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Overview

The need for decomposition:
• Problems in imaging and machine learning can be very large,

but structure suggests a breakdown into much smaller subproblems

• A solution might be found by repeatedly solving updated
versions of the subproblems in parallel and coordinating the results

Status of current methodology for this:
• Algorithms utilizing augmented Lagrangians are popular

• They typically suffer from the fact that augmentation may
interfere with the separability that supports decomposition

New outlook on improvements:
• The progressive decoupling algorithm avoids that trouble

• It exhibits linear convergence “generically” while also
providing more flexibility in the articulation of proximal parameters



Structured Problems in Convex Optimization

Commonly chosen format: minimize f (x) + g(Ax)

for linear A : IRn → IRm and f , g , closed proper convex

feasible solutions: x ∈ dom f with Ax ∈ dom g

Possibilities for finer structure:

f (x) = f1(x1) + · · ·+ fq(xq), x = (x1, . . . , xq) with xj ∈ IRnj

g(z) = g1(zi ) + · · ·+ gp(zp), z = (z1, . . . , zp) with zi ∈ IRmi

Problem examples with such block separability:

minimize
∑q

j=1 fj(xj) + g(
∑q

j=1 Ajxj) maybe with g = δK

minimize f (x) +
∑p

i=1 gi (Aix) maybe with f = δX , Ai = I ,

or maybe f = || · ||1 and Ai selects several coordinates of x

−→ how to take advantage of this in computations?



Augmented Lagrangian Framework

(P) primal problem: minimize f (x) + g(Ax) for x ∈ IRn

(D) dual problem: maximize −g∗(y)− f ∗(−A∗y) for y ∈ IRm

Lagrangian: L0(x , y) = f (x) + y ·Ax − g∗(y)
Augmented Lagrangian: with r > 0 and gr (z) = g(z) + r

2 |z |
2

Lr (x , y) = f (x) + y ·Ax + r
2 |Ax |

2 − g∗
r (y + rAx)

Characterization of optimality for any r ≥ 0 (under a mild c.q.)

x̄ solves (P)
ȳ solves (D)

}
⇐⇒ (x̄ , ȳ) is a saddle point of Lr (x , y)

Common reformulation with simpler-looking Lagrangians:

(P) minimize f (x) + g(z) subject to Ax − z = 0

Lr (x , z ; y) = f (x) + g(z) + y ·[Ax − z ] + r
2 |Ax − z |2

augmentation ruins block-separability in primal arguments



The Original Methods of Multipliers — ALM

well known procedures based on the proximal point algorithm, PPA

Basic ALM : apply the PPA to the dual problem

xk+1 ∈ argminx Lr (x , y
k), yk+1 = yk + r [zk+1 − Axk+1],

where zk+1 = argminz
{
g(z)− yk ·z + r

2 |z − Axk+1|2
}

Proximal ALM: apply the PPA to the saddle point problem

same except xk+1 = argminx
{
Lr (x , y

k) + 1
2r |x − xk |2

}
Characteristics: assuming ∃ optimal x̄ and ȳ

• basic ALM gets convergence of {yk} to some ȳ , but might
only get cluster points of {xk} as x̄

• proximal ALM gets convergence of {(xk , yk)} to some (x̄ , ȳ)



Alternating Direction Method of Multipliers — ADMM

Basic ADMM: a more complicated PPA application

xk+1 ∈ argminx
{
f (x) + yk ·Ax + r

2 |Ax − zk |2
}
,

then exactly as in ALM, yk+1 = yk + r [zk+1 − Axk+1],

where zk+1 = argminz
{
g(z)− yk ·z + r

2 |z − Axk+1|2
}

Proximal ADMM: same except

xk+1 = argminx
{
f (x) + yk ·Ax + r

2 |Ax − zk |2 + 1
2r |x − xk |2

}
Relationships with ALM: the augmented Lagrangian expression

Lr (x , y
k) = f (x) + yk ·Ax + r

2 |Ax |
2 − g∗

r (y
k + rAx)

is simplified in ADMM by an affine substitute for the final term

convergence characterics are similar

{xk}, {zk}, {yk} converge to some optimal x̄ , z̄ = Ax̄ , and ȳ



Shortcomings of ALM and ADMM for Decomposition

Case of primal block-separability: x = (x1, . . . , xq)
f (x) = f1(x1) + · · ·+ fq(xq), Ax = A1x1 + · · ·+ Aqxq

Expressions to be minimized iteratively: no separability!

ALM
∑q

j=1[fj(xj) + yk ·Ajxj ] +
r
2 |
∑q

j=1 Ajxj |2

−gr
(
yk + r

∑q
j=1 Ajxj

)
ADMM

∑q
j=1[fj(xj) + yk ·Ajxj ] +

r
2 |
∑q

j=1 Ajxj − zk |2

Adopted remedy: only rough minimization, Gauss-Seidel mode

∀j : xk+1
j ∈ argminxj

{
fj(xj) + yk ·Ajxj +

r
2 |Ajxj + akj − zk |2

}
where akj = the sum of the terms Aj ′x

k
j ′ for j

′ ̸= j

=⇒ no longer a PPA application, problematical convergence



Decomposition Achieved Via “Progressive Decoupling”

actually another indirect application of the PPA

New algorithm: generating {xj}k , {zk}, {yk}, and now {wk
j }

∀j : xk+1
j = argmin

xj

{
fj(xj)+yk ·Ajxj+

rk
2 |Ajxj−wk

j |2+
sk
2 |xj−xkj |2

}
zk+1 = argmin

z

{
g(z)− yk ·z + rk

2 |z −
∑q

j=1 w
k
j |2

}
then update

yk+1 = yk + rk
q+1∆

k+1

wk+1
j = Ajx

k+1
j − 1

q+1∆
k+1

}
for ∆k+1=

∑q
j=1Ajx

k+1
j − zk+1

“residual” (0 in optimality)

