T) Zt o !

> For € int Ky with spectral decomposition Y ., A;(z)gi(x):

exp(z) = 311  exp(Xi(@))gi(@), In(x) = 301 In(Ai(2))gi(),
> If 2° € riC, then {a'};>¢ C riC.

> If & =R%, then x = S wie
® both exp(-) and ln( ) are element-wise = &'t! =z’ 0o VF(z!), Vi € [n]
o tr(3'") = (VF(a?),2%) =1 (since F is 1-LH)
® (GMG) becomes (MG), which only updates eigenvalues

> In general, (GMG) updates both eigenvalues and the “eigenvectors”, and
specializes to all the methods we’ve seen earlier.
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Convergence Rate of (GMG)

Renbo Zhao

Input :

Iterate :

Output :

20 erxiC

"= exp (In(z') + In(VE(2"))),

$t+1 — At+1/tr(At+1).

=D)Ly o

(MIT ORC)
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Convergence Rate of (GMG)

Input: 2% eriC

Iterate : 2'"' := exp (In(z') + In(VF(z"))),

t+1 — At+1/tr(At+1). (GMG)

T

Output : =1/ 0 !t

Theorem (Convergence rate of (GMG))

e
W—F@ﬂ_fﬁ%Ll, VT > 1.
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> The convergence rate is data independent — it does not depend on A.
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Convergence Rate of (GMG)

Input: 2% eriC

Iterate : 2'"' := exp (In(z') + In(VF(z"))),

t+1 — At+1/tr(At+1). (GMG)

T

Output : =1/ 0 !t

Theorem (Convergence rate of (GMG))

e
F*—F@ET) < nAan() VT > 1.

> The convergence rate is data independent — it does not depend on A.

> The optimal choice for the above bound is 2° = (1/n)e, and we have

F*—F@Eh) < VT >1

Recall that n is the rank of K.
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Future Work

> Develop other forms of the generalized MG method.

> Discover more applications of (P), particularly when IC; or s is a
Cartesian product of second-order cones.

> Modify the GMG method to accommodate more complicated feasible sets.

> Efficient numerical implementation of GMG method for problems
involving matrix variables.
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