Variational Convexity of Functions and Variational Sufficiency in Optimization

PHAT THANH VO

Department of Mathematics, Wayne State University

The 24th Midwest Optimization Meeting

Joint work with Pham Duy Khanh and Boris Mordukhovich

1 Local Convexity Reductions and Variational Convexity

- Local Convexity Reductions and Variational Convexity
- 2 Tools of Variational Analysis

- Local Convexity Reductions and Variational Convexity
- **2** Tools of Variational Analysis
- **③** Variational Convexity via Moreau Envelopes

- Local Convexity Reductions and Variational Convexity
- **2** Tools of Variational Analysis
- **③** Variational Convexity via Moreau Envelopes
- **9** Coderivative-Based Characterizations of Variational Convexity

- Local Convexity Reductions and Variational Convexity
- **2** Tools of Variational Analysis
- **③** Variational Convexity via Moreau Envelopes
- **6** Coderivative-Based Characterizations of Variational Convexity
- **5** Variational Sufficiency in Composite Optimization

- Local Convexity Reductions and Variational Convexity
- **2** Tools of Variational Analysis
- **③** Variational Convexity via Moreau Envelopes
- Oderivative-Based Characterizations of Variational Convexity
- **o** Variational Sufficiency in Composite Optimization
- **o** Applications to Nonlinear Programming

Local Convexity Reductions and Variational Convexity

Local Convexity Reduction in Second-order Sufficient Optimality Conditions

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a C^2 -smooth function and $\bar{x} \in \mathbb{R}^n$, the sufficient local optimality condition is

 $abla f(ar{x}) = 0$, and $abla^2 f(ar{x})$ is positive definite,

which is equivalent to the local strong convexity of f around \bar{x} .

Local Convexity Reduction in Second-order Sufficient Optimality Conditions

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a C^2 -smooth function and $\bar{x} \in \mathbb{R}^n$, the sufficient local optimality condition is

 $abla f(ar{x}) = 0$, and $abla^2 f(ar{x})$ is positive definite,

which is equivalent to the local strong convexity of f around \bar{x} . \implies This reduces to convex optimization.

Local Convexity Reduction in Second-order Sufficient Optimality Conditions

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a C^2 -smooth function and $\bar{x} \in \mathbb{R}^n$, the sufficient local optimality condition is

 $abla f(ar{x}) = 0$, and $abla^2 f(ar{x})$ is positive definite,

which is equivalent to the local strong convexity of f around \bar{x} .

 \implies This reduces to convex optimization.

Fundamental question: Do we have such local convexity reduction in nonsmooth optimization, especially in constrained optimization?

No local convexity reduction in constrained optimization

Problems with equality constraints:

minimize $f_0(x)$ subject to $f_i(x) = 0, i = 1, 2, \dots, m$

Lagrangian functions: $L(x, y) = f_0(x) + y_1 f_1(x) + \ldots + y_m f_m(x)$. The local optimality condition of a feasible solution \bar{x} is

 $abla_{\mathbf{x}} L(\bar{\mathbf{x}}, \bar{\mathbf{y}}) = 0, \quad \nabla_{\mathbf{y}} L(\bar{\mathbf{x}}, \bar{\mathbf{y}}) = 0$

 $\nabla^2_{xx} L(\bar{x}, \bar{y}) \text{ is positive definite relative to the subspace}$ $S = \{\xi \in \mathbb{R}^n | \langle \nabla f_i(\bar{x}), \xi \rangle = 0, \ i = 1, 2, \dots, m\}.$

No local convexity reduction in constrained optimization

Problems with equality constraints:

minimize $f_0(x)$ subject to $f_i(x) = 0, i = 1, 2, \dots, m$

Lagrangian functions: $L(x, y) = f_0(x) + y_1 f_1(x) + \ldots + y_m f_m(x)$. The local optimality condition of a feasible solution \bar{x} is

 $abla_{\times}L(\bar{x},\bar{y})=0, \quad
abla_{y}L(\bar{x},\bar{y})=0$

 $abla_{xx}^2 L(\bar{x}, \bar{y})$ is positive definite relative to the subspace $S = \{\xi \in \mathbb{R}^n | \langle \nabla f_i(\bar{x}), \xi \rangle = 0, \ i = 1, 2, ..., m\}.$

 \implies Does this reduce to the local convexity of L around (\bar{x}, \bar{y}) ?

No local convexity reduction in constrained optimization

Problems with equality constraints:

minimize $f_0(x)$ subject to $f_i(x) = 0, i = 1, 2, \dots, m$

Lagrangian functions: $L(x, y) = f_0(x) + y_1 f_1(x) + \ldots + y_m f_m(x)$. The local optimality condition of a feasible solution \bar{x} is

 $abla_{x}L(\bar{x},\bar{y})=0, \quad
abla_{y}L(\bar{x},\bar{y})=0$

 $abla_{xx}^2 L(\bar{x}, \bar{y})$ is positive definite relative to the subspace $S = \{\xi \in \mathbb{R}^n | \langle \nabla f_i(\bar{x}), \xi \rangle = 0, \ i = 1, 2, ..., m\}.$

⇒ Does this reduce to the local convexity of *L* around (\bar{x}, \bar{y}) ? ⇒ The answer is no in general!

Let $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ be a l.s.c., proper function. Then f is convex if and only if ∂f is maximal monotone.

Let $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ be a l.s.c., proper function. Then f is convex if and only if ∂f is maximal monotone.