Features to notice: in comparison to proximal ADMM
• wk

j substitutes for zk in the decomposed x-minimizations

•
∑q

j=1 w
k
j substitutes for zk in z-minimization

• r is now rk , and the proximal term has parameter sk



Improvements in the New Decomposition Approach

“rough” minimization using Gauss-Seidel is avoided

without asking for calculations any harder than ADMM

Global convergence characteristics:

• xkj → x̄j , yk → ȳ , zk → z̄ , wk
j → Aj x̄j

assuming that rk → r∞ ∈ (0,∞), sk → s∞ ∈ (0,∞)

• moreover a linear rate is “generic” in a certain sense
(in contrast, linear convergence for ADMM is “very special”)

• separate proximal parameters rk and sk allow more influence
but there are trade-offs, superlinear convergence is out of reach

• approximate minimization allowed, with stopping criteria



Decoupling of Linkages in Optimization More Generally

convex case for now, but nonconvex case later

Linkage problem (L): minimize φ(u) over u ∈ S ⊂ IRN

φ is closed proper convex, S is a subspace giving linkages

Optimality condition: ū ∈ S , v̄ ∈ S⊥, v̄ ∈ ∂φ(ū)

−→ ū ∈ argminu
{
φ(u)− v̄ ·u

}
(under convexity)

v̄ thus decouples by neutralizing the constraint u ∈ S

Example: the instance behind the proposed alternative to ADMM
target: minimizing

∑q
j=1 fj(xj) + g(

∑q
j=1 Ajxj)

φ(x1, . . . , xq, z ,w1, . . . ,wq) =
∑q

j=1[fj(xj) + δ0(Ajxj − wj)] + g(z)

S =
{
(x1, . . . , xq, z ,w1, . . . ,wq)

∣∣ ∑q
j=1 wj = z

}
S⊥ =

{
(0, . . . , 0, y ,−y , . . . ,−y)

}
δ0 = indicator of {0}



Solution Methodology with Executable Projections PS , PS⊥

−→ aiming for ū ∈ S , v̄ ∈ S⊥, with ū ∈ argmin
{
φ(u)− v̄ ·u

}
Linkage-compatible norms: ||u||M =

√
u·Mu

M symmetric, pos.-definite, with v ·Mu = 0 when u ∈ S , v ∈ S⊥

Progressive decoupling algorithm, PDA (with recent improvements)

Generate {uk} ⊂ S , {vk} ⊂ S⊥, from chosen norms || · ||Mk
by

(1) ûk+1 = argminu
{
φ(u)− vk ·u + ||u − uk ||2Mk

}
,

(2) uk+1 = PS(û
k+1), vk+1 = vk −MkPS⊥(ûk+1)

this applies PPA to a partial inverse of the ∂φ, like Spingarn

Convergence: under a mild assumption about choice of {Mk}
• (uk , vk) → (ū, v̄), and a linear rate is generic relative to the

(a, b)-parametric embedding with φa,b(u) = φ(u + a)− b·u
• inexact minimization allowed in (1) under a stopping criterion



Progressive Decoupling in Nonconvex Optimization

Example: for minimizing
∑q

j=1 fj(xj) + g
(∑q

j=1 Fj(xj)
)

Linkage problem (L): minimize φ(u) over u ∈ S ⊂ IRN

φ closed proper, maybe nonconvex, S still a subspace

First-order optimality: ū ∈ S , v̄ ∈ S⊥, v̄ ∈ ∂φ(ū)
Second-order: strong variational sufficiency

∃ elicitation level e ≥ 0 such that the function φe = φ+ e dist2S
is strongly convex variationally at ū for the subgradient v̄

this corresponds in NLP to classical strong sufficiency

Progressive decoupling algorithm, localized

• same, but initiated close enough to locally optimal ū, v̄
• then all the same convergence properties will be obtained

Ongoing research challenge: how first to get close enough?



Background to Progressive Decoupling

• 1970s: convex ALM emerged, but without decomposition

• early 1980s: Spingarn (my PhD from 1976) got a “splitting
method” from taking partial inverses of monotone mappings

• late 1980s: Wets and I built around this, for stochastic
programming, the Progressive Hedging Algorithm, PHA
(it caught on numerically, but other Spingarn splitting didn’t)

• early 1990s: Eckstein and Bertsekas proposed ADMM for
decomposition inspired by Gabay, Mercier, Lions, Glowinski

• starting 2016: I realized Spingarn’s scheme can lead to lots
more, and in localization even to nonconvex decomposition

• early 2020s: my efforts to understand “variational sufficiency”
and to refine the Proximal Point Algorithm for local usage

• recently: my work on stopping criteria and prox-term flexibility
through an extension of the proximal method of multipliers
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