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Spectral Set

▷ Let (E, ⟨·, ·⟩) be a finite-dimensional real inner-product space, and K ⊆ Rn

be a nonempty, closed and convex cone.

▷ Consider a function λ : E → K that satisfies

(P1) For all x, y ∈ E, we have ⟨x, y⟩ ≤ ⟨λ(x), λ(y)⟩ :=
∑n

i=1 λi(x)λi(y).

(P2) For all µ ∈ K and y ∈ E, there exists x ∈ E such that

λ(x) = µ and ⟨x, y⟩ = ⟨λ(x), λ(y)⟩ .

We call λ : E → K a spectral map (with ran λ = K).

▷ Given λ and C ⊆ Rn, define the spectral set

S := λ−1(C) := {x ∈ E : λ(x) ∈ C}.

We always assume that C ∩ K ≠ ∅.
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FTvN System

▷ (E,Rn, λ) is a Fan-Theobald-von Neumann (FTvN) system if

(P1) For all x, y ∈ E, we have ⟨x, y⟩ ≤ ⟨λ(x), λ(y)⟩ :=
∑n

i=1 λi(x)λi(y).

(P2) For all µ ∈ K and y ∈ E, there exists x ∈ E such that

λ(x) = µ and ⟨x, y⟩ = ⟨λ(x), λ(y)⟩ .

As a result,

(Iso) For all x ∈ E, ∥x∥ = ∥λ(x)∥2, where ∥ · ∥ is induced by ⟨·, ·⟩ on E.

(Res) For any ω ∈ RS(K) := K ∩ (−K), there exists d ∈ E such that

λ(x + d) = λ(x) + ω, ∀ x ∈ E.

▷ Initially proposed by Gowda [Gow19], and subsequently studied by Gowda
and Jeong [GJ23; JG23].
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Why FTvN System?
The FTvN system subsumes two fairly general systems:

▷ The normal decomposition system proposed by Lewis [Lew96].
• Special case: the system induced by the singular-value map σ on Rm×n (or

Cm×n), where σ1(X) ≥ · · · ≥ σmin{m,n}(X) ≥ 0.

▷ The system induced by complete isometric hyperbolic polynomials [Bau01].
• Let p : E → R be a degree-n homogeneous polynomial that is hyperbolic w.r.t.

some d ∈ E, namely, p(d) ̸= 0 and t 7→ p(td − x) has only real roots:

λ1(x) ≥ · · · ≥ λn(x) ⇒ λ(x) := (λ1(x), . . . , λn(x)).

• If p is complete and isometric, then (E,Rn, λ) is a FTvN system, and ran λ is
a closed convex cone.

• Special case: λ is the eigenvalue map on a Euclidean Jordan algebra of rank
n, and in particular, on Sn (or Hn), where λ1(X) ≥ · · · ≥ λn(X).

▷ Our approach initially targeted the eigenvalue map on Sn, but then was
straightforwardly generalized to the FTvN system.
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Motivation

S := λ−1(C) ⇒ conv S = ?

▷ It is of natural theoretical interest.

▷ S frequently appears in the spectrally constrained optimization:

min f(x) s. t. x ∈ S (also affine constraints on x)

▷ Due to its nonconvex nature, a natural step to obtain its global optimal
solutions is to convexify S.
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Existing Results

S := λ−1(C) ⇒ conv S = ?

▷ When C is “invariant”, it is well-known that S is closed and convex if and only if C
is closed and convex, clconv S = λ−1(clconv C).

▷ However, little is known when C is “non-invariant”.

▷ The notion of “invariance” is indeed defined w.r.t. ran λ = K:

λ K Invariance
reordering /

eigenvalue map
Rn

↓ permutation inv.

absolute reordering /
singular-value map

Rn
↓ ∩ Rn

+ permutation & sign inv.

absolute-value map Rn
+ sign inv.

▷ In the FTvN system, “invariance” is defined via another spectral map γ on Rn

that is compatible to K, but γ may not exist for any closed convex cone K.
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Main Contribution

S := λ−1(C) ⇒ conv S = ?

We provide projection-based characterizations of clconv S when C is
non-invariant and invariant.

▷ C is non-invariant (but has other properties): we develop a new approach for
characterizing clconv S, based on characterizing the bipolar set of S.

• Although the idea is simple, this approach works very well with the two
defining properties of the spectral map through convex dualities.

(P1) For all x, y ∈ E, we have ⟨x, y⟩ ≤ ⟨λ(x), λ(y)⟩ :=
∑n

i=1 λi(x)λi(y).

(P2) For all µ ∈ K and y ∈ E, there exists x ∈ E such that

λ(x) = µ and ⟨x, y⟩ = ⟨λ(x), λ(y)⟩ .
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• Although the idea is simple, this approach works very well with the two
defining properties of the spectral map through convex dualities.

▷ C is invariant: we derive a projection-based characterization of clconv S,
which complements the characterization λ−1(clconv C).

• This characterization sometimes has a simpler description than λ−1(clconv C).
• Our result unifies and extends the results in Kim et al. [KTR22] developed

for special cases of λ and C.
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First Main Result

Theorem 1 (Closed and Convex C)
Let λ : E → K be a spectral map, and C be closed and convex such that C ∩ ri K
is nonempty and bounded.
If C ∩ RS(K) ̸= ∅, then

clconv S = {x ∈ E : ∃ µ ∈ C ∩ K s. t. λ(x) − µ ∈ K◦}. (PC0)

Moreover, if K is polyhedral, then the assumptions on C ∩ ri K can be dropped.

▷ Checking if µ ∈ clconv S is a convex feasibility problem, and can be solved in
polynomial time under some assumptions.

