On the Projection-Based Convexification of Some Spectral Sets

Renbo Zhao

Tippie College of Business University of Iowa

26th Midwest Optimization Meeting University of Waterloo, Ontario Nov, 2024

 \triangleright Let $(\mathbb{E}, \langle \cdot, \cdot \rangle)$ be a finite-dimensional real inner-product space, and $\mathcal{K} \subseteq \mathbb{R}^n$ be a nonempty, closed and convex cone.

- \triangleright Let $(\mathbb{E}, \langle \cdot, \cdot \rangle)$ be a finite-dimensional real inner-product space, and $\mathcal{K} \subseteq \mathbb{R}^n$ be a nonempty, closed and convex cone.
- \triangleright Consider a function $\lambda : \mathbb{E} \to \mathcal{K}$ that satisfies

(P1) For all $x, y \in \mathbb{E}$, we have $\langle x, y \rangle \leq \langle \lambda(x), \lambda(y) \rangle := \sum_{i=1}^{n} \lambda_i(x) \lambda_i(y)$.

(P2) For all $\mu \in \mathcal{K}$ and $y \in \mathbb{E}$, there exists $x \in \mathbb{E}$ such that

 $\lambda(x) = \mu$ and $\langle x, y \rangle = \langle \lambda(x), \lambda(y) \rangle$.

We call $\lambda : \mathbb{E} \to \mathcal{K}$ a spectral map (with ran $\lambda = \mathcal{K}$).

- \triangleright Let $(\mathbb{E}, \langle \cdot, \cdot \rangle)$ be a finite-dimensional real inner-product space, and $\mathcal{K} \subseteq \mathbb{R}^n$ be a nonempty, closed and convex cone.
- \triangleright Consider a function $\lambda : \mathbb{E} \to \mathcal{K}$ that satisfies

(P1) For all $x, y \in \mathbb{E}$, we have $\langle x, y \rangle \leq \langle \lambda(x), \lambda(y) \rangle := \sum_{i=1}^{n} \lambda_i(x) \lambda_i(y)$.

(P2) For all $\mu \in \mathcal{K}$ and $y \in \mathbb{E}$, there exists $x \in \mathbb{E}$ such that

 $\lambda(x) = \mu$ and $\langle x, y \rangle = \langle \lambda(x), \lambda(y) \rangle$.

We call $\lambda : \mathbb{E} \to \mathcal{K}$ a spectral map (with ran $\lambda = \mathcal{K}$).

 \triangleright Given λ and $\mathcal{C} \subseteq \mathbb{R}^n$, define the spectral set

$$\mathcal{S} := \lambda^{-1}(\mathcal{C}) := \{ x \in \mathbb{E} : \lambda(x) \in \mathcal{C} \}.$$

We always assume that $\mathcal{C} \cap \mathcal{K} \neq \emptyset$.

 $\triangleright \quad (\mathbb{E}, \mathbb{R}^n, \lambda) \text{ is a Fan-Theobald-von Neumann (FTvN) system if}$ (P1) For all $x, y \in \mathbb{E}$, we have $\langle x, y \rangle \leq \langle \lambda(x), \lambda(y) \rangle := \sum_{i=1}^n \lambda_i(x) \lambda_i(y)$.

(P2) For all $\mu \in \mathcal{K}$ and $y \in \mathbb{E}$, there exists $x \in \mathbb{E}$ such that

 $\lambda(x)=\mu \ \text{ and } \ \langle x,y\rangle=\langle\lambda(x),\lambda(y)\rangle\,.$

 $\triangleright \quad (\mathbb{E}, \mathbb{R}^n, \lambda) \text{ is a Fan-Theobald-von Neumann (FTvN) system if}$ (P1) For all $x, y \in \mathbb{E}$, we have $\langle x, y \rangle \leq \langle \lambda(x), \lambda(y) \rangle := \sum_{i=1}^n \lambda_i(x) \lambda_i(y).$

(P2) For all $\mu \in \mathcal{K}$ and $y \in \mathbb{E}$, there exists $x \in \mathbb{E}$ such that

$$\lambda(x) = \mu$$
 and $\langle x, y \rangle = \langle \lambda(x), \lambda(y) \rangle$.