Question: What characterization can be given for the case in which a subgradient mapping is only maximal monotone locally instead of globally?

Let $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ be a l.s.c., proper function. Then f is convex if and only if ∂f is maximal monotone.

Question: What characterization can be given for the case in which a subgradient mapping is only maximal monotone locally instead of globally?

 \implies In the smooth case, we also have the equivalence:

f is convex around $\bar{x} \iff \nabla f$ is maximal monotone around \bar{x} .

Let $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ be a l.s.c., proper function. Then f is convex if and only if ∂f is maximal monotone.

Question: What characterization can be given for the case in which a subgradient mapping is only maximal monotone locally instead of globally?

 \implies In the smooth case, we also have the equivalence:

f is convex around $\bar{x} \iff \nabla f$ is maximal monotone around \bar{x} .

Question: Do we have this equivalence in nonsmooth case?

Let $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ be a l.s.c., proper function. Then f is convex if and only if ∂f is maximal monotone.

Question: What characterization can be given for the case in which a subgradient mapping is only maximal monotone locally instead of globally?

 \implies In the smooth case, we also have the equivalence:

f is convex around $\bar{x} \iff \nabla f$ is maximal monotone around \bar{x} .

Question: Do we have this equivalence in nonsmooth case?

 \implies The answer is **no**!

The natural following questions arise:

Questions:

- Which property is equivalent to the second-order sufficient optimality condition in NLP, nonsmooth optimization, etc?
- Which property is equivalent to the local maximal monotonicity of subgradient mappings?

¹R. T. Rockafellar, Variational convexity and local monotonicity of subgradient mappings, Vietnam J. Math., 47 (2019), 547–561.

²R. T. Rockafellar, Augmented Lagrangians and hidden convexity in sufficient conditions for local optimality, Math. Program., 192 (2022), DOI 10.1007/s10107-022-01768-w.

The natural following questions arise:

Questions:

- Which property is equivalent to the second-order sufficient optimality condition in NLP, nonsmooth optimization, etc?
- Which property is equivalent to the local maximal monotonicity of subgradient mappings?
- \implies We need a property more subtle than local convexity.

¹R. T. Rockafellar, *Variational convexity and local monotonicity of subgradient mappings*, Vietnam J. Math., 47 (2019), 547–561.

²R. T. Rockafellar, Augmented Lagrangians and hidden convexity in sufficient conditions for local optimality, Math. Program., 192 (2022), DOI 10.1007/s10107-022-01768-w.

The natural following questions arise:

Questions:

- Which property is equivalent to the second-order sufficient optimality condition in NLP, nonsmooth optimization, etc?
- Which property is equivalent to the local maximal monotonicity of subgradient mappings?
- \implies We need a property more subtle than local convexity.

 \implies This has been answered by Rockafellar¹², and this property is called variational convexity.

¹R. T. Rockafellar, Variational convexity and local monotonicity of subgradient mappings, Vietnam J. Math., 47 (2019), 547–561.

²R. T. Rockafellar, Augmented Lagrangians and hidden convexity in sufficient conditions for local optimality, Math. Program., 192 (2022), DOI 10.1007/s10107-022-01768-w.

See³⁴ to find more detail. Regular normal cone to $\Omega \subset \mathbb{R}^n$ at $\bar{x} \in \Omega$ is

$$\widehat{N}_{\Omega}(\bar{x}) := \big\{ v \in \mathrm{I\!R}^n \big| \limsup_{x \stackrel{\Omega}{\to} \bar{x}} \frac{\langle v, x - \bar{x} \rangle}{\|x - \bar{x}\|} \le 0 \big\}$$

Limiting normal cone to $\Omega \subset {\rm I\!R}^n$ at $\bar{x} \in \Omega$ is

 $N_{\Omega}(\bar{x}) := \left\{ v \in \mathrm{I\!R}^n \middle| \exists x_k \xrightarrow{\Omega} \bar{x}, \ v_k \to v, \ v_k \in \widehat{N}_{\Omega}(x_k) \right\}$

where $x \xrightarrow{\Omega} \bar{x}$ means that $x \to \bar{x}$ and $x \in \Omega$

³B. S. Mordukhovich, Variational Analysis and Applications, Springer (2018)
 ⁴R. T. Rockafellar and R. J-B. Wets, Variational Analysis, Springer (1998)

Regular coderivative and limiting coderivative of $F : \mathbb{R}^n \rightrightarrows \mathbb{R}^m$ at $(\bar{x}, \bar{y}) \in \operatorname{gph} F$ are defined, respectively by

 $\widehat{D}^*F(\bar{x},\bar{y})(v):=\big\{u\in{\rm I\!R}^n\big|(u,-v)\in\widehat{N}_{{\rm gph}\,F}(\bar{x},\bar{y})\big\},\ v\in{\rm I\!R}^m$

 $D^*F(\bar{x},\bar{y})(v) := \left\{ u \in \mathrm{I\!R}^n \big| (u,-v) \in N_{\mathrm{gph}\,F}(\bar{x},\bar{y}) \right\}, \ v \in \mathrm{I\!R}^m$

Subdifferential of $\varphi \colon \mathbb{R}^n \to \overline{\mathbb{R}} := (-\infty, \infty]$ at $\bar{x} \in \operatorname{dom} \varphi$ is

