Recent progress in sum-of-norms
clustering

Stephen Vavasis

University of Waterloo
Combinatorics & Optimization

Joint work with Tao Jiang (Cornell), Samuel Tan
(Cornell), and Sabrina Zhai (MIT)



Contents

Sum-of-norms clustering



Clustering

» Informally: Given n points a, ..., a, € R,
partition {1,..., n} into k subsets G, ..., C;
such that for i € Cp,, 1" € C,y, dist(a;, ay) is
small iff m = m’.

» Clustering is the classical example of
unsupervised machine learning. Unsupervised
means: given a single set of unlabeled data,
find hidden structure (as opposed to
training/test data).

» Some data points may be noisy meaning that
they should not be assigned to any cluster



Example of data (d = 2)
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Mixture of Gaussians
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Input to clustering algorithm is unlabeled
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Unsuccessful clustering of this data
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Lloyd's algorithm

Best known method for clustering is Lloyd's
(“k-means”). Assume k is part of the input.

>

>
>

Initially partition {1,...,n} into k random
subsets Ci, ..., Cy.

Alternate the following two operations:

For m=1,..., k, compute

Hm = CLm| Ziecm a;.

For m=1,..., k, define

Co V=it | — pm|| = mingy [|a; — par |}



Issues with Lloyd's algorithm

» Corresponds to nonconvex optimization, so
many local minimizers.

» — sensitive to initialization

» — Hard to prove properties of clustering
output.

» Requires preprocessing or other modification to
cope with noisy points



Sum-of-norms clustering

» Solve the convex optimization problem:

mmx—ZHx, al?+ X Y x|

i=1 1<i<j<n

» Intuition: first term favors x close to a; while
second term tends to make x for many i's
equal to each other.

» Recover clusters according to: i/, clustered
together iff x = x".
» Discovered independently by Pelckmans et al.
(2005), Lindsten et al. (2011), Hocking et al.

(2011).



Strong convexity

1 on
N minx —ZHx,vfa,'H2+A Z [Ixi = x;]|
Leeo¥n 2 927 1<i<j<n

» The objective function is strongly convex due
to the first summation.

» This means that the optimizer exists and is
unique (no dependence on starting point).

» The sum-of-norms formulation is second-order
cone programming (SOCP), a special case of
semidefinite programming (SDP).

» Convex programming duality can be used to
prove strong results about output (more later).



Squared versus unsquared norm

L
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=1 1<i<j<n

» Note that the first summation has squared
norms, but the second summation does not.

» This distinction is crucial: if the norms in the
second term were also squared, then it would
almost never happen that x;" = x;" when i £ J.



Squared versus unsquared norm: simple
example

min,(x + 1)?/2 + A|x — 2|



Squared versus unsquared norm: simple
example

min,(x + 1)?/2 + A|x — 2|
A = 0.000000




Squared versus unsquared norm: simple
example
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Squared versus unsquared norm: simple
example

min,(x + 1)?/2 + A|x — 2|
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Squared versus unsquared norm: simple
example
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Squared versus unsquared norm: simple
example
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Squared versus unsquared norm: simple
example

min,(x + 1)?/2 + A|x — 2|
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Role of A
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1<i<j<n

» Previous example suggests that as A increases,
number of clusters goes down.

» When A = 0, all noncoincident a;'s are in
singleton clusters.

> There exists )\ (depending on data) such that
for all A > )\, all a;'s are in one large cluster.

» Thus, A\ controls the number of clusters
indirectly.



Agglomeration theorem

» Hocking et al. conjectured that sum-of-norms
clustering is agglomerative in the sense that as
A increases, clusters may fuse but never break
apart.

» This was proved by Chiquet, Gutierrez and
Rigaill (CGR) (2017).

» It implies that SON clustering induces a tree of
clusters (hierarchical clustering)
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Recovery of a mixture of Gaussians



Recovery theorems in machine learning

» Theorem hypothesis: The input data has
hidden structure obscured by random noise.
The noise has some a priori upper bound.

» Theorem conclusion: A particular algorithm
can uncover the hidden structure.



Mixture of Spherical Gaussians

» k clusters generated
» Cluster i € {1,..., k} specified by: mean
Qi € R, standard deviation o; > 0, probability
w; > 0 such that wy + -+ + wy = 1.
» Generative process: Repeat the following for
Jj=1:n.
» Select i € {1,..., k} according to probabilities

Wy, ..., Wg.
> Select a; ~ N (i, 0?)



