Recent progress in sum-of-norms clustering

Stephen Vavasis

University of Waterloo Combinatorics & Optimization

Joint work with Tao Jiang (Cornell), Samuel Tan (Cornell), and Sabrina Zhai (MIT)

Sum-of-norms clustering

Recovery of a mixture of Gaussians

Termination test for SON clustering

Strengthening the recovery properties

・ロト・日本・日本・日本・日本・日本

Clustering

- ▶ Informally: Given *n* points $a_1, \ldots, a_n \in \mathbb{R}^d$, partition $\{1, \ldots, n\}$ into *k* subsets C_1, \ldots, C_k such that for $i \in C_m, i' \in C_{m'}$, dist $(a_i, a_{i'})$ is small iff m = m'.
- Clustering is the classical example of unsupervised machine learning. Unsupervised means: given a single set of unlabeled data, find hidden structure (as opposed to training/test data).
- Some data points may be *noisy* meaning that they should not be assigned to any cluster

Example of data (d = 2)

Mixture of Gaussians

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Input to clustering algorithm is unlabeled

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ▲ 圖 ● の Q @

Successful clustering of this data

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Unsuccessful clustering of this data

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Lloyd's algorithm

Best known method for clustering is Lloyd's ("k-means"). Assume k is part of the input.

- Initially partition {1,..., n} into k random subsets C₁,..., C_k.
- Alternate the following two operations:

Issues with Lloyd's algorithm

- Corresponds to nonconvex optimization, so many local minimizers.
- $\blacktriangleright \implies$ sensitive to initialization
- Hard to prove properties of clustering output.
- Requires preprocessing or other modification to cope with noisy points

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Sum-of-norms clustering

Solve the convex optimization problem:

$$\min_{\mathbf{x}_1,...,\mathbf{x}_n} \frac{1}{2} \sum_{i=1}^n \|\mathbf{x}_i - \mathbf{a}_i\|^2 + \lambda \sum_{1 \le i < j \le n} \|\mathbf{x}_i - \mathbf{x}_j\|$$

- Intuition: first term favors x_i^{*} close to a_i while second term tends to make x_i^{*} for many i's equal to each other.
- Recover clusters according to: i, j clustered together iff x_i^{*} = x_i^{*}.
- Discovered independently by Pelckmans et al. (2005), Lindsten et al. (2011), Hocking et al. (2011).

Strong convexity

$$\min_{\mathbf{x}_1,\ldots,\mathbf{x}_n} \frac{1}{2} \sum_{i=1}^n \|\mathbf{x}_i - \mathbf{a}_i\|^2 + \lambda \sum_{1 \le i < j \le n} \|\mathbf{x}_i - \mathbf{x}_j\|$$

- The objective function is strongly convex due to the first summation.
- This means that the optimizer exists and is unique (no dependence on starting point).
- The sum-of-norms formulation is second-order cone programming (SOCP), a special case of semidefinite programming (SDP).
- Convex programming duality can be used to prove strong results about output (more later).

Squared versus unsquared norm

$$\min_{\mathbf{x}_{1},...,\mathbf{x}_{n}} \frac{1}{2} \sum_{i=1}^{n} \|\mathbf{x}_{i} - \mathbf{a}_{i}\|^{2} + \lambda \sum_{1 \leq i < j \leq n} \|\mathbf{x}_{i} - \mathbf{x}_{j}\|$$

- Note that the first summation has squared norms, but the second summation does not.
- ► This distinction is crucial: if the norms in the second term were also squared, then it would almost never happen that x_i^{*} = x_i^{*} when i ≠ j.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$\min_x(x+1)^2/2 + \lambda|x-2|$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

Role of λ

$$\min_{\mathbf{x}_{1},...,\mathbf{x}_{n}} \frac{1}{2} \sum_{i=1}^{n} \|\mathbf{x}_{i} - \mathbf{a}_{i}\|^{2} + \lambda \sum_{1 \leq i < j \leq n} \|\mathbf{x}_{i} - \mathbf{x}_{j}\|$$

- Previous example suggests that as λ increases, number of clusters goes down.
- When λ = 0, all noncoincident a_i's are in singleton clusters.
- ► There exists \$\overline{\lambda\$}\$ (depending on data) such that for all \$\lambda\$ ≥ \$\overline{\lambda\$}\$, all \$\begin{subarray}{c} a_i\$'s are in one large cluster.
- Thus, λ controls the number of clusters indirectly.

