MOM26 and WLSO&A, Waterloo, November 8-9, 2024

Quantum Interior Point Methods (QIPMs) with Iterative Refinement for Linear and Semidefinite Optimization

Tamás Terlaky

Alcoa Foundation Endowed Chair Professor Quantum Computing Optimization Lab (QCOL) Dept. of Industrial and Systems Engineering, Lehigh University

TSB

Quantum Computing Optimization Lak

Industrial and

Systems Engineering

QC & *QC*

*Q***uantum** *C***omputers are here** & **we need more optimizers** & **OR in** *Q***uantum** *C***omputing UN: IYQST -- INFORMS: QCOR The United Nation declared 2025 as the International Year of Quantum Science and Technology**

Quantum Computing (QC) is Here!

Is QC really computing?

Hybrid classic-QC

Why QC optimization?

Why to get involved?

Tamás Terlaky, Endowed Chair Professor, QCOL, Dept. ISE, Lehigh University **Quantum Interior Point Methods (QIPMs) with Iterative Refinement for LO and SDO**

NISQ devices v/s quantum annealers

NISQ

Pro's and Con's

Opportunities & challenges

Tamás Terminal & Systems Engineering, Lehigh U. 3 Augustum advantage Quantum supremacy

QC Capacity Grows Exponentially-IBM

Scaling IBM Quantum technology

Superconducting qubits

Tamás Terlaky, Endowed Chair Professor,QCOL, Dept. ISE, Lehigh University **Quantum Interior Point Methods (QIPMs) with Iterative Refinement for LO and SDO**

Quantum Computing Challenges

QC challenges We are having **NISQ N**oisy **I**ntermediate-**S**cale **Q**uantum) devices

The promise: Fault Tolerant Logical Qubits Are coming!

(Not only on QC simulators)

5

Conic Linear Optimization

Primal-dual pair of CLO problems is given as

$$
(P) \min c^T x
$$
\n
$$
(D) \max b^T y
$$
\n
$$
\text{s.t. } Ax - b \in C_1 \quad \text{s.t. } c - A^T y \in C_2^*
$$
\n
$$
x \in C_2 \quad y \in C_1^*
$$
\n
$$
\text{where } b, y \in \mathbb{R}^m, c, x \in \mathbb{R}^n, A : m \times n \text{ matrix}, C_1, C_2 \text{ are convex}\n\text{cones and } C_i^* = \{s \in \mathbb{R}^n : x^T s \ge 0, \forall x \in C_i\} \text{ are the dual}\n\text{cones}\n\text{for } i = 1, 2.
$$

These are solvable efficiently (in polynomial time) by using Interior Point Methods. LO is based on polyhedral cones. Be careful! Perfect duality, strict complementarity lost. Are all convex cones good???

NOT

IPMs~70-40: Why IPMs "failed" by ~1970

Computers ~1970

IBM360: top computer that time

- Gym size room, Operators
- Memory: 128-256 KB
- Hard disk: 7.2MB-400MB
- Large Storage: tape drives
- Input: punch cards
- **NO:** Double precision arithmetic
	- Regularization
	- Sparse matrix methods
	- Automatic differentiation

40: What made the IPM revolution possible?

• **Plenty of memory All stars lined up JIT for the "IPM Revolution"**

1981

- **Complexity Theory → Control of Algorithms**
- **Polynomial time algorithm – Ellipsoid Method**
- **Mainframe** \longrightarrow **Workstations** \longrightarrow **Desktop PC**
- **Sparse matrix theory and packages**
- **Automatic Differentiation**

A Soviet Discovery Rocks World of Mathematics

in weather prediction, complicated indus- | could take hilltons of years to constant By MALCOLM W. REGENE trial processes, petroleum refining, the The Eustina discovery offers a way by A surretia discovery by in absence A surprise discovery by an obscure strandaling of workers at large factories, which the number of steps in a solution has rocked the secret codes and many other things. can be dramatically reduced. It also at world of mathematics and computer "I have been deluged with calls from first the mathematician a way of instrang analetis, and experts have began explor. virtually every department of govern quickly whether a problem has a solution ing its practical applications. Mathematicians describe the discuss. ENCH for an interpretation of the signific criter, without having to complete the m ery by L.G. Khachian as a nethod by Direct of this," a leading expert on com. The immense computation that may be which computers can find guaranteed puller methods. Dr. George B. Dantag of required. solutions to a class of very difficult prob. Stanford University, said in an interview. According to the American journal Sci-
solutions to a class of very difficult prob. Stanford University, said in an interview. lent; that have hitherte been tackled on a The rol vism of mathematical geobierty Continued on Page A20, Column 3 kindef his-or cuins basis. by computer must be broken down into a Apart from its profound theoretical in- series of steps. One class of problem terest, the discovery may be applicable Softetimes innolves so reday stress that in

