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Clustering

▶ Informally: Given n points a1, . . . , an ∈ Rd ,
partition {1, . . . , n} into k subsets C1, . . . ,Ck

such that for i ∈ Cm, i
′ ∈ Cm′, dist(ai , ai ′) is

small iff m = m′.

▶ Clustering is the classical example of
unsupervised machine learning. Unsupervised
means: given a single set of unlabeled data,
find hidden structure (as opposed to
training/test data).

▶ Some data points may be noisy meaning that
they should not be assigned to any cluster



Example of data (d = 2)



Mixture of Gaussians



Input to clustering algorithm is unlabeled



Successful clustering of this data



Unsuccessful clustering of this data



Lloyd’s algorithm

Best known method for clustering is Lloyd’s
(“k-means”). Assume k is part of the input.

▶ Initially partition {1, . . . , n} into k random
subsets C1, . . . ,Ck .

▶ Alternate the following two operations:

▶ For m = 1, . . . , k , compute
µm := 1

|Cm|
∑

i∈Cm
ai .

▶ For m = 1, . . . , k , define
CNEW
m := {i : ∥ai − µm∥ = minm′ ∥ai − µm′∥}.



Issues with Lloyd’s algorithm

▶ Corresponds to nonconvex optimization, so
many local minimizers.

▶ =⇒ sensitive to initialization

▶ =⇒ Hard to prove properties of clustering
output.

▶ Requires preprocessing or other modification to
cope with noisy points



Sum-of-norms clustering
▶ Solve the convex optimization problem:

min
x1,...,xn

1

2

n∑
i=1

∥xi − ai∥2 + λ
∑

1≤i<j≤n

∥xi − xj∥

▶ Intuition: first term favors x∗
i close to ai while

second term tends to make x∗
i for many i ’s

equal to each other.
▶ Recover clusters according to: i , j clustered

together iff x∗
i = x∗

j .
▶ Discovered independently by Pelckmans et al.

(2005), Lindsten et al. (2011), Hocking et al.
(2011).



Strong convexity

min
x1,...,xn

1

2

n∑
i=1

∥xi − ai∥
2 + λ

∑
1≤i<j≤n

∥∥xi − xj

∥∥

▶ The objective function is strongly convex due
to the first summation.

▶ This means that the optimizer exists and is
unique (no dependence on starting point).

▶ The sum-of-norms formulation is second-order
cone programming (SOCP), a special case of
semidefinite programming (SDP).

▶ Convex programming duality can be used to
prove strong results about output (more later).



Squared versus unsquared norm

min
x1,...,xn

1

2

n∑
i=1

∥xi − ai∥
2 + λ

∑
1≤i<j≤n

∥∥xi − xj

∥∥

▶ Note that the first summation has squared
norms, but the second summation does not.

▶ This distinction is crucial: if the norms in the
second term were also squared, then it would
almost never happen that x∗

i = x∗
j when i ̸= j .



Squared versus unsquared norm: simple
example

minx(x + 1)2/2 + λ|x − 2|



Squared versus unsquared norm: simple
example

minx(x + 1)2/2 + λ|x − 2|
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Squared versus unsquared norm: simple
example
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Squared versus unsquared norm: simple
example

minx(x + 1)2/2 + λ|x − 2|

-2 -1 0 1 2 3
4

4.5

5

5.5

6

6.5

7
 = 2.000000



Squared versus unsquared norm: simple
example

minx(x + 1)2/2 + λ|x − 2|
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Squared versus unsquared norm: simple
example

minx(x + 1)2/2 + λ|x − 2|
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Squared versus unsquared norm: simple
example

minx(x + 1)2/2 + λ|x − 2|
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Role of λ

min
x1,...,xn

1

2

n∑
i=1

∥xi − ai∥
2 + λ

∑
1≤i<j≤n

∥∥xi − xj

∥∥

▶ Previous example suggests that as λ increases,
number of clusters goes down.

▶ When λ = 0, all noncoincident ai ’s are in
singleton clusters.