Previous work on recovery of mixture of

Gaussians

» Panahi et al. (2017) proved that for an
appropriate range of A and for certain ranges of
parameters, SON clustering can correctly
identify all points if the input is a mixture of
spherical Gaussians and the number of points n
is not too large.

» Bound on n required by their result because
they assume a slab of space separating means
devoid of sample points.

» Other related work: Radchenko & Mukherjee

(2017), Mixon et al. (2017) on Peng-Wei SDP
clustering.



Our result (Jiang, V., Zhai)

» Assume an upper bound on o, ..., 0, in terms
of miny<j-y<i ||pi — piv|| and a lower bound on
min{ws, ..., wg}.

» Then SON clustering with the correct choice of
A recovers all points within distance 6o; of ;.

» “Recovers’ means that for a particular /, the
points in the previous bullet are in the same
cluster, and these clusters (as / varies) are
disjoint.

» This holds with probability exponentially close
to1las n— oc.



Our proof technique

>

>

Relies on first-order necessary condition for
optimality developed by CGR.

CGR prove that a clustering is attained if and
only if certain subgradients can be constructed
that satisfy a system of linear equations and
inequalities.

We take the minimum-norm solution to the
CGR linear equations.

Then we argue that with probability
exponentially close to 1, this solution also
satisfies the inequalities.



It works for the case o = 0.25
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It works for the case o = 0.25
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works for the case o = 0.25
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. but not for the case 0 = 0.35
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Termination test for SON clustering



Termination of SON clustering

» Recall: two points j, /" are in the same cluster
iff the SON optimizer (x7,. .., x) satisfies
* Uk
X =X
» But all known algorithms for SOCP are
iterative, so the condition in the previous bullet

holds only in the infinite limit.

» Use a tolerance ¢? But how to pick? And what
if |x7 — x| <e |[xi — x| <e but
[x" — xa[| > €?




Our termination test (Jiang & V.)

» Requires feasible, approximately optimal,
primal and dual solutions

» When the test works, it is guaranteed that the
the correct clustering has been computed.



Properties of our test

» The test attempts to determine all clusters.
The test may report ‘success’ or ‘failure’.

» Theorem 1. If the test reports ‘success’, then
the clusters are correctly identified.

» Theorem 2. If a primal-dual path-following
close-proximity interior-point algorithm is used,
then the test is guaranteed to report ‘success’
after a finite number of iterations except . ..



When does the test fail?

» ... the test may never report ‘success’ for the
particular values of A\ at which clusters fuse to
form a larger cluster.

» Because of the agglomeration property, there
are at most n such discrete values of \ for
which the test may never succeed.



SOCP conic form

» The second order cone is
G =[x €R? x> [x(2: )|}
» SOCP problem in “conic” form:

min ¢’x
st. Ax=0b (P)
x € Cp x--xC,

where c ¢ R", Ac R™" b c R™, and
integers pq, ..., p; summing to n are given.

» Interior-point methods typically assume input is
in conic form.



Dual form

» Dual conic form:

max b’y
st. ATy+s=c (D)
sc Gy X x(,

» Can show: if x feasible for (P), y feasible for
(D), then c¢"x > bTy. Follows from the fact
that if X,§ € C, then xTs > 0.

» Weak duality follows: If x feasible for (P) and
y feasible for (D) and ¢’ x = by, then both
are optimal.



Converting SON clustering to conic form

Introduce auxiliary variables: s, ....s,; z1,...,Zp;
t; VI <i<j<n; y; V1 <i<j<n,yielding

. n
min Zi:l Si+ A Zl§i<j§n tjj

s.t. z;=X; — a; Vi=1,...,n,
s> |zil)? /2 Vi=1,...,n,
Yi = Xi — X; Vi<i<j<n

ti > ||yl Vi<i<j<n.



Converting SON clustering to conic form

Introduce auxiliary variables: s, ....s,; z1,...,Zp;
t; VI <i<j<n; y; V1 <i<j<n,yielding

min 3 si A e i — /2

s.t. z;=X; — a; Vi=1,...,n,
s> zill? /2 +1/2 Vi=1,...,n,
Yi = Xi — X; Vi<i<j<n

ti > ||yl Vi<i<j<n.