Russian's Surprise Problem-Solving Discovery Reported

Tamás Terlaky, Endowed Chair Professor, QCOL, Dept. ISE, Lehigh University **Quantum Interior Point Methods (QIPMs)** with Iterative Refinement for LO and SDO

Computer

Solution

of Large Sporse Positive

Definite Systems

ALAN GEORGE

QIPMs

Quantum Interior Point Methods

We also have Quantum Central Path Methods …

Thanks to joint work with the QCOL team:

Brandon Augustino, *Mohammadhossein Mohamadisiahroudi*, Ramin Fakhimi, **Arielle Carr, Pouya Sampourmahani, Zeguan Wu, Luis Zuluaga** Giacomo Nannicini (USC), Xiaodi Wu, Jiaqi Leng (UMd)

Tamás Terlaky, Endowed Chair Professor , QCOL, Dept. ISE, Lehigh University Quantum Interior Point Methods (QIPMs) with Iterative Refinement for LO and SDO

Quantum Interior Point Methods (QIPMs)

- **QIPMs are Hybrid Classic-Quantum algorithms**
- **For solving real world optimization problems Needed:**

Efficient, reliable

Quantum Computers & **Quantum Linear Algebra**

Data flow in hybrid classic-quantum algorithms:

• Classic \rightarrow QRAM \rightarrow QSolve \rightarrow QTomography \rightarrow Classic solution

Quantum Linear Algebra

Need to solve Newton systems – "accurately, fast" $Mz = \sigma_L M|z\rangle = |\sigma\rangle$

- d is maximum number of non-zero elements in each row and column in M ,
- p is the number of rows/columns of M , and
- ϵ is the error of Linear Equation Solver.

with tomography

Novel IR-IF-QIPMs

QLSAs have **quantum advantage** w.r.t. the dimension, and **quantum disadvantage** w.r.t. **condition number** & **accuracy** of solution Tomography (extracting the solution) is costly **… direct use Leads to Inexact Infeasible QIPMs (II-QIPMs)**

Best complexity QIPMs feature:

- **Novel Inexact Feasible IPMs (IF-QIPMs)**
- Error (inexactness) & condition number dependence need to be addressed
- **Solution: Iterative Refinement (IR) "inside and outside"**
	- **IR inside: for the Newton System**
	- **IR outside: at the problem level – limits condition number**
- **IR-IF-QIPMs: High precision solution through low precision computation.**

Semidefinite Optimization

Let

- \blacksquare $b \in \mathbb{R}^m$
	- matrices $A_1,\ldots,A_m,C\in\mathcal{S}^n$

Then, the primal-dual Semidefinite Optimization (SDO) pair is given by:

$$
z_P = \inf_X \{ \text{tr}(CX) : \text{tr}(A_i X) = b_i, \ \forall i \in [m], X \succeq 0 \}
$$

$$
z_D = \sup_{y, S} \left\{ b^\top y : \sum_{i=1}^m y_i A_i + S = C, \ S \succeq 0, y \in \mathbb{R}^m \right\}
$$

where

- $[m] = \{1, \ldots, m\}$
- $S = C \sum_{i \in [m]} y_i A_i \succeq 0$ is the slack matrix of the dual problem
- \blacksquare S^n is the cone of $n \times n$ symmetric matrices
- \blacksquare We assume that the matrices A_1,\ldots,A_m are linearly independent

Tamás Terlaky, Endowed Chair Professor , QCOL, Dept. ISE, Lehigh University Quantum Interior Point Methods (QIPMs) with Iterative Refinement for LO and SDO

SDO First SDO formed by Bellman-Fang 1963 Craven-Mond 1981

General Theory of IPMs by Nesterov and Nemirovskii

Central Path, Newton System

For $\nu > 0$, assuming *interior point condition*, and linear independence of the matrices $A^{(i)}$, the central path is the solution set of equation system

$$
\text{tr}(A_i X) = b_i \,\forall i \in [m], \ X \succ 0
$$

$$
\sum_{i \in [m]} y_i A_i - S = C, \ S \succ 0
$$

$$
XS = \nu I,
$$

■ Linearizing the central path eqns gives the Newton linear system:

$$
X\Delta S + \Delta X S = \sigma \nu I - XS
$$

$$
\Delta S \in L \quad \Delta X \in L^{\perp}.
$$

No symmetric solution for this linear system.

