On the Projection-Based Convexification of Some Spectral Sets

Renbo Zhao

Tippie College of Business University of Iowa

26th Midwest Optimization Meeting University of Waterloo, Ontario Nov, 2024

 \triangleright Let $(\mathbb{E}, \langle \cdot, \cdot \rangle)$ be a finite-dimensional real inner-product space, and $\mathcal{K} \subseteq \mathbb{R}^n$ be a nonempty, closed and convex cone.

- \triangleright Let $(\mathbb{E}, \langle \cdot, \cdot \rangle)$ be a finite-dimensional real inner-product space, and $\mathcal{K} \subseteq \mathbb{R}^n$ be a nonempty, closed and convex cone.
- \triangleright Consider a function $\lambda : \mathbb{E} \to \mathcal{K}$ that satisfies

(P1) For all $x, y \in \mathbb{E}$, we have $\langle x, y \rangle \leq \langle \lambda(x), \lambda(y) \rangle := \sum_{i=1}^{n} \lambda_i(x) \lambda_i(y)$.

(P2) For all $\mu \in \mathcal{K}$ and $y \in \mathbb{E}$, there exists $x \in \mathbb{E}$ such that

 $\lambda(x) = \mu$ and $\langle x, y \rangle = \langle \lambda(x), \lambda(y) \rangle$.

We call $\lambda : \mathbb{E} \to \mathcal{K}$ a *spectral map* (with ran $\lambda = \mathcal{K}$).

- \triangleright Let $(\mathbb{E}, \langle \cdot, \cdot \rangle)$ be a finite-dimensional real inner-product space, and $\mathcal{K} \subseteq \mathbb{R}^n$ be a nonempty, closed and convex cone.
- \triangleright Consider a function $\lambda : \mathbb{E} \to \mathcal{K}$ that satisfies

(P1) For all $x, y \in \mathbb{E}$, we have $\langle x, y \rangle \le \langle \lambda(x), \lambda(y) \rangle := \sum_{i=1}^n \lambda_i(x) \lambda_i(y)$.

(P2) For all $\mu \in \mathcal{K}$ and $y \in \mathbb{E}$, there exists $x \in \mathbb{E}$ such that

 $\lambda(x) = \mu$ and $\langle x, y \rangle = \langle \lambda(x), \lambda(y) \rangle$.

We call $\lambda : \mathbb{E} \to \mathcal{K}$ a *spectral map* (with ran $\lambda = \mathcal{K}$).

 \triangleright Given λ and $\mathcal{C} \subseteq \mathbb{R}^n$, define the *spectral set*

$$
\mathcal{S} := \lambda^{-1}(\mathcal{C}) := \{ x \in \mathbb{E} : \lambda(x) \in \mathcal{C} \}.
$$

We always assume that $C \cap \mathcal{K} \neq \emptyset$.

 \rhd $(\mathbb{E}, \mathbb{R}^n, \lambda)$ is a Fan-Theobald-von Neumann (FTvN) system if (P1) For all $x, y \in \mathbb{E}$, we have $\langle x, y \rangle \leq \langle \lambda(x), \lambda(y) \rangle := \sum_{i=1}^{n} \lambda_i(x) \lambda_i(y)$.

(P2) For all $\mu \in \mathcal{K}$ and $y \in \mathbb{E}$, there exists $x \in \mathbb{E}$ such that

 $\lambda(x) = \mu$ and $\langle x, y \rangle = \langle \lambda(x), \lambda(y) \rangle$.

 \rhd $(\mathbb{E}, \mathbb{R}^n, \lambda)$ is a Fan-Theobald-von Neumann (FTvN) system if (P1) For all $x, y \in \mathbb{E}$, we have $\langle x, y \rangle \leq \langle \lambda(x), \lambda(y) \rangle := \sum_{i=1}^{n} \lambda_i(x) \lambda_i(y)$.

(P2) For all $\mu \in \mathcal{K}$ and $y \in \mathbb{E}$, there exists $x \in \mathbb{E}$ such that

$$
\lambda(x) = \mu
$$
 and $\langle x, y \rangle = \langle \lambda(x), \lambda(y) \rangle$.

