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Quantum Computers are here

& we need more optimizers & OR in
Quantum Computing

IYQST -- QCOR
The United Nation declared 2025

as the International Year of
Quantum Science and Technology




Quantum Computing (QC) is Here!

Is QC really computing?

Hybrid classic-QC

Why to get involved?

|

gquantum annealers
Pro’s and Con’s
Opportunities

& challenges

Quantum advantage
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QC Capacity Grows Exponentially-IBM

Scaling IBM Quantum technology

IBM Q System One (Released)

(In development)

Superconducting qubits

Next family of IBM Quantum systems

2019

2020

2021 2022 2023 and beyond
27 qubits 65 qubits 127 qubits 433 qubits 1,121 qubits Path to 1 million qubits
Falcon Hummingbird Eagle Osprey Condor and beyond

Key aclvancement

Optimized lattice

Key advancement

Scalable readout

Key advancement

Novel packaging and controls

Key advancement

Miniaturization of components

Key advancement

Integration

Large scale systems

Key advancement

Build new infrastructure,
gquantum error correction

V]

z
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Quantum Computing Challenges

We are having NISQ
Noisy Intermediate-Scale Quantum) devices

QC challenges

The promise:
Fault Tolerant Logical Qubits
Are coming!

(Not only on QC simulators)




Conic Linear Optimization

Primal-dual pair of CLO problems is given as

(P) min 'z (D) max bly
s.t. Ax—0b €(Cq s.t. ¢— Aly c C5

r €Co y €C7,
where b,y € IR, c,x € IR, A . m X n matrix, Cq,Co are convex
cones and C’ = {s € IR" : xl's > 0, Vx € C;} are the dual cones
fori =1, 2.

These are solvable efficiently (in polynomial time) by using
Interior Point Methods. LO is based on polyhedral cones.
Be careful! Perfect duality, strict complementarity lost.
Are all convex cones good??7?
NO T
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IPMs~70-40: Why IPMs “failed” by ~1970
Computers ~1970 T"ih ==l | -
IBM360: top computer that time a2 il
* Gym size room, Operators
« Memory: 128-256 KB
« Hard disk: 7.2MB-400MB
« Large Storage: tape drives
* |nput: punch cards

NO:* Double precision arithmetic |
* Regularization — e
e Sparse matrix methods : i
* Automatic differentiation
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40: What made the IPM revolution possible?

« Plenty of memory All _stars lined up JIT for the “IPM Revolution”
. Complexolty Theory .Control qf Algorlthms Ehe New York Times

* Polynomial time algorithm — Ellipsoid Method e
« Mainframe — Workstations — Desktop PC i ok Workd of Matematis
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My Iphone 14: Russian's Surprise Problem-Solving Discovery Reported

512GB ... maybe 5g




QIPMs

Quantum Interior Point
Methods

We also have Quantum Central Path Methods ...

Thanks to joint work with the QCOL team:
Brandon Augustino, Mohammadhossein Mohamadisiahroudi, Ramin Fakhimi,

Arielle Carr, Pouya Sampourmahani, Zeguan Wu, Luis Zuluaga
Giacomo Nannicini (USC), Xiaodi Wu, Jiaqgi Leng (UMd)
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Quantum Interior Point Methods (QIPMs)

e QIPMs are Hybrid Classic-Quantum algorithms
e For solving real world optimization problems
Needed:
Efficient, reliable

Quantum Computers & Quantum Linear Algebra
Data flow in hybrid classic-quantum algorithms:

e Classic = QRAM = QSolve = QTomography = Classic solution
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Quantum Linear Algebra

1)

Need to solve Newton svstems — “accurately, fast
Mz =0, M|z) = lo)

Algorithm Complexity
Factorization (e.g. Cholesky) O(p?)
Conjugate Gradient O(pd\/zlog(%>)

HHTL + QTA O (potyion(p) Lrlely s o(rlzly [

VTAA-HHL + QTA O(polylog(p)%) < O( ﬁ’)\'ﬂ'L) %

QLSA (Wossnig, et al. 2018) + QTA O (polylog(p) l’fjl\';lll[i) < O ﬂl/_;’nlle) %

|  QLSA (Childs, et al. 2017) + QTA O (polylog(2Elellydr) < o(#lzlly | |2
QLSA (Carrera, et al. 2020) + QTA O(polylog(zljl'j\l[lclflg):dﬁ:) =< O |Z|31|\|40|||L) g
QLSA (Chakraborty, et al. 2018) + QTA O(polylog(ZLlZY k|| A7 7)) x O (2Ll =