▶ There exists λ̄ (depending on data) such that
for all λ ≥ λ̄, all ai ’s are in one large cluster.

▶ Thus, λ controls the number of clusters
indirectly.



Agglomeration theorem

▶ Hocking et al. conjectured that sum-of-norms
clustering is agglomerative in the sense that as
λ increases, clusters may fuse but never break
apart.

▶ This was proved by Chiquet, Gutierrez and
Rigaill (CGR) (2017).

▶ It implies that SON clustering induces a tree of
clusters (hierarchical clustering)
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Recovery theorems in machine learning

▶ Theorem hypothesis: The input data has
hidden structure obscured by random noise.
The noise has some a priori upper bound.

▶ Theorem conclusion: A particular algorithm
can uncover the hidden structure.



Mixture of Spherical Gaussians

▶ k clusters generated

▶ Cluster i ∈ {1, . . . , k} specified by: mean
µi ∈ Rd , standard deviation σi ≥ 0, probability
wi ≥ 0 such that w1 + · · ·+ wk = 1.

▶ Generative process: Repeat the following for
j = 1 : n.
▶ Select i ∈ {1, . . . , k} according to probabilities

w1, . . . ,wk .
▶ Select aj ∼ N (µi , σ

2
i )



Previous work on recovery of mixture of
Gaussians

▶ Panahi et al. (2017) proved that for an
appropriate range of λ and for certain ranges of
parameters, SON clustering can correctly
identify all points if the input is a mixture of
spherical Gaussians and the number of points n
is not too large.

▶ Bound on n required by their result because
they assume a slab of space separating means
devoid of sample points.

▶ Other related work: Radchenko & Mukherjee
(2017), Mixon et al. (2017) on Peng-Wei SDP
clustering.



Our result (Jiang, V., Zhai)

▶ Assume an upper bound on σ1, . . . , σk in terms
of min1≤i<i ′≤k ∥µi − µi ′∥ and a lower bound on
min{w1, . . . ,wk}.

▶ Then SON clustering with the correct choice of
λ recovers all points within distance θσi of µi .

▶ “Recovers” means that for a particular i , the
points in the previous bullet are in the same
cluster, and these clusters (as i varies) are
disjoint.

▶ This holds with probability exponentially close
to 1 as n → ∞.



Our proof technique

▶ Relies on first-order necessary condition for
optimality developed by CGR.

▶ CGR prove that a clustering is attained if and
only if certain subgradients can be constructed
that satisfy a system of linear equations and
inequalities.

▶ We take the minimum-norm solution to the
CGR linear equations.

▶ Then we argue that with probability
exponentially close to 1, this solution also
satisfies the inequalities.



It works for the case σ = 0.25



It works for the case σ = 0.25



It works for the case σ = 0.25



. . . but not for the case σ = 0.35



. . . but not for the case σ = 0.35
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Termination of SON clustering

▶ Recall: two points j , j ′ are in the same cluster
iff the SON optimizer (x∗

1 , . . . , x
∗
n ) satisfies

x∗
j = x∗

j ′

▶ But all known algorithms for SOCP are
iterative, so the condition in the previous bullet
holds only in the infinite limit.

▶ Use a tolerance ϵ? But how to pick? And what
if ∥x∗

j − x∗
j ′∥ < ϵ, ∥x∗

j ′ − x∗
j ′′∥ < ϵ, but

∥x∗
j − x∗

j ′′∥ > ϵ?



Our termination test (Jiang & V.)

▶ Requires feasible, approximately optimal,
primal and dual solutions

▶ When the test works, it is guaranteed that the
the correct clustering has been computed.



Properties of our test

▶ The test attempts to determine all clusters.
The test may report ‘success’ or ‘failure’.

▶ Theorem 1. If the test reports ‘success’, then
the clusters are correctly identified.

▶ Theorem 2. If a primal-dual path-following
close-proximity interior-point algorithm is used,
then the test is guaranteed to report ‘success’
after a finite number of iterations except . . .



When does the test fail?