As a result,

(Iso) For all $x \in \mathbb{E}$, $||x|| = ||\lambda(x)||_2$, where $||\cdot||$ is induced by $\langle \cdot, \cdot \rangle$ on \mathbb{E} . (Res) For any $\omega \in \mathsf{RS}(\mathcal{K}) := \mathcal{K} \cap (-\mathcal{K})$, there exists $d \in \mathbb{E}$ such that

$$\lambda(x+d) = \lambda(x) + \omega, \quad \forall x \in \mathbb{E}.$$

 $\triangleright \quad (\mathbb{E}, \mathbb{R}^n, \lambda) \text{ is a Fan-Theobald-von Neumann (FTvN) system if}$ (P1) For all $x, y \in \mathbb{E}$, we have $\langle x, y \rangle \leq \langle \lambda(x), \lambda(y) \rangle := \sum_{i=1}^n \lambda_i(x) \lambda_i(y).$

(P2) For all $\mu \in \mathcal{K}$ and $y \in \mathbb{E}$, there exists $x \in \mathbb{E}$ such that

$$\lambda(x) = \mu \text{ and } \langle x, y \rangle = \langle \lambda(x), \lambda(y) \rangle.$$

As a result,

(Iso) For all $x \in \mathbb{E}$, $||x|| = ||\lambda(x)||_2$, where $||\cdot||$ is induced by $\langle \cdot, \cdot \rangle$ on \mathbb{E} .

(Res) For any $\omega \in \mathsf{RS}(\mathcal{K}) := \mathcal{K} \cap (-\mathcal{K})$, there exists $d \in \mathbb{E}$ such that

$$\lambda(x+d) = \lambda(x) + \omega, \quad \forall x \in \mathbb{E}.$$

▷ Initially proposed by Gowda [Gow19], and subsequently studied by Gowda and Jeong [GJ23; JG23].

- \triangleright The normal decomposition system proposed by Lewis [Lew96].
 - Special case: the system induced by the singular-value map σ on $\mathbb{R}^{m \times n}$ (or $\mathbb{C}^{m \times n}$), where $\sigma_1(X) \geq \cdots \geq \sigma_{\min\{m,n\}}(X) \geq 0$.

- \triangleright The normal decomposition system proposed by Lewis [Lew96].
 - Special case: the system induced by the singular-value map σ on $\mathbb{R}^{m \times n}$ (or $\mathbb{C}^{m \times n}$), where $\sigma_1(X) \geq \cdots \geq \sigma_{\min\{m,n\}}(X) \geq 0$.
- \triangleright The system induced by complete isometric hyperbolic polynomials [Bau01].
 - Let $p : \mathbb{E} \to \mathbb{R}$ be a degree-*n* homogeneous polynomial that is *hyperbolic* w.r.t. some $d \in \mathbb{E}$, namely, $p(d) \neq 0$ and $t \mapsto p(td x)$ has only real roots:

$$\lambda_1(x) \ge \cdots \ge \lambda_n(x) \quad \Rightarrow \quad \lambda(x) := (\lambda_1(x), \dots, \lambda_n(x)).$$

- If p is complete and isometric, then $(\mathbb{E}, \mathbb{R}^n, \lambda)$ is a FTvN system, and ran λ is a closed convex cone.
- Special case: λ is the eigenvalue map on a Euclidean Jordan algebra of rank n, and in particular, on \mathbb{S}^n (or \mathbb{H}^n), where $\lambda_1(X) \geq \cdots \geq \lambda_n(X)$.

- \triangleright The normal decomposition system proposed by Lewis [Lew96].
 - Special case: the system induced by the singular-value map σ on $\mathbb{R}^{m \times n}$ (or $\mathbb{C}^{m \times n}$), where $\sigma_1(X) \geq \cdots \geq \sigma_{\min\{m,n\}}(X) \geq 0$.
- ▷ The system induced by complete isometric hyperbolic polynomials [Bau01].
 - Let $p : \mathbb{E} \to \mathbb{R}$ be a degree-*n* homogeneous polynomial that is *hyperbolic* w.r.t. some $d \in \mathbb{E}$, namely, $p(d) \neq 0$ and $t \mapsto p(td x)$ has only real roots:

$$\lambda_1(x) \ge \cdots \ge \lambda_n(x) \quad \Rightarrow \quad \lambda(x) := (\lambda_1(x), \dots, \lambda_n(x)).$$

- If p is complete and isometric, then $(\mathbb{E}, \mathbb{R}^n, \lambda)$ is a FTvN system, and ran λ is a closed convex cone.
- Special case: λ is the eigenvalue map on a Euclidean Jordan algebra of rank n, and in particular, on \mathbb{S}^n (or \mathbb{H}^n), where $\lambda_1(X) \geq \cdots \geq \lambda_n(X)$.
- \triangleright Our approach initially targeted the eigenvalue map on \mathbb{S}^n , but then was straightforwardly generalized to the FTvN system.

$$\mathcal{S}:=\lambda^{-1}(\mathcal{C})\quad\Rightarrow\quad\mathrm{conv}\,\mathcal{S}\ =?$$

$$\mathcal{S} := \lambda^{-1}(\mathcal{C}) \quad \Rightarrow \quad \operatorname{conv} \mathcal{S} \ = ?$$