Agglomeration theorem

- Hocking et al. conjectured that sum-of-norms clustering is agglomerative in the sense that as λ increases, clusters may fuse but never break apart.
- This was proved by Chiquet, Gutierrez and Rigaill (CGR) (2017).
- It implies that SON clustering induces a tree of clusters (hierarchical clustering)

Sum-of-norms clustering

Recovery of a mixture of Gaussians

Termination test for SON clustering

Strengthening the recovery properties

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Recovery theorems in machine learning

- Theorem hypothesis: The input data has hidden structure obscured by random noise. The noise has some *a priori* upper bound.
- Theorem conclusion: A particular algorithm can uncover the hidden structure.

Mixture of Spherical Gaussians

- k clusters generated
- Cluster $i \in \{1, ..., k\}$ specified by: mean $\mu_i \in \mathbb{R}^d$, standard deviation $\sigma_i \ge 0$, probability $w_i \ge 0$ such that $w_1 + \cdots + w_k = 1$.
- Generative process: Repeat the following for j = 1 : n.
 - Select i ∈ {1,...,k} according to probabilities w₁,..., w_k.
 Select a N(u -2)

A D N A 目 N A E N A E N A B N A C N

• Select $a_j \sim \mathcal{N}(\boldsymbol{\mu}_i, \sigma_i^2)$

Previous work on recovery of mixture of Gaussians

- Panahi et al. (2017) proved that for an appropriate range of \(\lambda\) and for certain ranges of parameters, SON clustering can correctly identify *all* points if the input is a mixture of spherical Gaussians and the number of points n is not too large.
- Bound on n required by their result because they assume a slab of space separating means devoid of sample points.
- Other related work: Radchenko & Mukherjee (2017), Mixon et al. (2017) on Peng-Wei SDP clustering.

Our result (Jiang, V., Zhai)

- Assume an upper bound on σ₁,..., σ_k in terms of min_{1≤i<i'≤k} ||μ_i − μ_{i'}|| and a lower bound on min{w₁,..., w_k}.
- Then SON clustering with the correct choice of λ recovers all points within distance θσ_i of μ_i.
- "Recovers" means that for a particular *i*, the points in the previous bullet are in the same cluster, and these clusters (as *i* varies) are disjoint.
- This holds with probability exponentially close to 1 as n→∞.

Our proof technique

- Relies on first-order necessary condition for optimality developed by CGR.
- CGR prove that a clustering is attained if and only if certain subgradients can be constructed that satisfy a system of linear equations and inequalities.
- We take the minimum-norm solution to the CGR linear equations.
- Then we argue that with probability exponentially close to 1, this solution also satisfies the inequalities.

It works for the case $\sigma = 0.25$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

It works for the case $\sigma = 0.25$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

It works for the case $\sigma = 0.25$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

... but not for the case $\sigma = 0.35$

... but not for the case $\sigma = 0.35$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q ()

Sum-of-norms clustering

Recovery of a mixture of Gaussians

Termination test for SON clustering

Strengthening the recovery properties

Termination of SON clustering

- Recall: two points j, j' are in the same cluster iff the SON optimizer (x₁^{*},...,x_n^{*}) satisfies x_j^{*} = x_{j'}^{*}
- But all known algorithms for SOCP are iterative, so the condition in the previous bullet holds only in the infinite limit.
- Use a tolerance ϵ ? But how to pick? And what if $||x_j^* x_{j'}^*|| < \epsilon$, $||x_{j'}^* x_{j''}^*|| < \epsilon$, but $||x_j^* x_{j''}^*|| > \epsilon$?

Our termination test (Jiang & V.)

- Requires feasible, approximately optimal, primal and dual solutions
- When the test works, it is guaranteed that the the correct clustering has been computed.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Properties of our test

- The test attempts to determine all clusters. The test may report 'success' or 'failure'.
- Theorem 1. If the test reports 'success', then the clusters are correctly identified.
- Theorem 2. If a primal-dual path-following close-proximity interior-point algorithm is used, then the test is guaranteed to report 'success' after a finite number of iterations except ...

