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> Let (E,(-,-)) be a finite-dimensional real inner-product space, and £ C R"
be a nonempty, closed and convex cone.
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>> Consider a function A : E — K that satisfies
(P1) For all z,y € E, we have (z,y) < (A(2),A(y)) :== >, Mi(2)Ai(y).
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We call A : E — K a spectral map (with ran A = K).
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Spectral Set

> Let (E,(-,-)) be a finite-dimensional real inner-product space, and £ C R"
be a nonempty, closed and convex cone.

>> Consider a function A : E — K that satisfies
(P1) For all z,y € E, we have (z,y) < (A(2),A(y)) :== >, Mi(2)Ai(y).
(P2) For all p € K and y € E, there exists z € E such that
A(@) =p and (z,y) = (A(z),\(y)) .
We call A : E — K a spectral map (with ran A = K).

> Given A and C C R", define the spectral set
S:=21C):={zrcE: \x)cC}).
We always assume that C N K # 0.
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FTvN System

> (E,R™, \) is a Fan-Theobald-von Neumann (FTvN) system if
(P1) For all z,y € E, we have (z,y) < (A(2),A(y)) :== D>, Mi(2)Ai(y).
(P2) For all p € K and y € E, there exists z € E such that

A(@) = p and (z,y) = (Mz), A(Y)) -

Renbo Zhao (Ulowa)
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> (E,R™, \) is a Fan-Theobald-von Neumann (FTvN) system if
(P1) For all z,y € E, we have (z,y) < (A(2),A(y)) :== D>, Mi(2)Ai(y).
(P2) For all i € K and y € E, there exists « € E such that
A(@) = p and (z,y) = (Mz), A(Y)) -
As a result,

(Iso) For all z € E, ||z|| = ||A()||2, where || - || is induced by (-,-) on E.
(Res) For any w € RS(K) := KN (—=K), there exists d € E such that

Mz +d)=Xz)+w, Vzek
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FTvN System

> (E,R™, \) is a Fan-Theobald-von Neumann (FTvN) system if
(P1) For all z,y € E, we have (z,y) < (A(2),A(y)) :== D>, Mi(2)Ai(y).
(P2) For all i € K and y € E, there exists « € E such that
A(@) = p and (z,y) = (Mz), A(Y)) -
As a result,

(Iso) For all z € E, ||z|| = ||A()||2, where || - || is induced by (-,-) on E.
(Res) For any w € RS(K) := KN (—=K), there exists d € E such that

Mz +d)=Xz)+w, Vzek

> Initially proposed by Gowda [Gow19], and subsequently studied by Gowda
and Jeong [GJ23; JG23].
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The FTvN system subsumes two fairly general systems:

Renbo Zhao (Ulowa)



Why FTvN System?

The FTvN system subsumes two fairly general systems:

> The normal decomposition system proposed by Lewis [Lew96].

® Special case: the system induced by the singular-value map o on R™*™ (or
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Why FTvN System?

The FTvN system subsumes two fairly general systems:

> The normal decomposition system proposed by Lewis [Lew96].
® Special case: the system induced by the singular-value map o on R™*™ (or

men), where 0’1(X) Z s Z Umin{m,n}(X) 2 0.
> The system induced by complete isometric hyperbolic polynomials [Bau01].

® Let p: E — R be a degree-n homogeneous polynomial that is hyperbolic w.r.t.
some d € E, namely, p(d) # 0 and ¢t — p(td — x) has only real roots:

Ar(x) > - > A(z) = Az) = (Ai(x),. .., A (z)).

® If p is complete and isometric, then (E,R™,\) is a FTvN system, and ran A is
a closed convex cone.

® Special case: A is the eigenvalue map on a Euclidean Jordan algebra of rank
n, and in particular, on S™ (or H"), where A1 (X) > --- > A\ (X).
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Why FTvN System?

The FTvN system subsumes two fairly general systems:

> The normal decomposition system proposed by Lewis [Lew96].
® Special case: the system induced by the singular-value map o on R™*™ (or

men), where 0’1(X) Z s Z Umin{m,n}(X) 2 0.
> The system induced by complete isometric hyperbolic polynomials [Bau01].

® Let p: E — R be a degree-n homogeneous polynomial that is hyperbolic w.r.t.
some d € E, namely, p(d) # 0 and ¢t — p(td — x) has only real roots:

Ar(x) > - > A(z) = Az) = (Ai(x),. .., A (z)).

® If p is complete and isometric, then (E,R™,\) is a FTvN system, and ran A is
a closed convex cone.

® Special case: A is the eigenvalue map on a Euclidean Jordan algebra of rank
n, and in particular, on S™ (or H"), where A1 (X) > --- > A\ (X).