 $\,\triangleright\,$ It is of natural theoretical interest.

$$\mathcal{S}:=\lambda^{-1}(\mathcal{C}) \quad \Rightarrow \quad \operatorname{conv} \mathcal{S} \ = ?$$

- \triangleright It is of natural theoretical interest.
- $\triangleright \ S$ frequently appears in the spectrally constrained optimization: $\min f(x) \quad \text{s.t.} \ x \in S$ (also affine constraints on x)

$$\mathcal{S}:=\lambda^{-1}(\mathcal{C})\quad\Rightarrow\quad\mathrm{conv}\,\mathcal{S}\ =?$$

- $\,\triangleright\,$ It is of natural theoretical interest.
- $\triangleright S$ frequently appears in the spectrally constrained optimization: $\min f(x) \quad \text{s.t.} \ x \in S$ (also affine constraints on x)
- \triangleright Due to its nonconvex nature, a natural step to obtain its global optimal solutions is to convexify S.

$$\mathcal{S} := \lambda^{-1}(\mathcal{C}) \quad \Rightarrow \quad \operatorname{conv} \mathcal{S} \ = ?$$

$$\mathcal{S} := \lambda^{-1}(\mathcal{C}) \quad \Rightarrow \quad \operatorname{conv} \mathcal{S} \ = ?$$

 \triangleright When C is "invariant", it is well-known that S is closed and convex if and only if C is closed and convex, clconv $S = \lambda^{-1}(\operatorname{clconv} C)$.

$$\mathcal{S} := \lambda^{-1}(\mathcal{C}) \quad \Rightarrow \quad \operatorname{conv} \mathcal{S} \ = ?$$

- \triangleright When C is "invariant", it is well-known that S is closed and convex if and only if C is closed and convex, clconv $S = \lambda^{-1}(\operatorname{clconv} C)$.
- \triangleright However, little is known when C is "non-invariant".

$$\mathcal{S} := \lambda^{-1}(\mathcal{C}) \quad \Rightarrow \quad \operatorname{conv} \mathcal{S} \ = ?$$

- \triangleright When C is "invariant", it is well-known that S is closed and convex if and only if C is closed and convex, clconv $S = \lambda^{-1}(\operatorname{clconv} C)$.
- \triangleright However, little is known when C is "non-invariant".
- \triangleright The notion of "invariance" is indeed defined w.r.t. ran $\lambda = \mathcal{K}$:

λ	K	Invariance
reordering /	$\mathbb{R}^n_{\downarrow}$	permutation inv.
eigenvalue map		
absolute reordering /	$\mathbb{R}^n_{\downarrow} \cap \mathbb{R}^n_+$	permutation & sign inv.
singular-value map		
absolute-value map	\mathbb{R}^n_+	sign inv.

$$\mathcal{S} := \lambda^{-1}(\mathcal{C}) \quad \Rightarrow \quad \operatorname{conv} \mathcal{S} \ = ?$$

- \triangleright When C is "invariant", it is well-known that S is closed and convex if and only if C is closed and convex, clconv $S = \lambda^{-1}(\operatorname{clconv} C)$.
- \triangleright However, little is known when C is "non-invariant".
- \triangleright The notion of "invariance" is indeed defined w.r.t. ran $\lambda = \mathcal{K}$:

λ	\mathcal{K}	Invariance
reordering /	$\mathbb{R}^n_{\downarrow}$	permutation inv.
eigenvalue map		
absolute reordering /	$\mathbb{R}^n_{\downarrow} \cap \mathbb{R}^n_+$	permutation & sign inv.
singular-value map		
absolute-value map	\mathbb{R}^n_+	sign inv.

▷ In the FTvN system, "invariance" is defined via another spectral map γ on \mathbb{R}^n that is compatible to \mathcal{K} , but γ may not exist for any closed convex cone \mathcal{K} .

$$\mathcal{S} := \lambda^{-1}(\mathcal{C}) \quad \Rightarrow \quad \operatorname{conv} \mathcal{S} \ = ?$$

We provide *projection-based* characterizations of clconv S when C is non-invariant and invariant.

$$\mathcal{S}:=\lambda^{-1}(\mathcal{C}) \quad \Rightarrow \quad \operatorname{conv} \mathcal{S} \ = ?$$

We provide *projection-based* characterizations of clconv S when C is non-invariant and invariant.

 $\triangleright C$ is non-invariant (but has other properties): we develop a new approach for characterizing clconv S, based on characterizing the *bipolar set* of S.

$$\mathcal{S}:=\lambda^{-1}(\mathcal{C}) \quad \Rightarrow \quad \operatorname{conv} \mathcal{S} \ = ?$$

We provide *projection-based* characterizations of $\mathsf{clconv} S$ when C is non-invariant and invariant.