When does the test fail?

- ... the test may never report 'success' for the particular values of λ at which clusters fuse to form a larger cluster.
- Because of the agglomeration property, there are at most *n* such discrete values of λ for which the test may never succeed.

SOCP conic form

• The second order cone is

$$C_p = \{ \mathbf{x} \in \mathbb{R}^p : x_1 \ge \|\mathbf{x}(2:p)\| \}.$$

SOCP problem in "conic" form:

$$\begin{array}{ll} \min \quad \boldsymbol{c}^{\mathsf{T}}\boldsymbol{x} \\ \text{s.t.} \quad A\boldsymbol{x} = \boldsymbol{b} \\ \boldsymbol{x} \in C_{p_1} \times \cdots \times C_{p_l} \end{array} (P)$$

where $c \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, and integers p_1, \ldots, p_l summing to *n* are given.

Interior-point methods typically assume input is in conic form.

Dual form

Dual conic form:

$$\begin{array}{ll} \max \quad \boldsymbol{b}^{\mathsf{T}} \boldsymbol{y} \\ \text{s.t.} \quad \boldsymbol{A}^{\mathsf{T}} \boldsymbol{y} + \boldsymbol{s} = \boldsymbol{c} \\ \boldsymbol{s} \in \mathcal{C}_{\rho_1} \times \cdots \times \mathcal{C}_{\rho_l} \end{array} (D)$$

- Can show: if x feasible for (P), y feasible for (D), then $c^T x \ge b^T y$. Follows from the fact that if $\hat{x}, \hat{s} \in C_p$ then $\hat{x}^T \hat{s} \ge 0$.
- Weak duality follows: If x feasible for (P) and y feasible for (D) and $c^T x = b^T y$, then both are optimal.

Converting SON clustering to conic form

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Converting SON clustering to conic form

Introduce auxiliary variables: s_1, \ldots, s_n ; z_1, \ldots, z_n ; $t_{ij} \forall 1 \le i < j \le n$; $y_{ij} \forall 1 \le i < j \le n$, yielding min $\sum_{i=1}^n s_i + \lambda \sum_{1 \le i < j \le n} t_{ij} - n/2$ s.t. $z_i = x_i - a_i$ $\forall i = 1, \ldots, n,$ $s_i \ge ||z_i||^2/2 + 1/2$ $\forall i = 1, \ldots, n,$ $y_{ij} = x_i - x_j$ $\forall 1 \le i < j \le n$ $t_{ij} \ge ||y_{ij}||$ $\forall 1 \le i < j \le n.$

Writing quadratic constraint in conic form

$$\begin{split} s &\geq \|z\|^2 / 2 + 1/2 & \iff \\ s^2 / 2 &\geq z_1^2 / 2 + \dots + z_d^2 / 2 + s^2 / 2 - s + 1/2 & \iff \\ s^2 / 2 &\geq z_1^2 / 2 + \dots + z_d^2 / 2 + u^2 / 2; \quad u = s - 1 & \iff \\ s &\geq \|(z; u)\|; \quad u = s - 1. \end{split}$$

So *n* additional auxiliary variables u_1, \ldots, u_n needed.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

SON dual

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The test

- 1. Compute $\mu\text{, the duality gap.}$
- 2. Choose $i \in \{1, ..., n\}$ arbitrarily. Create a cluster $\{j : ||x_i x_j|| \le \mu^{3/4}\}$ (including *i* itself).
- 3. Delete all these points, and then repeat Step 2 until all points are used up.
- 4. Compute CGR subgradients from dual variables. The subgradients certify that points clustered in Step 2 belong in the same cluster.
- 5. Check that no two clusters are distance $\leq c_n \mu^{1/2}$ of each other. This certifies that no cluster identified in Step 2 is actually a subcluster of a larger cluster.

Establishing Theorem 1 (correctness)

- Instead of standard subgradients, use CGR subgradients. These are local to each cluster and seem to be vital for our test.
- The test for distinctness of the clusters is a straightforward argument relying on strong convexity of the original objective.

