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Overview

The need for decomposition:
e Problems in imaging and machine learning can be very large,
but structure suggests a breakdown into much smaller subproblems
e A solution might be found by repeatedly solving updated
versions of the subproblems in parallel and coordinating the results

Status of current methodology for this:

e Algorithms utilizing augmented Lagrangians are popular

e They typically suffer from the fact that augmentation may
interfere with the separability that supports decomposition

New outlook on improvements:

e The progressive decoupling algorithm avoids that trouble

e |t exhibits linear convergence “generically” while also
providing more flexibility in the articulation of proximal parameters



Structured Problems in Convex Optimization

Commonly chosen format:  minimize f(x) + g(Ax)
for linear A: R" — R™ and f, g, closed proper convex
feasible solutions: x € dom f with Ax € dom g

Possibilities for finer structure:
f(x)=f(x)+--+fo(xq), x=(x1,...,Xq) with x; € R"
g(z)=gi(zi)+ - +go(zp), z=(z1,...,2p) with z; € R™

Problem examples with such block separability:

minimize Zj’zl fi(x;) + g(Z}”:1 Aixj) maybe with g = 0k J

minimize f(x) + >.%_; gi(Aix) maybe with f = dx, A; =1, J

or maybe f = || - ||1 and A; selects several coordinates of x

— how to take advantage of this in computations?



Augmented Lagrangian Framework

(P) primal problem: minimize f(x) + g(Ax) for x € R"
(D) dual problem:  maximize —g*(y) — f*(—A*y) fory € R" J

Lagrangian:  Lo(x,y) = f(x) + y-Ax — g*(y)
Augmented Lagrangian: with r > 0 and g,(2) = g(z) + §|z|?
L(x,y) = f(x) + y-Ax + 5|Ax|> — g} (v + rAx)

Characterization of optimality for any r > 0 (under a mild c.q.)

x solves (P)

7 sl (D)} <= (X,y) is a saddle point of L.(x,y)

Common reformulation with simpler-looking Lagrangians:
(P) minimize f(x) + g(z) subject to Ax —z =20
Li(x,ziy) = f(x) + &(2) + y[Ax — 2] + 5| Ax — z|?

augmentation ruins block-separability in primal arguments J




The Original Methods of Multipliers — ALM

well known procedures based on the proximal point algorithm, PPA
Basic ALM : apply the PPA to the dual problem
xk*1 € argmin, L, (x, y¥), yktl = yk o p[zKH — AxkH],
where  zT1 = argmin, {g(z) — y*-z + §|z — AxkT12} J

Proximal ALM: apply the PPA to the saddle point problem

same except x*t1 = argmin, {L,(x, y*) + & |x — x¥|>} |

Characteristics: assuming - optimal X and y
e basic ALM gets convergence of {y¥} to some ¥, but might
only get cluster points of {x*} as %
e proximal ALM gets convergence of {(x*, y*)} to some (%, 7)



Alternating Direction Method of Multipliers — ADMM

Basic ADMM: a more complicated PPA application
x*1 € argmin, {f(x) + y*-Ax + §|Ax — zK|?},
then exactly as in ALM, ykt1 = yk 4 r[zk+1 _ Axk+]],

k+1

where =z = argmin, {g(z) _ yk-z + 5!2 _ Axkﬂ\z}

Proximal ADMM: same except
xk*+1 = argmin,, {f(x) + yk.Ax + 5|Ax — zk]2 4= %’X - xk\z} J

Relationships with ALM: the augmented Lagrangian expression
Lr(x, y*) = F(x) + ¥ Ax + 5| AX? — gf (y* + rAx)
is simplified in ADMM by an affine substitute for the final term

convergence characterics are similar J

{x¥Y, {z¥}, {y*¥} converge to some optimal X, Z = A%, and ¥



Shortcomings of ALM and ADMM for Decomposition

Case of primal block-separability:  x = (x1,...,Xq)
f(x)=fA0a)+ -+ fq(xq), Ax = Aix + -+ Agxg

Expressions to be minimized iteratively: no separability!
ALM T [6i(x) + yR Al + 51 27 Ajxl?
—& (YK +r X, Ax)
ADMM -7 [£i(x) + y*-Apx] + 51 o0, Ajx; — 2|2

Adopted remedy: only rough minimization, Gauss-Seidel mode
. k .
VjiiooX e argmin, {£(x) + y*Ajx; + 5| Ajx; + aJ’-‘ —zK1?}
where aj-‘ = the sum of the terms Aj,xﬁ for j/ #