▶ . . . the test may never report ‘success’ for the
particular values of λ at which clusters fuse to
form a larger cluster.

▶ Because of the agglomeration property, there
are at most n such discrete values of λ for
which the test may never succeed.



SOCP conic form

▶ The second order cone is
Cp = {x ∈ Rp : x1 ≥ ∥x(2 : p)∥}.

▶ SOCP problem in “conic” form:

min cTx

s.t. Ax = b (P)
x ∈ Cp1 × · · · × Cpl

where c ∈ Rn, A ∈ Rm×n, b ∈ Rm, and
integers p1, . . . , pl summing to n are given.

▶ Interior-point methods typically assume input is
in conic form.



Dual form

▶ Dual conic form:

max bTy

s.t. ATy + s = c (D)
s ∈ Cp1 × · · · × Cpl

▶ Can show: if x feasible for (P), y feasible for
(D), then cTx ≥ bTy . Follows from the fact
that if x̂ , ŝ ∈ Cp then x̂T ŝ ≥ 0.

▶ Weak duality follows: If x feasible for (P) and
y feasible for (D) and cTx = bTy , then both
are optimal.



Converting SON clustering to conic form

Introduce auxiliary variables: s1, . . . , sn; z1, . . . , zn;
tij ∀1 ≤ i < j ≤ n; yij ∀1 ≤ i < j ≤ n, yielding

min
∑n

i=1 si + λ
∑

1≤i<j≤n tij
s.t. zi = xi − ai ∀i = 1, . . . , n,

si ≥ ∥zi∥2 /2 ∀i = 1, . . . , n,
yij = xi − xj ∀1 ≤ i < j ≤ n
tij ≥ ∥yij∥ ∀1 ≤ i < j ≤ n.



Converting SON clustering to conic form

Introduce auxiliary variables: s1, . . . , sn; z1, . . . , zn;
tij ∀1 ≤ i < j ≤ n; yij ∀1 ≤ i < j ≤ n, yielding

min
∑n

i=1 si + λ
∑

1≤i<j≤n tij − n/2
s.t. zi = xi − ai ∀i = 1, . . . , n,

si ≥ ∥zi∥2 /2 + 1/2 ∀i = 1, . . . , n,
yij = xi − xj ∀1 ≤ i < j ≤ n
tij ≥ ∥yij∥ ∀1 ≤ i < j ≤ n.



Writing quadratic constraint in conic form

s ≥ ∥z∥2 /2 + 1/2 ⇐⇒
s2/2 ≥ z21/2 + · · ·+ z2d/2 + s2/2− s + 1/2 ⇐⇒
s2/2 ≥ z21/2 + · · ·+ z2d/2 + u2/2; u = s − 1 ⇐⇒
s ≥ ∥(z ; u)∥ ; u = s − 1.

So n additional auxiliary variables u1, . . . , un needed.



SON dual

max
n∑

i=1

aTi βi +
n∑

i=1

γi

s.t.
n∑

j=i+1

δij −
i−1∑
j=1

δji + βi = 0 ∀i = 1, . . . , n,

λ ≥ ∥δij∥ ∀1 ≤ i < j ≤ n,
1− γi ≥ ∥(βi ; γi)∥ ∀i = 1, . . . , n



The test
1. Compute µ, the duality gap.

2. Choose i ∈ {1, . . . , n} arbitrarily. Create a
cluster {j : ∥xi − xj∥ ≤ µ3/4} (including i
itself).

3. Delete all these points, and then repeat Step 2
until all points are used up.

4. Compute CGR subgradients from dual
variables. The subgradients certify that points
clustered in Step 2 belong in the same cluster.

5. Check that no two clusters are distance
≤ cnµ

1/2 of each other. This certifies that no
cluster identified in Step 2 is actually a
subcluster of a larger cluster.



Establishing Theorem 1 (correctness)

▶ Instead of standard subgradients, use CGR
subgradients. These are local to each cluster
and seem to be vital for our test.

