MOM26 and WLSO&A, Waterloo, November 8-9, 2024

Quantum Interior Point Methods (QIPMs) with Iterative Refinement for Linear and Semidefinite Optimization

Tamás Terlaky

Alcoa Foundation Endowed Chair Professor Quantum Computing Optimization Lab (QCOL) Dept. of Industrial and Systems Engineering, Lehigh University

ISE

Quantum Computing Optimization La

Quantum Interior Point Methods (QIPMs) with Iterative Refinement for LO and SDO

Industrial and

Systems Engineering

QC & QC

Quantum Computers are here & we need more optimizers & OR in Quantum Computing **UN: IYQST -- INFORMS: QCOR** The United Nation declared 2025 as the International Year of **Quantum Science and Technology**

Quantum Computing (QC) is Here!

Is QC really computing?

Hybrid classic-QC

Why is it important?

Why QC optimization?

Why to get involved?

Tamás Terlaky, Endowed Chair Professor, QCOL, Dept. ISE, Lehigh University

NISQ devices v/s quantum annealers

NISQ

Pro's and Con's

Opportunities & challenges

Quantum supremacy Quantum advantage

QC Capacity Grows Exponentially-IBM

Scaling IBM Quantum technology

Superconducting qubits

IBM

Tamás Terlaky, Endowed Chair Professor, QCOL, Dept. ISE, Lehigh University

Quantum Computing Challenges

We are having NISQ Noisy Intermediate-Scale Quantum) devices QC challenges

The promise: Fault Tolerant Logical Qubits Are coming!

(Not only on QC simulators)

Conic Linear Optimization

Primal-dual pair of CLO problems is given as

These are solvable efficiently (in polynomial time) by using Interior Point Methods. LO is based on polyhedral cones. Be careful! Perfect duality, strict complementarity lost. Are all convex cones good???

Tamás Terlaky, Endowed Chair Professor, QCOL, Dept. ISE, Lehigh University

IPMs~70-40: Why IPMs "failed" by ~1970

Computers ~1970

IBM360: top computer that time

- Gym size room, Operators
- Memory: 128-256 KB
- Hard disk: 7.2MB-400MB
- Large Storage: tape drives
- Input: punch cards
- **NO:** Double precision arithmetic
 - Regularization
 - Sparse matrix methods
 - Automatic differentiation

40: What made the IPM revolution possible?

• Plenty of memory <u>All stars lined up JIT for the "IPM Revolution"</u>

1981

- **Complexity Theory** \longrightarrow **Control of Algorithms**
- Polynomial time algorithm Ellipsoid Method
- Mainframe \longrightarrow Workstations \longrightarrow Desktop PC
- **Sparse matrix theory and packages**
- Automatic Differentiation

Tamás Terlaky, Endowed Chair Professor, QCOL, Dept. ISE, Lehigh University

A Soviet Discovery Rocks World of Mathematics

in weather prediction, complicated index. | could take billions of years is conce-By MALCOLM M. BROWNE trial processes, petroleum refining, the The Russian discovery offers a way by A surreise discovery by an obscure-Soviel mithematician has rocked the secret codet and many other things. world of mathematics and computer acalipsis, and experts have began exploring its practical applications. farbenaricians describe the discay. men for an interpretation of the significant without having to complete the an ery by L.G. Khachian as a method by carur of this," a leading expert on com- the invesses computation that may be which computers can find guarantized pulse methods, Dr. George B. Danteig of required addrives to a class of very difficult pres. Stanford University, said in an interview. According to the American journal Sci-Continued on Page A20, Column 5

can be dragatically reduced. It also of "I have been delaged with calls from firm the mathematician a way of learning virtually every department of govern- quickly whether a problem has a solution

enti that have hitheria been tackied on a The solution of mathematical problems and of his-or craise basis. by computer must be broken down into a Apart from its profound theoretical in. series of steps. One class of problem

terest, the discovery may be applicable sometimes involves so thing almost that in

