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Motivation

Our motivation starts with the KL property.
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KL inequality

(Łojasiewicz’s gradient inequality, 1963) Let f be an analytic
function on Rn with ∇f (x) = 0. Then, exists a rational number
θ ∈ (0,1] and c, δ > 0 such that

∥∇f (x)∥ ≥ c|f (x)− f (x)|θ for all x with ∥x − x∥ ≤ δ.

This can fail for C∞ function, in general.

Extended by Kurdyka to C1 definable function. Further extended
by Bolte, Daniilidis, Lewis to nonsmooth cases
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KL Property and Convergence Analysis

Let f : Rm → R be a proper lower l.s.c. function, and let ϑ : [0, η) → R+ be
a continuous concave function with ϑ(0) = 0, ϑ is continuously
differentiable on (0, η) and ϑ′(s) > 0 for all s ∈ (0, η).

Definition (KL property (Bolte, Daniilidis, Lewis, 07))

We say that f has the Kurdyka-Łojasiewicz (KL) property at x with
respect to the desingularization function ϑ if there exists ε > 0 such
that

ϑ′(f (x)− f (x))d(0, ∂f (x)) ≥ 1

for all x ∈ BRm(x , ε) ∩ [f (x) < f < f (x) + η], where d(·,S) stands for
the distance function associated with the set S.

KL property is satisfied by a wide range of functions such as the
semi-algebraic functions (e.g. Max/Min of finitely many polynomials).

∂f is the limiting subdifferential (cf. Mordukhovich).

If ϑ(t) = c t1−θ for some c > 0 and θ ∈ [0,1), reduces to the form of
Łojasiewicz inequality.
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If the desingularization function ϑ takes the form of ϑ(t) = c t1−θ for
some c > 0 and θ ∈ [0,1), then we say f satisfies the KL property at
x̄ with the KL exponent θ.

Prototypical result on convergence rate: Let {xk} be a bounded
sequence generated by a descent algorithm with a potential function
f . Let f be a KL function with exponent θ ∈ [0,1). Then the following
results hold (Attouch, Bolte, ’09):

(i) If θ = 0, then {xk} converges finitely.

(ii) If θ ∈ (0, 1
2 ], then {xk} converges locally linearly.

(iii) If θ ∈ ( 1
2 ,1), then {xk} converges locally sublinearly.

These techniques has been widely used. E.g., in proximal type
algorithms Attouch, Bolte, & Svaiter ’13, Bolte, Sabach &
Teboulle ’14, Lewis & Drusvyatskiy ’18, Boţ, Csetnek & Nguyen
’19 and in Alternating direction method of multipliers (ADMM)
and Douglas-Rachford algorithm L., Pong ’15, ’16.
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An innocent looking example

Consider applying the standard proximal point method for
f (t) = |t |

3
2 .

Iteration: tk+1 = argmint∈R
{

f (t) + λ
2 (t − tk )2}, t0 = 1,

where λ is a fixed positive parameter.
Equivalent to

tk =
3

2λ
(tk+1)

1
2 + tk+1.

Simplifying this, and noting that tk → 0,

tk+1 =

 tk
3

4λ +
√

tk + 9
16λ2

2

= O(t2
k ),

Quadratic convergence rate.
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Illustration of the rate
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Example Cont.

Consider applying the standard proximal point method for
f (t) = |t |

3
2 .

Quadratic convergence rate.

But, KL analysis only tells us the iterates converge in a
linear rate.
Question:
Can we discuss superlinear/quadratic convergence within
a suitable analysis framework (extending the KL
framework)?
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Newton type method

Superlinear/quadratic convergence of Newton type
methods have been studied by many researchers. A lot of
exciting developments and progresses

Newton’s method and Quasi Newton method
Nonsmooth Newton method
Regularized Newton method and many more.

A recent variant: Cubic regularization method (Nesterov &
Polyak, 06)
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Cubic regularization method

Basic update: For a C2-function f ,

xk+1 ∈ argmin
y∈Rm

fσ(y),

where

fσ(y) = f (xk ) +∇f (xk )
T (y − x) +

1
2
(y − xk )

T∇2f (xk )(y − xk )

+
σ

6
∥y − xk∥3,

Subproblem can be solved via various techniques (convex
optimization techniques, eigenvalue problem etc); Global
Complexity.
Quadratic convergence to a second-order stationary point
was recently established under an error bound condition
(Yue, Zhou, & So, 2019)
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Error bound condition

Error bound condition: there exist κ, ρ > 0 such that

d(x ,Θ) ≤ κ ∥∇f (x)∥ for all x ∈ N (Θ, ρ).

where Θ is the collection of second-order stationary points
of f .

Θ :=
{

x ∈ Rm ∣∣ ∇f (x) = 0, ∇2f (x) ⪰ 0
}
.

and N (Θ, ρ) :=
{

x ∈ Rm
∣∣ d(x ,Θ) ≤ ρ

}
.