▶ The test for distinctness of the clusters is a
straightforward argument relying on strong
convexity of the original objective.



Establishing Theorem 2 (eventual success)

▶ Proof of Theorem 2 requires a deep dive into
duality.

▶ Ingredient of Theorem 2 proof is a result by
Luo, Sturm and Zhang (1998) that, provided
the optimizer satisfies strict complementarity,
interior point iterates are O(µ) away from
optimizer, where µ is the duality gap (scaled
central path parameter).



Strong duality

▶ Strong duality means that the primal and dual
both attain equal optimal values.

▶ Strong duality holds for SOCP provided primal
and dual have an interior feasible point (Slater
condition).

▶ If strong duality holds, then primal and dual
optimizers satisfy complementary slackness.

▶ This is always the case for SON clustering
formulation.



Complementary slackness
▶ For a primal-dual feasible solution (x , (y , s)),

both are optimal if xTs = 0.
▶ SON clustering case: Primal and dual are

optimal if (tij ; yij)
T (λ; δij) = 0 ∀1 ≤ i < j ≤ n

and (si ; zi ; ui)
T (1− γi ;βi ; γi) = 0

∀i = 1, . . . , n.
▶ Strict complementarity (Alizadeh & Goldfarb,

2003) for a pair of feasible primal-dual variables
((x1, . . . , xl), (s1, . . . , sl)) ∈ (Cp1 × · · · × Cpl )

2:

∀i = 1, . . . , l

 xT
i si = 0,

xi = 0 ⇒ (si)1 > ∥si(2 : pi)∥ ,
si = 0 ⇒ (xi)1 > ∥xi(2 : pi)∥ .



SON strict complementarity

▶ Theorem (Jiang&V.). The SON clustering
formulation has a strictly complementary
optimizer provided λ is not exactly at a value
when clusters fuse.

▶ Thus, there are ≤ n discrete values of λ for
which strict complementarity fails.

▶ Our test requires nearness to a strictly
complementary solution.

▶ So this existence theorem underpins the
“eventual success” theorem regarding our test.



Explanation of failure case

▶ Not surprising that test fails when λ is exactly
at a fusion value λ∗, since any arbitrarily small
negative perturbation λ∗ − ϵ yields a different
clustering.

▶ In other words, complete cluster identification
for these values of λ∗ is ill-posed; unreasonable
to expect an algorithm to satisfy a guarantee
for such a problem.



Other algorithms

▶ The test can be used with any algorithm that
produces both primal and dual variables,
although for algorithms other than
interior-point, we cannot guarantee that it will
report success.

▶ Primal-only algorithms: subgradient descent
(Hocking et al., 2011), stochastic pairwise
updates (Panahi et al., 2017).

▶ Primal-dual algorithms: Interior point (Lindsten
et al., 2011), ADMM (Chi & Lange, 2018),
Semismooth Newton (Yuan et al., 2018)
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Some limitations of SON clustering

▶ The convex hulls of the clusters found by SON
clustering must be disjoint (Nguyen &
Mamitsuka 2021)

▶ If the data points are densely sampled in two
disjoint unit-radius disks, SON clustering will
be able to separate them only if the disks have
a certain positive gap between them (Dunlap &
Mourrat 2022)

▶ And we saw that it fails for Gaussian mixture
models when the means are too close w.r.t. the
noise.



Strengthening the recovery guarantees
(Jiang, Tan, & V.)

▶ Given data points a1, . . . , an, come up with
new data points b1, . . . ,bn that are easier to
cluster.

▶ Our approach: leapfrog distance,
multidimensional scaling and Euclidean
distance matrices.

▶ Our leapfrog distance technique is agnostic
w.r.t. the clustering method, but in the case of
SON clustering we can actually prove
something.



Leapfrog distance

▶ Given n points a1, . . . , an, let the complete
graph Kn on these points be labeled with
distances ∥ai − aj∥2.

▶ Define LF(ai , aj) to be the length of the
shortest path from ai to aj in the graph defined
in the last bullet.