Russian's Surprise Problem-Solving Discovery Reported

 Lansame Frankriker, was the mean production of the production of the section. Marken of the production of the pr				
have the former of a first second as a second	not be the second secon	Josef all the proceeds of proceeding over the general process of the Torontopy of the To	The probable lacking many writhful a de comparisor, the distance of the intermediate of the second	maintain subject. An compare role is a long tage whole whole the subject of the long tage whole whole the subject of the long tage whole whole the subject of the long tage whole the subject of the long tage of the physical subject of the long tage of the long tage whole the long tage tage of the long tage and the long tage tage tage and the long tage and the long tage tage and the long tage and tage and tage tage and tage and tage and tage and tage and tage tage and tage and tage and tage and tage and tage tage and tage and tage and tage and tage and tage tage and tage and tage and tage and tage and tage tage and tage and tage and tage and tage and tage tage and tage and tage and tage and tage and tage tage and tage and tage and tage and tage and tage tage and tage and tage and tage and tage and tage tage and tage and tage and tage and tage and tage tage and tage and tage and tage and tage and tage tage and tage and tage and tage and tage and tage and tage tage and tage and tage and tage and tage and tage and tage tage and tage and tage and tage and tage and tage and tage tage and tage and tage and tage and tage and tage and tage tage and tage and tage and tage and tage and tage and tage tage and tage

Quantum Interior Point Methods (QIPMs) with Iterative Refinement for LO and SDO

of Large

Sparse Positive

QIPMs

Quantum Interior Point Methods

We also have Quantum Central Path Methods ...

Thanks to joint work with the QCOL team:

Brandon Augustino, <u>Mohammadhossein Mohamadisiahroudi</u>, Ramin Fakhimi, <u>Arielle Carr</u>, Pouya Sampourmahani, Zeguan Wu, <u>Luis Zuluaga</u> Giacomo Nannicini (USC), Xiaodi Wu, Jiaqi Leng (UMd)

Tamás Terlaky, Endowed Chair Professor, QCOL, Dept. ISE, Lehigh University

Quantum Interior Point Methods (QIPMs)

- QIPMs are Hybrid Classic-Quantum algorithms
- For solving real world optimization problems
 Needed:

Efficient, reliable

Quantum Computers & Quantum Linear Algebra

Data flow in hybrid classic-quantum algorithms:

Classic → QRAM → QSolve → QTomography → Classic solution

Quantum Linear Algebra

Need to solve Newton systems – "accurately, fast" $Mz = \sigma_{\iota} M |z\rangle = |\sigma\rangle$

Algorithm	Complexity	
Factorization (e.g. Cholesky)	$\mathcal{O}(p^3)$	
Conjugate Gradient	$\mathcal{O}(pd\sqrt{\kappa} \log(rac{1}{\epsilon}))$	
HHL + QTA	$\mathcal{O}(\operatorname{polylog}(p) \frac{d^2 \kappa^2 \ \sigma\ }{\ M\ \epsilon}) \times \mathcal{O}(\frac{p\ \sigma\ }{\ M\ \epsilon})$	
VTAA-HHL + QTA	$\mathcal{O}(\operatorname{polylog}(p) \frac{d^2 \kappa \ \sigma\ }{\ M\ \epsilon}) \times \mathcal{O}(\frac{p \ \sigma\ }{\ M\ \epsilon})$	
QLSA (Wossnig, et al. 2018) + QTA	$\mathcal{O}(\operatorname{polylog}(p) \frac{\kappa \ \sigma\ }{\ M\ \epsilon}) \times \mathcal{O}(\frac{p\ \sigma\ }{\ M\ \epsilon})$	
QLSA (Childs, et al. 2017) + QTA	$\mathcal{O}(\operatorname{polylog}(\frac{p\kappa \ \sigma\ }{\ M\ \epsilon})d\kappa) \times \mathcal{O}(\frac{p\ \sigma\ }{\ M\ \epsilon})$	
QLSA (Carrera, et al. 2020) + QTA	$\mathcal{O}(\text{polylog}(\frac{p\kappa \ \sigma\ }{\ M\ \epsilon})d\kappa) \times \mathcal{O}(\frac{p\ \sigma\ }{\ M\ \epsilon})$	
QLSA (Chakraborty, et al. 2018) + QTA	$\mathcal{O}(\operatorname{polylog}(\frac{p\ \sigma\ }{\epsilon})\kappa\ M\ _F) \times \mathcal{O}(\frac{p\ \sigma\ }{\epsilon})$	
$*\kappa$ is the condition number of M ,		