 $\partial \varphi(\bar{x}) := \left\{ v \in \mathrm{I\!R}^n \middle| (v, -1) \in \mathsf{N}_{\mathrm{epi}\,\varphi}(\bar{x}, \varphi(\bar{x})) \right\}$

Combined second-order subdifferential and limiting second-order subdifferential of φ at \bar{x} relative to $\bar{v} \in \partial \varphi(\bar{x})$ are

 $egin{aligned} &\check{\partial}^2 arphi(ar{x},ar{x})(u) := ig(\widehat{D}^*\partialarphiig)(ar{x},ar{v})(u), & u\in {
m I\!R}^n \ &\partial^2 arphi(ar{x},ar{x})(u) := ig(D^*\partialarphiig)(ar{x},ar{v})(u), & u\in {
m I\!R}^n \end{aligned}$

Note that, we have the inclusion

 $\check{\partial}^2 \varphi(\bar{x},\bar{x})(u) \subset \partial^2 \varphi(\bar{x},\bar{x})(u) \quad \text{for all} \ \ u \in {\rm I\!R}^n.$

If $\varphi \in \mathcal{C}^2$ -smooth around \bar{x} , then

 $\check{\partial}^2 \varphi(\bar{x},\bar{x})(u) = \partial^2 \varphi(\bar{x},\bar{v})(u) = \big\{ \nabla^2 \varphi(\bar{x})u \big\}, \quad u \in {\rm I\!R}^n$

Definition

 $\varphi \colon \mathbb{R}^n \to \overline{\mathbb{R}}$ is prox-regular^{ab} at $\bar{x} \in \operatorname{dom} \varphi$ for $\bar{v} \in \partial \varphi(\bar{x})$ if φ is lower semicontinuous and there are $\varepsilon > 0$ and $\rho \ge 0$ such that for all $x \in \mathbb{B}_{\varepsilon}(\bar{x})$ with $\varphi(x) \le \varphi(\bar{x}) + \varepsilon$ we have

$$\varphi(x) \geq \varphi(u) + \langle \bar{v}, x - u \rangle - \frac{\rho}{2} \|x - u\|^2 \, \forall \, (u, v) \in (\mathrm{gph} \, \partial \varphi) \cap \mathbb{B}_{\varepsilon}(\bar{x}, \bar{v})$$

^aR. A. Poliquin and R. T. Rockafellar, Prox-regular functions in variational analysis, Trans. Amer. Math. Soc. 348, 1805–1838 (1996)
 ^bR. T. Rockafellar and R. J-B. Wets, Variational Analysis, Springer (1998)

 φ is subdifferentially continuous at \bar{x} for \bar{v} if the convergence $(x_k, v_k) \rightarrow (\bar{x}, \bar{v})$ with $v_k \in \partial \varphi(x_k)$ yields $\varphi(x_k) \rightarrow \varphi(\bar{x})$. If both properties hold, φ is continuously prox-regular. This is the major class in second-order variational analysis

Variational Convexity

An l.s.c. function $\varphi : \mathbb{R}^n \to \overline{\mathbb{R}}$ is called variationally convex at \overline{x} for $\overline{v} \in \partial \varphi(\overline{x})$ if for some convex neighborhood $U \times V$ of $(\overline{x}, \overline{v})$ there exist an l.s.c. convex function $\psi \leq \varphi$ on U and a number $\varepsilon > 0$ such that

 $(U_{\varepsilon} \times V) \cap \operatorname{gph} \partial \varphi = (U \times V) \cap \operatorname{gph} \partial \psi$ and $\varphi(x) = \psi(x)$, (1)

at the common elements (x, v), where $U_{\varepsilon} := \{x \in U \mid \varphi(x) < \varphi(\bar{x}) + \varepsilon\}$. We say that φ is variationally strongly convex at \bar{x} for \bar{v} with modulus $\sigma > 0$ if (1) holds with ψ being strongly convex on U with this modulus.

Some first-order characterizations of variationally convex functions can be found in 5 . The characterizations via augmented Lagrangian functions and second subderivative can be found in 6 .

⁵R. T. Rockafellar, Variational convexity and local monotonicity of subgradient mappings, Vietnam J. Math., 47 (2019), 547–561.

⁶R. T. Rockafellar, Augmented Lagrangians and hidden convexity in sufficient conditions for local optimality, Math. Program., 192 (2022), DOI 10.1007/s10107-022-01768-w.

③ Variational Convexity via Moreau Envelopes

⁷Given an extended-real-valued, proper, l.s.c. function $\varphi \colon \mathbb{R}^n \to \overline{\mathbb{R}}$ and a positive number γ , the *Moreau envelope* $e_{\gamma}\varphi$ and the *proximal mapping* $\operatorname{Prox}_{\gamma\varphi}$ are defined by, respectively,

$$e_{\gamma}\varphi(x) := \inf_{y \in \mathbb{R}^n} \left\{ \varphi(y) + \frac{1}{2\gamma} \|y - x\|^2 \right\},$$
(2)
$$\operatorname{Prox}_{\gamma\varphi}(x) := \operatorname{argmin}_{y \in \mathbb{R}^n} \left\{ \varphi(y) + \frac{1}{2\gamma} \|y - x\|^2 \right\}.$$
(3)

⁷Rockafellar, R.T., Wets R.J-B.: Variational Analysis. Springer, Berlin (1998) <u>Theorem 1</u>⁸: Let $\varphi : \mathbb{R}^n \to \overline{\mathbb{R}}$ be an l.s.c. and prox-bounded function with $\overline{x} \in \operatorname{dom} \varphi$ and $\overline{v} \in \partial \varphi(\overline{x})$. The following assertions are equivalent: (i) φ is variationally convex at \overline{x} for \overline{v} .

