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1 Local Convexity Reductions and Variational Convexity
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Local Convexity Reduction in Second-order
Sufficient Optimality Conditions

Let f : IRn → IR be a C2-smooth function and x̄ ∈ IRn, the
sufficient local optimality condition is

∇f (x̄) = 0, and ∇2f (x̄) is positive definite,

which is equivalent to the local strong convexity of f around x̄ .

=⇒ This reduces to convex optimization.

Fundamental question: Do we have such local convexity
reduction in nonsmooth optimization, especially in constrained
optimization?
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No local convexity reduction in constrained
optimization

Problems with equality constraints:

minimize f0(x) subject to fi (x) = 0, i = 1, 2, . . . ,m

Lagrangian functions: L(x , y) = f0(x) + y1f1(x) + . . .+ ymfm(x).
The local optimality condition of a feasible solution x̄ is

∇xL(x̄ , ȳ) = 0, ∇yL(x̄ , ȳ) = 0

∇2
xxL(x̄ , ȳ) is positive definite relative to the subspace

S = {ξ ∈ IRn| 〈∇fi (x̄), ξ〉 = 0, i = 1, 2, . . . ,m}.

=⇒ Does this reduce to the local convexity of L around (x̄ , ȳ)?

=⇒ The answer is no in general!
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Maximal Monotonicity and Convexity

Theorem:

Let f : IRn → IR be a l.s.c., proper function. Then f is convex if
and only if ∂f is maximal monotone.

Question: What characterization can be given for the case in
which a subgradient mapping is only maximal monotone locally
instead of globally?

=⇒ In the smooth case, we also have the equivalence:

f is convex around x̄ ⇐⇒ ∇f is maximal monotone around x̄ .

Question: Do we have this equivalence in nonsmooth case?

=⇒ The answer is no!
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Variational Convexity

The natural following questions arise:

Questions:

Which property is equivalent to the second-order sufficient
optimality condition in NLP, nonsmooth optimization, etc?

Which property is equivalent to the local maximal
monotonicity of subgradient mappings?

=⇒ We need a property more subtle than local convexity.

=⇒ This has been answered by Rockafellar12, and this property is
called variational convexity.

1R. T. Rockafellar, Variational convexity and local monotonicity of
subgradient mappings, Vietnam J. Math., 47 (2019), 547–561.

2R. T. Rockafellar, Augmented Lagrangians and hidden convexity in
sufficient conditions for local optimality, Math. Program., 192 (2022), DOI
10.1007/s10107-022-01768-w.
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2 Tools of Variational Analysis
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Tools of Variational Analysis

See34 to find more detail.
Regular normal cone to Ω ⊂ IRn at x̄ ∈ Ω is

N̂Ω(x̄) :=
{
v ∈ IRn

∣∣ lim sup
x

Ω→x̄

〈v , x − x̄〉
‖x − x̄‖

≤ 0
}

Limiting normal cone to Ω ⊂ IRn at x̄ ∈ Ω is

NΩ(x̄) :=
{
v ∈ IRn

∣∣ ∃ xk Ω→ x̄ , vk → v , vk ∈ N̂Ω(xk)
}

where x
Ω→ x̄ means that x → x̄ and x ∈ Ω

3B. S. Mordukhovich, Variational Analysis and Applications, Springer (2018)
4R. T. Rockafellar and R. J-B. Wets, Variational Analysis, Springer (1998)
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Tools of Variational Analysis

Regular coderivative and limiting coderivative of F : IRn ⇒ IRm at
(x̄ , ȳ) ∈ gphF are defined, respectively by

D̂∗F (x̄ , ȳ)(v) :=
{
u ∈ IRn

∣∣(u,−v) ∈ N̂gphF (x̄ , ȳ)
}
, v ∈ IRm

D∗F (x̄ , ȳ)(v) :=
{
u ∈ IRn

∣∣(u,−v) ∈ NgphF (x̄ , ȳ)
}
, v ∈ IRm

Subdifferential of ϕ : IRn → IR := (−∞,∞] at x̄ ∈ domϕ is

∂ϕ(x̄) :=
{
v ∈ IRn

∣∣ (v ,−1) ∈ Nepiϕ

(
x̄ , ϕ(x̄)

