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QC & QC

Quantum Computers are here
& we need more optimizers & OR in

Quantum Computing
UN: IYQST -- INFORMS: QCOR

The United Nation declared 2025 
as the International Year of 

Quantum Science and Technology
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Is QC really computing?

Hybrid classic-QC

Why is it important?

Why QC optimization?

Why to get involved?

NISQ devices v/s
  quantum annealers

Pro’s and Con’s

Opportunities 
           & challenges

Quantum supremacy
Quantum advantage

Quantum Computing (QC) is Here!

NISQ
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Superconducting qubits

QC Capacity Grows Exponentially-IBM  
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QC challenges

5

We are having NISQ 
Noisy Intermediate-Scale Quantum) devices

The promise: 
Fault Tolerant Logical Qubits

Are coming! 
(Not only on QC simulators)

Quantum Computing Challenges
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Conic Linear Optimization
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IPMs~70-40: Why IPMs “failed” by ~1970
Computers ~1970

IBM360: top computer that time
• Gym size room, Operators
• Memory: 128-256 KB
• Hard disk: 7.2MB-400MB
• Large Storage: tape drives
• Input: punch cards 

NO: • Double precision arithmetic
• Regularization
• Sparse matrix methods
• Automatic differentiation
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40: What made the IPM revolution possible?

• Plenty of memory       
• Complexity Theory      Control of Algorithms 
• Polynomial time algorithm – Ellipsoid Method
• Mainframe       Workstations      Desktop PC  
• Sparse matrix theory and packages
• Automatic Differentiation

1981

All  stars lined up JIT for the “IPM Revolution”

My Iphone 14:
512GB … maybe 5g
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QIPMs

Quantum Interior Point 
Methods

We also have Quantum Central Path Methods …

Thanks to joint work with the QCOL team:
Brandon Augustino, Mohammadhossein Mohamadisiahroudi, Ramin Fakhimi, 
Arielle Carr, Pouya Sampourmahani, Zeguan Wu, Luis Zuluaga  
Giacomo Nannicini (USC), Xiaodi Wu, Jiaqi Leng (UMd)
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Quantum Interior Point Methods (QIPMs)
• QIPMs are Hybrid Classic-Quantum algorithms
• For solving real world optimization problems

Needed: 
Efficient, reliable

Quantum Computers & Quantum Linear Algebra
Data flow in hybrid classic-quantum algorithms:

• Classic  QRAM      QSolve      QTomography      Classic solution
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Quantum Linear Algebra

d
p
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Novel IR-IF-QIPMs
QLSAs have quantum advantage w.r.t. the dimension, and 

quantum disadvantage w.r.t. condition number & accuracy of solution
                               Tomography (extracting the solution) is costly 

… direct use Leads to Inexact Infeasible QIPMs (II-QIPMs) 

Best complexity QIPMs feature:
• Novel Inexact Feasible IPMs (IF-QIPMs)
• Error (inexactness) & condition number dependence need to be addressed
• Solution: Iterative Refinement  (IR) “inside and outside”

– IR inside: for the Newton System
– IR outside: at the problem level – limits condition number

• IR-IF-QIPMs: High precision solution through low precision computation.
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Semidefinite Optimization
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Central Path, Newton System

No symmetric solution 
for this linear system.

Symmetrization needed!
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First proposal for a QIPM

No symmetrization.
Not taking account QC error
      inexact, infeasible QIPM.
Condition number dependence.
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Symmetrizing the Newton System

II-IPMs have worse iteration complexity 
than Feasible IPMs!

We cannot avoid tomography thus:
Need to develop

Inexact Feasible IPMs and QIPMs

Quantum Tomography introduces error.
Gives Inexact Infeasible QIPMs (II-QIPM)
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Inexact-Feasible QIPMs for SDO
Feasibility implies
where

Let be a basis of the null space of      , then we set: 

So we get the new Newton system, called OSS (Orthogonal Subspace System)

Regardless of QLSA+QTA error, primal-dual feasibility is preserved!
Analysis of Feasible IPMs can be recovered!
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Inexact-Feasible QIPM
Theorem:
Data stored in QRAM.
The IF-QIPM requites 
at most 

QRAM access and

arithmetic operations. 

Advantage w.r.t. the
Dimension.
Disadvantage w.r.t. 
condition number 
and precision

Quantum

Quantum
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Theorem: For the iterates
of the IR Algorithm we have

The IR Algorithm terminates 
in at most 

 
iterations.

Iterative refinement for LSP

Here OLS  is defined as QLSA+QTA.

Solve the linear system Mv=w 

Quantum-solve
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IR for LSP: Complexity
Theorem: Let the problem data stored in QRAM, and use fixed precision
oracle OLS at each iteration. Then each iteration of the IR Algorithm requires  
at most

QRAM access and O(ds) classic arithmetic operations. 

Corollary: Let the problem data stored in QRAM, and use fixed precision
oracle OLS at each iteration. Then setting          , the IR Algorithm obtains an ϵ-
precise solution of the linear system Mv=w with at most 

QRAM access and                                              arithmetic operations. 
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IF-QIPM with Inner IR
Results: Complexity to 
solve SDO improves to:

QRAM access and 

arithmetic operations.

Exponential speedup!

fewer  QRAM access
than without IR. 

Quantum-solve
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Condition number increases
For ease of exposition we consider the case of LO.
• The normal equation system matrix is                        ,
    where  and  
• By complementary slackness either     or       goes to 0,
   while the other goes to its positive (possibly large) optimal value.

• The condition number is bounded by

• If we stop IPMs with low prevision, e.g.,                         , then we have
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IR-QIPM with IR for SDO 
Condition number bound:
The condition number bound 
for the OSS is: 

Where 

IR-QIPM: Complexity for SDO :
At most 

QRAM access and at most
                 arithmetic operations.
For LO:
At most                               QRAM
access, and at most
arithmetic operations. 
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Impact of IR on condition number
Developed Python package for IR-IF-QIPMs: https://github.com/QCOL-LU/QIPM
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Quadratic Convergence
Quadratic convergence of the optimality gap without any 
nondegeneracy or strict complementarity assumption!

Theorem:

and 

Note: IR needs initial solution at IR each step. A good choice: 
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IR-IF-QIPMs for LO

New:   IR-IF-IPMs using PCG to solve Newton Systems 
             Analogous properties, complexity as for IR-IF-QIPMs 

Quadratic Convergence to the Optimal Set

Complexity of IF-QIPMs with Iterative Refinement 
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Further notes on QIPMs
• “Natural” Extensions of II and IF QIPMs:

– To LO, SDO and SOCO
– With and without iterative refinements

• “Natural” extension of IF-QIPMs:
–  using the Self-Dual Embedding models
–  also: Quantum Dual Log-barrier Method 

• Implementation in the Qiskit environment
– Solving LO problems up to 16 constraints
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The future of Optimization

… is bright!
New computing paradigms 
New challenges
New opportunities

Bigger impact
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Thanks …

Open for 
Questions and 

Discussions
Join and amplify QCOR! 
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