As a result,

(Iso) For all $x \in \mathbb{E}$, $||x|| = ||\lambda(x)||_2$, where $|| \cdot ||$ is induced by $\langle \cdot, \cdot \rangle$ on \mathbb{E} . (Res) For any $\omega \in \mathsf{RS}(\mathcal{K}) := \mathcal{K} \cap (-\mathcal{K})$, there exists $d \in \mathbb{E}$ such that

$$
\lambda(x+d) = \lambda(x) + \omega, \quad \forall x \in \mathbb{E}.
$$

 \rhd $(\mathbb{E}, \mathbb{R}^n, \lambda)$ is a Fan-Theobald-von Neumann (FTvN) system if (P1) For all $x, y \in \mathbb{E}$, we have $\langle x, y \rangle \leq \langle \lambda(x), \lambda(y) \rangle := \sum_{i=1}^{n} \lambda_i(x) \lambda_i(y)$.

(P2) For all $\mu \in \mathcal{K}$ and $y \in \mathbb{E}$, there exists $x \in \mathbb{E}$ such that

$$
\lambda(x) = \mu
$$
 and $\langle x, y \rangle = \langle \lambda(x), \lambda(y) \rangle$.

As a result,

(Iso) For all $x \in \mathbb{E}$, $||x|| = ||\lambda(x)||_2$, where $|| \cdot ||$ is induced by $\langle \cdot, \cdot \rangle$ on \mathbb{E} .

(Res) For any $\omega \in \mathsf{RS}(\mathcal{K}) := \mathcal{K} \cap (-\mathcal{K})$, there exists $d \in \mathbb{E}$ such that

$$
\lambda(x+d) = \lambda(x) + \omega, \quad \forall x \in \mathbb{E}.
$$

 \triangleright Initially proposed by Gowda [\[Gow19\]](#page-49-1), and subsequently studied by Gowda and Jeong [\[GJ23;](#page-49-2) [JG23\]](#page-49-3).

- \triangleright The normal decomposition system proposed by Lewis [\[Lew96\]](#page-49-4).
	- Special case: the system induced by the singular-value map σ on $\mathbb{R}^{m \times n}$ (or $\mathbb{C}^{m \times n}$), where $\sigma_1(X) \geq \cdots \geq \sigma_{\min\{m,n\}}(X) \geq 0$.

- \triangleright The normal decomposition system proposed by Lewis [\[Lew96\]](#page-49-4).
	- Special case: the system induced by the singular-value map σ on $\mathbb{R}^{m \times n}$ (or $\mathbb{C}^{m \times n}$), where $\sigma_1(X) \geq \cdots \geq \sigma_{\min\{m,n\}}(X) \geq 0$.
- The system induced by complete isometric hyperbolic polynomials [\[Bau01\]](#page-49-5).
	- Let $p : \mathbb{R} \to \mathbb{R}$ be a degree-*n* homogeneous polynomial that is *hyperbolic* w.r.t. some $d \in \mathbb{E}$, namely, $p(d) \neq 0$ and $t \mapsto p(td - x)$ has only real roots:

$$
\lambda_1(x) \geq \cdots \geq \lambda_n(x) \quad \Rightarrow \quad \lambda(x) := (\lambda_1(x), \ldots, \lambda_n(x)).
$$

- If *p* is complete and isometric, then $(\mathbb{E}, \mathbb{R}^n, \lambda)$ is a FTvN system, and ran λ is a closed convex cone.
- Special case: *λ* is the eigenvalue map on a Euclidean Jordan algebra of rank *n*, and in particular, on \mathbb{S}^n (or \mathbb{H}^n), where $\lambda_1(X) \geq \cdots \geq \lambda_n(X)$.

- \triangleright The normal decomposition system proposed by Lewis [\[Lew96\]](#page-49-4).
	- Special case: the system induced by the singular-value map σ on $\mathbb{R}^{m \times n}$ (or $\mathbb{C}^{m \times n}$), where $\sigma_1(X) \geq \cdots \geq \sigma_{\min\{m,n\}}(X) \geq 0$.
- The system induced by complete isometric hyperbolic polynomials [\[Bau01\]](#page-49-5).
	- Let $p : \mathbb{R} \to \mathbb{R}$ be a degree-*n* homogeneous polynomial that is *hyperbolic* w.r.t. some $d \in \mathbb{E}$, namely, $p(d) \neq 0$ and $t \mapsto p(td - x)$ has only real roots:

$$
\lambda_1(x) \geq \cdots \geq \lambda_n(x) \quad \Rightarrow \quad \lambda(x) := (\lambda_1(x), \ldots, \lambda_n(x)).
$$

- If *p* is complete and isometric, then $(\mathbb{E}, \mathbb{R}^n, \lambda)$ is a FTvN system, and ran λ is a closed convex cone.
- Special case: *λ* is the eigenvalue map on a Euclidean Jordan algebra of rank *n*, and in particular, on \mathbb{S}^n (or \mathbb{H}^n), where $\lambda_1(X) \geq \cdots \geq \lambda_n(X)$.
- \triangleright Our approach initially targeted the eigenvalue map on \mathbb{S}^n , but then was straightforwardly generalized to the FTvN system.