- $\triangleright C$ is non-invariant (but has other properties): we develop a new approach for characterizing clconv S, based on characterizing the *bipolar set* of S.
 - Although the idea is simple, this approach works very well with the two defining properties of the spectral map through convex dualities.
 - (P1) For all $x, y \in \mathbb{E}$, we have $\langle x, y \rangle \leq \langle \lambda(x), \lambda(y) \rangle := \sum_{i=1}^{n} \lambda_i(x) \lambda_i(y)$.

(P2) For all $\mu \in \mathcal{K}$ and $y \in \mathbb{E}$, there exists $x \in \mathbb{E}$ such that

$$\lambda(x) = \mu \text{ and } \langle x, y \rangle = \langle \lambda(x), \lambda(y) \rangle.$$

$$\mathcal{S}:=\lambda^{-1}(\mathcal{C}) \quad \Rightarrow \quad \operatorname{conv} \mathcal{S} \ = ?$$

We provide *projection-based* characterizations of $\mathsf{clconv} S$ when C is non-invariant and invariant.

- $\triangleright C$ is non-invariant (but has other properties): we develop a new approach for characterizing clconv S, based on characterizing the *bipolar set* of S.
 - Although the idea is simple, this approach works very well with the two defining properties of the spectral map through convex dualities.
- $\triangleright C$ is invariant: we derive a projection-based characterization of clconv S, which complements the characterization $\lambda^{-1}(\operatorname{clconv} C)$.

$$\mathcal{S}:=\lambda^{-1}(\mathcal{C}) \quad \Rightarrow \quad \operatorname{conv} \mathcal{S} \ = ?$$

We provide *projection-based* characterizations of $\mathsf{clconv} S$ when C is non-invariant and invariant.

- $\triangleright C$ is non-invariant (but has other properties): we develop a new approach for characterizing clconv S, based on characterizing the *bipolar set* of S.
 - Although the idea is simple, this approach works very well with the two defining properties of the spectral map through convex dualities.
- $\triangleright C$ is invariant: we derive a projection-based characterization of clconv S, which complements the characterization $\lambda^{-1}(\operatorname{clconv} C)$.
 - This characterization sometimes has a simpler description than $\lambda^{-1}(\operatorname{clconv} \mathcal{C})$.

$$\mathcal{S}:=\lambda^{-1}(\mathcal{C}) \quad \Rightarrow \quad \operatorname{conv} \mathcal{S} \ = ?$$

We provide *projection-based* characterizations of $\mathsf{clconv} S$ when C is non-invariant and invariant.

- $\triangleright C$ is non-invariant (but has other properties): we develop a new approach for characterizing clconv S, based on characterizing the *bipolar set* of S.
 - Although the idea is simple, this approach works very well with the two defining properties of the spectral map through convex dualities.
- $\triangleright C$ is invariant: we derive a projection-based characterization of clconv S, which complements the characterization $\lambda^{-1}(\operatorname{clconv} C)$.
 - This characterization sometimes has a simpler description than $\lambda^{-1}(\operatorname{clconv} \mathcal{C})$.
 - Our result unifies and extends the results in Kim et al. [KTR22] developed for special cases of λ and C.

First Main Result

Theorem 1 (Closed and Convex \mathcal{C})

Let $\lambda : \mathbb{E} \to \mathcal{K}$ be a spectral map, and \mathcal{C} be closed and convex such that $\mathcal{C} \cap \operatorname{ri} \mathcal{K}$ is nonempty and bounded.

If $\mathcal{C} \cap \mathsf{RS}(\mathcal{K}) \neq \emptyset$, then

 $\mathsf{clconv}\,\mathcal{S} = \{ x \in \mathbb{E} : \exists \, \mu \in \mathcal{C} \cap \mathcal{K} \; \text{ s. t. } \lambda(x) - \mu \in \mathcal{K}^{\circ} \}.$ (PC₀)

Moreover, if \mathcal{K} is polyhedral, then the assumptions on $\mathcal{C} \cap \mathsf{ri} \mathcal{K}$ can be dropped.

First Main Result

Theorem 1 (Closed and Convex \mathcal{C})

Let $\lambda : \mathbb{E} \to \mathcal{K}$ be a spectral map, and \mathcal{C} be closed and convex such that $\mathcal{C} \cap \operatorname{ri} \mathcal{K}$ is nonempty and bounded.

If $\mathcal{C} \cap \mathsf{RS}(\mathcal{K}) \neq \emptyset$, then

 $\operatorname{clconv} \mathcal{S} = \{ x \in \mathbb{E} : \exists \mu \in \mathcal{C} \cap \mathcal{K} \text{ s.t. } \lambda(x) - \mu \in \mathcal{K}^{\circ} \}.$ (PC₀)

Moreover, if \mathcal{K} is polyhedral, then the assumptions on $\mathcal{C} \cap ri \mathcal{K}$ can be dropped.

