DECOMPOSITION IN OPTIMIZATION: ALGORITHMIC ADVANCES BEYOND ADMM

Terry Rockafellar University of Washington, Seattle

26th MOM and Workshop on Large-Scale Optimization and Applications University of Waterloo, Ontario, Canada November 8–9, 2024

KORK EXTERNE PROVIDE

The need for decomposition:

• Problems in imaging and machine learning can be very large, but structure suggests a breakdown into much smaller subproblems

• A solution might be found by repeatedly solving updated versions of the subproblems in parallel and coordinating the results

Status of current methodology for this:

• Algorithms utilizing augmented Lagrangians are popular

• They typically suffer from the fact that augmentation may interfere with the separability that supports decomposition

New outlook on improvements:

• The progressive decoupling algorithm avoids that trouble

• It exhibits linear convergence "generically" while also providing more flexibility in the articulation of proximal parameters

Structured Problems in Convex Optimization

Commonly chosen format: minimize $f(x) + g(Ax)$ for linear $A: \mathbb{R}^n \to \mathbb{R}^m$ and f, g, closed proper convex **feasible solutions:** $x \in \text{dom } f$ with $Ax \in \text{dom } g$

Possibilities for finer structure:

 $f(x) = f_1(x_1) + \cdots + f_q(x_q), \quad x = (x_1, \ldots, x_q)$ with $x_i \in \mathbb{R}^{n_i}$ $g(z) = g_1(z_i) + \cdots + g_n(z_n), z = (z_1, \ldots, z_n)$ with $z_i \in \mathbb{R}^{m_i}$

Problem examples with such block separability:

minimize $\sum_{j=1}^{q} f_j(x_j) + g(\sum_{j=1}^{q} f_j(x_j))$ maybe with $g = \delta_K$

minimize $f(x) + \sum_{i=1}^{p} g_i(A_i x)$ maybe with $f = \delta_X$, $A_i = I$, or maybe $f = || \cdot ||_1$ and A_i selects several coordinates of x

 \rightarrow how to take advantage of this in computations?

KORKARYKERKER OQO

Augmented Lagrangian Framework

(P) primal problem: minimize $f(x) + g(Ax)$ for $x \in \mathbb{R}^n$ (D) dual problem: maximize $-g^*(y) - f^*(-A^*y)$ for $y \in R^m$

Lagrangian: $L_0(x, y) = f(x) + y \cdot Ax - g^*(y)$ **Augmented Lagrangian:** with $r > 0$ and $g_r(z) = g(z) + \frac{r}{2}|z|^2$ $L_r(x, y) = f(x) + y \cdot Ax + \frac{t}{2}$ $\frac{r}{2}|Ax|^2 - g_r^*(y + rAx)$

Characterization of optimality for any $r \geq 0$ (under a mild c.q.)

$$
\begin{array}{ccc}\n\bar{x} & \text{solves (P)} \\
\bar{y} & \text{solves (D)}\n\end{array} \iff (\bar{x}, \bar{y}) \text{ is a saddle point of } L_r(x, y)
$$

Common reformulation with simpler-looking Lagrangians:

$$
\overline{(P)} \text{ minimize } f(x) + g(z) \text{ subject to } Ax - z = 0
$$
\n
$$
\overline{L}_r(x, z; y) = f(x) + g(z) + y \cdot [Ax - z] + \frac{r}{2} |Ax - z|^2
$$

augmentation ruins block-separability in primal arguments

The Original Methods of Multipliers — ALM

well known procedures based on the proximal point algorithm, PPA

Basic ALM apply the PPA to the dual problem

$$
x^{k+1} \in \operatorname{argmin}_{x} L_r(x, y^k), \qquad y^{k+1} = y^k + r[z^{k+1} - Ax^{k+1}],
$$

where $z^{k+1} = \operatorname{argmin}_{z} \{ g(z) - y^k \cdot z + \frac{r}{2} | z - Ax^{k+1} |^2 \}$

Proximal ALM: apply the PPA to the saddle point problem same except $x^{k+1} = \argmin_{x} \{ L_r(x, y^k) + \frac{1}{2r} |x - x^k|^2 \}$

Characteristics: assuming \exists optimal \bar{x} and \bar{y}

- basic ALM gets convergence of $\{y^k\}$ to some \bar{y} , but might only get cluster points of $\{x^{k}\}$ as \bar{x}
- proximal ALM gets convergence of $\{(x^k, y^k)\}\)$ to some (\bar{x}, \bar{y})

Alternating Direction Method of Multipliers — ADMM

Basic ADMM: a more complicated PPA application

 $x^{k+1} \in \operatorname{argmin}_x \left\{ f(x) + y^k \cdot Ax + \frac{r}{2} \right\}$ $\frac{r}{2}|Ax - z^k|^2$, then exactly as in ALM, $y^{k+1} = y^k + r[z^{k+1} - Ax^{k+1}],$ where $z^{k+1} = \operatorname{argmin}_z \left\{ g(z) - y^k \cdot z + \frac{t}{2} \right\}$ $\frac{r}{2}|z - Ax^{k+1}|^2$