)}
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Tools of Variational Analysis

Combined second-order subdifferential and limiting second-order
subdifferential of ϕ at x̄ relative to v̄ ∈ ∂ϕ(x̄) are

∂̆2ϕ(x̄ , x̄)(u) :=
(
D̂∗∂ϕ

)
(x̄ , v̄)(u), u ∈ IRn

∂2ϕ(x̄ , x̄)(u) :=
(
D∗∂ϕ

)
(x̄ , v̄)(u), u ∈ IRn

Note that, we have the inclusion

∂̆2ϕ(x̄ , x̄)(u) ⊂ ∂2ϕ(x̄ , x̄)(u) for all u ∈ IRn.

If ϕ ∈ C2-smooth around x̄ , then

∂̆2ϕ(x̄ , x̄)(u) = ∂2ϕ(x̄ , v̄)(u) =
{
∇2ϕ(x̄)u

}
, u ∈ IRn
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Prox-regularity

Definition

ϕ : IRn → IR is prox-regularab at x̄ ∈ domϕ for v̄ ∈ ∂ϕ(x̄) if ϕ is lower
semicontinuous and there are ε > 0 and ρ ≥ 0 such that for all x ∈ Bε(x̄)
with ϕ(x) ≤ ϕ(x̄) + ε we have

ϕ(x) ≥ ϕ(u) + 〈v̄ , x − u〉 − ρ

2
‖x − u‖2 ∀ (u, v) ∈ (gph ∂ϕ) ∩ Bε(x̄ , v̄)

aR. A. Poliquin and R. T. Rockafellar, Prox-regular functions in variational
analysis, Trans. Amer. Math. Soc. 348, 1805–1838 (1996)

bR. T. Rockafellar and R. J-B. Wets, Variational Analysis, Springer (1998)

ϕ is subdifferentially continuous at x̄ for v̄ if the convergence
(xk , vk)→ (x̄ , v̄) with vk ∈ ∂ϕ(xk) yields ϕ(xk)→ ϕ(x̄). If both
properties hold, ϕ is continuously prox-regular. This is the major class in
second-order variational analysis

12 / 35



Variationally Convex Functions

Variational Convexity

An l.s.c. function ϕ : IRn → IR is called variationally convex at x̄ for
v̄ ∈ ∂ϕ(x̄) if for some convex neighborhood U × V of (x̄ , v̄) there exist
an l.s.c. convex function ψ ≤ ϕ on U and a number ε > 0 such that

(Uε × V ) ∩ gph ∂ϕ = (U × V ) ∩ gph ∂ψ and ϕ(x) = ψ(x), (1)

at the common elements (x , v), where Uε := {x ∈ U | ϕ(x) < ϕ(x̄) + ε}.
We say that ϕ is variationally strongly convex at x̄ for v̄ with modulus
σ > 0 if (1) holds with ψ being strongly convex on U with this modulus.

Some first-order characterizations of variationally convex functions can be
found in 5. The characterizations via augmented Lagrangian functions
and second subderivative can be found in 6.

5R. T. Rockafellar, Variational convexity and local monotonicity of
subgradient mappings, Vietnam J. Math., 47 (2019), 547–561.