d is maximum number of non-zero elements in each row and column in M,

- p is the number of rows/columns of M, and
- ϵ is the error of Linear Equation Solver.

Tamás Terlaky, Endowed Chair Professor, QCOL, Dept. ISE, Lehigh University

with tomography

Novel IR-IF-QIPMs

QLSAs have **quantum advantage** w.r.t. the dimension, and **quantum disadvantage** w.r.t. **condition number** & **accuracy** of solution Tomography (extracting the solution) is costly ... **direct use Leads to Inexact Infeasible QIPMs (II-QIPMs)**

Best complexity QIPMs feature:

- Novel Inexact Feasible IPMs (IF-QIPMs)
- Error (inexactness) & condition number dependence need to be addressed
- Solution: Iterative Refinement (IR) "inside and outside"
 - IR inside: for the Newton System
 - IR outside: at the problem level limits condition number
- IR-IF-QIPMs: High precision solution through low precision computation.

Semidefinite Optimization

Let

- $\bullet \ b \in \mathbb{R}^m$
- matrices $A_1, \ldots, A_m, C \in \mathcal{S}^n$

Then, the primal-dual Semidefinite Optimization (SDO) pair is given by:

$$z_P = \inf_X \left\{ \operatorname{tr} (CX) : \operatorname{tr} (A_i X) = b_i, \ \forall i \in [m], X \succeq 0 \right\}$$
$$z_D = \sup_{y,S} \left\{ b^\top y : \sum_{i=1}^m y_i A_i + S = C, \ S \succeq 0, y \in \mathbb{R}^m \right\}$$

where

- $\bullet [m] = \{1, \dots, m\}$
- $S = C \sum_{i \in [m]} y_i A_i \succeq 0$ is the slack matrix of the dual problem
- $\blacksquare~\mathcal{S}^n$ is the cone of $n\times n$ symmetric matrices
- We assume that the matrices A_1, \ldots, A_m are linearly independent

Tamás Terlaky, Endowed Chair Professor, QCOL, Dept. ISE, Lehigh University

Quantum Interior Point Methods (QIPMs) with Iterative Refinement for LO and SDO

SDO <u>First SDO formed by</u> Bellman-Fang 1963 Craven-Mond 1981

General Theory of IPMs by Nesterov and Nemirovskii

Central Path, Newton System

For $\nu > 0$, assuming *interior point condition*, and linear independence of the matrices $A^{(i)}$, the central path is the solution set of equation system

$$\operatorname{tr} (A_i X) = b_i \; \forall i \in [m], \; X \succ 0$$
$$\sum_{i \in [m]} y_i A_i - S = C, \; S \succ 0$$
$$XS = \nu I,$$

• Linearizing the central path eqns gives the Newton linear system:

$$X\Delta S + \Delta X \ S = \sigma \nu I - XS$$
$$\Delta S \in L \quad \Delta X \in L^{\perp}.$$

No symmetric solution for this linear system.

Symmetrization needed!