*/ 1S the condition number of M,
4 1s maximum number of non-zero elements in each row and column in M,
p is the number of rows/columns of M, and
€ 1s the error of Linear Equation Solver.
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Novel IR-IF-QIPMs

QLSAs have quantum advantage w.r.t. the dimension, and
quantum disadvantage w.r.t. condition number & accuracy of solution
Tomography (extracting the solution) is costly
... direct use Leads to Inexact Infeasible QIPMs (lI-QIPMs)

Best complexity QIPMs feature:

* Novel Inexact Feasible IPMs (IF-QIPMs)
* Error (inexactness) & condition number dependence need to be addressed
« Solution: lterative Refinement (IR) “inside and outside”

— IR inside: for the Newton System
— IR outside: at the problem level - limits condition number

* IR-IF-QIPMs: High precision solution through low precision computation.

Quantum Interior Point Methods (QIPMs) with Iterative Refinement for LO and SDO
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Semidefinite Optimization

Let
mbe R™
m matrices 4,,...,A4,,,C € §"
Then, the primal-dual Semidefinite Optimization (SDQO) pair is given by:

Zp = igl(f{tr (CX):tr(A; X) =0b;, Vi € [m], X = 0}

zDzsup{bT?J:ZyiAi—FS:C, StO,yERm} SDO

Y,S i—1 First SDO formed by
Bellman-Fang 1963
Craven-Mond 1981

where
m(m]={1,...,m}
mS=0C-— Zie[m] y; A; = 0 is the slack matrix of the dual problem | General Theory of
m & is the cone of n X n symmetric matrices IPMs by Nesterov
m We assume that the matrices A4, ..., A,, are linearly independent |and Nemirovskii
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Central Path, Newton System

For v > 0, assuming interior point condition, and linear independence of
the matrices A(¥) the central path is the solution set of equation system

tr(A; X) =0b; Vi € Im], X >0
ny,;A@—S:C, S =0

1€ |m]

XS =vl,

m Linearizing the central path eqns gives the Newton linear system:
No symmetric solution

XAS+AX S=0vlI—-XS for this linear system.
ASeL AXel* Symmetrization needed!
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First proposal for a QIPM

m Kerenidis and Prakash (2018) made the first effort at a quantum
interior point method
m Use quantum random access memory (QRAM) and block encodings

to solve the Newton linear system
m Small neighborhood IPM:

Ne(y) = {(X,y,S) c PV x DY . HX1/2SX1/2 — VIHF < ”}/V}

m [ hey posit a worst cast running time of

2.5
Onﬁ%’% ( 2 nr” log E)

for SDPs
m [he term Onﬁ% (”252) comes from a tomography subroutine

m 1 < n and k are factors corresponding to the QLSA

m For solving LPs, the running time is No symmetrization.
15 Not taking account QC error

(?)vn’,{’ljl " i log l) == inexact, infeasible QIPM.
= Condition number dependence.
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Symmetrizing the Newton System

Symmetrization is a linear transformation: Quantum Tomography introduces error.
Hp(M) = % PMP 1 P TMTPT]. Gives Inexact Infeasible QIPMs (lI-QIPM)
for a given invertible matrix P 0O A 0 Ay fp
The Alizadeh-Haeberly-Overton (AHO) direction is given by A" 0 I AX | = Ed
p_7 o & F AS ovl — H,(X95) + &

The Nesterov-Todd (NT) direction is given by

p—-1/2 lI-IPMs have worse iteration complexity
than Feasible IPMs!

where
W =8~ 1/2(§1/2x§1/2)1/28-1/2 We cannot avoid tomography thus:
= X2(XV25x1/2)1 /2 512 Need to develop

Additionally there is the so called HKM direction for which  Inexact Feasible IPMs and Q| PMs
p=_g'?
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Inexact-Feasible QIPMs for SDO

Feasibility implies  AX € Null(A) and AS € R(A)
where Null(.A) = nullspace of A,
R(A) = rowspace of A
Let Q2 be a basis of the null space of As, then we set:
svec(AX) = svec(Q2Az2)
svec(AS) = svec(—A, Ay)