Motivation

$$
\mathcal{S}:=\lambda^{-1}(\mathcal{C})\quad\Rightarrow\quad\operatorname{conv}\mathcal{S}\ =?\quad
$$

Motivation

$$
\mathcal{S}:=\lambda^{-1}(\mathcal{C})\quad \Rightarrow\quad \mathsf{conv}\,\mathcal{S}\ = ?
$$

 \triangleright It is of natural theoretical interest.

Motivation

$$
\mathcal{S}:=\lambda^{-1}(\mathcal{C})\quad \Rightarrow\quad \mathsf{conv}\,\mathcal{S}\ =?\hspace{0.25cm}
$$

- \triangleright It is of natural theoretical interest.
- \triangleright S frequently appears in the spectrally constrained optimization: min $f(x)$ s*.*t*.* $x \in S$ (also affine constraints on *x*)

$$
\mathcal{S} := \lambda^{-1}(\mathcal{C}) \quad \Rightarrow \quad \text{conv } \mathcal{S} \ = ?
$$

- \triangleright It is of natural theoretical interest.
- \triangleright S frequently appears in the spectrally constrained optimization: min $f(x)$ s.t. $x \in S$ (also affine constraints on *x*)
- \triangleright Due to its nonconvex nature, a natural step to obtain its global optimal solutions is to convexify $\mathcal{S}.$

$$
\mathcal{S} := \lambda^{-1}(\mathcal{C}) \quad \Rightarrow \quad \text{conv } \mathcal{S} \ = ?
$$

$$
\mathcal{S}:=\lambda^{-1}(\mathcal{C})\quad\Rightarrow\quad\operatorname{conv}\mathcal{S}\ = ?
$$

 \triangleright When C is "invariant", it is well-known that S is closed and convex if and only if C is closed and convex, clconv $S = \lambda^{-1}$ (clconv C).

$$
\mathcal{S}:=\lambda^{-1}(\mathcal{C})\quad\Rightarrow\quad\operatorname{conv}\mathcal{S}\ = ?
$$

- \triangleright When C is "invariant", it is well-known that S is closed and convex if and only if C is closed and convex, clconv $S = \lambda^{-1}$ (clconv C).
- \triangleright However, little is known when C is "non-invariant".

$$
\mathcal{S}:=\lambda^{-1}(\mathcal{C})\quad\Rightarrow\quad\operatorname{conv}\mathcal{S}\ = ?
$$

- \triangleright When C is "invariant", it is well-known that S is closed and convex if and only if C is closed and convex, clconv $S = \lambda^{-1}$ (clconv C).
- \triangleright However, little is known when C is "non-invariant".
- \triangleright The notion of "invariance" is indeed defined w.r.t. ran $\lambda = \mathcal{K}$:

$$
\mathcal{S}:=\lambda^{-1}(\mathcal{C})\quad\Rightarrow\quad\operatorname{conv}\mathcal{S}\ = ?
$$

- \triangleright When C is "invariant", it is well-known that S is closed and convex if and only if C is closed and convex, clconv $S = \lambda^{-1}$ (clconv C).
- \triangleright However, little is known when C is "non-invariant".
- \triangleright The notion of "invariance" is indeed defined w.r.t. ran $\lambda = \mathcal{K}$:

 \triangleright In the FTvN system, "invariance" is defined via another spectral map γ on \mathbb{R}^n that is compatible to K, but γ *may not exist* for any closed convex cone K.

$$
\mathcal{S}:=\lambda^{-1}(\mathcal{C})\quad\Rightarrow\quad\operatorname{conv}\mathcal{S}\ = ?
$$

$$
\mathcal{S}:=\lambda^{-1}(\mathcal{C})\quad\Rightarrow\quad\operatorname{conv}\mathcal{S}\ = ?
$$

We provide *projection-based* characterizations of **clconv** S when \mathcal{C} is non-invariant and invariant.