6R. T. Rockafellar, Augmented Lagrangians and hidden convexity in
sufficient conditions for local optimality, Math. Program., 192 (2022), DOI
10.1007/s10107-022-01768-w.
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3 Variational Convexity via Moreau Envelopes
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Moreau Envelopes and Proximal Mappings

7Given an extended-real-valued, proper, l.s.c. function ϕ : IRn → IR
and a positive number γ, the Moreau envelope eγϕ and the
proximal mapping Proxγϕ are defined by, respectively,

eγϕ(x) := inf
y∈IRn

{
ϕ(y) +

1

2γ
‖y − x‖2

}
, (2)

Proxγϕ(x) := argmin
y∈IRn

{
ϕ(y) +

1

2γ
‖y − x‖2

}
. (3)

7Rockafellar, R.T., Wets R.J-B.: Variational Analysis. Springer, Berlin
(1998)
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Characterization of Variational Convexity via
Moreau Envelopes

Theorem 18: Let ϕ : IRn → IR be an l.s.c. and prox-bounded
function with x̄ ∈ domϕ and v̄ ∈ ∂ϕ(x̄). The following assertions
are equivalent:
(i) ϕ is variationally convex at x̄ for v̄ .
(ii) ϕ is prox-regular at x̄ for v̄ , and the Moreau envelope eλϕ is
locally convex around x̄ + λv̄ for small λ > 0.

8P. D. Khanh, B. S. Mordukhovich, V. T. Phat, Variational convexity of
functions and variational sufficiency in optimization, arXiv: 2208.14399
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Quantitative Characterization of Variational Strong
Convexity via Moreau Envelopes

Theorem 29: Let ϕ : IRn → IR be an l.s.c. and prox-bounded
function with x̄ ∈ domϕ and v̄ ∈ ∂ϕ(x̄). The following assertions
are equivalent:
(i) ϕ is variationally strongly convex at x̄ for v̄ with modulus
σ > 0.
(ii) ϕ is prox-regular at x̄ for v̄ and eλϕ is locally strongly convex
around x̄ + λv̄ with modulus σ

1+σλ for all numbers λ > 0
sufficiently small.

9P. D. Khanh, B. S. Mordukhovich, V. T. Phat, Variational convexity of
functions and variational sufficiency in optimization, arXiv: 2208.14399
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Equivalence Between Variational Strong Convexity
and Local Strong Convexity of Moreau envelopes

Theorem 310: Let ϕ : IRn → IR be an l.s.c. and prox-bounded
function with x̄ ∈ domϕ and v̄ ∈ ∂ϕ(x̄). The following assertions
are equivalent:
(i) ϕ is variationally strongly convex at x̄ for v̄ .
(ii) ϕ is prox-regular at x̄ for v̄ and eλϕ is locally strongly convex
around x̄ + λv̄ for all numbers λ > 0 sufficiently small.

10P. D. Khanh, B. S. Mordukhovich, V. T. Phat, Variational convexity of
functions and variational sufficiency in optimization, arXiv: 2208.14399
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4 Coderivative-Based Characterizations of Variational Convexity
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Second-order Subdifferential Characterizations of
Variational Convexity

Theorem 4:11 Let ϕ : IRn → IR be subdifferentially continuous at
x̄ ∈ domϕ and v̄ ∈ ∂ϕ(x̄). Then the following assertions are equivalent:
(i) ϕ is variationally convex at x̄ for v̄ .
(ii) ϕ is prox-regular at x̄ for v̄ and there exist neighborhoods U of x̄ and
V of v̄ such that

〈z ,w〉 ≥ 0 whenever z ∈ ∂̆2ϕ(x , y)(w), (x , y) ∈ gph ∂ϕ ∩ (U × V ), w ∈ IRn.
(4)

(iii) ϕ is prox-regular at x̄ for v̄ and there exist neighborhoods U of x̄ ,
and V of v̄ such that

〈z ,w〉 ≥ 0 whenever z ∈ ∂2ϕ(x , y)(w), (x , y) ∈ gph ∂ϕ ∩ (U × V ), w ∈ IRn.
(5)

11P. D. Khanh, B. S. Mordukhovich, V. T. Phat, Variational convexity of
functions and variational sufficiency in optimization, arXiv: 2208.14399
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Second-order Characterizations of Variational Strong
Convexity

Theorem 5: 12 Let ϕ : IRn → IR be subdifferentially continuous at x̄ ∈ domϕ and
v̄ ∈ ∂ϕ(x̄). Then the following assertions are equivalent:
(i) ϕ is variationally strongly convex at x̄ for v̄ with modulus σ > 0.
(ii) ϕ is prox-regular at x̄ for v̄ and there exist neighborhoods U of x̄ and V of v̄ such
that