- ▷ Checking if $\mu \in \mathsf{clconv} S$ is a convex feasibility problem, and can be solved in polynomial time under some assumptions.
- \triangleright (PC₀) is derived using convex dualities, and the assumptions on $\mathcal{C} \cap \operatorname{ri} \mathcal{K}$ mainly ensure strong dualities hold.

Corollary 1 (Non-Convex or Non-closed \mathcal{C})

Let $\lambda : \mathbb{E} \to \mathcal{K}$ be a spectral map, and $\mathcal{D} := \mathsf{clconv}(\mathcal{C} \cap \mathcal{K})$ satisfy that $\mathcal{D} \cap \mathsf{ri} \mathcal{K}$ is nonempty and bounded.

If $\mathcal{D} \cap \mathsf{RS}(\mathcal{K}) \neq \emptyset$, then

 $\mathsf{clconv}\,\mathcal{S} = \{x \in \mathbb{E} : \exists \, \mu \in \mathsf{clconv}\,(\mathcal{C} \cap \mathcal{K}) \; \text{ s. t. } \lambda(x) - \mu \in \mathcal{K}^{\circ}\}.$ (PC₁)

Moreover, if \mathcal{K} is polyhedral, then the assumptions on $\mathcal{D} \cap ri \mathcal{K}$ can be dropped.

Corollary 1 (Non-Convex or Non-closed \mathcal{C})

Let $\lambda : \mathbb{E} \to \mathcal{K}$ be a spectral map, and $\mathcal{D} := \mathsf{clconv}(\mathcal{C} \cap \mathcal{K})$ satisfy that $\mathcal{D} \cap \mathsf{ri} \mathcal{K}$ is nonempty and bounded.

If $\mathcal{D} \cap \mathsf{RS}(\mathcal{K}) \neq \emptyset$, then

 $\operatorname{clconv} \mathcal{S} = \{ x \in \mathbb{E} : \exists \mu \in \operatorname{clconv} (\mathcal{C} \cap \mathcal{K}) \text{ s.t. } \lambda(x) - \mu \in \mathcal{K}^{\circ} \}.$ (PC₁)

Moreover, if \mathcal{K} is polyhedral, then the assumptions on $\mathcal{D} \cap \mathsf{ri} \mathcal{K}$ can be dropped.

Proof. Define $S' := \lambda^{-1}(\mathcal{D})$. Then clconv S' =clconv S.

Notation: $\prec :=$ majorization and $\prec_w :=$ weak majorization.

Notation: \prec := majorization and \prec _w := weak majorization.

 $\triangleright \text{ When } \lambda \text{ is the eigenvalue map on } \mathbb{S}^n \colon \mathcal{K} = \mathbb{R}^n_{\downarrow} \text{ and}$ $\mathsf{clconv} \, \mathcal{S} = \{ X \in \mathbb{S}^n \colon \exists \, \mu \in \mathsf{clconv} \, (\mathcal{C} \cap \mathcal{K}) \; \text{ s. t. } \lambda(X) \prec \mu \}.$

Notation: \prec := majorization and \prec _w := weak majorization.

 $\triangleright \quad \text{When } \lambda \text{ is the eigenvalue map on } \mathbb{S}^n \text{: } \mathcal{K} = \mathbb{R}^n_{\downarrow} \text{ and}$ $\mathsf{clconv} \, \mathcal{S} = \{ X \in \mathbb{S}^n : \ \exists \, \mu \in \mathsf{clconv} \, (\mathcal{C} \cap \mathcal{K}) \ \text{ s. t. } \lambda(X) \prec \mu \}.$

 $\triangleright \text{ When } \lambda \text{ is the singular-value map } \sigma \text{ on } \mathbb{R}^{m \times n} \text{: } \mathcal{K} = \mathbb{R}^n_{\downarrow} \cap \mathbb{R}^n_+ \text{ and}$ $\mathsf{clconv} \, \mathcal{S} = \{ X \in \mathbb{R}^{m \times n} : \exists \, \mu \in \mathsf{clconv} \, (\mathcal{C} \cap \mathcal{K}) \; \text{ s. t. } \sigma(X) \prec_w \mu \}.$

Notation: \prec := majorization and \prec _w := weak majorization.

