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Motivation

Consider the optimization problem

min
x∈Rn

h(p, x) + φ(x) (1)

where

• h : Rp × Rn → R (locally) smooth and convex in x;

• φ : Rn → R ∪ {+∞} closed, proper, convex.

S(p) := argmin
x∈Rn

{h(p, x) + φ(x)} (solution map).

References: Bonnans/Shapiro (general NLP), Bolte et al. (monotone operators),
Vaiter et al. (regularized LLS).

Examples

• (prox operator) p := (x̄, λ), h(p, x) := 1
2λ∥x − x̄∥2: S(x̄, λ) = Pλφ(x̄).

• (unconstrained LASSO) p := (A, b, λ), h(p, x) = 1
2λ∥Ax − b∥2, φ = ∥ · ∥1.

By convexity
S(p) = {x ∈ Rn | 0 ∈ ∇xh(x, p) + ∂φ(x)} .

Tailor-made for the implicit function theorems of variational analysis based on graphical
differentiation.
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Variational analysis: normal cones and graphical differentiation

Name Definition Properties Example

tangent cone TA(x̄) := Lim supt↓0
A−x̄

t closed
x̄

regular normal cone N̂A(x̄) := TA(x̄)◦ closed, convex x̄

limiting normal cone NA(x̄) := Lim supx→x̄ N̂A(x) closed x̄

S : Rn ⇒ Rm, (x̄, ȳ) ∈ gph S := {(x, y) | y ∈ S(x)}.

• Graphical derivative (Aubin ’81, Benko ’21): DS(x̄|ȳ) : Rn ⇒ Rm via

v ∈ DS(x̄|ȳ)(u) :⇐⇒ (u, v) ∈ Tgph S(x̄, ȳ).

• Coderivative (Mordukhovich ’80, Ioffe ’84): D∗S(x̄|ȳ) : Rm ⇒ Rn via

v ∈ D∗S(x̄|ȳ)(u) :⇐⇒ (v,−u) ∈ Ngph S(x̄, ȳ).

3



Variational analysis: normal cones and graphical differentiation

Name Definition Properties Example

tangent cone TA(x̄) := Lim supt↓0
A−x̄

t closed
x̄

regular normal cone N̂A(x̄) := TA(x̄)◦ closed, convex x̄

limiting normal cone NA(x̄) := Lim supx→x̄ N̂A(x) closed x̄
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Variational analysis: proto-differentiability

Observe that graphical derivative of S : Rn ⇒ Rm at (x̄, ū) ∈ gph S is (by definition)

DS(x̄ | ū)(w̄) = Lim sup
t↓0, w→w̄

S(x̄ + tw)− ū
t

∀ w̄ ∈ Rn. (2)

Definition (Proto-differentiability (Rockafellar ’89))

We call S is proto-differentiable at (x̄, ū) ∈ gph S if the following hold:

∀z̄ ∈ DS(x̄ | ū)(w̄), {tk} ↓ 0 ∃{wk} → w̄, {zk} → z̄ : zk ∈
S(x̄ + tkwk)− ū

tk
∀k ∈ N.

• Relates to semidifferentiability (Penot) which will yield directional differentiability
for our purposes.

• Graphical regularity implies proto-differentiability.
• ∂f is proto-differentiable at (x̄, ū), e.g., if f = g ◦ F is fully amenable, i.e., g PLQ

and F ∈ C2 such that
ker F′(x̄)∗ ∩ Ndom g(F(x̄)) = {0} (basic constraint qualification)

• For more (subtle) conditions implying proto-differentiability, see, e.g., Hang and
Sarabi (SIOPT 2024).
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Variational analysis: directional normal cone and semismoothness*

Directional normal cone of A at x̄
in direction ū:

NA(x̄; ū) := Lim sup
u→ū, t↓0

N̂A(x̄ + tu).

• N(x̄; ū) = ∅ if ū /∈ TA(x̄);

• N(x̄; ū) ⊂ NA(x̄) for all u ∈ Rn.

Semismoothness* (Gfrerer et al.):
i) A ⊂ Rn semismooth* at x̄ ∈ A :⇐⇒ ⟨x∗, u⟩ = 0 ∀u ∈ Rn, x∗ ∈ NA(x̄; u).

ii) S : Rn ⇒ Rm semismooth* at (x̄, ȳ) ∈ gph S :⇐⇒ gph S semismooth* at
(x̄, ȳ).

(Gfrerer and Outrata ’19): For F : D ⊂ Rn → Rm locally Lipschitz at x̄ ∈ int D, the
following are equivalent:

• F semismooth (in the sense of Qi and Sun) at x̄.

• F semismooth* and directionally differentiable at x̄.
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NA(x̄; ū) := Lim sup
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The workhorse (Dontchev/Rockafellar, Berk/Brugiapaglia/H.)