〈z,w〉 ≥ σ‖w‖2 whenever z ∈ ∂̆2ϕ(x , y)(w), (x , y) ∈ gph ∂ϕ ∩ (U × V ), w ∈ IRn.
(6)

(iii) ϕ is prox-regular at x̄ for v̄ and there are neighborhoods U of x̄ and V of v̄ such
that

〈z,w〉 ≥ σ‖w‖2 whenever z ∈ ∂2ϕ(x , y)(w), (x , y) ∈ gph ∂ϕ ∩ (U × V ), w ∈ IRn.
(7)

Furthermore, the strong variational convexity in (i) with some modulus σ > 0 is
equivalent to the prox regularity of ϕ at x̄ for v̄ together with the fulfillment of the
pointbased condition

〈z,w〉 > 0 whenever z ∈ ∂2ϕ(x̄ , v̄)(w), w 6= 0. (8)

12P. D. Khanh, B. S. Mordukhovich, V. T. Phat, Variational convexity of
functions and variational sufficiency in optimization, arXiv: 2208.14399
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5 Variational Sufficiency in Composite Optimization
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Variational Sufficiency in Optimization

Let ϕ : IRn → IR be a lower semicontinuous function. Suppose
that x̄ ∈ domϕ is a stationary point, i.e., 0 ∈ ∂ϕ(x̄). We have the
following implications:

variational convexity of ϕ at x̄ =⇒ x̄ is a local minimizer.

variational strong convexity of ϕ at x̄ =⇒ x̄ is a tilt-stable local minimizer.

Definition

Let ϕ : IRn → IR, and consider the unconstrained optimization problem:

minimize ϕ(x) subject to x ∈ IRn. (9)

It is said that the variational sufficient condition for local optimality in
(9) holds at x̄ if ϕ is variationally convex at x̄ for 0 ∈ ∂ϕ(x̄). If ϕ is
variationally strongly convex at x̄ for 0 with modulus σ > 0, then we say
that the strong variational sufficient condition for local optimality at x̄
holds with modulus σ.
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Variational Sufficiency in Composite Optimization

Here we consider the class of composite optimization problems
given by:

minimize ϕ(x) := ϕ0(x) + ψ
(
g(x)

)
subject to x ∈ IRn, (10)

where ψ : IRm → IR is an extended-real-valued l.s.c. function,
ϕ0 : IRn → IR is a C2-smooth function, and g is a C2-smooth
mapping from IRn to IRm.

=⇒ The characterizations of variational sufficiency in (10)?
For each (x , v) ∈ IRn × IRn define the set of multipliers

Λ(x , v) :=
{
y ∈ IRm

∣∣ v = ∇ϕ0(x) +∇g(x)∗y , y ∈ ∂ψ
(
g(x)

)}
.

(11)
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Theorem 6: Let x̄ ∈ IRn be a stationary point of the composite optimization problem
at which rank∇g(x̄) = m and hence there exists a unique vector ȳ ∈ IRm with

∇ϕ0(x̄) +∇g(x̄)∗ȳ = 0 and ȳ ∈ ∂ψ
(
g(x̄)

)
. (12)

Suppose in addition that ψ is subdifferentially continuous at g(x̄) for ȳ . Then we have
the following assertions:

(i) The variational sufficiency holds at x̄ if and only if ψ is prox-regular at g(x̄) for ȳ
and there exist neighborhoods U of x̄ and V of 0 such that

〈∇2ϕ0(x)w ,w〉+ 〈∇2〈y , g〉(x)w ,w〉+ 〈u,∇g(x)w〉 ≥ 0 (13)

for all x ∈ U, v ∈ V , y ∈ Λ(x , v), u ∈ ∂2ψ(g(x), y)(∇g(x)w), w ∈ IRn, where Λ(x , v)
is a singleton in this case.
(ii) The strong variational sufficiency holds at x̄ with modulus σ > 0 if and only if ψ is
prox-regular at g(x̄) for ȳ and there exist neighborhoods U of x̄ and V of 0 such that