So we get the new Newton system, called OSS (Orthogonal Subspace System)

Q2 F(—A,)] 2; = svec(ov] — H,(X595)) (OSS)

Regardless of QLSA+QTA error, primal-dual feasibility is preserved!
Analysis of Feasible IPMs can be recovered!
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Inexact-Feasible QIPM

Algorithm Inexact-Feasible Quantum Interior Point Method Theorem:
Input: €,0 > 0; 0 =1—06/vn; 5.7 € (0,1) Data stored in QRAM
Output: An e-optimal primal dual pair (X, y,.5) _ .
Choose (X(©, (@) SO} € Afp(~) The IF-QIPM requites
Set p(0) — XesT) at most
Compute bases for R(A,) = A! and Null(A,) = Q- ~ o = K2
while v > ¢ do O’I’L,Iﬁ:,l n-t—
(k) tr(x®s®)) ‘ €
Compute matrices (X (*)~1 and (S"))~1 P®) classically. QRAM access and
Using block-encodings, solve Newton system to construct inexact Quantum ~ A5
search direction [Az(®) o Ay(®)y. O?’L,H,,l (n ' )
Obtain classical estimate Az ) Ay*¥) of Az(F) Ay*) using vector Quantum - €
state tomography. _ arithmetic operations.
Use classical estimate Az, Ay*) to obtain classical estimate
AX R ASE of AXF) ASHE)
@ Update current solution Aqvanta.ge w.r.t. the
L ___ Dimension.
X+ o x4 AX R g+l o gk) 4 AGHR) gapnd yF+HD «— ) 1 Ay Disadvantage W.r.t
ekl condition number

end and precision
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Iterative refinement for LSP

Solve the linear system Mv=w

Algorithm lterative Refinement for LSPs

Input: Error tolerances 0 < ( < & < 1, bound on norm of solution 6

Output: A (-precise solution v to %2} =

7
Normalize the data (M, @) « 6~ 1(M, w)
Initialize: 29 < 0, r(©) «— @, n© «— 1, k+0
while ||| > ¢ do
™ + solve (M,n™)r®) using Ors(¢) Quantum-solve

(k) (k)
~(k41) I ™ ] = (k)
2 ] u( <— — U
| M@k ||

Update solution: v +t1) « (k) 4 n(_lk)a(k)

Update residual r*+1 « @ — Mgk+D)
Update scaling factor n**1) « |[|p(k+D|—1
A k+ k+1

end

Here O:s is defined as QLSA+QTA.

Theorem: For the iterates
of the IR Algorithm we have

(b)

The IR Algorithm terminates
In at most

0 o 1)

iterations.
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IR for LSP: Complexity

Theorem: Let the problem data stored in QRAM, and use fixed precision

oracle O.s at each iteration. Then each iteration of the IR Algorithm requires
at most

O (dk s - polylog (d, kar))
QRAM access and ¢ds) classic arithmetic operations.

Corollary: Let the problem data stored in QRAM, and use fixed precision

oracle ous at each iteration. Then setting ¢ = 3, the IR Algorithm obtains an e-
precise solution of the linear system Mv=w with at most

@, (dlﬁlM - polylog (d, ka0, 6_1))
QRAM access and O (ds - polylog (d, kar, 6, ¢~ 1)) arithmetic operations.
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IF-QIPM with Inner IR

'(;'Pt”t:t@i >0 . ,_1|—,5/\/|5d; 5[7? (&U . Results: Complexity to
utput: An e-optimal primal dual pair (X, v, :
Choose (X0 4100, §0)) ¢ Aru(n) solveNSDO improves to:
Set (0) = X Op 1 (n°7K)
Compute bases for R(A) = A} and Null(A,) = Q» -
while v > ¢ do QRAM access and
(k) o XPesth) ~
P e — . | O, . 1 (n4.5)
Compute matrices (X(’“))ia d (SW)=1, P classically. _ e _
Obtain classical estimate Az'¥), Ayl¥) of Az( ). Ay using IR for arithmetic operations.
the LSP Quantum-solve
Use classical estimate Az(*). Ay(®) to obtain classical estimate . '
AXH) ASH of AXHF) ASH) Exponentlal speedup.
Update current solution O ( K )
XD x| AXH g+ g L RGH) and 46+ 0 4 AgH) €
b b fewer QRAM access
than without IR.

end
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Condition number increases

For ease of exposition we consider the case of LO.
» The normal equation system matrix is A(XS 1)A",
where X = diag(z) and S = diag(s) and XS ' = diag (ﬂ, . ZC—”>

S Sn
By complementary slackness either x; or s; goes to O, :
while the other goes to its positive (possibly large) optimal value.