Writing quadratic constraint in conic form

s> |z||° /2+1/2 =
S?)2>Z2+ - +Z32+5°2—s+1/2 <
22> 22+ +Z32+0?)2, u=s5s—-1
s>|(z;u)]]; wu=s—1.

So n additional auxiliary variables w1, . .., u, needed.



SON dual

max En:aiT/Bi"i_zn:’yi
Za,, Zéj,+,8,—0 Vi=1,.

J=i+1
AZH&JH Vi<i<j<n,

L= = [|(Biv)ll Vi=1,...,n



The test
1. Compute p, the duality gap.

2. Choose i € {1,...,n} arbitrarily. Create a
cluster {j : [|x; — x;|| < p¥/*} (including i
itself).

3. Delete all these points, and then repeat Step 2
until all points are used up.

4. Compute CGR subgradients from dual
variables. The subgradients certify that points
clustered in Step 2 belong in the same cluster.

5. Check that no two clusters are distance
< ¢c,put/? of each other. This certifies that no
cluster identified in Step 2 is actually a
subcluster of a larger cluster.



Establishing Theorem 1 (correctness)

» Instead of standard subgradients, use CGR
subgradients. These are local to each cluster
and seem to be vital for our test.

» The test for distinctness of the clusters is a

straightforward argument relying on strong
convexity of the original objective.



Establishing Theorem 2 (eventual success)

» Proof of Theorem 2 requires a deep dive into
duality.

» Ingredient of Theorem 2 proof is a result by
Luo, Sturm and Zhang (1998) that, provided
the optimizer satisfies strict complementarity,
interior point iterates are O(x) away from
optimizer, where 1 is the duality gap (scaled
central path parameter).



Strong duality

» Strong duality means that the primal and dual
both attain equal optimal values.

» Strong duality holds for SOCP provided primal
and dual have an interior feasible point (Slater
condition).

» If strong duality holds, then primal and dual
optimizers satisfy complementary slackness.

» This is always the case for SON clustering
formulation.



Complementary slackness

» For a primal-dual feasible solution (x,(y,s)),
both are optimal if x"s = 0.

» SON clustering case: Primal and dual are
optimal if (t;;y;) (A d;) =0V1<i<,j<n
and (sj; zi; u;) " (1 =i Bii7) =0
Vi=1,...,n.

» Strict complementarity (Alizadeh & Goldfarb,
2003) for a pair of feasible primal-dual variables

(X1, -, %), (51,-..,8)) € (Cp, X -+ x Cp))?:

XI-TS,' = 0,
Vi=1....1 ¢ x;=0=(s))1>[[si(2: pi)l|,
S = 0= (X,')l > HX,(2 : p,)” .



SON strict complementarity

>

Theorem (Jiang&V.). The SON clustering
formulation has a strictly complementary
optimizer provided ) is not exactly at a value
when clusters fuse.

Thus, there are < n discrete values of A for
which strict complementarity fails.

Our test requires nearness to a strictly
complementary solution.

So this existence theorem underpins the
“eventual success’ theorem regarding our test.



Explanation of failure case

» Not surprising that test fails when X is exactly
at a fusion value \*, since any arbitrarily small
negative perturbation \* — ¢ yields a different
clustering.

» In other words, complete cluster identification
for these values of \* is ill-posed, unreasonable
to expect an algorithm to satisfy a guarantee
for such a problem.



Other algorithms

» The test can be used with any algorithm that
produces both primal and dual variables,
although for algorithms other than
interior-point, we cannot guarantee that it will
report success.

» Primal-only algorithms: subgradient descent
(Hocking et al., 2011), stochastic pairwise
updates (Panahi et al., 2017).

» Primal-dual algorithms: Interior point (Lindsten
et al., 2011), ADMM (Chi & Lange, 2018),
Semismooth Newton (Yuan et al., 2018)
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Strengthening the recovery properties



Some limitations of SON clustering

» The convex hulls of the clusters found by SON
clustering must be disjoint (Nguyen &
Mamitsuka 2021)

» If the data points are densely sampled in two
disjoint unit-radius disks, SON clustering will
be able to separate them only if the disks have
a certain positive gap between them (Dunlap &
Mourrat 2022)

» And we saw that it fails for Gaussian mixture
models when the means are too close w.r.t. the
noise.