▷ (PC0) is derived using convex dualities, and the assumptions on C ∩ ri K
mainly ensure strong dualities hold.
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Corollary

Corollary 1 (Non-Convex or Non-closed C)

Let λ : E → K be a spectral map, and D := clconv (C ∩ K) satisfy that D ∩ ri K
is nonempty and bounded.
If D ∩ RS(K) ̸= ∅, then

clconv S = {x ∈ E : ∃ µ ∈ clconv (C ∩ K) s. t. λ(x) − µ ∈ K◦}. (PC1)

Moreover, if K is polyhedral, then the assumptions on D ∩ ri K can be dropped.

Proof. Define S ′ := λ−1(D). Then clconv S ′ = clconv S.
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Some Special Cases

Notation: ≺ := majorization and ≺w := weak majorization.

▷ When λ is the eigenvalue map on Sn: K = Rn
↓ and

clconv S = {X ∈ Sn : ∃ µ ∈ clconv (C ∩ K) s. t. λ(X) ≺ µ}.

▷ When λ is the singular-value map σ on Rm×n: K = Rn
↓ ∩ Rn

+ and

clconv S = {X ∈ Rm×n : ∃ µ ∈ clconv (C ∩ K) s. t. σ(X) ≺w µ}.

▷ When λ is the absolute-value map | · | on Rn: K = Rn
+ and

clconv S = {x ∈ Rn : ∃ µ ∈ clconv (C ∩ K) s. t. |x| ≤ µ}.
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Proof Sketch

Lemma 1 (Linear optimization over spectral sets)
For any c ∈ Rn and any nonempty set U ⊆ Rn, we have

supx∈E {⟨y, x⟩ + ⟨c, λ(x)⟩ : λ(x) ∈ U} = supµ∈U∩K ⟨λ(y) + c, µ⟩

For any set U ̸= ∅, define its support function σU : y 7→ supx∈U ⟨y, x⟩ and

U◦ := {y : σU (y) ≤ 1}.

Lemma 2 (Characterizing S◦)

Let C be closed and convex, and define D := C ∩ K ≠ ∅. If K is polyhedral or
C ∩ ri K ̸= ∅, then

S◦ = {y ∈ E : ∃ z ∈ D◦ s. t. λ(y) − z ∈ K◦}

Since S◦◦ = {x ∈ E : σS◦(x) ≤ 1}
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Proof Sketch

σS◦(x) = supy∈E, z∈D◦ {⟨x, y⟩ : λ(y) − z ∈ K◦}
= infµ∈K {σD◦(µ) : λ(x) − µ ∈ K◦}

i) If 0 ∈ C, 0 ∈ D (= C ∩ K) and 0 ∈ S, and we have

S◦◦ = {x ∈ E : σS◦(x) ≤ 1}
= {x ∈ E : ∃ µ ∈ K s. t. σD◦(µ) ≤ 1, λ(x) − µ ∈ K◦}
= {x ∈ E : ∃ µ ∈ D s. t. λ(x) − µ ∈ K◦}

Note that clconv S = S◦◦.

ii) If C ∩ RS(K) ̸= ∅, since λ satisfies (Res), define

S ′ := S − d = {x ∈ E : λ(x + d) ∈ D} = {x ∈ E : λ(x) ∈ D − ω}

and note that clconv (S) = clconv (S ′) + d.
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Invariance in the FTvN System

Definition 1 (λ-Compatible Spectral Map)

Let γ : Rn → K be a spectral map. If γ ◦ λ = λ on E, then γ is called
λ-compatible.

Definition 2 (γ-Invariant Set)

Let γ : Rn → K be a spectral map. A set ∅ ≠ U ⊆ Rn is called γ-invariant if
for any µ ∈ U , [µ] ⊆ U , where

[µ] := {ν ∈ Rn : γ(ν) = γ(µ)}.
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The Second Main Result

Theorem 2 (Projection-Based Characterization for Invariant C)

Given a spectral map λ : E → K, let γ : Rn → K be a λ-compatible spectral
map, and C be a γ-invariant set.

Then for any D satisfying that

conv (C ∩ K) ⊆ D ⊆ (clconv C) ∩ K,

we have clconv S = cl PD, where

PD := {x ∈ E : ∃ µ ∈ D s. t. λ(x) − µ ∈ K◦}.
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An Example

▷ Let K := Rn
↓ ∩ Rn

+, γ(µ) := |µ|↓ and C := {µ ∈ Rn : ∥µ∥0 ≤ k, ∥µ∥2 ≤ 1} for
some 1 < k < n.

▷ Note that clconv C can be rather complicated to describe, but

C ∩ K = {µ ∈ Rn
↓ : µ ≥ 0, µk+1 ≤ 0, ∥µ∥2 ≤ 1},

which is convex and compact. We let D = C ∩ K.

▷ Since D is bounded, we have

clconv S = {x ∈ E : ∃ µ ∈ D s. t. λ(x) ≺w µ}.
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Corollary

Corollary 2 (Projection-Based Characterization for Any Feasible C)
Given a spectral map λ : E → K, let γ : Rn 7→ K be a λ-compatible spectral
map, and C be any feasible set (namely, C ∩ K ≠ ∅).

Then for any D satisfying that

conv (C ∩ K) ⊆ D ⊆ clconv (C ∩ K),

we have clconv S = cl PD, where

PD := {x ∈ E : ∃ µ ∈ D s. t. λ(x) − µ ∈ K◦}.

Proof. Define C̃ := ∪µ∈C∩K [µ]. Note that C̃ ∩ K = C ∩ K and S = λ−1(C̃).
Then apply Theorem 2 to λ−1(C̃).
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Thank you!
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