 \triangleright C is non-invariant (but has other properties): we develop a new approach for characterizing clconv S, based on characterizing the *bipolar set* of S.

$$
\mathcal{S}:=\lambda^{-1}(\mathcal{C})\quad\Rightarrow\quad\operatorname{conv}\mathcal{S}\ = ?
$$

We provide *projection-based* characterizations of **clconv** S when \mathcal{C} is non-invariant and invariant.

- \triangleright C is non-invariant (but has other properties): we develop a new approach for characterizing clconv S, based on characterizing the *bipolar set* of S.
	- Although the idea is simple, this approach works very well with the two defining properties of the spectral map through convex dualities.
	- (P1) For all $x, y \in \mathbb{E}$, we have $\langle x, y \rangle \leq \langle \lambda(x), \lambda(y) \rangle := \sum_{i=1}^{n} \lambda_i(x) \lambda_i(y)$.

(P2) For all $\mu \in \mathcal{K}$ and $\eta \in \mathbb{E}$, there exists $x \in \mathbb{E}$ such that

$$
\lambda(x) = \mu
$$
 and $\langle x, y \rangle = \langle \lambda(x), \lambda(y) \rangle$.

$$
\mathcal{S}:=\lambda^{-1}(\mathcal{C})\quad\Rightarrow\quad\operatorname{conv}\mathcal{S}\ = ?
$$

- \triangleright C is non-invariant (but has other properties): we develop a new approach for characterizing clconv S, based on characterizing the *bipolar set* of S.
	- Although the idea is simple, this approach works very well with the two defining properties of the spectral map through convex dualities.
- \triangleright C is invariant: we derive a projection-based characterization of clconv S, which complements the characterization λ^{-1} (clconv C).

$$
\mathcal{S}:=\lambda^{-1}(\mathcal{C})\quad\Rightarrow\quad\operatorname{conv}\mathcal{S}\ = ?
$$

- \triangleright C is non-invariant (but has other properties): we develop a new approach for characterizing closes S , based on characterizing the *bipolar set* of S .
	- Although the idea is simple, this approach works very well with the two defining properties of the spectral map through convex dualities.
- \triangleright C is invariant: we derive a projection-based characterization of clconv S, which complements the characterization λ^{-1} (clconv C).
	- This characterization sometimes has a simpler description than λ^{-1} (clconv C).

$$
\mathcal{S}:=\lambda^{-1}(\mathcal{C})\quad\Rightarrow\quad\operatorname{conv}\mathcal{S}\ = ?
$$

- \triangleright C is non-invariant (but has other properties): we develop a new approach for characterizing closes S , based on characterizing the *bipolar set* of S .
	- Although the idea is simple, this approach works very well with the two defining properties of the spectral map through convex dualities.
- \triangleright C is invariant: we derive a projection-based characterization of clconv S, which complements the characterization λ^{-1} (clconv C).
	- This characterization sometimes has a simpler description than λ^{-1} (clconv C).
	- Our result unifies and extends the results in Kim et al. [\[KTR22\]](#page-49-6) developed for special cases of λ and \mathcal{C} .

First Main Result

Theorem 1 (Closed and Convex \mathcal{C})

Let $\lambda : \mathbb{E} \to \mathcal{K}$ *be a spectral map, and* C *be closed and convex such that* $\mathcal{C} \cap \mathsf{r} \mathcal{K}$ *is nonempty and bounded.*

If $C \cap RS(\mathcal{K}) \neq \emptyset$ *, then*

clconv $S = \{x \in \mathbb{E} : \exists \mu \in \mathcal{C} \cap \mathcal{K} \text{ s.t. } \lambda(x) - \mu \in \mathcal{K}^{\circ}\}.$ (PC_0)

Moreover, if K *is polyhedral, then the assumptions on* $C \cap r \times K$ *can be dropped.*

First Main Result

Theorem 1 (Closed and Convex \mathcal{C})

Let $\lambda : \mathbb{E} \to \mathcal{K}$ *be a spectral map, and* C *be closed and convex such that* $\mathcal{C} \cap \mathsf{r} \mathcal{K}$ *is nonempty and bounded.*

If $C \cap RS(\mathcal{K}) \neq \emptyset$ *, then*

clconv $S = \{x \in \mathbb{E} : \exists \mu \in \mathcal{C} \cap \mathcal{K} \text{ s.t. } \lambda(x) - \mu \in \mathcal{K}^{\circ}\}.$ (PC_0)

Moreover, if K *is polyhedral, then the assumptions on* $C \cap r \times K$ *can be dropped.*

- \triangleright Checking if $\mu \in \text{clconv } S$ is a convex feasibility problem, and can be solved in polynomial time under some assumptions.
- \rhd [\(PC](#page-28-0)₀) is derived using convex dualities, and the assumptions on $\mathcal{C} \cap \mathsf{ri} \mathcal{K}$ mainly ensure strong dualities hold.