Strengthening the recovery guarantees
(Jiang, Tan, & V.)

» Given data points a, ..., a,, come up with
new data points by, ..., b, that are easier to
cluster.

» Our approach: leapfrog distance,
multidimensional scaling and Euclidean
distance matrices.

» Our leapfrog distance technique is agnostic
w.r.t. the clustering method, but in the case of
SON clustering we can actually prove
something.



Leapfrog distance

» Given n points ay, ..., a,, let the complete
graph K, on these points be labeled with
distances |la; — a;|°.

» Define LF(a;, aj) to be the length of the
shortest path from a; to a; in the graph defined
in the last bullet.

» Our new data points by, ..., b, are
embeddings in R? (with possibly d’ < d) so
that the distances between the b;’s are
approximately the corresponding LF distances.



Example in the d = 1 case
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Characterizing LF distance (d = 1)

Assume the n data points are chosen at random
according to a PDF f defined on R¢.

» (d =1 case.) Suppose the PDF is everywhere
positive (e.g., mixture of Gaussians). Then,
with probability exponentially close to 1,
assuming a; < aj,

LF(a;, 3)) = %/ fc(’i) +o(1/n).



Characterizing LF distance (d > 1)

Assume the n data points are chosen at random
according to a PDF f defined on RY.

» (d > 1 case.) Suppose f is bounded below by
> 0 on a subset Q C RY satisfying a shape
condition (basically: connected, with no thin
parts). Then for any a;, a; € Q, with
probability exponentially close to 1,

LF(a;,a;) < O(n~Y4+") for any n > 0.



Deriving an embedding

» In order to apply SON clustering to LF
distances, an embedding is needed.

» In the case d = 1, the embedding is trivially
found from the distances.

» In the case d > 1, we use a technique from
Euclidean distance matrix theory.



Algorithm to compute embedding

» Step 1. Form the squared leapfrog distance
matrix D.

» Step 2. Form the “Gram matrix":
G:=(D(:,1)e” + eD(1,:) — D)/2, where e is
the vector of all 1's.

» Step 3. Factor G = QAQT™
(eigendecomposition). Assume eigenvalues
listed in order greatest to least magnitude.

» Step 4. Define

B:=[by,....,b)| =|AN1:m,1:m)"?Q(,1:m)T



Motivation for these formulas

G = (D(:;1)e” +eD(1,:) — D)/2
G — QAQT
B:=[by,..., byl = |A(1:m,1:m)/2Q(,1:m)T

» Let X € R™" contain coordinates of n points
in R™. Assume n > m.

» The n x n Euclidean distance matrix D is
defined by D(i,j) := [|X(:, 1) — X (:, /)]

» The matrix B determined by these formulas is
equal to X, up to translation and rotation.



How to choose m

» In the previous slide, m is the embedding
dimension.

» For the method to work, m should be at least
the number of clusters.

» In practice, this is not known in advance, so we
use a heuristic of a decrease in the magnitude
of the eigenvalues.



Main theorem about this technique

(d = 1)

Assume the a;'s are chosen according to a PDF.

» Theorem 1. In the d = 1 case, for an equally
weighted mixture of two Gaussians with the
same variances, using the LF embedding
increases the maximal value of o for which the
SON clustering theorem guarantees recovery.



Main theorem about this technique

(d >1)

Assume the a;’s are chosen according to a PDF.

» Theorem 2. In the d > 1 case, if the clusters
are chosen from a distribution f supported on
disjoint union €4 U - -- U €, such that

» each (; is well shaped (connected, no thin parts),
and
> f(X)ZQ>OVX€Q1U"'UQk,
then recovery is guaranteed with probability
exponentially close to 1.



Mixture of Gaussians (a;'s)
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Mixture of Gaussians - re-embedded (b;'s)
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SON clusters on b;'s
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Clustering results pulled back to a;’s
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Clustering of concentric circles

Concentric Circles

Original coordinates MDS embedding



Discussion

» Rigorous (partial-information) termination test
when )\ is close to a fusion value?

» Complexity result regarding termination

» Tighter characterization of leapfrog distance
for d > 17

» Can sum-of-norms clustering be solved faster?
Recent work by Yuan, Chang, Sun, Toh.
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