(ii) φ is prox-regular at \bar{x} for \bar{v} , and the Moreau envelope $e_{\lambda}\varphi$ is locally convex around $\bar{x} + \lambda \bar{v}$ for small $\lambda > 0$.

⁸P. D. Khanh, B. S. Mordukhovich, V. T. Phat, Variational convexity of functions and variational sufficiency in optimization, arXiv: <u>2208.14399</u>

<u>Theorem 2</u>⁹: Let $\varphi : \mathbb{R}^n \to \overline{\mathbb{R}}$ be an l.s.c. and prox-bounded function with $\overline{x} \in \operatorname{dom} \varphi$ and $\overline{v} \in \partial \varphi(\overline{x})$. The following assertions are equivalent: (i) φ is variationally strongly convex at \overline{x} for \overline{v} with modulus $\sigma > 0$. (ii) φ is prox-regular at \overline{x} for \overline{v} and $e_\lambda \varphi$ is locally strongly convex around $\overline{x} + \lambda \overline{v}$ with modulus $\frac{\sigma}{1+\sigma\lambda}$ for all numbers $\lambda > 0$ sufficiently small.

⁹P. D. Khanh, B. S. Mordukhovich, V. T. Phat, Variational convexity of functions and variational sufficiency in optimization, arXiv: 2208.14399 = - =

<u>Theorem 3</u>¹⁰: Let $\varphi : \mathbb{R}^n \to \overline{\mathbb{R}}$ be an l.s.c. and prox-bounded function with $\overline{x} \in \operatorname{dom} \varphi$ and $\overline{v} \in \partial \varphi(\overline{x})$. The following assertions are equivalent: (i) φ is variationally strongly convex at \overline{x} for \overline{v} . (ii) φ is prox-regular at \overline{x} for \overline{v} and $e_\lambda \varphi$ is locally strongly convex around $\overline{x} + \lambda \overline{v}$ for all numbers $\lambda > 0$ sufficiently small.

¹⁰P. D. Khanh, B. S. Mordukhovich, V. T. Phat, Variational convexity of functions and variational sufficiency in optimization, arXiv: 2208.14399

9 Coderivative-Based Characterizations of Variational Convexity

Theorem 4:¹¹ Let $\varphi : \mathbb{R}^n \to \overline{\mathbb{R}}$ be subdifferentially continuous at $\overline{x} \in \operatorname{dom} \varphi$ and $\overline{v} \in \partial \varphi(\overline{x})$. Then the following assertions are equivalent: (i) φ is variationally convex at \overline{x} for \overline{v} . (ii) φ is prox-regular at \overline{x} for \overline{v} and there exist neighborhoods U of \overline{x} and V of \overline{v} such that

 $\langle z, w \rangle \geq 0$ whenever $z \in \check{\partial}^2 \varphi(x, y)(w)$, $(x, y) \in \operatorname{gph} \partial \varphi \cap (U \times V)$, $w \in \mathbb{R}^n$. (4) (iii) φ is prox-regular at \bar{x} for \bar{v} and there exist neighborhoods U of \bar{x} , and V of \bar{v} such that

 $\langle z, w \rangle \ge 0$ whenever $z \in \partial^2 \varphi(x, y)(w), (x, y) \in \operatorname{gph} \partial \varphi \cap (U \times V), w \in \mathbb{R}^n.$ (5)

¹¹P. D. Khanh, B. S. Mordukhovich, V. T. Phat, Variational convexity of functions and variational sufficiency in optimization, arXiv: 2208.14399 and a second sec

Second-order Characterizations of Variational Strong Convexity

Theorem 5: ¹² Let $\varphi : \mathbb{R}^n \to \overline{\mathbb{R}}$ be subdifferentially continuous at $\overline{x} \in \operatorname{dom} \varphi$ and $\overline{v} \in \partial \varphi(\overline{x})$. Then the following assertions are equivalent: (i) φ is variationally strongly convex at \overline{x} for \overline{v} with modulus $\sigma > 0$. (ii) φ is prox-regular at \overline{x} for \overline{v} and there exist neighborhoods U of \overline{x} and V of \overline{v} such that

 $\langle z, w \rangle \ge \sigma ||w||^2$ whenever $z \in \check{\partial}^2 \varphi(x, y)(w)$, $(x, y) \in \operatorname{gph} \partial \varphi \cap (U \times V)$, $w \in \mathbb{R}^n$. (6) (iii) φ is prox-regular at \bar{x} for \bar{v} and there are neighborhoods U of \bar{x} and V of \bar{v} such that

 $\langle z, w \rangle \ge \sigma ||w||^2$ whenever $z \in \partial^2 \varphi(x, y)(w)$, $(x, y) \in \operatorname{gph} \partial \varphi \cap (U \times V)$, $w \in \mathbb{R}^n$. (7) Furthermore, the strong variational convexity in (i) with some modulus $\sigma > 0$ is equivalent to the prox regularity of φ at \bar{x} for \bar{v} together with the fulfillment of the pointbased condition

$$\langle z, w \rangle > 0$$
 whenever $z \in \partial^2 \varphi(\bar{x}, \bar{v})(w), w \neq 0.$ (8)