Symmetrization needed!

Tamás Terlaky, Endowed Chair Professor , QCOL, Dept. ISE, Lehigh University Quantum Interior Point Methods (QIPMs) with Iterative Refinement for LO and SDO

First proposal for a QIPM

- Kerenidis and Prakash (2018) made the first effort at a quantum interior point method
- Use quantum random access memory (QRAM) and block encodings to solve the Newton linear system
- Small neighborhood IPM:

$$
\mathcal{N}_F(\gamma)=\left\{(X,y,S)\in\mathcal{P}^0\times\mathcal{D}^0:\left\|X^{1/2}SX^{1/2}-\nu I\right\|_F\leq\gamma\nu\right\}
$$

They posit a worst cast running time of

$$
\widetilde{\mathcal{O}}_{n,\kappa,\frac{1}{\xi},\frac{1}{\epsilon}}\left(\frac{n^{2.5}}{\xi^2}\mu\kappa^3\log\frac{1}{\epsilon}\right)
$$

for SDPs

 \blacksquare The term $\widetilde{\mathcal{O}}_{n,\kappa,\frac{1}{\varepsilon}}\left(\frac{n^2\kappa^2}{\xi^2}\right)$ comes from a tomography subroutine

 \blacksquare $\mu \leq n$ and κ are factors corresponding to the QLSA

For solving LPs, the running time is

$$
\widetilde{\mathcal{O}}_{n,\kappa,\frac{1}{\xi},\frac{1}{\epsilon}}\left(\frac{n^{1.5}}{\xi^2}\mu\kappa^3\log\frac{1}{\epsilon}\right)
$$

No symmetrization. Not taking account QC error \rightarrow **inexact, infeasible QIPM. Condition number dependence.**

Symmetrizing the Newton System

Symmetrization is a linear transformation:

$$
H_P(M) = \frac{1}{2} \left[P M P^{-1} + P^{-T} M^T P^T \right].
$$

for a given invertible matrix P

The Alizadeh-Haeberly-Overton (AHO) direction is given by

 $P = I$

The Nesterov-Todd (NT) direction is given by

 $P = W^{-1/2}$

where

$$
W = S^{-1/2} (S^{1/2} X S^{1/2})^{1/2} S^{-1/2}
$$

= $X^{-1/2} (X^{1/2} S X^{1/2})^{1/2} X^{-1/2}$

Additionally there is the so called HKM direction for which

$$
P=S^{1/2}
$$

Quantum Tomography introduces error. Gives **Inexact Infeasible QIPMs (II-QIPM)**

$$
\begin{pmatrix} 0 & \mathcal{A} & 0 \\ \mathcal{A}^{\top} & 0 & \mathcal{I} \\ 0 & \mathcal{E} & \mathcal{F} \end{pmatrix} \begin{pmatrix} \Delta y \\ \Delta X \\ \Delta S \end{pmatrix} = \begin{pmatrix} \xi_p \\ \xi_d \\ \sigma \nu I - H_p(XS) + \xi_c \end{pmatrix}
$$

II-IPMs have worse iteration complexity than Feasible IPMs!

We cannot avoid tomography thus: Need to develop

Inexact Feasible IPMs and QIPMs

Tamás Terlaky, Endowed Chair Professor, QCOL, Dept. ISE, Lehigh University **Quantum Interior Point Methods (QIPMs)** with Iterative Refinement for LO and SDO

Inexact-Feasible QIPMs for SDO

Feasibility implies where

$$
\Delta X \in Null(\mathcal{A}) \text{ and } \Delta S \in \mathcal{R}(\mathcal{A})
$$

Null(\mathcal{A}) \equiv nullspace of \mathcal{A}_s
 $\mathcal{R}(\mathcal{A}) \equiv$ rowspace of \mathcal{A}_s