Corollary 1 (Non-Convex or Non-closed \mathcal{C})

 $Let \lambda : \mathbb{E} \to \mathcal{K}$ *be a spectral map, and* $\mathcal{D} :=$ clconv ($\mathcal{C} \cap \mathcal{K}$) *satisfy that* $\mathcal{D} \cap$ ri \mathcal{K} *is nonempty and bounded.*

If $\mathcal{D} \cap \text{RS}(\mathcal{K}) \neq \emptyset$ *, then*

clconv $S = \{x \in \mathbb{E} : \exists \mu \in \text{clconv} \, (\mathcal{C} \cap \mathcal{K}) \text{ s.t. } \lambda(x) - \mu \in \mathcal{K}^{\circ} \}.$ (PC_1)

Moreover, if K *is polyhedral, then the assumptions on* $\mathcal{D} \cap \mathbf{r}$ K *can be dropped.*

Corollary 1 (Non-Convex or Non-closed \mathcal{C})

 $Let \lambda : \mathbb{E} \to \mathcal{K}$ *be a spectral map, and* $\mathcal{D} :=$ clconv $(\mathcal{C} \cap \mathcal{K})$ *satisfy that* $\mathcal{D} \cap$ ri \mathcal{K} *is nonempty and bounded.*

If $\mathcal{D} \cap \text{RS}(\mathcal{K}) \neq \emptyset$ *, then*

clconv $S = \{x \in \mathbb{E} : \exists \mu \in \text{clconv} \, (\mathcal{C} \cap \mathcal{K}) \text{ s.t. } \lambda(x) - \mu \in \mathcal{K}^{\circ} \}.$ (PC_1)

Moreover, if K *is polyhedral, then the assumptions on* $D \cap r$ iK *can be dropped.*

Proof. Define $S' := \lambda^{-1}(\mathcal{D})$. Then clconv $S' =$ clconv S .

Notation: \prec := majorization and \prec_w := weak majorization.

Notation: $\prec :=$ majorization and $\prec_w :=$ weak majorization.

 \rhd When λ is the eigenvalue map on \mathbb{S}^n : $\mathcal{K} = \mathbb{R}^n_+$ and $\mathcal{S} = \{ X \in \mathbb{S}^n : \exists \mu \in \text{clconv} \left(\mathcal{C} \cap \mathcal{K} \right) \text{ s.t. } \lambda(X) \prec \mu \}.$

Notation: $\prec :=$ majorization and $\prec_w :=$ weak majorization.

 \rhd When λ is the eigenvalue map on \mathbb{S}^n : $\mathcal{K} = \mathbb{R}^n_+$ and $\mathcal{S} = \{ X \in \mathbb{S}^n : \exists \mu \in \text{clconv} \left(\mathcal{C} \cap \mathcal{K} \right) \text{ s.t. } \lambda(X) \prec \mu \}.$

 \rhd When λ is the singular-value map σ on $\mathbb{R}^{m \times n}$: $\mathcal{K} = \mathbb{R}^n_\downarrow \cap \mathbb{R}^n_+$ and $\mathcal{S} = \{ X \in \mathbb{R}^{m \times n} : \exists \mu \in \mathsf{clconv} \left(\mathcal{C} \cap \mathcal{K} \right) \text{ s.t. } \sigma(X) \prec_{\mathsf{w}} \mu \}.$

Notation: $\prec :=$ majorization and $\prec_w :=$ weak majorization.