¹²P. D. Khanh, B. S. Mordukhovich, V. T. Phat, Variational convexity of functions and variational sufficiency in optimization, arXiv: <u>2208.14399</u>

o Variational Sufficiency in Composite Optimization

Let $\varphi : \mathbb{R}^n \to \mathbb{R}$ be a lower semicontinuous function. Suppose that $\bar{x} \in \operatorname{dom} \varphi$ is a stationary point, i.e., $0 \in \partial \varphi(\bar{x})$. We have the following implications:

Let $\varphi : \mathbb{R}^n \to \mathbb{R}$ be a lower semicontinuous function. Suppose that $\bar{x} \in \operatorname{dom} \varphi$ is a stationary point, i.e., $0 \in \partial \varphi(\bar{x})$. We have the following implications:

• variational convexity of φ at $\bar{x} \Longrightarrow \bar{x}$ is a local minimizer.

Let $\varphi : \mathbb{R}^n \to \mathbb{R}$ be a lower semicontinuous function. Suppose that $\bar{x} \in \operatorname{dom} \varphi$ is a stationary point, i.e., $0 \in \partial \varphi(\bar{x})$. We have the following implications:

- variational convexity of φ at $\bar{x} \Longrightarrow \bar{x}$ is a local minimizer.
- variational strong convexity of φ at $\bar{x} \implies \bar{x}$ is a tilt-stable local minimizer.

Let $\varphi : \mathbb{R}^n \to \mathbb{R}$ be a lower semicontinuous function. Suppose that $\bar{x} \in \operatorname{dom} \varphi$ is a stationary point, i.e., $0 \in \partial \varphi(\bar{x})$. We have the following implications:

- variational convexity of φ at $\bar{x} \Longrightarrow \bar{x}$ is a local minimizer.
- variational strong convexity of φ at $\bar{x} \implies \bar{x}$ is a tilt-stable local minimizer.

Let $\varphi : \mathbb{R}^n \to \mathbb{R}$ be a lower semicontinuous function. Suppose that $\bar{x} \in \operatorname{dom} \varphi$ is a stationary point, i.e., $0 \in \partial \varphi(\bar{x})$. We have the following implications:

- variational convexity of φ at $\bar{x} \Longrightarrow \bar{x}$ is a local minimizer.
- variational strong convexity of φ at $\bar{x} \implies \bar{x}$ is a tilt-stable local minimizer.

Definition

Let $\varphi : \mathbb{R}^n \to \overline{\mathbb{R}}$, and consider the unconstrained optimization problem:

minimize $\varphi(x)$ subject to $x \in \mathbb{R}^n$. (9)

It is said that the variational sufficient condition for local optimality in (9) holds at \bar{x} if φ is variationally convex at \bar{x} for $0 \in \partial \varphi(\bar{x})$. If φ is variationally strongly convex at \bar{x} for 0 with modulus $\sigma > 0$, then we say that the strong variational sufficient condition for local optimality at \bar{x} holds with modulus σ .

Here we consider the class of composite optimization problems given by:

minimize $\varphi(x) := \varphi_0(x) + \psi(g(x))$ subject to $x \in \mathbb{R}^n$, (10)

where $\psi : \mathbb{R}^m \to \overline{\mathbb{R}}$ is an extended-real-valued l.s.c. function, $\varphi_0 : \mathbb{R}^n \to \mathbb{R}$ is a \mathcal{C}^2 -smooth function, and g is a \mathcal{C}^2 -smooth mapping from \mathbb{R}^n to \mathbb{R}^m .

Here we consider the class of composite optimization problems given by:

minimize $\varphi(x) := \varphi_0(x) + \psi(g(x))$ subject to $x \in \mathbb{R}^n$, (10)

where $\psi : \mathbb{R}^m \to \overline{\mathbb{R}}$ is an extended-real-valued l.s.c. function, $\varphi_0 : \mathbb{R}^n \to \mathbb{R}$ is a \mathcal{C}^2 -smooth function, and g is a \mathcal{C}^2 -smooth mapping from \mathbb{R}^n to \mathbb{R}^m .

 \implies The characterizations of variational sufficiency in (10)?

Here we consider the class of composite optimization problems given by:

minimize $\varphi(x) := \varphi_0(x) + \psi(g(x))$ subject to $x \in \mathbb{R}^n$, (10)

where $\psi : \mathbb{R}^m \to \overline{\mathbb{R}}$ is an extended-real-valued l.s.c. function, $\varphi_0 : \mathbb{R}^n \to \mathbb{R}$ is a \mathcal{C}^2 -smooth function, and g is a \mathcal{C}^2 -smooth mapping from \mathbb{R}^n to \mathbb{R}^m .