 $\triangleright \ \ \, \text{When } \lambda \text{ is the eigenvalue map on } \mathbb{S}^n \text{: } \mathcal{K} = \mathbb{R}^n_{\downarrow} \text{ and}$ $\mathsf{clconv}\, \mathcal{S} = \{X \in \mathbb{S}^n: \ \exists\, \mu \in \mathsf{clconv}\, (\mathcal{C} \cap \mathcal{K}) \ \, \text{s. t. } \lambda(X) \prec \mu\}.$

 $\triangleright \text{ When } \lambda \text{ is the singular-value map } \sigma \text{ on } \mathbb{R}^{m \times n} \text{: } \mathcal{K} = \mathbb{R}^n_{\downarrow} \cap \mathbb{R}^n_+ \text{ and}$ $\mathsf{clconv} \, \mathcal{S} = \{ X \in \mathbb{R}^{m \times n} : \exists \, \mu \in \mathsf{clconv} \, (\mathcal{C} \cap \mathcal{K}) \; \text{ s. t. } \sigma(X) \prec_w \mu \}.$

 $\succ \text{ When } \lambda \text{ is the absolute-value map } |\cdot| \text{ on } \mathbb{R}^n \text{: } \mathcal{K} = \mathbb{R}^n_+ \text{ and}$ $\mathsf{clconv} \, \mathcal{S} = \{ x \in \mathbb{R}^n : \exists \mu \in \mathsf{clconv} \, (\mathcal{C} \cap \mathcal{K}) \ \text{ s. t. } |x| \leq \mu \}.$

Lemma 1 (Linear optimization over spectral sets) For any $c \in \mathbb{R}^n$ and any nonempty set $\mathcal{U} \subseteq \mathbb{R}^n$, we have $\sup_{x \in \mathbb{E}} \{ \langle y, x \rangle + \langle c, \lambda(x) \rangle : \lambda(x) \in \mathcal{U} \} = \sup_{\mu \in \mathcal{U} \cap \mathcal{K}} \langle \lambda(y) + c, \mu \rangle$

For any set $\mathcal{U} \neq \emptyset$, define its support function $\sigma_{\mathcal{U}} : y \mapsto \sup_{x \in \mathcal{U}} \langle y, x \rangle$ and

$$\mathcal{U}^{\circ} := \{ y : \sigma_{\mathcal{U}}(y) \le 1 \}.$$

Lemma 1 (Linear optimization over spectral sets) For any $c \in \mathbb{R}^n$ and any nonempty set $\mathcal{U} \subseteq \mathbb{R}^n$, we have $\sup_{x \in \mathbb{E}} \{ \langle y, x \rangle + \langle c, \lambda(x) \rangle : \lambda(x) \in \mathcal{U} \} = \sup_{\mu \in \mathcal{U} \cap \mathcal{K}} \langle \lambda(y) + c, \mu \rangle$

For any set $\mathcal{U} \neq \emptyset$, define its support function $\sigma_{\mathcal{U}} : y \mapsto \sup_{x \in \mathcal{U}} \langle y, x \rangle$ and

$$\mathcal{U}^{\circ} := \{ y : \sigma_{\mathcal{U}}(y) \le 1 \}.$$

Lemma 2 (Characterizing \mathcal{S}°)

Let C be closed and convex, and define $\mathcal{D} := C \cap \mathcal{K} \neq \emptyset$. If \mathcal{K} is polyhedral or $C \cap ri \mathcal{K} \neq \emptyset$, then

$$\mathcal{S}^{\circ} = \{ y \in \mathbb{E} : \exists z \in \mathcal{D}^{\circ} \text{ s.t. } \lambda(y) - z \in \mathcal{K}^{\circ} \}$$

Since $\mathcal{S}^{\circ\circ} = \{x \in \mathbb{E} : \sigma_{\mathcal{S}^{\circ}}(x) \le 1\}$

$$\sigma_{\mathcal{S}^{\circ}}(x) = \sup_{y \in \mathbb{E}, z \in \mathcal{D}^{\circ}} \left\{ \langle x, y \rangle : \lambda(y) - z \in \mathcal{K}^{\circ} \right\}$$
$$= \inf_{\mu \in \mathcal{K}} \left\{ \sigma_{\mathcal{D}^{\circ}}(\mu) : \lambda(x) - \mu \in \mathcal{K}^{\circ} \right\}$$

$$\sigma_{\mathcal{S}^{\circ}}(x) = \sup_{y \in \mathbb{E}, z \in \mathcal{D}^{\circ}} \left\{ \langle x, y \rangle : \lambda(y) - z \in \mathcal{K}^{\circ} \right\}$$
$$= \inf_{\mu \in \mathcal{K}} \left\{ \sigma_{\mathcal{D}^{\circ}}(\mu) : \lambda(x) - \mu \in \mathcal{K}^{\circ} \right\}$$

i) If $0 \in \mathcal{C}, 0 \in \mathcal{D} (= \mathcal{C} \cap \mathcal{K})$ and $0 \in \mathcal{S}$, and we have $\begin{aligned} \mathcal{S}^{\circ\circ} &= \{x \in \mathbb{E} : \sigma_{\mathcal{S}^{\circ}}(x) \leq 1\} \\ &= \{x \in \mathbb{E} : \exists \ \mu \in \mathcal{K} \ \text{ s.t. } \sigma_{\mathcal{D}^{\circ}}(\mu) \leq 1, \ \lambda(x) - \mu \in \mathcal{K}^{\circ}\} \\ &= \{x \in \mathbb{E} : \exists \ \mu \in \mathcal{D} \ \text{ s.t. } \lambda(x) - \mu \in \mathcal{K}^{\circ}\} \end{aligned}$