 \rhd When λ is the eigenvalue map on \mathbb{S}^n : $\mathcal{K} = \mathbb{R}^n_+$ and $\mathcal{S} = \{ X \in \mathbb{S}^n : \exists \mu \in \text{clconv} \left(\mathcal{C} \cap \mathcal{K} \right) \text{ s.t. } \lambda(X) \prec \mu \}.$

 \rhd When λ is the singular-value map σ on $\mathbb{R}^{m \times n}$: $\mathcal{K} = \mathbb{R}^n_\downarrow \cap \mathbb{R}^n_+$ and $\mathcal{S} = \{ X \in \mathbb{R}^{m \times n} : \exists \mu \in \mathsf{clconv} \left(\mathcal{C} \cap \mathcal{K} \right) \text{ s.t. } \sigma(X) \prec_{\mathsf{w}} \mu \}.$

 \rhd When λ is the absolute-value map $|\cdot|$ on \mathbb{R}^n : $\mathcal{K} = \mathbb{R}^n_+$ and $\mathcal{S} = \{x \in \mathbb{R}^n : \exists \mu \in \text{clconv}(\mathcal{C} \cap \mathcal{K}) \text{ s.t. } |x| \leq \mu\}.$

Lemma 1 (Linear optimization over spectral sets) *For any* $c \in \mathbb{R}^n$ *and any nonempty set* $\mathcal{U} \subseteq \mathbb{R}^n$ *, we have* $\sup_{x \in \mathbb{R}} \left\{ \langle y, x \rangle + \langle c, \lambda(x) \rangle : \lambda(x) \in \mathcal{U} \right\} = \sup_{\mu \in \mathcal{U} \cap \mathcal{K}} \left\{ \lambda(y) + c, \mu \right\}$

For any set $\mathcal{U} \neq \emptyset$, define its support function $\sigma_{\mathcal{U}} : y \mapsto \sup_{x \in \mathcal{U}} \langle y, x \rangle$ and

$$
\mathcal{U}^{\circ} := \{ y : \sigma_{\mathcal{U}}(y) \leq 1 \}.
$$

Lemma 1 (Linear optimization over spectral sets) *For any* $c \in \mathbb{R}^n$ *and any nonempty set* $\mathcal{U} \subseteq \mathbb{R}^n$ *, we have* $\sup_{x \in \mathbb{R}} \left\{ \langle y, x \rangle + \langle c, \lambda(x) \rangle : \lambda(x) \in \mathcal{U} \right\} = \sup_{u \in \mathcal{U} \cap \mathcal{K}} \left\{ \lambda(y) + c, \mu \right\}$

For any set $\mathcal{U} \neq \emptyset$, define its support function $\sigma_{\mathcal{U}} : y \mapsto \sup_{x \in \mathcal{U}} \langle y, x \rangle$ and

$$
\mathcal{U}^{\circ} := \{ y : \sigma_{\mathcal{U}}(y) \leq 1 \}.
$$

Lemma 2 (Characterizing \mathcal{S}°)

Let C *be closed and convex, and define* $D := C \cap K \neq \emptyset$ *. If* K *is polyhedral or* $\mathcal{C} \cap \mathsf{ri}\,\mathcal{K} \neq \emptyset$, then

$$
\mathcal{S}^{\circ} = \{ y \in \mathbb{E} : \exists z \in \mathcal{D}^{\circ} \text{ s.t. } \lambda(y) - z \in \mathcal{K}^{\circ} \}
$$

Since $\mathcal{S}^{\circ\circ} = \{x \in \mathbb{E} : \sigma_{\mathcal{S}^{\circ}}(x) \leq 1\}$

$$
\sigma_{\mathcal{S}^{\circ}}(x) = \sup_{y \in \mathbb{E}, z \in \mathcal{D}^{\circ}} \left\{ \langle x, y \rangle : \lambda(y) - z \in \mathcal{K}^{\circ} \right\}
$$

$$
= \inf_{\mu \in \mathcal{K}} \left\{ \sigma_{\mathcal{D}^{\circ}}(\mu) : \lambda(x) - \mu \in \mathcal{K}^{\circ} \right\}
$$

$$
\sigma_{\mathcal{S}^{\circ}}(x) = \sup_{y \in \mathbb{E}, z \in \mathcal{D}^{\circ}} \left\{ \langle x, y \rangle : \lambda(y) - z \in \mathcal{K}^{\circ} \right\}
$$

$$
= \inf_{\mu \in \mathcal{K}} \left\{ \sigma_{\mathcal{D}^{\circ}}(\mu) : \lambda(x) - \mu \in \mathcal{K}^{\circ} \right\}
$$

i) If $0 \in \mathcal{C}$, $0 \in \mathcal{D}$ (= $\mathcal{C} \cap \mathcal{K}$) and $0 \in \mathcal{S}$, and we have $\mathcal{S}^{\circ\circ} = \{x \in \mathbb{E} : \sigma_{\mathcal{S}^{\circ}}(x) \leq 1\}$ $=\{x \in \mathbb{E} : \exists \mu \in \mathcal{K} \text{ s.t. } \sigma_{\mathcal{D}^{\circ}}(\mu) \leq 1, \lambda(x) - \mu \in \mathcal{K}^{\circ}\}\$ $=\{x \in \mathbb{E} : \exists \mu \in \mathcal{D} \text{ s.t. } \lambda(x) - \mu \in \mathcal{K}^{\circ}\}\$