First proposal for a QIPM

- Kerenidis and Prakash (2018) made the first effort at a quantum interior point method
- Use quantum random access memory (QRAM) and block encodings to solve the Newton linear system
- Small neighborhood IPM:

$$\mathcal{N}_F(\gamma) = \left\{ (X, y, S) \in \mathcal{P}^0 \times \mathcal{D}^0 : \left\| X^{1/2} S X^{1/2} - \nu I \right\|_F \le \gamma \nu \right\}$$

They posit a worst cast running time of

$$\widetilde{\mathcal{O}}_{n,\kappa,\frac{1}{\xi},\frac{1}{\epsilon}}\left(\frac{n^{2.5}}{\xi^2}\mu\kappa^3\log\frac{1}{\epsilon}\right)$$

for SDPs

• The term $\widetilde{\mathcal{O}}_{n,\kappa,\frac{1}{\xi}}\left(\frac{n^2\kappa^2}{\xi^2}\right)$ comes from a tomography subroutine

• $\mu \leq n$ and κ are factors corresponding to the QLSA

For solving LPs, the running time is

$$\widetilde{\mathcal{O}}_{n,\kappa,\frac{1}{\xi},\frac{1}{\epsilon}}\left(\frac{n^{1.5}}{\xi^2}\mu\kappa^3\log\frac{1}{\epsilon}\right)$$

No symmetrization. Not taking account QC error → inexact, infeasible QIPM. Condition number dependence.

Symmetrizing the Newton System

Symmetrization is a linear transformation:

$$H_P(M) = \frac{1}{2} \left[PMP^{-1} + P^{-T}M^T P^T \right].$$

for a given invertible matrix \boldsymbol{P}

The Alizadeh-Haeberly-Overton (AHO) direction is given by

P = I

The Nesterov-Todd (NT) direction is given by

 $P = W^{-1/2}$

where

$$W = S^{-1/2} (S^{1/2} X S^{1/2})^{1/2} S^{-1/2}$$

= $X^{-1/2} (X^{1/2} S X^{1/2})^{1/2} X^{-1/2}$

Additionally there is the so called HKM direction for which

$$P=S^{1/2}$$

Quantum Tomography introduces error. Gives Inexact Infeasible QIPMs (II-QIPM)

$$\begin{pmatrix} 0 & \mathcal{A} & 0 \\ \mathcal{A}^{\top} & 0 & \mathcal{I} \\ 0 & \mathcal{E} & \mathcal{F} \end{pmatrix} \begin{pmatrix} \Delta y \\ \Delta X \\ \Delta S \end{pmatrix} = \begin{pmatrix} \xi_p \\ \xi_d \\ \sigma \nu I - H_p(XS) + \xi_c \end{pmatrix}$$

II-IPMs have worse iteration complexity than Feasible IPMs!

We cannot avoid tomography thus: Need to develop

Inexact Feasible IPMs and QIPMs

Tamás Terlaky, Endowed Chair Professor, QCOL, Dept. ISE, Lehigh University

Inexact-Feasible QIPMs for SDO

Feasibility implies where

$$\Delta X \in \text{Null}(\mathcal{A}) \text{ and } \Delta S \in \mathcal{R}(\mathcal{A})$$

Null(\mathcal{A}) \equiv nullspace of \mathcal{A}_s
$$\mathcal{R}(\mathcal{A}) \equiv \text{rowspace of } \mathcal{A}_s$$

Let Q_2 be a basis of the null space of \mathcal{A}_s , then we set: $\operatorname{svec}(\Delta X) = \operatorname{svec}(Q_2 \Delta z)$

$$\operatorname{svec}(\Delta S) = \operatorname{svec}(-\mathcal{A}_s^\top \Delta y)$$

So we get the new Newton system, called OSS (Orthogonal Subspace System)

$$\begin{bmatrix} \mathcal{E}Q_2 & \mathcal{F}(-\mathcal{A}_s^{\top}) \end{bmatrix} \begin{bmatrix} \Delta z \\ \Delta y \end{bmatrix} = \operatorname{svec}(\sigma \nu I - H_p(XS)) \quad (\mathsf{OSS})$$

Regardless of QLSA+QTA error, primal-dual feasibility is preserved! Analysis of Feasible IPMs can be recovered!