> Our approach initially targeted the eigenvalue map on S™, but then was
straightforwardly generalized to the FTvIN system.
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Motivation

S:=21C) = convS =7

>> It is of natural theoretical interest.
> S frequently appears in the spectrally constrained optimization:
min f(z) s.t. €S (also affine constraints on x)

> Due to its nonconvex nature, a natural step to obtain its global optimal
solutions is to convexify S.
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Existing Results

S:=21C) = convS =7

> When C is “invariant”, it is well-known that S is closed and convex if and only if C
is closed and convex, clconvS = A~*(clconv C).

> However, little is known when C is “non-invariant”.

> The notion of “invariance” is indeed defined w.r.t. ran A = K:

A K Invariance

reorderin, L
&/ RY permutation inv.

eigenvalue map

bsolut deri
& .SO ute reordering / RT NR} | permutation & sign inv.
singular-value map

absolute-value map R% sign inv.
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Existing Results

S:=21C) = convS =7

> When C is “invariant”, it is well-known that S is closed and convex if and only if C
is closed and convex, clconvS = A~*(clconv C).

> However, little is known when C is “non-invariant”.

> The notion of “invariance” is indeed defined w.r.t. ran A = K:

A K Invariance
reorderin, L
&/ RY permutation inv.

eigenvalue map
absolute reordering /
singular-value map
absolute-value map R} sign inv.

R} NRY | permutation & sign inv.

> In the FTVN system, “invariance” is defined via another spectral map v on R"
that is compatible to K, but v may not exist for any closed convex cone K.
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Main Contribution

S:=X1') = convS =7?

We provide projection-based characterizations of clconvS when C is
non-invariant and invariant.
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Main Contribution

S:=X1') = convS =7?

We provide projection-based characterizations of clconvS when C is
non-invariant and invariant.

> C is non-invariant (but has other properties): we develop a new approach for
characterizing clconv S, based on characterizing the bipolar set of S.

® Although the idea is simple, this approach works very well with the two
defining properties of the spectral map through convex dualities.

(P1) For all z,y € E, we have (z,y) < (M), A(y)) :== >, Mi(z)Xi(y).
(P2) For all p € K and y € E, there exists z € E such that

A(@) = p and (z,y) = (M), A(Y)) -
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non-invariant and invariant.
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Main Contribution

S:=21C) = convS =7

We provide projection-based characterizations of clconvS when C is
non-invariant and invariant.

> C is non-invariant (but has other properties): we develop a new approach for
characterizing clconv S, based on characterizing the bipolar set of S.

® Although the idea is simple, this approach works very well with the two
defining properties of the spectral map through convex dualities.

>> C is invariant: we derive a projection-based characterization of clconv S,
which complements the characterization A~!(clconv C).
® This characterization sometimes has a simpler description than A™*(clconv C).

® Qur result unifies and extends the results in Kim et al. [KTR22] developed
for special cases of A and C.
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First Main Result

Theorem 1 (Closed and Convex C)

Let A : E — K be a spectral map, and C be closed and convex such that C NriKC
is monempty and bounded.

IfCNRS(K) # 0, then
clconvS={z€eE: IpelCnk s.t. ANz)—peK}. (PCy)
Moreover, if K is polyhedral, then the assumptions on C N ri K can be dropped.

Renbo Zhao (Ulowa)




First Main Result

Theorem 1 (Closed and Convex C)

Let A : E — K be a spectral map, and C be closed and convex such that C NriKC
is monempty and bounded.

IfCNRS(K) # 0, then
clconvS={z€eE: IpelCnk s.t. ANz)—peK}. (PCo)
Moreover, if K is polyhedral, then the assumptions on C N ri K can be dropped.

> Checking if i € clconv S is a convex feasibility problem, and can be solved in
polynomial time under some assumptions.

> (PCy) is derived using convex dualities, and the assumptions on C Nri K
mainly ensure strong dualities hold.
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Corollary

Corollary 1 (Non-Convex or Non-closed C)

Let A : E — K be a spectral map, and D := clconv (C N K) satisfy that DNrikC
is nonempty and bounded.

If DNRS(K) # 0, then
cleconvS ={z €E: Jpuecleonv(CNK) s.t. AMz)—pe K} (PCy)
Moreover, if K is polyhedral, then the assumptions on D Nrik can be dropped.
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Corollary

Corollary 1 (Non-Convex or Non-closed C)

Let A : E — K be a spectral map, and D := clconv (C N K) satisfy that DNrikC
is nonempty and bounded.

If DNRS(K) # 0, then
cleconvS ={z €E: Jpuecleonv(CNK) s.t. AMz)—pe K} (PCy)
Moreover, if K is polyhedral, then the assumptions on D NrikC can be dropped.

Proof. Define 8’ := A\~1(D). Then clconvS’ = clconv S. O

Renbo Zhao (Ulowa)
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Some Special Cases

Notation: < := majorization and <, := weak majorization.
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Some Special Cases

Notation: < := majorization and <, := weak majorization.
> When A is the eigenvalue map on S": K = R} and

clconvS ={X € S": Juecleconv(CNK) s.t. A(X) < pu}.