Proximal ADMM: same except $x^{k+1} = \operatorname{argmin}_x \left\{ f(x) + y^k \cdot Ax + \frac{r}{2} \right\}$ $\frac{r}{2}|Ax - z^k|^2 + \frac{1}{2n}$ $\frac{1}{2r}|x - x^k|^2$

Relationships with ALM: the augmented Lagrangian expression $L_r(x, y^k) = f(x) + y^k A x + \frac{r}{2}$ $\frac{r}{2}|Ax|^2 - g^*_{r}(y^k + rAx)$ is simplified in ADMM by an affine substitute for the final term convergence characterics are similar

 $\{x^{k}\}, \{z^{k}\}, \{y^{k}\}\$ converge to some optimal $\bar{x}, \bar{z} = A\bar{x}$, and \bar{y}

KORKAR KERKER E VOOR

Shortcomings of ALM and ADMM for Decomposition

Case of primal block-separability: $x = (x_1, \ldots, x_n)$ $f(x) = f_1(x_1) + \cdots + f_n(x_n), \qquad Ax = A_1x_1 + \cdots + A_nx_n$ Expressions to be minimized iteratively: no separability! ALM $\sum_{j=1}^{q} [f_j(x_j) + y^k A_j x_j] + \frac{r}{2} |\sum_{j=1}^{q} A_j x_j|^2$ $-g_r(y^k + r \sum_{j=1}^q A_j x_j)$ ADMM $\sum_{j=1}^{q} [f_j(x_j) + y^k A_j x_j] + \frac{r}{2} |\sum_{j=1}^{q} A_j x_j - z^k|^2$

Adopted remedy: only rough minimization, Gauss-Seidel mode $\forall j: \quad x_j^{k+1} \in \text{argmin}_{x_j} \left\{ f_j(x_j) + y^k \cdot A_j x_j + \frac{r_j}{2} \right\}$ $\frac{r}{2}|A_jx_j + a_j^k - z^k|^2\}$ where $a_j^k =$ the sum of the terms $A_{j'}x_{j'}^k$ for $j' \neq j$

no longer a PPA application, problematical convergence

Decomposition Achieved Via "Progressive Decoupling"

actually another indirect application of the PPA

New algorithm: generating $\{x_j\}^k$, $\{z^k\}$, $\{y^k\}$, and now $\{w_j^k\}$ $\forall j: x_j^{k+1} = \argmin_{j} \{ f_j(x_j) + y^k \cdot A_j x_j + \frac{r_k}{2} |A_j x_j - w_j^k|^2 + \frac{s_k}{2} |x_j - x_j^k|^2 \}$ xj $z^{k+1} = \arg\min_{z} \left\{ g(z) - y^k \cdot z + \frac{r_k}{2} |z - \sum_{j=1}^q w_j^k|^2 \right\}$ z then update $y^{k+1} = y^k + \frac{r_k}{q+1}\Delta^{k+1}$ $w_j^{k+1} = A_j x_j^{k+1} - \frac{1}{q+1}$ $\left\{\frac{\Delta^{k+1}}{q+1}\Delta^{k+1}\right\}$ for $\Delta^{k+1} = \sum_{j=1}^{q} A_j x_j^{k+1} - z^{k+1}$ "residual" (0 in optimality)

Features to notice: in comparison to proximal ADMM

- w_j^k substitutes for z^k in the decomposed x-minimizations
- $\sum_{j=1}^{q} w_j^k$ substitutes for z^k in z-minimization
- r is now r_k , and the proximal term has parameter s_k

Improvements in the New Decomposition Approach

"rough" minimization using Gauss-Seidel is avoided without asking for calculations any harder than ADMM

Global convergence characteristics:

- $x_j^k \to \bar{x}_j$, $y^k \to \bar{y}$, $z^k \to \bar{z}$, $w_j^k \to A_j \bar{x}_j$ assuming that $r_k \to r_\infty \in (0,\infty)$, $s_k \to s_\infty \in (0,\infty)$
- moreover a linear rate is "generic" in a certain sense (in contrast, linear convergence for ADMM is "very special")
- separate proximal parameters r_k and s_k allow more influence but there are trade-offs, superlinear convergence is out of reach

KELK KØLK VELKEN EL 1990

approximate minimization allowed, with stopping criteria

Decoupling of Linkages in Optimization More Generally

convex case for now, but nonconvex case later **Linkage problem (L):** minimize $\varphi(u)$ over $u \in S \subset R^N$ φ is closed proper convex, S is a subspace giving linkages Optimality condition: $\bar{u} \in S$, $\bar{v} \in S^{\perp}$, $\bar{v} \in \partial \varphi(\bar{u})$ $\longrightarrow \bar{u} \in \operatorname{argmin}_u \left\{ \varphi(u) - \bar{v} \cdot u \right\}$ (under convexity) \bar{v} thus **decouples** by neutralizing the constraint $u \in S$