〈∇2ϕ0(x)w ,w〉+ 〈∇2〈y , g〉(x)w ,w〉+ 〈u,∇g(x)w〉 ≥ σ‖w‖2 (14)

for all x ∈ U, v ∈ V , y ∈ Λ(x , v), u ∈ ∂2ψ(g(x), y)(∇g(x)w), w ∈ IRn, where Λ(x , v)
is a singleton in this case.
Furthermore, the strong variational sufficiency in (ii) with some modulus σ > 0 is
equivalent to the prox-regularity of ψ at g(x̄) for ȳ together with the fulfillment of the
pointbased condition

〈∇2ϕ0(x̄)w ,w〉+ 〈∇2〈ȳ , g〉(x̄)w ,w〉+ 〈u,∇g(x̄)w〉 > 0 (15)

whenever u ∈ ∂2ψ
(
g(x̄), ȳ

)(
∇g(x̄)w)

)
and w 6= 0.
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∇ϕ0(x̄) +∇g(x̄)∗ȳ = 0 and ȳ ∈ ∂ψ
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〈∇2ϕ0(x̄)w ,w〉+ 〈∇2〈ȳ , g〉(x̄)w ,w〉+ 〈u,∇g(x̄)w〉 > 0 (15)

whenever u ∈ ∂2ψ
(
g(x̄), ȳ
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and there exist neighborhoods U of x̄ and V of 0 such that

〈∇2ϕ0(x)w ,w〉+ 〈∇2〈y , g〉(x)w ,w〉+ 〈u,∇g(x)w〉 ≥ 0 (13)

for all x ∈ U, v ∈ V , y ∈ Λ(x , v), u ∈ ∂2ψ(g(x), y)(∇g(x)w), w ∈ IRn, where Λ(x , v)
is a singleton in this case.
(ii) The strong variational sufficiency holds at x̄ with modulus σ > 0 if and only if ψ is
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Variational Sufficiency Without Full Rank
Assumption

An l.s.c. function θ : IRn → IR is strongly amenable at x̄ if there
exists neighborhood U of x̄ on which θ can be represented in the
composition form θ = ψ ◦ g with a C2-smooth mapping
g : U → IRm and a proper l.s.c. convex function ψ : IRm → IR such
that the following first-order qualification condition holds:

∂∞ψ(z̄) ∩ ker∇g(x̄)∗ = {0} with z̄ := g(x̄) (16)

The second-order qualification condition (SOQC) for problem (10)
at x̄ , which is formulated as follows:

∂2ψ(z̄ , ȳ)(0) ∩ ker∇g(x̄)∗ = {0} with ȳ ∈ ∂ψ
(
z̄
)

and z̄ := g(x̄).
(17)
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Theorem 7: Let x̄ ∈ IRn be a stationary point of the composite
optimization problem. Suppose in addition that ψ and g be mappings
from the composite representation of a strongly amenable function at x̄
and that the second-order qualification condition is satisfied at x̄ . Then
we have the following assertions:

(i) The variational sufficiency holds at x̄ if there exist neighborhoods U
of x̄ and V of 0 such that (13) is satisfied for all x ∈ U, v ∈ V ,
y ∈ Λ(x , v), u ∈ ∂2ψ(g(x), y)(∇g(x)w), and w ∈ IRn.
(ii) The strong variational sufficiency holds at x̄ with modulus σ > 0 if
there exist neighborhoods U of x̄ and V of 0 such that the neighborhood
condition (14) is satisfied for all x ∈ U, v ∈ V , y ∈ Λ(x , v),
u ∈ ∂2ψ(g(x), y)(∇g(x)w), and w ∈ IRn.
(iii) The strong variational sufficiency holds at x̄ if the pointbased
condition (15) is satisfied for any ȳ ∈ Λ(x̄ , 0).
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Theorem 8: In addition to the assumptions of Theorem 7, suppose that
(a) either ψ is piecewise linear,
(b) or ψ is of class

ψ(z) := sup
v∈P

{
〈v , z〉 − 1

2

〈
Qv , v

〉}
, (18)

where P ⊂ IRm is a nonempty polyhedral set, Q is positive-definite, and
the inner mapping g is open around x̄ .