Note that clconv $S = S^{\circ\circ}$.

$$
\sigma_{\mathcal{S}^{\circ}}(x) = \sup_{y \in \mathbb{E}, z \in \mathcal{D}^{\circ}} \left\{ \langle x, y \rangle : \lambda(y) - z \in \mathcal{K}^{\circ} \right\}
$$

$$
= \inf_{\mu \in \mathcal{K}} \left\{ \sigma_{\mathcal{D}^{\circ}}(\mu) : \lambda(x) - \mu \in \mathcal{K}^{\circ} \right\}
$$

i) If $0 \in \mathcal{C}$, $0 \in \mathcal{D}$ (= $\mathcal{C} \cap \mathcal{K}$) and $0 \in \mathcal{S}$, and we have $\mathcal{S}^{\circ\circ} = \{x \in \mathbb{E} : \sigma_{\mathcal{S}^{\circ}}(x) \leq 1\}$ $=\{x \in \mathbb{E} : \exists \mu \in \mathcal{K} \text{ s.t. } \sigma_{\mathcal{D}^{\circ}}(\mu) \leq 1, \lambda(x) - \mu \in \mathcal{K}^{\circ}\}\$ $=\{x \in \mathbb{E} : \exists \mu \in \mathcal{D} \text{ s.t. } \lambda(x) - \mu \in \mathcal{K}^{\circ}\}\$

Note that clconv $S = S^{\circ\circ}$.

ii) If $C \cap RS(\mathcal{K}) \neq \emptyset$, since λ satisfies (Res), define $\mathcal{S}' := \mathcal{S} - d = \{x \in \mathbb{E} : \lambda(x + d) \in \mathcal{D}\} = \{x \in \mathbb{E} : \lambda(x) \in \mathcal{D} - \omega\}$ and note that $\text{clconv}(\mathcal{S}) = \text{clconv}(\mathcal{S}') + d$.

Definition 1 (*λ*-Compatible Spectral Map)

Let $\gamma : \mathbb{R}^n \to \mathcal{K}$ be a spectral map. If $\gamma \circ \lambda = \lambda$ on \mathbb{E} , then γ is called *λ*-compatible.

Definition 2 (*γ*-Invariant Set)

Let $\gamma : \mathbb{R}^n \to \mathcal{K}$ be a spectral map. A set $\emptyset \neq \mathcal{U} \subseteq \mathbb{R}^n$ is called γ -invariant if for any $\mu \in \mathcal{U}$, $[\mu] \subset \mathcal{U}$, where

$$
[\mu]:=\{\nu\in\mathbb{R}^n: \gamma(\nu)=\gamma(\mu)\}.
$$

Theorem 2 (Projection-Based Characterization for Invariant \mathcal{C})

Given a spectral map $\lambda : \mathbb{E} \to \mathcal{K}$, let $\gamma : \mathbb{R}^n \to \mathcal{K}$ be a λ -compatible spectral *map, and* C *be a γ-invariant set.*

Then for any D *satisfying that*

conv $(C \cap K)$ ⊆ D ⊆ (clconv C) $\cap K$,

we have **clconv** $S = cl \mathcal{P}_D$ *, where*

$$
\mathcal{P}_{\mathcal{D}} := \{ x \in \mathbb{E} : \exists \mu \in \mathcal{D} \text{ s.t. } \lambda(x) - \mu \in \mathcal{K}^{\circ} \}.
$$

 \rhd Let $\mathcal{K} := \mathbb{R}^n_+ \cap \mathbb{R}^n_+$, $\gamma(\mu) := |\mu|^{\downarrow}$ and $\mathcal{C} := \{ \mu \in \mathbb{R}^n : ||\mu||_0 \leq k, ||\mu||_2 \leq 1 \}$ for some $1 < k < n$.