Let Q_2 be a basis of the null space of A_s , then we set: $\mathbf{succ}(\Delta X) = \mathbf{succ}(Q_2 \Delta z)$

$$
\textbf{succ}(\Delta S) = \textbf{succ}(-\mathcal{A}_s^\top \Delta y)
$$

So we get the new Newton system, called OSS (Orthogonal Subspace System)

$$
\begin{bmatrix} \mathcal{E} Q_2 & \mathcal{F}(-\mathcal{A}_s^{\top}) \end{bmatrix} \begin{bmatrix} \Delta z \\ \Delta y \end{bmatrix} = \textbf{succ}(\sigma \nu I - H_p(XS))
$$
 (OSS)

Regardless of QLSA+QTA error, primal-dual feasibility is preserved! Analysis of Feasible IPMs can be recovered!

Tamás Terlaky, Endowed Chair Professor, QCOL, Dept. ISE, Lehigh University **Quantum Interior Point Methods (QIPMs)** with Iterative Refinement for LO and SDO

Inexact-Feasible QIPM

Iterative refinement for LSP

Solve the linear system *Mv=w*

Algorithm Iterative Refinement for LSPs **Input:** Error tolerances $0 < \zeta \ll \xi < 1$, bound on norm of solution θ **Output:** A ζ -precise solution v to $\frac{M}{\theta}v = \frac{w}{\theta}$ Normalize the data $(\widetilde{M}, \widetilde{w}) \leftarrow \theta^{-1}(M, w)$ **Initialize**: $x^{(0)} \leftarrow 0$, $r^{(0)} \leftarrow \tilde{w}$, $\eta^{(0)} \leftarrow 1$, $k \leftarrow 0$ while $||r|| > \zeta$ do **1** $\bar{u}^{(k)} \leftarrow$ solve $(\widetilde{M}, \eta^{(k)}r^{(k)})$ using $O_{LS}(\xi)$ **Quantum-solve 2** $\tilde{u}^{(k+1)} \leftarrow \frac{\|\eta^{(k)}r^{(k)}\|}{\|\tilde{M}\bar{u}^{(k)}\|} \bar{u}^{(k)}$ **3** Update solution: $v^{(k+1)} \leftarrow v^{(k)} + \frac{1}{n^{(k)}} \tilde{u}^{(k)}$ 4 Update residual $r^{(k+1)} \leftarrow \tilde{w} - \widetilde{M}x^{(k+1)}$ 5 Update scaling factor $\eta^{(k+1)} \leftarrow ||r^{(k+1)}||^{-1}$ 6 $k \leftarrow k+1$

end

Here *OLS is defined as QLSA+QTA.*

Theorem: For the iterates of the **IR Algorithm** we have (a) $\eta^{(k)} \geq \frac{1}{\xi^k}$, (b) $\left\|\tilde{w}-\widetilde{M}v^{(k)}\right\| \leq \xi^k$.

The **IR Algorithm** terminates in at most

$$
\mathcal{O}\left(\log\left(\frac{1}{\zeta}\right)\right)
$$

iterations.

IR for LSP: Complexity

Theorem: Let the problem data stored in QRAM, and use fixed precision oracle *OLS* at each iteration. Then each iteration of the **IR Algorithm** requires at most

$$
\mathcal{O}\left(d\kappa_M\cdot\operatorname{polylog}\left(d,\kappa_M\right)\right)
$$

QRAM access and $\mathcal{O}(ds)$ classic arithmetic operations.

Corollary: Let the problem data stored in QRAM, and use fixed precision oracle O_{LS} at each iteration. Then setting $\zeta = \frac{\epsilon}{\theta}$, the **IR Algorithm** obtains an ϵ - precise solution of the linear system $Mv=w$ with at most

$$
\mathcal{O}\left(d\kappa_M\cdot\operatorname{polylog}\left(d,\kappa_M,\theta,\epsilon^{-1}\right)\right)
$$

QRAM access and $\mathcal{O}(ds \cdot \text{polylog}(d, \kappa_M, \theta, \epsilon^{-1}))$ arithmetic operations.