 \implies The characterizations of variational sufficiency in (10)? For each $(x, v) \in \mathbb{R}^n \times \mathbb{R}^n$ define the set of multipliers

$$\Lambda(x,v) := \{ y \in \mathbb{R}^m \mid v = \nabla \varphi_0(x) + \nabla g(x)^* y, \ y \in \partial \psi(g(x)) \}.$$
(11)

<u>Theorem 6:</u> Let $\bar{x} \in \mathbb{R}^n$ be a stationary point of the composite optimization problem at which $\operatorname{rank} \nabla g(\bar{x}) = m$ and hence there exists a unique vector $\bar{y} \in \mathbb{R}^m$ with

$$\nabla \varphi_0(\bar{x}) + \nabla g(\bar{x})^* \bar{y} = 0 \text{ and } \bar{y} \in \partial \psi(g(\bar{x})).$$
(12)

Suppose in addition that ψ is subdifferentially continuous at $g(\bar{x})$ for \bar{y} . Then we have the following assertions:

<u>Theorem 6</u>: Let $\bar{x} \in \mathbb{R}^n$ be a stationary point of the composite optimization problem at which rank $\nabla g(\bar{x}) = m$ and hence there exists a unique vector $\bar{y} \in \mathbb{R}^m$ with

$$\nabla \varphi_0(\bar{x}) + \nabla g(\bar{x})^* \bar{y} = 0 \text{ and } \bar{y} \in \partial \psi(g(\bar{x})).$$
(12)

Suppose in addition that ψ is subdifferentially continuous at $g(\bar{x})$ for \bar{y} . Then we have the following assertions:

(i) The variational sufficiency holds at \bar{x} if and only if ψ is prox-regular at $g(\bar{x})$ for \bar{y} and there exist neighborhoods U of \bar{x} and V of 0 such that

$$\langle \nabla^2 \varphi_0(x) w, w \rangle + \langle \nabla^2 \langle y, g \rangle(x) w, w \rangle + \langle u, \nabla g(x) w \rangle \ge 0$$
(13)

for all $x \in U$, $v \in V$, $y \in \Lambda(x, v)$, $u \in \partial^2 \psi(g(x), y)(\nabla g(x)w)$, $w \in \mathbb{R}^n$, where $\Lambda(x, v)$ is a singleton in this case.

<u>Theorem 6</u>: Let $\bar{x} \in \mathbb{R}^n$ be a stationary point of the composite optimization problem at which rank $\nabla g(\bar{x}) = m$ and hence there exists a unique vector $\bar{y} \in \mathbb{R}^m$ with

$$\nabla \varphi_0(\bar{x}) + \nabla g(\bar{x})^* \bar{y} = 0 \text{ and } \bar{y} \in \partial \psi(g(\bar{x})).$$
(12)

Suppose in addition that ψ is subdifferentially continuous at $g(\bar{x})$ for \bar{y} . Then we have the following assertions:

(i) The variational sufficiency holds at \bar{x} if and only if ψ is prox-regular at $g(\bar{x})$ for \bar{y} and there exist neighborhoods U of \bar{x} and V of 0 such that

$$\langle \nabla^2 \varphi_0(x) w, w \rangle + \langle \nabla^2 \langle y, g \rangle(x) w, w \rangle + \langle u, \nabla g(x) w \rangle \ge 0$$
(13)

for all $x \in U$, $v \in V$, $y \in \Lambda(x, v)$, $u \in \partial^2 \psi(g(x), y)(\nabla g(x)w)$, $w \in \mathbb{R}^n$, where $\Lambda(x, v)$ is a singleton in this case.

(ii) The strong variational sufficiency holds at \bar{x} with modulus $\sigma > 0$ if and only if ψ is prox-regular at $g(\bar{x})$ for \bar{y} and there exist neighborhoods U of \bar{x} and V of 0 such that

$$\langle \nabla^2 \varphi_0(x) w, w \rangle + \langle \nabla^2 \langle y, g \rangle(x) w, w \rangle + \langle u, \nabla g(x) w \rangle \ge \sigma \|w\|^2$$
(14)

for all $x \in U$, $v \in V$, $y \in \Lambda(x, v)$, $u \in \partial^2 \psi(g(x), y)(\nabla g(x)w)$, $w \in \mathbb{R}^n$, where $\Lambda(x, v)$ is a singleton in this case.

<u>Theorem 6</u>: Let $\bar{x} \in \mathbb{R}^n$ be a stationary point of the composite optimization problem at which rank $\nabla g(\bar{x}) = m$ and hence there exists a unique vector $\bar{y} \in \mathbb{R}^m$ with

$$\nabla \varphi_0(\bar{x}) + \nabla g(\bar{x})^* \bar{y} = 0 \text{ and } \bar{y} \in \partial \psi(g(\bar{x})).$$
(12)

Suppose in addition that ψ is subdifferentially continuous at $g(\bar{x})$ for \bar{y} . Then we have the following assertions:

(i) The variational sufficiency holds at \bar{x} if and only if ψ is prox-regular at $g(\bar{x})$ for \bar{y} and there exist neighborhoods U of \bar{x} and V of 0 such that

$$\langle \nabla^2 \varphi_0(x) w, w \rangle + \langle \nabla^2 \langle y, g \rangle(x) w, w \rangle + \langle u, \nabla g(x) w \rangle \ge 0$$
(13)

for all $x \in U$, $v \in V$, $y \in \Lambda(x, v)$, $u \in \partial^2 \psi(g(x), y)(\nabla g(x)w)$, $w \in \mathbb{R}^n$, where $\Lambda(x, v)$ is a singleton in this case.

(ii) The strong variational sufficiency holds at \bar{x} with modulus $\sigma > 0$ if and only if ψ is prox-regular at $g(\bar{x})$ for \bar{y} and there exist neighborhoods U of \bar{x} and V of 0 such that

$$\langle \nabla^2 \varphi_0(\mathbf{x}) \mathbf{w}, \mathbf{w} \rangle + \langle \nabla^2 \langle \mathbf{y}, \mathbf{g} \rangle(\mathbf{x}) \mathbf{w}, \mathbf{w} \rangle + \langle \mathbf{u}, \nabla \mathbf{g}(\mathbf{x}) \mathbf{w} \rangle \ge \sigma \|\mathbf{w}\|^2$$
(14)

for all $x \in U$, $v \in V$, $y \in \Lambda(x, v)$, $u \in \partial^2 \psi(g(x), y)(\nabla g(x)w)$, $w \in \mathbb{R}^n$, where $\Lambda(x, v)$ is a singleton in this case.