=—> no longer a PPA application, problematical convergence J




Decomposition Achieved Via “Progressive Decoupling”

actually another indirect application of the PPA

New algorithm: generating {x;}*, {z*}, {y*}, and now {ij}

J
k+1

V)1t = argmin{ £0g)+y* Apxg+ % | Apg—wh P+ 5 g —xf P }
g

= argmin{ g(z) — y*z + %[z - Y7 ij‘z }

V4 j=1

then update

k+1 _  k I} k+1
y =y + —qle

k+1l_ A k+l 1 Ak+l
W —AJXJ- —q_HA

k+1_ N9 a4 Jk+1 k1
for ATt = =14 z

’ “residual” (0 in optimality)

Features to notice: in comparison to proximal ADMM
° ij substitutes for z¥ in the decomposed x-minimizations

q k . k - IR .
e .1 w/ substitutes for z* in z-minimization
e ris now ri, and the proximal term has parameter s



Improvements in the New Decomposition Approach

“rough” minimization using Gauss-Seidel is avoided
without asking for calculations any harder than ADMM

Global convergence characteristics:
° XJk—>>_<J, yk—>)_/, Zk—>f, WJ-k—>Aj)_<j
assuming that rx — ro € (0,00), sk — Soo € (0,00)

e moreover a linear rate is “generic” in a certain sense
(in contrast, linear convergence for ADMM is “very special”)

e separate proximal parameters r, and s, allow more influence
but there are trade-offs, superlinear convergence is out of reach

e approximate minimization allowed, with stopping criteria



Decoupling of Linkages in Optimization More Generally

convex case for now, but nonconvex case later
Linkage problem (L):  minimize (u) over u€ S C RV
@ is closed proper convex, S is a subspace giving linkages

Optimality condition: €S, veSt vedp(d)

— & € argmin, {¢(u) — V-u} (under convexity)
v thus decouples by neutralizing the constraint u € S J

Example: the instance behind the proposed alternative to ADMM

target:  minimizing Z;’Zl fi(x;) + g( j’:l Aix;)

O(X1, ..y Xg, Z, W1, ..., W) 227:1[6'(’9') + do(Ajxj — wj)] + g(2)

S = {(xl,...,xq,z, Wl,...,wq)} ZJ‘.’:IWJ- :z}
st={(,...,0,y,~y,...,—y)}  do = indicator of {0}




Solution Methodology with Executable Projections Ps, Ps:

— aiming for 1€ S, v € S, with & € argmin {gp(u) — \7~u}
Linkage-compatible norms: ||u||y = Vu-Mu
M symmetric, pos.-definite, with v-Mu =0 when ue S, v € S+

Progressive decoupling algorithm, PDA (with recent improvements)

Generate {u¥} C S, {vk} C S, from chosen norms || - ||u, by
(1) @<t = argmin,{ p(v) — vFu+ [|u— ukHﬁ,,k I3
(2) k1l — Ps(ﬁk"'l), vkl — k _ Mksz_(/U\k—H')

this applies PPA to a partial inverse of the J¢p, like Spingarn

Convergence: under a mild assumption about choice of { My}
o (u¥,vk) = (&, V), and a linear rate is generic relative to the
(a, b)-parametric embedding with ¢, p(uv) = ¢(u + a) — bu
e inexact minimization allowed in (1) under a stopping criterion



Progressive Decoupling in Nonconvex Optimization

Example: for minimizing Zﬁ:l fi(x;) + g(27:1 F(XJ)) J

Linkage problem (L):  minimize (u) over u€ S ¢ RV
@ closed proper, maybe nonconvex, S still a subspace
First-order optimality: ¢S, v St v dp(d)
Second-order: strong variational sufficiency
T elicitation level e > 0 such that the function e = ¢ + edist%
is strongly convex variationally at & for the subgradient v
this corresponds in NLP to classical strong sufficiency

Progressive decoupling algorithm, localized

e same, but initiated close enough to locally optimal &, v
e then all the same convergence properties will be obtained

Ongoing research challenge: how first to get close enough?



Background to Progressive Decoupling

e 1970s: convex ALM emerged, but without decomposition

early 1980s: Spingarn (my PhD from 1976) got a “splitting
method” from taking partial inverses of monotone mappings
late 1980s: Wets and | built around this, for stochastic
programming, the Progressive Hedging Algorithm, PHA

(it caught on numerically, but other Spingarn splitting didn't)

early 1990s: Eckstein and Bertsekas proposed ADMM for
decomposition inspired by Gabay, Mercier, Lions, Glowinski

starting 2016: | realized Spingarn’s scheme can lead to lots
more, and in localization even to nonconvex decomposition

early 2020s: my efforts to understand “variational sufficiency”
and to refine the Proximal Point Algorithm for local usage

recently: my work on stopping criteria and prox-term flexibility
through an extension of the proximal method of multipliers
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