IF-QIPM with Inner IR

Input: $\epsilon, \delta > 0$; $\sigma = 1 - \delta/\sqrt{n}$; $\beta, \gamma \in (0, 1)$ **Output:** An ϵ -optimal primal dual pair (X, y, S) Choose $(X^{(0)}, y^{(0)}, S^{(0)}) \in \mathcal{N}_F(\gamma)$ Set $\nu^{(0)} = \frac{X^{(0)} \cdot S^{(0)}}{X^{(0)}}$ Compute bases for $\mathcal{R}(\mathcal{A}_s) = \mathcal{A}_s^{\top}$ and $\text{Null}(\mathcal{A}_s) = Q_2$ while $\nu > \epsilon$ do $1 \nu^{(k)} \leftarrow \frac{X^{(k)} \cdot S^{(k)}}{n}$ 2 Compute matrices $(X^{(k)})^{-1}$ and $(S^{(k)})^{-1}$, $P^{(k)}$ classically. **3** Obtain classical estimate $\overline{\Delta z}^{(k)}$, $\overline{\Delta y}^{(k)}$ of $\Delta z^{(k)}$, $\Delta y^{(k)}$ using IR for **Quantum-solve**the LSP 4 Use classical estimate $\overline{\Delta z}{}^{(k)}, \overline{\Delta y}{}^{(k)}$ to obtain classical estimate $\overline{\Delta X}^{(k)}, \overline{\Delta S}^{(k)}$ of $\Delta X^{(k)}, \Delta S^{(k)}$ 5 Update current solution $X^{(k+1)} \leftarrow X^{(k)} + \overline{\Delta X}^{(k)}, S^{(k+1)} \leftarrow S^{(k)} + \overline{\Delta S}^{(k)}$ and $y^{(k+1)} \leftarrow y^{(k)} + \overline{\Delta y}^{(k)}$ $k \leftarrow k+1$

Results: Complexity to solve SDO improves to:

$$
\widetilde{\mathcal{O}}_{n,\kappa,\frac{1}{\epsilon}}\left(n^{2.5}\kappa\right)
$$

QRAM access and

$$
\widetilde{\mathcal{O}}_{n,\kappa,\frac{1}{\epsilon}}\left(n^{4.5}\right)
$$

arithmetic operations.

Exponential speedup!

 $\mathcal{O}\left(\frac{n\kappa}{\epsilon}\right)$ fewer QRAM access than without IR.

end

Condition number increases

For ease of exposition we consider the case of LO.

- The normal equation system matrix is $\;\;A(XS^{-1})A^{\top}$, where $X = diag(x)$ and $S = diag(s)$ and
- By complementary slackness either x_i or s_i goes to 0, while the other goes to its positive (possibly large) optimal value.
- The condition number is bounded by $\left|\kappa = \mathcal{O}\left(\kappa_A \frac{1}{\nu^2}\right)\right|$
- If we stop IPMs with low prevision, e.g., $\nu > \epsilon = 10^{-2}$, then we have

$$
\kappa = \mathcal{O}\left(\kappa_A \frac{1}{\nu^2}\right) = \mathcal{O}\left(\kappa_A \frac{1}{\epsilon^2}\right) \longrightarrow \kappa = \mathcal{O}\left(\kappa_A\right)
$$

IR-QIPM with IR for SDO

Input: Problem data
$$
A_1, ..., A_m, C \in S^n
$$
, $b \in \mathbb{R}^m$, Error tolerances
\n $0 < \zeta \ll \epsilon < 1$
\n**Output:** A ζ -optimal primal-dual solution (X, y, S) to the SDO problem
\n
$$
\boxed{(A_1, ..., A_m, b, C)}
$$
\n**Initialize:** $X^{(0)} \leftarrow 0$, $y^{(0)} \leftarrow 0$, $\eta^{(0)} \leftarrow 1$, $\varepsilon^{(0)} \leftarrow n$, $k \leftarrow 0$, $\bar{b} \leftarrow b$, $\bar{C} \leftarrow C$
\nwhile $\varepsilon > \zeta$ do
\n
$$
\boxed{\begin{array}{ccc}\n\bullet & \text{while } (\overline{X}, \overline{y}) \leftarrow \text{solve} \\
\bullet & (X, \overline{y}) \leftarrow \text{solve} \\
\bullet & \text{Update solution}\n\end{array}
$$
\n
$$
\boxed{A_1, ..., A_m, \eta^{(k)}\bar{b}, \eta^{(k)}\bar{C}}\n\end{array}
$$
\nUsing $O_{\text{SDO}}(\epsilon)$

$$
X^{(k+1)} \leftarrow X^{(k)} + \frac{1}{\eta^{(k)}}\overline{X}, \quad y^{(k+1)} \leftarrow y^{(k)} + \frac{1}{\eta^{(k)}}\overline{y}
$$