Example: the instance behind the proposed alternative to ADMM target: minimizing $\sum_{j=1}^q f_j(x_j) + g(\sum_{j=1}^q A_j x_j)$

$$
\varphi(x_1, ..., x_q, z, w_1, ..., w_q) = \sum_{j=1}^q [f_j(x_j) + \delta_0(A_jx_j - w_j)] + g(z)
$$

\n
$$
S = \{(x_1, ..., x_q, z, w_1, ..., w_q) \mid \sum_{j=1}^q w_j = z\}
$$

\n
$$
S^{\perp} = \{(0, ..., 0, y, -y, ..., -y)\} \qquad \delta_0 = \text{indicator of } \{0\}
$$

Solution Methodology with Executable Projections P_S , $P_{S_{\perp}}$

→ aiming for $\bar{u} \in S$, $\bar{v} \in S^{\perp}$, with $\bar{u} \in \text{argmin} \{ \varphi(u) - \bar{v} \cdot u \}$ Linkage-compatible norms: $||u||_{\mathcal{M}} =$ √ u·Mu M symmetric, pos.-definite, with $v \cdot Mu = 0$ when $u \in S$, $v \in S^{\perp}$

Progressive decoupling algorithm, PDA (with recent improvements)

$$
\begin{aligned}\n\text{Generate } \{u^k\} &\subset S, \ \{v^k\} \subset S^\perp, \ \text{from chosen norms } ||\cdot||_{M_k} \text{ by } \\
&\quad (1) \quad \hat{u}^{k+1} = \operatorname{argmin}_{u} \{ \ \varphi(u) - v^k \cdot u + ||u - u^k||_{M_k}^2 \}, \\
&\quad (2) \quad u^{k+1} = P_S(\hat{u}^{k+1}), \qquad v^{k+1} = v^k - M_k P_{S^\perp}(\hat{u}^{k+1})\n\end{aligned}
$$

this applies PPA to a partial inverse of the $\partial\varphi$, like Spingarn

Convergence: under a mild assumption about choice of $\{M_k\}$ \bullet $(u^k, v^k) \rightarrow (\bar{u}, \bar{v})$, and a linear rate is generic relative to the (a, b) -parametric embedding with $\varphi_{a,b}(u) = \varphi(u + a) - b \cdot u$

• inexact minimization allowed in (1) under a stopping criterion

Progressive Decoupling in Nonconvex Optimization

Example: for minimizing
$$
\sum_{j=1}^{q} f_j(x_j) + g\left(\sum_{j=1}^{q} F_j(x_j)\right)
$$

Linkage problem (L): minimize $\varphi(u)$ over $u \in S \subset R^N$ φ closed proper, maybe nonconvex, S still a subspace First-order optimality: $\bar{u} \in S$, $\bar{v} \in S^{\perp}$, $\bar{v} \in \partial \varphi(\bar{u})$ Second-order: strong variational sufficiency \exists elicitation level $e\geq 0$ such that the function $\varphi_e=\varphi+e\,{\rm dist}_{\mathcal{S}}^2$ is strongly convex **variationally** at \bar{u} for the subgradient \bar{v} this corresponds in NLP to classical strong sufficiency

Progressive decoupling algorithm, localized

- same, but initiated close enough to locally optimal \bar{u} , \bar{v}
- then all the same convergence properties will be obtained

Ongoing research challenge: how first to get close enough?

Background to Progressive Decoupling

- 1970s: convex ALM emerged, but without decomposition
- early 1980s: Spingarn (my PhD from 1976) got a "splitting method" from taking partial inverses of monotone mappings
- late 1980s: Wets and I built around this, for stochastic programming, the Progressive Hedging Algorithm, PHA (it caught on numerically, but other Spingarn splitting didn't)
- early 1990s: Eckstein and Bertsekas proposed ADMM for decomposition inspired by Gabay, Mercier, Lions, Glowinski
- starting 2016: I realized Spingarn's scheme can lead to lots more, and in localization even to nonconvex decomposition
- early 2020s: my efforts to understand "variational sufficiency" and to refine the Proximal Point Algorithm for local usage
- recently: my work on stopping criteria and prox-term flexibility through an extension of the proximal method of multipliers

[1] (2019) "Progressive decoupling of linkages in optimization and variational inqualities with elicitable convexity or monotonicity," Set-Valued and Variational Analysis 27 (2019), 863–893

[2] (2022) "Augmented Lagrangians and hidden convexity in sufficient conditions for local optimality," Mathematical Programming 198 (2023), 159–194 (published online June 2022)

[3] (2022) "Generic linear convergence of the proximal point algorithm even in variable metric implementation," Computational Optimization and Applications (accepted 2023)

[4] (2023) "Generalizations of the proximal method of multipliers in convex optimization," Computational Optimization and Applications (accepted 2023)

downloads: sites.washington.edu/∼rtr/mypage.html