Tamás Terlaky, Endowed Chair Professor, QCOL, Dept. ISE, Lehigh University

Inexact-Feasible QIPM

Algorithm Inexact-Feasible Quantum Interior Point Method	Theorem:
Input: $\epsilon, \delta > 0; \ \sigma = 1 - \delta/\sqrt{n}; \ \beta, \gamma \in (0, 1)$	Data stored in QRAM.
Output: An ϵ -optimal primal dual pair (X, y, S)	
Choose $(X^{(0)},y^{(0)},S^{(0)})\in\mathcal{N}_F(\gamma)$	The IF-QIPM requites
Set $\nu^{(0)} = \frac{X^{(0)} \bullet S^{(0)}}{n}$	at most
Compute bases for $\mathcal{R}(\mathcal{A}_s) = \mathcal{A}_s^{ op}$ and $\operatorname{Null}(\mathcal{A}_s) = Q_2$	$\sim \left(25 \kappa^2 \right)$
while $\nu > \epsilon$ do	$\widetilde{\mathcal{O}}_{n,\kappa,\frac{1}{\epsilon}}\left(n^{3.5}\frac{\kappa^2}{\epsilon}\right)$
1 $\nu^{(k)} \leftarrow \frac{\operatorname{tr}(X^{(k)}S^{(k)})}{n}$	
2 Compute matrices $(X^{(k)})^{-1}$ and $(S^{(k)})^{-1}$, $P^{(k)}$ classically.	QRAM access and
3 Using block-encodings, solve Newton system to construct inexact Quan	$\widetilde{\alpha}$ (4.5)
search direction $ \Delta z^{(k)} \circ \Delta y^{(k)}\rangle$.	$\mathcal{O}_{n,\kappa,\frac{1}{\epsilon}}\left(n^{4.5}\right)$
4 Obtain classical estimate $\overline{\Delta z}^{(k)}, \overline{\Delta y}^{(k)}$ of $\Delta z^{(k)}, \Delta y^{(k)}$ using vector Quan	
state tomography.	arithmetic operations.
5 Use classical estimate $\overline{\Delta z}^{(k)}, \overline{\Delta y}^{(k)}$ to obtain classical estimate	
$\overline{\Delta X}^{(k)}, \overline{\Delta S}^{(k)}$ of $\Delta X^{(k)}, \Delta S^{(k)}$	Advantage w.r.t. the
Opdate current solution	
$\mathbf{T}(k+1)$ $\mathbf{T}(k) = \mathbf{T}(k) = \mathbf{C}(k+1) = \mathbf{C}(k) = \mathbf{T}(k) = \mathbf{C}(k) = \mathbf{T}(k+1) = \mathbf{C}(k) = \mathbf{T}(k)$	Dimension.
$X^{(k+1)} \leftarrow X^{(k)} + \overline{\Delta X}^{(k)}, \ S^{(k+1)} \leftarrow S^{(k)} + \overline{\Delta S}^{(k)} \text{ and } y^{(k+1)} \leftarrow y^{(k)} + \overline{\Delta X}^{(k)} + \Delta X$	^y ^(~) Disadvantage w.r.t.
$k \leftarrow k+1$	condition number
end	and precision

Iterative refinement for LSP

Solve the linear system Mv = w

Algorithm Iterative Refinement for LSPs **Input:** Error tolerances $0 < \zeta \ll \xi < 1$, bound on norm of solution θ **Output:** A ζ -precise solution v to $\frac{M}{A}v = \frac{w}{A}$ Normalize the data $(M, \tilde{w}) \leftarrow \theta^{-1}(M, w)$ Initialize: $x^{(0)} \leftarrow 0$, $r^{(0)} \leftarrow \tilde{w}$, $\eta^{(0)} \leftarrow 1$, $k \leftarrow 0$ while $||r|| > \zeta$ do **1** $\bar{u}^{(k)} \leftarrow \text{solve } (\widetilde{M}, \eta^{(k)} r^{(k)}) \text{ using } O_{LS}(\xi)$ **Quantum-solve 2** $\tilde{u}^{(k+1)} \leftarrow \frac{\|\eta^{(k)}r^{(k)}\|}{\|\widetilde{M}\bar{u}^{(k)}\|} \bar{u}^{(k)}$ 3 Update solution: $v^{(k+1)} \leftarrow v^{(k)} + \frac{1}{n^{(k)}} \tilde{u}^{(k)}$ 4 Update residual $r^{(k+1)} \leftarrow \tilde{w} - \widetilde{M} x^{(k+1)}$ 5 Update scaling factor $\eta^{(k+1)} \leftarrow \|r^{(k+1)}\|^{-1}$ $6 \quad k \leftarrow k+1$