▶ Our new data points b1, . . . ,bn are
embeddings in Rd ′

(with possibly d ′ < d) so
that the distances between the bi ’s are
approximately the corresponding LF distances.



Example in the d = 1 case

Original embedding

Leapfrog embedding



Characterizing LF distance (d = 1)

Assume the n data points are chosen at random
according to a PDF f defined on Rd .

▶ (d = 1 case.) Suppose the PDF is everywhere
positive (e.g., mixture of Gaussians). Then,
with probability exponentially close to 1,
assuming ai < aj ,

LF(ai , aj) =
2

n

∫ aj

ai

dx

f (x)
+ o(1/n).



Characterizing LF distance (d ≥ 1)

Assume the n data points are chosen at random
according to a PDF f defined on Rd .

▶ (d ≥ 1 case.) Suppose f is bounded below by
θ > 0 on a subset Ω ⊂ Rd satisfying a shape
condition (basically: connected, with no thin
parts). Then for any ai , aj ∈ Ω, with
probability exponentially close to 1,
LF(ai , aj) ≤ O(n−1/d+η) for any η > 0.



Deriving an embedding

▶ In order to apply SON clustering to LF
distances, an embedding is needed.

▶ In the case d = 1, the embedding is trivially
found from the distances.

▶ In the case d > 1, we use a technique from
Euclidean distance matrix theory.



Algorithm to compute embedding
▶ Step 1. Form the squared leapfrog distance

matrix D.

▶ Step 2. Form the “Gram matrix”:
G := (D(:, 1)eT + eD(1, :)− D)/2, where e is
the vector of all 1’s.

▶ Step 3. Factor G = QΛQT

(eigendecomposition). Assume eigenvalues
listed in order greatest to least magnitude.

▶ Step 4. Define

B := [b1, . . . ,bn] = |Λ(1 : m, 1 : m)|1/2Q(:, 1 : m)T



Motivation for these formulas

G := (D(:, 1)eT + eD(1, :) − D)/2

G → QΛQT

B := [b1, . . . , bn ] = |Λ(1 : m, 1 : m)|1/2Q(:, 1 : m)T

▶ Let X ∈ Rm×n contain coordinates of n points
in Rm. Assume n ≥ m.

▶ The n × n Euclidean distance matrix D is
defined by D(i , j) := ∥X (:, i)− X (:, j)∥2.

▶ The matrix B determined by these formulas is
equal to X , up to translation and rotation.



How to choose m

▶ In the previous slide, m is the embedding
dimension.

▶ For the method to work, m should be at least
the number of clusters.

▶ In practice, this is not known in advance, so we
use a heuristic of a decrease in the magnitude
of the eigenvalues.



Main theorem about this technique
(d = 1)

Assume the ai ’s are chosen according to a PDF.

▶ Theorem 1. In the d = 1 case, for an equally
weighted mixture of two Gaussians with the
same variances, using the LF embedding
increases the maximal value of σ for which the
SON clustering theorem guarantees recovery.



Main theorem about this technique
(d ≥ 1)

Assume the ai ’s are chosen according to a PDF.
▶ Theorem 2. In the d ≥ 1 case, if the clusters

are chosen from a distribution f supported on
disjoint union Ω1 ∪ · · · ∪ Ωk such that
▶ each Ωi is well shaped (connected, no thin parts),

and
▶ f (x) ≥ θ > 0 ∀x ∈ Ω1 ∪ · · · ∪ Ωk ,

then recovery is guaranteed with probability
exponentially close to 1.



Mixture of Gaussians (ai ’s)



Mixture of Gaussians - re-embedded (bi ’s)



SON clusters on bi ’s



Clustering results pulled back to ai ’s



Clustering of concentric circles



Discussion

▶ Rigorous (partial-information) termination test
when λ is close to a fusion value?

▶ Complexity result regarding termination

▶ Tighter characterization of leapfrog distance
for d > 1?

▶ Can sum-of-norms clustering be solved faster?
Recent work by Yuan, Chang, Sun, Toh.
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