Establishing Theorem 2 (eventual success)

- Proof of Theorem 2 requires a deep dive into duality.
- ► Ingredient of Theorem 2 proof is a result by Luo, Sturm and Zhang (1998) that, provided the optimizer satisfies strict complementarity, interior point iterates are O(µ) away from optimizer, where µ is the duality gap (scaled central path parameter).

Strong duality

- Strong duality means that the primal and dual both attain equal optimal values.
- Strong duality holds for SOCP provided primal and dual have an interior feasible point (Slater condition).
- If strong duality holds, then primal and dual optimizers satisfy complementary slackness.
- This is always the case for SON clustering formulation.

Complementary slackness

- For a primal-dual feasible solution (x, (y, s)), both are optimal if $x^T s = 0$.
- SON clustering case: Primal and dual are optimal if (t_{ij}; y_{ij})^T(λ; δ_{ij}) = 0 ∀1 ≤ i < j ≤ n and (s_i; z_i; u_i)^T(1 − γ_i; β_i; γ_i) = 0 ∀i = 1,..., n.
- Strict complementarity (Alizadeh & Goldfarb, 2003) for a pair of feasible primal-dual variables ((x₁,...,x_l), (s₁,...,s_l)) ∈ (C_{p1} ×···× C_{pl})²:

$$\forall i = 1, \dots, I \quad \begin{cases} \mathbf{x}_i^T \mathbf{s}_i = \mathbf{0}, \\ \mathbf{x}_i = \mathbf{0} \Rightarrow (\mathbf{s}_i)_1 > \|\mathbf{s}_i(2:p_i)\|, \\ \mathbf{s}_i = \mathbf{0} \Rightarrow (\mathbf{x}_i)_1 > \|\mathbf{x}_i(2:p_i)\|. \end{cases}$$

SON strict complementarity

- Theorem (Jiang&V.). The SON clustering formulation has a strictly complementary optimizer provided λ is not exactly at a value when clusters fuse.
- ► Thus, there are ≤ n discrete values of λ for which strict complementarity fails.
- Our test requires nearness to a strictly complementary solution.
- So this existence theorem underpins the "eventual success" theorem regarding our test.

Explanation of failure case

- Not surprising that test fails when λ is exactly at a fusion value λ*, since any arbitrarily small negative perturbation λ* - ε yields a different clustering.
- In other words, complete cluster identification for these values of \u03c6^{*} is *ill-posed*; unreasonable to expect an algorithm to satisfy a guarantee for such a problem.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Other algorithms

- The test can be used with any algorithm that produces both primal and dual variables, although for algorithms other than interior-point, we cannot guarantee that it will report success.
- Primal-only algorithms: subgradient descent (Hocking et al., 2011), stochastic pairwise updates (Panahi et al., 2017).
- Primal-dual algorithms: Interior point (Lindsten et al., 2011), ADMM (Chi & Lange, 2018), Semismooth Newton (Yuan et al., 2018)

Sum-of-norms clustering

Recovery of a mixture of Gaussians

Termination test for SON clustering

Strengthening the recovery properties

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Some limitations of SON clustering

- The convex hulls of the clusters found by SON clustering must be disjoint (Nguyen & Mamitsuka 2021)
- If the data points are densely sampled in two disjoint unit-radius disks, SON clustering will be able to separate them only if the disks have a certain positive gap between them (Dunlap & Mourrat 2022)
- And we saw that it fails for Gaussian mixture models when the means are too close w.r.t. the noise.

Strengthening the recovery guarantees (Jiang, Tan, & V.)

- ► Given data points a₁,..., a_n, come up with new data points b₁,..., b_n that are easier to cluster.
- Our approach: leapfrog distance, multidimensional scaling and Euclidean distance matrices.
- Our leapfrog distance technique is agnostic w.r.t. the clustering method, but in the case of SON clustering we can actually prove something.

Leapfrog distance

- ▶ Given *n* points *a*₁,..., *a_n*, let the complete graph *K_n* on these points be labeled with distances ||*a_i* − *a_j*||².
- Define LF(a_i, a_j) to be the length of the shortest path from a_i to a_j in the graph defined in the last bullet.
- Our new data points b₁,..., b_n are embeddings in R^{d'} (with possibly d' < d) so that the distances between the b_i's are approximately the corresponding LF distances.