end

Here *O*_{LS} is defined as QLSA+QTA.

Tamás Terlaky, Endowed Chair Professor, QCOL, Dept. ISE, Lehigh University

<u>Theorem</u>: For the iterates of the IR Algorithm we have (a) $\eta^{(k)} \ge \frac{1}{\xi^k}$, (b) $\|\tilde{w} - \widetilde{M}v^{(k)}\| \le \xi^k$.

The **IR Algorithm** terminates in at most

$$\mathcal{O}\left(\log\left(\frac{1}{\zeta}\right)\right)$$

iterations.

IR for LSP: Complexity

<u>**Theorem:</u>** Let the problem data stored in QRAM, and use fixed precision oracle O_{LS} at each iteration. Then each iteration of the **IR Algorithm** requires at most</u>

$$\mathcal{O}\left(d\kappa_{M}\cdot\operatorname{polylog}\left(d,\kappa_{M}
ight)
ight)$$

QRAM access and $\mathcal{O}(ds)$ classic arithmetic operations.

<u>Corollary</u>: Let the problem data stored in QRAM, and use fixed precision oracle O_{LS} at each iteration. Then setting $\zeta = \frac{\epsilon}{\theta}$, the **IR Algorithm** obtains an ϵ -precise solution of the linear system Mv=w with at most

$$\mathcal{O}\left(d\kappa_M \cdot \operatorname{polylog}\left(d, \kappa_M, \theta, \epsilon^{-1}\right)\right)$$

QRAM access and $\mathcal{O}(ds \cdot \operatorname{polylog}(d, \kappa_M, \theta, \epsilon^{-1}))$ arithmetic operations.

IF-QIPM with Inner IR

Input: $\epsilon, \delta > 0; \ \sigma = 1 - \delta / \sqrt{n}; \ \beta, \gamma \in (0, 1)$ **Output:** An ϵ -optimal primal dual pair (X, y, S)Choose $(X^{(0)}, y^{(0)}, S^{(0)}) \in \mathcal{N}_{F}(\gamma)$ Set $\nu^{(0)} = \frac{X^{(0)} \bullet S^{(0)}}{2}$ Compute bases for $\mathcal{R}(\mathcal{A}_s) = \mathcal{A}_s^{\top}$ and $\text{Null}(\mathcal{A}_s) = Q_2$ while $\nu > \epsilon$ do 1 $\nu^{(k)} \leftarrow \frac{X^{(k)} \bullet S^{(k)}}{2}$ **2** Compute matrices $(X^{(k)})^{-1}$ and $(S^{(k)})^{-1}$, $P^{(k)}$ classically. **3** Obtain classical estimate $\overline{\Delta z}^{(k)}, \overline{\Delta y}^{(k)}$ of $\Delta z^{(k)}, \Delta y^{(k)}$ using IR for Quantum-solve the LSP **4** Use classical estimate $\overline{\Delta z}^{(k)}, \overline{\Delta y}^{(k)}$ to obtain classical estimate $\overline{\Delta X}^{(k)}, \overline{\Delta S}^{(k)}$ of $\Delta X^{(k)}, \Delta S^{(k)}$ **5** Update current solution $X^{(k+1)} \leftarrow X^{(k)} + \overline{\Delta X}^{(k)}, \ S^{(k+1)} \leftarrow S^{(k)} + \overline{\Delta S}^{(k)} \text{ and } y^{(k+1)} \leftarrow y^{(k)} + \overline{\Delta y}^{(k)}$

 $k \leftarrow k+1$

Results: Complexity to solve SDO improves to:

$$\widetilde{\mathcal{O}}_{n,\kappa,\frac{1}{\epsilon}}\left(n^{2.5}\kappa\right)$$

QRAM access and

$$\widetilde{\mathcal{O}}_{n,\kappa,\frac{1}{\epsilon}}\left(n^{4.5}\right)$$

arithmetic operations.