1
 The condition number is bounded by|x = O (I{,A—2>
1%

* If we stop IPMs with low prevision, e.g., 1y > ¢= 102, then we have

k=0 (I{A%) =0 (HA€_2> > |k = O (ka)
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IR-QIPM with IR for SDO

Input: Problem data A4;,...,A,,,C € 8", b € R™, Error tolerances
D<(Ke<l1

Output: A (-optimal primal-dual solution (X, y,.S) to the SDO problem
(Aq,..., A0 C)
Initialize: X9 < 0, (9 «— 0,9 « 1, «—n k+0,b0b C +C
while ¢ > ( do

(X,7) « solve [Aq,..., A, n"b,n*)C)|using Ospo(€)
Update solution

1

X(k?—l—l) FXUT') + _Y y(k—l—l) ey(.ﬂfi) 4 W@_]
n(k n(k

Update refining problem data

[b,gk_'_l) . bL L tI'(AiX(k_‘_l)), é O — Zyl(k—l—l)AL]

1=1

(XD E)
mn

Compute residual e(*+1) =
Update scaling factor n* 1) = 1
ALl k+1

end

Condition number bound:

The condition number bound
for the OSSis: , _» ( 1) _0 (KTE)

R —
1%

A 0
Where 7 —
(0 BNull)

IR-QIPM: Complexity for SDO :
Atmost (O L (%5 k)

n,KT,<

QRAM access and at most

Opwr.t (n"°) arithmetic operations.
For LO: _ 1
At most O, ., 1 (n'°k7) QRAM

access, and atmost O, . . (n??
arithmetic operations.
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Developed Python package for IR-IF-QIPMs: https://github.com/QCOL-LU/QIPM

Impact of IR on condition number

# of Iterations

40

o
o

el
o

—_
o

0.05

0.1

0.15

0.2

0.25

0.3

0.35
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Quadratic Convergence

Quadratic convergence of the optimality gap without any
nondegeneracy or strict complementarity assumption!

Theorem:
IR has quadratic convergence toward the optimal solution set of the SDO
problem.

X(k—|—1) ~ S(k+1) < E(X(k) ~ S(k))Q
and
IR obtains an é-optimal solution to the primal-dual SDO in at most

o i (1)

Note: IR needs initial solution at IR each step. A good choice: ('®) X*) 0, n*) g(*)
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IR-IF-QIPMs for LO

Complexity of IF-QIPMs with Iterative Refinement

Algorithm System LS Solver Complexity
Best Theoretical bound NES Partial Update O(n”L)
Feasible [IPM NES Cholesky O(n3°L)
[I-IPM NES PCG O(n*L+/kn)
[F-IPM MNES PCG O(n*°L/knr)
IR-II-IPM NES PCG O(n*Lka)
IR-IF-IPM MNES PCG " Lea)
IR-TF-QIPM OSS QTA+QLSA O(n2%Lka) Polylog
IR-TF-QIPM MNES  QTA+QLSA O n?--')Lﬁ;A% Jsczf,:,c,’,fssed

New: IR-IF-IPMs using PCG to solve Newton Systems
Analogous properties, complexity as for IR-IF-QIPMs

Quadratic Convergence to the Optimal Set
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Further notes on QIPMs

e “Natural” Extensions of Il and IF QIPMs:
- To LO, SDO and SOCO
- With and without iterative refinements
e “Natural” extension of IF-QIPMs:
- using the Self-Dual Embedding models
- also: Quantum Dual Log-barrier Method
e Implementation in the Qiskit environment
- Solving LO problems up to 16 constraints
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The future of Optimization

... 1s bright!

New computing paradigms
New challenges
New opportunities

Bigger impact




Open for
Questions and

Discussions
Join and amplify QCOR!
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