Furthermore, the strong variational sufficiency in (ii) with some modulus $\sigma > 0$ is equivalent to the prox-regularity of ψ at $g(\bar{x})$ for \bar{y} together with the fulfillment of the pointbased condition

$$\langle \nabla^2 \varphi_0(\bar{x}) w, w \rangle + \langle \nabla^2 \langle \bar{y}, g \rangle(\bar{x}) w, w \rangle + \langle u, \nabla g(\bar{x}) w \rangle > 0$$
(15)

whenever $u \in \partial^2 \psi(g(\bar{x}), \bar{y})(\nabla g(\bar{x})w))$ and $w \neq 0$.

25 / 35

Variational Sufficiency Without Full Rank Assumption

An l.s.c. function $\theta : \mathbb{R}^n \to \overline{\mathbb{R}}$ is strongly amenable at \overline{x} if there exists neighborhood U of \overline{x} on which θ can be represented in the composition form $\theta = \psi \circ g$ with a \mathcal{C}^2 -smooth mapping $g: U \to \mathbb{R}^m$ and a proper l.s.c. convex function $\psi : \mathbb{R}^m \to \overline{\mathbb{R}}$ such that the following first-order qualification condition holds:

$$\partial^{\infty}\psi(\bar{z})\cap \ker \nabla g(\bar{x})^* = \{0\} \text{ with } \bar{z} := g(\bar{x})$$
 (16)

The second-order qualification condition (SOQC) for problem (10) at \bar{x} , which is formulated as follows:

 $\partial^2 \psi(\bar{z}, \bar{y})(0) \cap \ker \nabla g(\bar{x})^* = \{0\} \text{ with } \bar{y} \in \partial \psi(\bar{z}) \text{ and } \bar{z} := g(\bar{x}).$ (17)

Theorem 7: Let $\bar{x} \in \mathbb{R}^n$ be a stationary point of the composite optimization problem. Suppose in addition that ψ and g be mappings from the composite representation of a strongly amenable function at \bar{x} and that the second-order qualification condition is satisfied at \bar{x} . Then we have the following assertions:

<u>Theorem 7:</u> Let $\bar{x} \in \mathbb{R}^n$ be a stationary point of the composite optimization problem. Suppose in addition that ψ and g be mappings from the composite representation of a strongly amenable function at \bar{x} and that the second-order qualification condition is satisfied at \bar{x} . Then we have the following assertions:

(i) The variational sufficiency holds at \bar{x} if there exist neighborhoods U of \bar{x} and V of 0 such that (13) is satisfied for all $x \in U$, $v \in V$, $v \in \Lambda(x, v)$, $u \in \partial^2 \psi(g(x), v)(\nabla g(x)w)$, and $w \in \mathbb{R}^n$.

<u>Theorem 7:</u> Let $\bar{x} \in \mathbb{R}^n$ be a stationary point of the composite optimization problem. Suppose in addition that ψ and g be mappings from the composite representation of a strongly amenable function at \bar{x} and that the second-order qualification condition is satisfied at \bar{x} . Then we have the following assertions:

(i) The variational sufficiency holds at x̄ if there exist neighborhoods U of x̄ and V of 0 such that (13) is satisfied for all x ∈ U, v ∈ V, y ∈ Λ(x, v), u ∈ ∂²ψ(g(x), y)(∇g(x)w), and w ∈ ℝⁿ.
(ii) The strong variational sufficiency holds at x̄ with modulus σ > 0 if there exist neighborhoods U of x̄ and V of 0 such that the neighborhood condition (14) is satisfied for all x ∈ U, v ∈ V, y ∈ Λ(x, v), u ∈ ∂²ψ(g(x), y)(∇g(x)w), and w ∈ ℝⁿ.

Theorem 7: Let $\bar{x} \in \mathbb{R}^n$ be a stationary point of the composite optimization problem. Suppose in addition that ψ and g be mappings from the composite representation of a strongly amenable function at \bar{x} and that the second-order qualification condition is satisfied at \bar{x} . Then we have the following assertions:

(i) The variational sufficiency holds at \bar{x} if there exist neighborhoods U of \bar{x} and V of 0 such that (13) is satisfied for all $x \in U$, $v \in V$,

 $y \in \Lambda(x, v)$, $u \in \partial^2 \psi(g(x), y)(\nabla g(x)w)$, and $w \in \mathbb{R}^n$.

(ii) The strong variational sufficiency holds at \bar{x} with modulus $\sigma > 0$ if there exist neighborhoods U of \bar{x} and V of 0 such that the neighborhood condition (14) is satisfied for all $x \in U$, $v \in V$, $y \in \Lambda(x, v)$, $u \in \partial^2 \psi(g(x), y)(\nabla g(x)w)$, and $w \in \mathbb{R}^n$.

(iii) The strong variational sufficiency holds at \bar{x} if the pointbased condition (15) is satisfied for any $\bar{y} \in \Lambda(\bar{x}, 0)$.