Let f : Rd × Rn → Rn be continuously differentiable at (p̄, x̄) such that f (p, ·) is
monotone near p̄, let F : Rn ⇒ Rn be maximally monotone at.

Define S : Rd ⇒ Rn by

S(p) = {x ∈ Rn | 0 ∈ f (p, x) + F(x)} , ∀p ∈ Rd.

The following hold if (p̄, x̄) ∈ gph S is such that

ker (Dxf (p̄, x̄)∗ + D∗F(x̄| − f (p̄, x̄)) = {0} (Mordukhovich criterion).

(a) S is locally Lipschitz at p̄ with modulus

L ≤ lim sup
p→p̄

max
∥q∥≤1

inf
w∈DS(p)(q)

∥w∥.

(a) Q := f (p̄, ·) + F : Rn ⇒ Rn is strongly metrically regular at (x̄, 0) ∈ gph Q.
(b) If F is proto-differentiable at (x̄,−f (p̄, x̄)), S is directionally differentiable at p̄ with

locally Lipschitz directional derivative (for G(p, x) := f (p, x) + F(x)) given by

S′(p̄; q) = {w ∈ Rn | 0 ∈ DG(p̄, x̄|0)(q,w)} ∀q ∈ Rd.

(c) If F is semismooth* and the following implication is satisfied:

−(v,w) ∈ Ngph F(x̄,−f (p̄, x̄)),
0 = Dpf (p̄, x̄)∗w,

v = Dxf (p̄, x̄)∗w

 =⇒ (v,w) = (0, 0),

then S is semismooth at p̄.
(d) If S′(p̄; ·) is linear, then S is differentiable at p̄.
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L ≤ lim sup
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max
∥q∥≤1

inf
w∈DS(p)(q)

∥w∥.

(a) Q := f (p̄, ·) + F : Rn ⇒ Rn is strongly metrically regular at (x̄, 0) ∈ gph Q.
(b) If F is proto-differentiable at (x̄,−f (p̄, x̄)), S is directionally differentiable at p̄ with
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 =⇒ (v,w) = (0, 0),

then S is semismooth at p̄.
(d) If S′(p̄; ·) is linear, then S is differentiable at p̄. 6



The Mordukhovich criterion for regularized linear least-squares

Consider the regularized least-squares problem

min
x

1
2
∥Ax − b∥2

+ λg(x) (3)

for λ > 0 and g closed, proper, convex.

Let x̄ solve (3), i.e. ū := 1
λ AT(b − Ax̄) ∈ ∂g(x̄), i.e.

0 ∈
1
λ

A∗
(Ax̄ − b)︸ ︷︷ ︸

=f(A,b,λ,·)(̄x)

+ ∂g︸︷︷︸
F

(x̄).

Let 0 ∈ Dxf (A, b, λ, x̄)∗w + D∗F(x̄|ū)(w) = 1
λ A∗Aw + D∗(∂g)(x̄|ū)(w), i.e.

−
1
λ

A∗Aw ∈ D∗
(∂g)(x̄|ū)(w). (4)

By ‘positive semidefiniteness’ of D∗(∂g)(x̄|ū) we have

0 ≤
〈

w,−A∗Aw
〉
= −∥Aw∥2 ⇐⇒ w ∈ ker A

Inserting into (4) yields

0 ∈ D∗
(∂g)(x̄|ū)(w)

(∂g)−1=∂g∗
⇐⇒ −w ∈ D∗

(∂g∗)(ū|x̄)(0).

Hence
ker A

⋂
D∗

(∂g∗)(ū|x̄)(0) = {0} ⇐⇒ Mordukhovich criterion holds (5)
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Tangible conditions for the Mordukhovich criterion

Example Let x̄ be a solution of the regularized linear least-squares problem

min
x

1
2
∥Ax − b∥2

+ λg(x), (6)

i.e., ū := 1
λ A∗(b − Ax̄) ∈ ∂g(x̄).

• (g∗ ∈ C1,1) If g∗ has locally Lipschitz gradient1 at ū, then

D∗
(∂g∗)(ū|x̄)(0) ⊂ ∂

C
(∇g∗)(ū)∗0 = {0}.

• (Polyhedral support) Let P = {x | ⟨pi, x⟩ ≤ βi ∀i = 1, . . . , l}, and let g = σP be its
support function. Then

D∗
(∂g∗)(ū|x̄)(0) = D∗NP(ū|x̄)(0) = span {pi | i : ⟨pi, ū⟩ = βi } = par ∂g∗(ū).

We define the qualification condition

par ∂g∗(ū) ∩ ker A = {0} (R).