3 Update refining problem data

$$
\overline{b}_{i}^{(k+1)} \leftarrow b_{i} - \text{tr}(A_{i}X^{(k+1)}), \quad \overline{C} \leftarrow C - \sum_{i=1}^{m} y_{i}^{(k+1)}A_{i}
$$

\n- **4** Compute residual
$$
\varepsilon^{(k+1)} = \frac{\text{tr}(X^{(k+1)}\bar{C})}{n}
$$
\n- **5** Update scaling factor $\eta^{(k+1)} = \frac{1}{\varepsilon^{(k+1)}}$
\n- **6** $k \leftarrow k+1$
\n

$$
\mathbf{b} \mathbf{n} \mathbf{e}
$$

Condition number bound:

The condition number bound for the OSS is: $\kappa = \mathcal{O}\left(\kappa_T \frac{1}{\nu}\right) = \mathcal{O}\left(\kappa_T \frac{1}{\epsilon}\right)$ Where $T=\begin{pmatrix} \mathcal{A} & 0 \ 0 & \mathcal{B}_{\text{Null}} \end{pmatrix}$

IR-QIPM: **Complexity for SDO** *:*

At most "

$$
\widetilde{\mathfrak{I}}_{n,\kappa_T,\frac{1}{\epsilon}}\left(n^{2.5}\kappa_1\right.
$$

QRAM access and at most $\mathcal{O}_{n,\kappa_{T},\frac{1}{\epsilon}}\left(n^{4.5}\right)$ arithmetic operations. **For LO:** At most $\mathcal{O}_{n,\kappa_T,\frac{1}{\epsilon}}\left(n^{1.5}\kappa_T\right)$ QRAM access, and at most $\widetilde{\mathcal{O}}_{n,\kappa_{T},1}$ $(n^{2.5})$ arithmetic operations.

Tamás Terlaky, Endowed Chair Professor , QCOL, Dept. ISE, Lehigh University Quantum Interior Point Methods (QIPMs) with Iterative Refinement for LO and SDO

Impact of IR on condition number

Developed Python package for IR-IF-QIPMs: https://github.com/QCOL-LU/QIPM

Quadratic Convergence

Quadratic convergence of the optimality gap without any nondegeneracy or strict complementarity assumption!

Theorem:

IR has quadratic convergence toward the optimal solution set of the SDO problem.

$$
X^{(k+1)} \bullet S^{(k+1)} \le \epsilon (X^{(k)} \bullet S^{(k)})^2
$$

and

IR obtains an $\tilde{\epsilon}$ -optimal solution to the primal-dual SDO in at most

$$
\mathcal{O}\left(\log\log\left(\frac{1}{\tilde{\epsilon}}\right)\right)
$$

Note: IR needs initial solution at IR each step. A good choice: $(\eta^{(k)}X^{(k)}, 0, \eta^{(k)}S^{(k)})$

Tamás Terlaky, Endowed Chair Professor, QCOL, Dept. ISE, Lehigh University **Quantum Interior Point Methods (QIPMs)** with Iterative Refinement for LO and SDO

IR-IF-QIPMs for LO

Complexity of IF-QIPMs with Iterative Refinement

New: IR-IF-IPMs using PCG to solve Newton Systems Analogous properties, complexity as for IR-IF-QIPMs **Quadratic Convergence to the Optimal Set**

Tamás Terlaky, Endowed Chair Professor,QCOL, Dept. ISE, Lehigh University **Quantum Interior Point Methods (QIPMs) with Iterative Refinement for LO and SDO**

Further notes on QIPMs

- **"Natural" Extensions of II and IF QIPMs:**
	- **To LO, SDO and SOCO**
	- *With and without iterative refinements*
- **"Natural" extension of IF-QIPMs:**
	- **using the Self-Dual Embedding models**
	- **also: Quantum Dual Log-barrier Method**
- **Implementation in the Qiskit environment**
	- **Solving LO problems up to 16 constraints**

The future of Optimization

… is bright! New computing paradigms New challenges New opportunities Bigger impact

Thanks …

Open **for** *Questions and Discussions*

Join and amplify QCOR!

Tamás Terlaky, Endowed Chair Professor , QCOL, Dept. ISE, Lehigh University Quantum Interior Point Methods (QIPMs) with Iterative Refinement for LO and SDO