 \rhd Let $\mathcal{K} := \mathbb{R}^n_+ \cap \mathbb{R}^n_+$, $\gamma(\mu) := |\mu|^{\downarrow}$ and $\mathcal{C} := \{ \mu \in \mathbb{R}^n : ||\mu||_0 \leq k, ||\mu||_2 \leq 1 \}$ for some $1 < k < n$.

 \triangleright Note that clconv C can be rather complicated to describe, but

$$
C \cap \mathcal{K} = \{ \mu \in \mathbb{R}_{\downarrow}^{n} : \mu \ge 0, \ \mu_{k+1} \le 0, \ \|\mu\|_{2} \le 1 \},
$$

which is convex and compact. We let $\mathcal{D} = \mathcal{C} \cap \mathcal{K}$.

 \rhd Let $\mathcal{K} := \mathbb{R}^n_+ \cap \mathbb{R}^n_+$, $\gamma(\mu) := |\mu|^{\downarrow}$ and $\mathcal{C} := \{ \mu \in \mathbb{R}^n : ||\mu||_0 \leq k, ||\mu||_2 \leq 1 \}$ for some $1 < k < n$.

 \triangleright Note that clconv C can be rather complicated to describe, but

$$
C \cap \mathcal{K} = \{ \mu \in \mathbb{R}_{\downarrow}^{n} : \mu \ge 0, \ \mu_{k+1} \le 0, \ \|\mu\|_{2} \le 1 \},
$$

which is convex and compact. We let $\mathcal{D} = \mathcal{C} \cap \mathcal{K}$.

 \triangleright Since $\mathcal D$ is bounded, we have

$$
\mathsf{clconv}\,\mathcal{S} = \{x \in \mathbb{E} : \, \exists \, \mu \in \mathcal{D} \ \text{ s.t. } \lambda(x) \prec_{\mathrm{w}} \mu\}.
$$

Corollary 2 (Projection-Based Characterization for Any Feasible \mathcal{C}) *Given a spectral map* $\lambda : \mathbb{E} \to \mathcal{K}$ *, let* $\gamma : \mathbb{R}^n \to \mathcal{K}$ *be a* λ *-compatible spectral map, and* \mathcal{C} *be any feasible set* (*namely,* $\mathcal{C} \cap \mathcal{K} \neq \emptyset$).

Then for any D *satisfying that*

conv $(C \cap \mathcal{K}) \subseteq \mathcal{D} \subseteq$ clconv $(C \cap \mathcal{K})$,

we have clconv $S = cl \mathcal{P}_D$, where

$$
\mathcal{P}_{\mathcal{D}} := \{ x \in \mathbb{E} : \exists \mu \in \mathcal{D} \text{ s.t. } \lambda(x) - \mu \in \mathcal{K}^{\circ} \}.
$$

Proof. Define $\tilde{\mathcal{C}} := \cup_{\mu \in \mathcal{C} \cap \mathcal{K}} [\mu]$. Note that $\tilde{\mathcal{C}} \cap \mathcal{K} = \mathcal{C} \cap \mathcal{K}$ and $\mathcal{S} = \lambda^{-1}(\tilde{\mathcal{C}})$. Then apply Theorem [2](#page-42-0) to $\lambda^{-1}(\tilde{\mathcal{C}})$.

Thank you!

References

- [Bau01] Heinz H. Bauschke et al. "Hyperbolic Polynomials and Convex Analysis". In: *Canad. J. Math.* 53.3 (2001), pp. 470–488.
- [GJ23] M.S. Gowda and J. Jeong. "Commutativity, Majorization, and Reduction in Fan–Theobald–von Neumann Systems". In: *Results Math* 78 (72 2023).
- [Gow19] M. Seetharama Gowda. *Optimizing certain combinations of spectral and linear/distance functions over spectral sets*. arXiv:1902.06640. 2019.
- [JG23] Juyoung Jeong and Muddappa Gowda. *Transfer principles, Fenchel conjugate and subdifferential formulas in Fan-Theobald-von Neumann systems*. arXiv:2307.08478. 2023.
- [KTR22] Jinhak Kim, Mohit Tawarmalani, and Jean-Philippe P. Richard. "Convexification of Permutation-Invariant Sets and an Application to Sparse Principal Component Analysis". In: *Math. Oper. Res.* 47.4 (2022), pp. 2547–2584.
- [Lew96] A. S. Lewis. "Group Invariance and Convex Matrix Analysis". In: *SIAM J. Matrix Anal. Appl.* 17.4 (1996), pp. 927–949.