Exponential speedup!

 $\mathcal{O}\left(\frac{n\kappa}{\epsilon}\right)$ fewer QRAM access than without IR.

end

Tamás Terlaky, Endowed Chair Professor, QCOL, Dept. ISE, Lehigh University

Condition number increases

For ease of exposition we consider the case of LO.

- The normal equation system matrix is $A(XS^{-1})A^{\top}$, where $X = \operatorname{diag}(x)$ and $S = \operatorname{diag}(s)$ and $XS^{-1} = \operatorname{diag}\left(\frac{x_1}{s_1}, \dots, \frac{x_n}{s_n}\right)$ By complementary slackness either x_i or s_i goes to 0,
- while the other goes to its positive (possibly large) optimal value.
- The condition number is bounded by $\kappa = \mathcal{O}\left(\kappa_A \frac{1}{\nu^2}\right)$

• If we stop IPMs with low prevision, e.g.,
$$\nu > \epsilon = 10^{-2}$$
, then we have

$$\kappa = \mathcal{O}\left(\kappa_A \frac{1}{\nu^2}\right) = \mathcal{O}\left(\kappa_A \frac{1}{\epsilon^2}\right) \longrightarrow \kappa = \mathcal{O}\left(\kappa_A\right)$$

IR-QIPM with IR for SDO

Input: Problem data
$$A_1, \ldots, A_m, C \in S^n$$
, $b \in \mathbb{R}^m$, Error tolerances
 $0 < \zeta \ll \epsilon < 1$
Output: A ζ -optimal primal-dual solution (X, y, S) to the SDO problem
 (A_1, \ldots, A_m, b, C)
Initialize: $X^{(0)} \leftarrow 0, y^{(0)} \leftarrow 0, \eta^{(0)} \leftarrow 1, \varepsilon^{(0)} \leftarrow n, k \leftarrow 0, \bar{b} \leftarrow b, \bar{C} \leftarrow C$
while $\varepsilon > \zeta$ do
 $(\bar{X}, \bar{y}) \leftarrow$ solve $A_1, \ldots, A_m, \eta^{(k)}\bar{b}, \eta^{(k)}\bar{C})$ using $O_{\text{SDO}}(\epsilon)$
2 Update solution

$$X^{(k+1)} \leftarrow X^{(k)} + \frac{1}{\eta^{(k)}} \overline{X}, \quad y^{(k+1)} \leftarrow y^{(k)} + \frac{1}{\eta^{(k)}} \overline{y}$$

3 Update refining problem data

$$\bar{b}_i^{(k+1)} \leftarrow b_i - \operatorname{tr}(A_i X^{(k+1)}), \quad \bar{C} \leftarrow C - \sum_{i=1}^m y_i^{(k+1)} A_i$$

4 Compute residual
$$\varepsilon^{(k+1)} = \frac{\operatorname{tr}(X^{(k+1)}\bar{C})}{n}$$

5 Update scaling factor $\eta^{(k+1)} = \frac{n}{\varepsilon^{(k+1)}}$
6 $k \leftarrow k+1$

end

Tamás Terlaky, Endowed Chair Professor, QCOL, Dept. ISE, Lehigh University

Condition number bound:

The condition number boundfor the OSS is: $\kappa = \mathcal{O}\left(\kappa_T \frac{1}{\nu}\right) = \mathcal{O}\left(\kappa_T \frac{1}{\epsilon}\right)$ Where $T = \begin{pmatrix} \mathcal{A} & 0 \\ 0 & \mathcal{B}_{Null} \end{pmatrix}$