Note that $\mathsf{clconv}\,\mathcal{S} = \mathcal{S}^{\circ\circ}$.

$$\sigma_{\mathcal{S}^{\circ}}(x) = \sup_{y \in \mathbb{E}, z \in \mathcal{D}^{\circ}} \left\{ \langle x, y \rangle : \lambda(y) - z \in \mathcal{K}^{\circ} \right\}$$
$$= \inf_{\mu \in \mathcal{K}} \left\{ \sigma_{\mathcal{D}^{\circ}}(\mu) : \lambda(x) - \mu \in \mathcal{K}^{\circ} \right\}$$

i) If $0 \in \mathcal{C}, 0 \in \mathcal{D} (= \mathcal{C} \cap \mathcal{K})$ and $0 \in \mathcal{S}$, and we have $\begin{aligned} \mathcal{S}^{\circ\circ} &= \{x \in \mathbb{E} : \sigma_{\mathcal{S}^{\circ}}(x) \leq 1\} \\ &= \{x \in \mathbb{E} : \exists \ \mu \in \mathcal{K} \ \text{ s.t. } \sigma_{\mathcal{D}^{\circ}}(\mu) \leq 1, \ \lambda(x) - \mu \in \mathcal{K}^{\circ}\} \\ &= \{x \in \mathbb{E} : \exists \ \mu \in \mathcal{D} \ \text{ s.t. } \lambda(x) - \mu \in \mathcal{K}^{\circ}\} \end{aligned}$

Note that $\mathsf{clconv}\,\mathcal{S} = \mathcal{S}^{\circ\circ}$.

ii) If $\mathcal{C} \cap \mathsf{RS}(\mathcal{K}) \neq \emptyset$, since λ satisfies (Res), define $\mathcal{S}' := \mathcal{S} - d = \{x \in \mathbb{E} : \lambda(x+d) \in \mathcal{D}\} = \{x \in \mathbb{E} : \lambda(x) \in \mathcal{D} - \omega\}$ and note that clconv $(\mathcal{S}) = \mathsf{clconv}(\mathcal{S}') + d$.

Definition 1 (λ -Compatible Spectral Map)

Let $\gamma : \mathbb{R}^n \to \mathcal{K}$ be a spectral map. If $\gamma \circ \lambda = \lambda$ on \mathbb{E} , then γ is called λ -compatible.

Definition 2 (γ -Invariant Set)

Let $\gamma : \mathbb{R}^n \to \mathcal{K}$ be a spectral map. A set $\emptyset \neq \mathcal{U} \subseteq \mathbb{R}^n$ is called γ -invariant if for any $\mu \in \mathcal{U}$, $[\mu] \subseteq \mathcal{U}$, where

$$[\mu] := \{\nu \in \mathbb{R}^n : \gamma(\nu) = \gamma(\mu)\}.$$

Theorem 2 (Projection-Based Characterization for Invariant C)

Given a spectral map $\lambda : \mathbb{E} \to \mathcal{K}$, let $\gamma : \mathbb{R}^n \to \mathcal{K}$ be a λ -compatible spectral map, and \mathcal{C} be a γ -invariant set.

Then for any \mathcal{D} satisfying that

 $\mathsf{conv}\,(\mathcal{C}\cap\mathcal{K})\subseteq\mathcal{D}\subseteq(\mathsf{clconv}\,\mathcal{C})\cap\mathcal{K},$

we have $\operatorname{clconv} S = \operatorname{cl} \mathcal{P}_{\mathcal{D}}$, where

$$\mathcal{P}_{\mathcal{D}} := \{ x \in \mathbb{E} : \exists \mu \in \mathcal{D} \text{ s.t. } \lambda(x) - \mu \in \mathcal{K}^{\circ} \}.$$

 $\vdash \text{ Let } \mathcal{K} := \mathbb{R}^n_{\downarrow} \cap \mathbb{R}^n_+, \, \gamma(\mu) := |\mu|^{\downarrow} \text{ and } \mathcal{C} := \{\mu \in \mathbb{R}^n : \|\mu\|_0 \le k, \|\mu\|_2 \le 1\} \text{ for some } 1 < k < n.$