Note: The condition (R) is (equivalent to) generalized LICQ2 for the dual problem of (6)

min
y,t

λ

2
∥y∥2 − ⟨b, y⟩ + t s.t. (A∗y, t) ∈ epi g∗.

1See Goebel and Rockafellar (Journal of Convex Analysis, 2008) for a primal characterization.
2Or partial constraint nondegeneracy 8
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We define the qualification condition
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Towards more general results

Proposition (Tran, H./Sarabi, H. ’24) Let x̄ be a solution of the regularized linear
least-squares problem

min
x

1
2
∥Ax − b∥2 + λg(x), λ > 0 (7)

with ū = 1
λ

A∗(b − Ax̄). Assume that g is in either of the following classes:

(i) (C2-cone reducible conjugate) epi g∗ is C2-cone reducible3

(ii) (PLQ penalty) g = θP,B with

θP,B(y) = sup
z∈P

{
⟨y, z⟩ −

1
2
⟨Bz, z⟩

}
, B ⪰ 0, P polyhedron.

Let x̄ be a solution of (7) such that (R) holds. Then the solution map

(Â, b̂, λ̂) 7→ argmin
x

1
2
∥Âx − b̂∥2 + λ̂g(x)

is locally Lipschitz around (A, b, λ).

3See Bonnans/Shapiro (2000)
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Application: unconstrained LASSO (constraint qualifications)

The unconstrained LASSO4 for A ∈ Rm×n, b ∈ Rm, λ > 0 reads

min
x

1
2
∥Ax − b∥2 + λ∥x∥1. (8)

For a solution x̄ of (8) define:

• I := {i ∈ {1, . . . , n} | x̄i ̸= 0} (support);

• J :=
{

i ∈ {1, . . . , n}
∣∣ |AT

i (b − Ax̄)| = λ
}

(equicorrelation set).

Note: I ⊂ J.

Qualification conditions

• (Intermediate) kerAJ = {0} (⇔ (R)) ;

• (Strong) I = J and kerAI = {0}.

(Strong) =⇒ (Intermediate) =⇒ x̄ is unique solution of (8)

4Santosa and Symes (1986), Tibshirani (1996)
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Application: unconstrained LASSO (stability)

Apply the main theorem with f (b, λ, x) := 1
λ

AT(Ax − b), F := ∂∥ · ∥1 such that

S(b, λ) = {x | 0 ∈ f (b, λ, x) + F(x)} = argmin
x∈Rn

{
1
2
∥Ax − b∥2 + λ∥x∥1

}
(λ > 0).

For (b̄, λ̄) ∈ Rn × R++ let x̄ ∈ S(b̄, λ̄). Then:

(a) If the intermediate condition holds, S is semismooth at (b̄, λ̄) with Lipschitz
modulus

L ≤
1

σmin(AJ)2

(
σmax

(
AJ
)
+

∥∥∥∥∥AT
J (Ax̄ − b̄)

λ̄

∥∥∥∥∥
)

.

Moreover, the directional derivative S′((b̄, λ̄); (·, ·)) : Rm × R → Rn is locally
Lipschitz and given as follows: for (q, α) ∈ Rm × R there exists an index set
K = K(q, α) with I ⊆ K ⊆ J such that

S′((b̄, λ̄); (q, α)) = LK

(
(AT

KAK)
−1AT

K

(
q +

α

λ̄
(Ax̄ − b̄)

)
, 0
)
.

(b) If the strong assumptions holds, S is continuously differentiable at (b̄, λ̄) with

DS(b̄, λ̄)(q, α) = LI

(
(AT

I AI)
−1AT

I

(
q +

α

λ̄
(Ax̄ − b̄)

)
, 0
)
, ∀(q, α) ∈ Rm × R.

In particular, S is locally Lipschitz with modulus given above with I = J.
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Application: unconstrained LASSO (tuning parameter sensitivity)

Suppose
b = Ax0 + e :

• n = 200,

• Aij
iid∼ N (0, 1/m),

• ei
iid∼ N (0, 0.01) and

• x0 s-sparse: (x0)j
iid∼ N (m, m) (j ∈ I).

• x(λ) := argmin
x

{
∥Ax − b∥2

2
+ λ∥x∥1

}
,

• λ∗ := inf argmin
λ>0

∥x(λ) − x0∥,

• x̄ := x(λ∗).

Under the strong assumption at x̄, x(·) is locally

Lipschitz with L :=

√
|I|

σmin(AI)
2 .

m = 50 m = 100 m = 150 m = 200

Figure 1: ∥x(λ) − x̄∥, L|λ − λ∗|, L|λ−λ∗|
∥x(λ)−x̄∥ .
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Future directions

• Expand quantitative analysis.

• Explore implications in bilevel optimization.

Thanks for coming!
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