IR-QIPM: Complexity for SDO :

At most

$$\widetilde{\mathcal{O}}_{n,\kappa_T,rac{1}{\epsilon}}\left(n^{2.5}\kappa_T\right)$$

QRAM access and at most $\widetilde{\mathcal{O}}_{n,\kappa_T,\frac{1}{\epsilon}}(n^{4.5})$ arithmetic operations. **For LO:** At most $\widetilde{\mathcal{O}}_{n,\kappa_T,\frac{1}{\epsilon}}(n^{1.5}\kappa_T)$ QRAM access, and at most $\widetilde{\mathcal{O}}_{n,\kappa_T,\frac{1}{\epsilon}}(n^{2.5})$ arithmetic operations.

Impact of IR on condition number

Developed Python package for IR-IF-QIPMs: https://github.com/QCOL-LU/QIPM

Quadratic Convergence

Quadratic convergence of the optimality gap without any nondegeneracy or strict complementarity assumption!

Theorem:

IR has quadratic convergence toward the optimal solution set of the SDO problem.

$$X^{(k+1)} \bullet S^{(k+1)} \le \epsilon (X^{(k)} \bullet S^{(k)})^2$$

and

IR obtains an $\tilde{\epsilon}$ -optimal solution to the primal-dual SDO in at most

$$\mathcal{O}\left(\log\log\left(\frac{1}{\tilde{\epsilon}}\right)\right)$$

<u>Note</u>: IR needs initial solution at IR each step. A good choice: $(\eta^{(k)}X^{(k)}, 0, \eta^{(k)}S^{(k)})$

Tamás Terlaky, Endowed Chair Professor, QCOL, Dept. ISE, Lehigh University

IR-IF-QIPMs for LO

Complexity of IF-QIPMs with Iterative Refinement

Algorithm	System	LS Solver	Complexity	
Best Theoretical bound	NES	Partial Update	$\mathcal{O}(n^3L)$	
Feasible IPM	NES	Cholesky	$\mathcal{O}(n^{3.5}L)$	
II-IPM	NES	\mathbf{PCG}	$\mathcal{O}(n^4 L \sqrt{\kappa_M})$	
IF-IPM	MNES	\mathbf{PCG}	$\mathcal{O}(n^{2.5}L\sqrt{\kappa_M})$	
IR-II-IPM	NES	\mathbf{PCG}	$\mathcal{O}(n^4 L \kappa_A)$	
IR-IF-IPM	MNES	\mathbf{PCG}	$\mathcal{O}(n^{2.5}L\kappa_A)$	
IR-IF-QIPM	OSS	QTA+QLSA	$\mathcal{O}(n^{2.5}L\kappa_A)$ Polyle	
IR-IF-QIPM	MNES	QTA+QLSA	$\mathcal{O}\left(n^{2.5}L\kappa_A\right)$ facto suppr	

<u>New:</u> IR-IF-IPMs using PCG to solve Newton Systems Analogous properties, complexity as for IR-IF-QIPMs Quadratic Convergence to the Optimal Set

Tamás Terlaky, Endowed Chair Professor, QCOL, Dept. ISE, Lehigh University

Further notes on QIPMs

- "Natural" Extensions of II and IF QIPMs:
 - To LO, SDO and SOCO
 - With and without iterative refinements
- "Natural" extension of IF-QIPMs:
 - using the Self-Dual Embedding models
 - also: Quantum Dual Log-barrier Method
- Implementation in the Qiskit environment
 - Solving LO problems up to 16 constraints

The future of Optimization

... is bright! New computing paradigms **New challenges New opportunities Bigger impact**

Thanks ...

<u>Open</u> for <u>Questions and</u> <u>Discussions</u>

Join and amplify QCOR!

Tamás Terlaky, Endowed Chair Professor, QCOL, Dept. ISE, Lehigh University