<u>Theorem 8</u>: In addition to the assumptions of Theorem 7, suppose that (a) either ψ is piecewise linear, (b) or ψ is of class

$$\psi(z) := \sup_{v \in P} \left\{ \langle v, z \rangle - \frac{1}{2} \langle Qv, v \rangle \right\},$$
(18)

where $P \subset \mathbb{R}^m$ is a nonempty polyhedral set, Q is positive-definite, and the inner mapping g is open around \bar{x} .

Then all the three characterizations (i)-(iii) of Theorem 7 hold.

o Applications to Nonlinear Programming

The conventional model of nonlinear programming (NLP) is formulated as follows:

minimize
$$\varphi_0(x)$$
 subject to

$$\begin{cases}
\varphi_i(x) \le 0 & \text{for } i = 1, \dots, s, \\
\varphi_i(x) = 0 & \text{for } i = s + 1, \dots, m,
\end{cases}$$
(19)

where φ_i , i = 0, ..., m, are C^2 -smooth functions around the references points. Problem (19) can be obviously written in the form of composite optimization (10) with $\psi = \delta_{\Omega}$, where Ω is given by

 $\Omega := \left\{ u \in \mathbb{R}^m \mid u_i \leq 0 \text{ for } i = 1, \dots, s \text{ and } u_i = 0 \text{ for } i = s + 1, \dots, m \right\},$ (20)
and where $g(x) := (\varphi_1(x), \dots, \varphi_m(x)).$

Lagrangian functions: $L(x, y) = \varphi_0(x) + y_1\varphi_1(x) + \ldots + y_m\varphi_m(x)$. For each $(x, y) \in \mathbb{R}^n \times \mathbb{R}^m$ consider the subspace $S(x, y) := \{ w \in \mathbb{R}^n \mid \langle \nabla \varphi_i(x), w \rangle = 0 \text{ for } i \in I_+(x, y) \cup \{s + 1, \ldots, m\} \}$ (21) together with the index collections

$$I_{+}(x,y) := \{i \in I(x) \mid y_{i} > 0\} \text{ and } I(x) := \{i \in \{1,\ldots,s\} \mid \varphi_{i}(x) = 0\}.$$
(22)

Variational Sufficiency in Nonlinear Programming

Corollary 9: Let \bar{x} be a feasible solution to the NLP problem satisfying the first-order optimality condition under the fulfillment of LICQ at \bar{x} . Then we have the following assertions:

(i) The variational sufficiency holds at \bar{x} if and only if there exist neighborhoods U of \bar{x} , V of 0 such that

 $\langle \nabla^2_{xx} L(x,y)w,w \rangle \ge 0$ whenever $x \in U, v \in V$, and $w \in S(x,y)$, (23)

where $y \in \mathbb{R}^{s}_{+} \times \mathbb{R}^{m-s}$ is a unique solution to the system

$$abla_{\mathbf{x}} L(\mathbf{x}, \mathbf{y}) = \mathbf{v}, \quad y_1 \varphi_1(\mathbf{x}) + \ldots + y_m \varphi_m(\mathbf{x}) = \mathbf{0}.$$

(ii) The strong variational sufficiency holds at \bar{x} with modulus $\sigma > 0$ if and only if there exist neighborhoods U of \bar{x} , V of 0 such that

 $\langle \nabla_{xx}^2 L(x, y) w, w \rangle \ge \sigma \|w\|^2 \quad \text{whenever } x \in U, \ v \in V, \ \text{and} \ w \in S(x, y),$ (24)

where $y \in {\rm I\!R}^s_+ \times {\rm I\!R}^{m-s}$ is a unique solution to the system

 $abla_{\mathbf{x}} L(\mathbf{x}, \mathbf{y}) = \mathbf{v}, \quad y_1 \varphi_1(\mathbf{x}) + \ldots + y_m \varphi_m(\mathbf{x}) = \mathbf{0}.$

32 / 35

(iii) The strong variational sufficiency holds at \bar{x} if and only if $\langle \nabla^2_{xx} L(\bar{x}, \bar{y}) w, w \rangle > 0$ whenever $\bar{y} \in \Lambda(\bar{x}, 0)$ and $w \in S(\bar{x}, \bar{y}) \setminus \{0\}$, (25) where $\bar{y} \in \mathbb{R}^s_+ \times \mathbb{R}^{m-s}$ is a unique solution to the system $\nabla L(\bar{x}, \bar{y}) = 0$

 $abla_{\times} L(\bar{x}, y) = v, \quad y_1 \varphi_1(\bar{x}) + \ldots + y_m \varphi_m(\bar{x}) = 0.$

 Numerical methods that benefit from the local convexity/local strong convexity of Moreau envelopes of variationally convex/ variationally strongly convex functions.

- Numerical methods that benefit from the local convexity/local strong convexity of Moreau envelopes of variationally convex/ variationally strongly convex functions.
- Explicit characterizations of variational sufficiency vs. strong variational sufficiency of polyhedral and nonpolyhedral optimization problems

- Numerical methods that benefit from the local convexity/local strong convexity of Moreau envelopes of variationally convex/ variationally strongly convex functions.
- Explicit characterizations of variational sufficiency vs. strong variational sufficiency of polyhedral and nonpolyhedral optimization problems
- Graphical derivative characterizations of variational convexity and strong variational convexity for extended-real-valued functions with applications in NLP.

THANK YOU FOR YOUR ATTENTION