 $\vdash \text{ Let } \mathcal{K} := \mathbb{R}^n_{\downarrow} \cap \mathbb{R}^n_+, \, \gamma(\mu) := |\mu|^{\downarrow} \text{ and } \mathcal{C} := \{\mu \in \mathbb{R}^n : \|\mu\|_0 \le k, \|\mu\|_2 \le 1\} \text{ for some } 1 < k < n.$

 \triangleright Note that clconv \mathcal{C} can be rather complicated to describe, but

$$\mathcal{C} \cap \mathcal{K} = \{ \mu \in \mathbb{R}^n_{\downarrow} : \mu \ge 0, \ \mu_{k+1} \le 0, \ \|\mu\|_2 \le 1 \},\$$

which is convex and compact. We let $\mathcal{D} = \mathcal{C} \cap \mathcal{K}$.

 $\vdash \text{ Let } \mathcal{K} := \mathbb{R}^n_{\downarrow} \cap \mathbb{R}^n_+, \, \gamma(\mu) := |\mu|^{\downarrow} \text{ and } \mathcal{C} := \{\mu \in \mathbb{R}^n : \|\mu\|_0 \le k, \|\mu\|_2 \le 1\} \text{ for some } 1 < k < n.$

 $\,\triangleright\,$ Note that $\mathsf{clconv}\,\mathcal{C}$ can be rather complicated to describe, but

$$\mathcal{C} \cap \mathcal{K} = \{ \mu \in \mathbb{R}^n_{\downarrow} : \mu \ge 0, \ \mu_{k+1} \le 0, \ \|\mu\|_2 \le 1 \},\$$

which is convex and compact. We let $\mathcal{D} = \mathcal{C} \cap \mathcal{K}$.

 \triangleright Since \mathcal{D} is bounded, we have

$$\mathsf{clconv}\,\mathcal{S} = \{ x \in \mathbb{E} : \exists \, \mu \in \mathcal{D} \; \text{ s. t. } \lambda(x) \prec_{\mathrm{w}} \mu \}.$$

Corollary

Corollary 2 (Projection-Based Characterization for Any Feasible C) Given a spectral map $\lambda : \mathbb{E} \to \mathcal{K}$, let $\gamma : \mathbb{R}^n \to \mathcal{K}$ be a λ -compatible spectral map, and C be any feasible set (namely, $C \cap \mathcal{K} \neq \emptyset$).

Then for any \mathcal{D} satisfying that

 $\operatorname{conv}(\mathcal{C}\cap\mathcal{K})\subseteq\mathcal{D}\subseteq\operatorname{clconv}(\mathcal{C}\cap\mathcal{K}),$

we have $\operatorname{clconv} \mathcal{S} = \operatorname{cl} \mathcal{P}_{\mathcal{D}}$, where

$$\mathcal{P}_{\mathcal{D}} := \{ x \in \mathbb{E} : \exists \mu \in \mathcal{D} \text{ s.t. } \lambda(x) - \mu \in \mathcal{K}^{\circ} \}.$$

Proof. Define $\tilde{\mathcal{C}} := \bigcup_{\mu \in \mathcal{C} \cap \mathcal{K}} [\mu]$. Note that $\tilde{\mathcal{C}} \cap \mathcal{K} = \mathcal{C} \cap \mathcal{K}$ and $\mathcal{S} = \lambda^{-1}(\tilde{\mathcal{C}})$. Then apply Theorem 2 to $\lambda^{-1}(\tilde{\mathcal{C}})$.

Thank you!

References

- [Bau01] Heinz H. Bauschke et al. "Hyperbolic Polynomials and Convex Analysis". In: Canad. J. Math. 53.3 (2001), pp. 470–488.
- [GJ23] M.S. Gowda and J. Jeong. "Commutativity, Majorization, and Reduction in Fan–Theobald–von Neumann Systems". In: *Results Math* 78 (72 2023).
- [Gow19] M. Seetharama Gowda. Optimizing certain combinations of spectral and linear/distance functions over spectral sets. arXiv:1902.06640. 2019.
- [JG23] Juyoung Jeong and Muddappa Gowda. Transfer principles, Fenchel conjugate and subdifferential formulas in Fan-Theobald-von Neumann systems. arXiv:2307.08478. 2023.
- [KTR22] Jinhak Kim, Mohit Tawarmalani, and Jean-Philippe P. Richard. "Convexification of Permutation-Invariant Sets and an Application to Sparse Principal Component Analysis". In: Math. Oper. Res. 47.4 (2022), pp. 2547–2584.
- [Lew96] A. S. Lewis. "Group Invariance and Convex Matrix Analysis". In: SIAM J. Matrix Anal. Appl. 17.4 (1996), pp. 927–949.