> When A is the singular-value map o on R™*": £ = R NRY} and

cleconvS = {X e R™*": Jpu ecleconv (CNK) s.t. 0(X) <y u}-

> When X is the absolute-value map | - | on R™: K = R’ and
clconvS = {z € R": Jpu eclconv(CNK) s.t. |z| < u}.
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Proof Sketch

Lemma 1 (Linear optimization over spectral sets)

For any c € R™ and any nonempty set Y C R™, we have

supge {(y, @) + (¢, A(2)) + Ax) € U} = sup ey (My) + ¢, )

For any set U # 0, define its support function oy : y — sup, <y, (y, ) and

U ={y:ouly) <1}
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Proof Sketch

Lemma 1 (Linear optimization over spectral sets)

For any c € R™ and any nonempty set Y C R™, we have

supge {(y, @) + (¢, A(2)) + Ax) € U} = sup ey (My) + ¢, )

For any set U # 0, define its support function oy : y — sup, <y, (y, ) and
U ={y:ouly) <1}

Lemma 2 (Characterizing S°)

Let C be closed and convez, and define D :==CNK # 0. If K is polyhedral or
CNrikC #0, then

S°={yeE:32eD°s.t. A(y) —z€K°}

Since §°° ={z € E: 0go(z) <1}
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Proof Sketch

0so(x) = supyeg, .epe {(2,9) : My) — 2z € K°}
= inf,ex {ope(p) + A(z) —p € K%}
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Proof Sketch

0so(x) = supyeg, .epe {(2,9) : My) — 2z € K°}
= inf,ex {ope(p) + A(z) —p € K%}

HIf0eC,0eD(=CNK)and 0 €S, and we have
S ={xeE:0s(x) <1}
={zxeR:Tpek st. op(p) <1, MNz)—pek®}
={ze€E:FpeD st. ANz)—pnek®}

Note that clconv S = §°°.
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Proof Sketch

0se () = supyep, .epe {(2,9) : Aly) — 2z € £}
=inf,cx {ope(p) : AM(z) —pe K}

HIf0eC,0eD(=CNK)and 0 €S, and we have
S ={xeE:0s(x) <1}
={zeE:Fpek st. ope(u) <1, AMz)—pek°}
={ze€E:FpeD st. ANz)—pnek®}

Note that clconv S = §°°.

ii) If C N RS(K) # 0, since A satisfies (Res), define
§:=8—-d={z€k: Na+d)eD}={z€E: \z) €D —w}
and note that clconv (S) = clconv (S') + d.
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Invariance in the FTvN System

Definition 1 (A-Compatible Spectral Map)

Let v : R™ — K be a spectral map. If yo A = X on E, then ~ is called
A-compatible.

Definition 2 (y-Invariant Set)

Let v : R® — K be a spectral map. A set () # U C R" is called y-invariant if
for any u € U, [u] CU, where

(] ={v eR™ :v(v) =~v(u)}
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The Second Main Result

Theorem 2 (Projection-Based Characterization for Invariant C)

Given a spectral map X : E — IC, let v : R™ — K be a A-compatible spectral
map, and C be a y-invariant set.

Then for any D satisfying that

conv(CNK)CDC (cleonvC) N K,

we have clconvS = cl Pp, where

Pp:={x€E: IpeD s.t. A(x) —uek’}.
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An Example

> Let K := R NRY, y(u) == [p|" and C:= { € R" : [|ullo <k, ||l < 1} for
some 1 < k <n.
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An Example

> Let K := R NRY, y(u) == [p|" and C:= { € R" : [|ullo <k, ||l < 1} for
some 1 < k <n.

> Note that clconvC can be rather complicated to describe, but
CAK={p R} :u>0, pps1 <0, [[ufl2 <1},

which is convex and compact. We let D =C N K.
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An Example

> Let K := R NRY, y(u) == [p|" and C:= { € R" : [|ullo <k, ||l < 1} for
some 1 < k <n.

> Note that clconvC can be rather complicated to describe, but
CAK={p R} :u>0, pps1 <0, [[ufl2 <1},

which is convex and compact. We let D =C N K.

> Since D is bounded, we have

cleonvS={z€E: 3ueD s.t. \Mx) <w 4}
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Corollary

Corollary 2 (Projection-Based Characterization for Any Feasible C)

Given a spectral map X : E — IC, let v : R™ — K be a A-compatible spectral
map, and C be any feasible set (namely, CNK #0).

Then for any D satisfying that
conv(CNK) C D Ccleconv (CNK),

we have clconvS = cl Pp, where

Pp:={x€E: IpeD s.t. A(x) —pueck’}.

Proof. Define C := U,ccnk [1]- Note that CNK=CNnKand S =X"1C).
Then apply Theorem 2 to A~1(C). O
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Thank you!
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