Then all the three characterizations (i)–(iii) of Theorem 7 hold.

28 / 35



6 Applications to Nonlinear Programming
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Variational Sufficiency in Nonlinear Programming

The conventional model of nonlinear programming (NLP) is formulated
as follows:

minimize ϕ0(x) subject to

{
ϕi (x) ≤ 0 for i = 1, . . . , s,

ϕi (x) = 0 for i = s + 1, . . . ,m,
(19)

where ϕi , i = 0, . . . ,m, are C2-smooth functions around the references
points. Problem (19) can be obviously written in the form of composite
optimization (10) with ψ = δΩ, where Ω is given by

Ω :=
{
u ∈ IRm

∣∣ ui ≤ 0 for i = 1, . . . , s and ui = 0 for i = s + 1, . . . ,m
}
,

(20)
and where g(x) := (ϕ1(x), . . . , ϕm(x)).
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Variational Sufficiency in Nonlinear Programming

Lagrangian functions: L(x , y) = ϕ0(x) + y1ϕ1(x) + . . .+ ymϕm(x).

For each (x , y) ∈ IRn × IRm consider the subspace

S(x , y) :=
{
w ∈ IRn

∣∣ 〈∇ϕi (x),w〉 = 0 for i ∈ I+(x , y) ∪ {s + 1, . . . ,m}
}

(21)
together with the index collections

I+(x , y) :=
{
i ∈ I (x)

∣∣ yi > 0
}

and I (x) :=
{
i ∈ {1, . . . , s}

∣∣ ϕi (x) = 0
}
.

(22)
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Variational Sufficiency in Nonlinear Programming

Corollary 9: Let x̄ be a feasible solution to the NLP problem satisfying
the first-order optimality condition under the fulfillment of LICQ at x̄ .
Then we have the following assertions:
(i) The variational sufficiency holds at x̄ if and only if there exist
neighborhoods U of x̄ , V of 0 such that

〈∇2
xxL(x , y)w ,w〉 ≥ 0 whenever x ∈ U, v ∈ V , and w ∈ S(x , y),

(23)
where y ∈ IRs

+ × IRm−s is a unique solution to the system

∇xL(x , y) = v , y1ϕ1(x) + . . .+ ymϕm(x) = 0.

(ii) The strong variational sufficiency holds at x̄ with modulus σ > 0 if
and only if there exist neighborhoods U of x̄ , V of 0 such that

〈∇2
xxL(x , y)w ,w〉 ≥ σ‖w‖2 whenever x ∈ U, v ∈ V , and w ∈ S(x , y),

(24)
where y ∈ IRs

+ × IRm−s is a unique solution to the system

∇xL(x , y) = v , y1ϕ1(x) + . . .+ ymϕm(x) = 0.
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(iii) The strong variational sufficiency holds at x̄ if and only if

〈∇2
xxL(x̄ , ȳ)w ,w〉 > 0 whenever ȳ ∈ Λ(x̄ , 0) and w ∈ S(x̄ , ȳ) \ {0},

(25)
where ȳ ∈ IRs

+ × IRm−s is a unique solution to the system

∇xL(x̄ , y) = v , y1ϕ1(x̄) + . . .+ ymϕm(x̄) = 0.
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Future Investigations

Numerical methods that benefit from the local convexity/local
strong convexity of Moreau envelopes of variationally convex/
variationally strongly convex functions.

Explicit characterizations of variational sufficiency vs. strong
variational sufficiency of polyhedral and nonpolyhedral
optimization problems

Graphical derivative characterizations of variational convexity
and strong variational convexity for extended-real-valued
functions with applications in NLP.
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