Example in the d = 1 case

・ロト・日本・日本・日本・日本・日本

Characterizing LF distance (d = 1)

Assume the *n* data points are chosen at random according to a PDF *f* defined on \mathbb{R}^d .

► (d = 1 case.) Suppose the PDF is everywhere positive (e.g., mixture of Gaussians). Then, with probability exponentially close to 1, assuming a_i < a_j,

$$\mathrm{LF}(a_i, a_j) = \frac{2}{n} \int_{a_i}^{a_j} \frac{dx}{f(x)} + o(1/n).$$

Characterizing LF distance $(d \ge 1)$

Assume the *n* data points are chosen at random according to a PDF *f* defined on \mathbb{R}^d .

 (d ≥ 1 case.) Suppose f is bounded below by θ > 0 on a subset Ω ⊂ ℝ^d satisfying a shape condition (basically: connected, with no thin parts). Then for any a_i, a_j ∈ Ω, with probability exponentially close to 1, LF(a_i, a_j) ≤ O(n^{-1/d+η}) for any η > 0.

Deriving an embedding

- In order to apply SON clustering to LF distances, an embedding is needed.
- In the case d = 1, the embedding is trivially found from the distances.
- In the case d > 1, we use a technique from Euclidean distance matrix theory.

Algorithm to compute embedding

- Step 1. Form the squared leapfrog distance matrix D.
- Step 2. Form the "Gram matrix":
 G := (D(:,1)e^T + eD(1,:) − D)/2, where e is the vector of all 1's.
- Step 3. Factor G = Q∧Q^T (eigendecomposition). Assume eigenvalues listed in order greatest to least magnitude.
- Step 4. Define

 $B := [\boldsymbol{b}_1, \dots, \boldsymbol{b}_n] = |\Lambda(1:m, 1:m)|^{1/2} Q(:, 1:m)^T$

Motivation for these formulas

```
 \begin{split} G &:= (D(:,1)e^T + eD(1,:) - D)/2 \\ G &\to QAQ^T \\ B &:= [b_1, \dots, b_n] = |A(1:m,1:m)|^{1/2}Q(:,1:m)^T \end{split}
```

- Let X ∈ ℝ^{m×n} contain coordinates of n points in ℝ^m. Assume n ≥ m.
- ► The n × n Euclidean distance matrix D is defined by D(i, j) := ||X(:, i) X(:, j)||².
- The matrix B determined by these formulas is equal to X, up to translation and rotation.

How to choose m

- In the previous slide, m is the embedding dimension.
- For the method to work, m should be at least the number of clusters.
- In practice, this is not known in advance, so we use a heuristic of a decrease in the magnitude of the eigenvalues.

Main theorem about this technique (d = 1)

Assume the a_i 's are chosen according to a PDF.

Theorem 1. In the d = 1 case, for an equally weighted mixture of two Gaussians with the same variances, using the LF embedding increases the maximal value of σ for which the SON clustering theorem guarantees recovery.

Main theorem about this technique $(d \ge 1)$

Assume the a_i 's are chosen according to a PDF.

- Theorem 2. In the d ≥ 1 case, if the clusters are chosen from a distribution f supported on disjoint union Ω₁ ∪ · · · ∪ Ω_k such that
 - each Ω_i is well shaped (connected, no thin parts), and

• $f(x) \ge \theta > 0 \ \forall x \in \Omega_1 \cup \cdots \cup \Omega_k$,

then recovery is guaranteed with probability exponentially close to 1.

Mixture of Gaussians (a_i) 's

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Mixture of Gaussians - re-embedded (b_i) 's)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

SON clusters on b_i 's

▲ロト▲圖ト▲画ト▲画ト 画 のへで

Clustering results pulled back to a_i 's

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

Clustering of concentric circles

Concentric Circles

Discussion

- Rigorous (partial-information) termination test when \u03c6 is close to a fusion value?
- Complexity result regarding termination
- Tighter characterization of leapfrog distance for d > 1?
- Can sum-of-norms clustering be solved faster?
 Recent work by Yuan, Chang, Sun, Toh.