Was shown to be satisfied with phase retrieval problem and
matrix completion problem with overwhelming probability.
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Error bound condition cont.

Can be satisfied in nonconvex and degeneracy case. E.g.
f (x) = (∥x∥2 − r)2 with r > 0.

∇f (x) = 4(∥x∥2 − r)x and ∇2f (x) = 8xxT + 4(∥x∥2 − r)Im;
Γ = {x : ∇f (x) = 0} = {x : ∥x∥ =

√
r} ∪ {0} and

Θ = {x : ∥x∥ =
√

r}
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Error bound condition: there exist κ, ρ > 0 such that

d(x ,Θ) ≤ κd
(
0,∇f (x)

)
for all x ∈ N (Θ, ρ).

where Θ is the collection of second-order stationary
points of f .

Has a similar form with metric subregularity but with subtle
difference.
Can we provide more simple verifiable sufficient conditions
for this error bound condition (or its weaker variants)?
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Main Questions:
A framework for general descent methods (covering cubic
regularization methods with momentums steps) so that
superlinear/quadratic convergence can be identified?

Ans: Yes, and superlinear/quadratic convergence requires
a generalized metric subregularity condition

Simple verifiable sufficient conditions for this generalized
metric subregularity condition?
Ans: Yes, under the KL + strict saddle point conditions

The convergence rate can be tied up with the KL
exponents. Can we estimate these exponents?
Ans: Yes, one approach is to exploit the underlying
polynomial or conic structure.
How sharp are the derived convergence rates?
Ans: There are cases where the rates are indeed attained.
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Part I: An extended analysis framework

In this part, we
discuss an abstract framework for general descent
methods so that superlinear convergence can be identified
under a generalized metric subregularity condition

link the generalized metric subregularity condition with KL
condition via the strict saddle point conditions

apply it to high-order regularization methods with
momentum steps.

Based on: G. Li, B.S. Mordukhovich and J. Zhu, Generalized metric
subregularity with applications to high-order regularized Newton
methods, preprint, 2024.
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Metric subregularity for subdifferential mapping

Let f : Rm → R be a proper l.s.c. function;
Let ψ : R+ → R+ be an admissible function, that is,
ψ(t) → 0 ⇒ t → 0
Given a target set Ω ⊆ Γ = {x : 0 ∈ ∂f (x)} and x ∈ Ω.

Definition
(i) The subdifferential ∂f satisfies the (pointwise) generalized
metric subregularity property with respect to (ψ,Ω) at x if there
exist κ, δ ∈ (0,∞) such that

ψ
(
d(x ,Ω)

)
≤ κd

(
0, ∂f (x)

)
for all x ∈ BRm(x , δ).

(ii) The subdifferential ∂f satisfies the uniform generalized
metric subregularity property with respect to (ψ,Ω) if there exist
κ, ρ ∈ (0,∞) such that the above inequality holds for all
x ∈ N (Ω, ρ) =

{
x ∈ Rm

∣∣ d(x ,Ω) ≤ ρ
}

.
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Comments and Illustrative Examples

Recall that the subdifferential ∂f satisfies the (pointwise) gen-
eralized metric subregularity property with respect to (ψ,Ω) at
x if there exist κ, δ ∈ (0,∞) such that

ψ
(
d(x ,Ω)

)
≤ κd

(
0, ∂f (x)

)
for all x ∈ BRm(x , δ).

if ψ(t) = t & Ω = Γ⇝ usual metric subreg. (cf. Dontchev,
Rockafellar, 2009)

if ψ(t) = tp with p > 1 & Ω = Γ⇝ Hölder metric subreg.
(Ahookhosh, Aragón-Artacho, Fleming 2019; Kruger 2015; L.,
Mordukhovich 2012);

if ψ(t) = tp with p ∈ (0,1) & Ω = Γ⇝ high-order metric subreg.
(Mordukhovich, Ouyoung, 2015);

∃ cases where ψ is not of exponent type (e.g. exponential cone
program) Lindstrom, Lourenço, Pong, 2023.
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Recall that the subdifferential ∂f satisfies the uniform
generalized metric subregularity property with respect to
(ψ,Ω) if there exist κ, ρ ∈ (0,∞) such that

ψ
(
d(x ,Ω)

)
≤ κd

(
0, ∂f (x)

)
for all x ∈ N (Ω, ρ).

If ψ(t) = t & Ω = Θ⇝ the error bound condition.
Generally, is strictly stronger than the pointwise version for
the same (ψ,Ω). Sometimes, can fail to identify the
quadratic convergence rate.
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For example, f (x) := (x − 1)2(x − 2)4 and Ω = Θ = {1,2}.
Cubic regularization method with initial point x0 = 0.5 leads to
quadratic convergence to the point 1. Note that the error bound
condition fails while pointwise metric subreg. holds at 1.

Guoyin Li
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Descent method at large

Consider a couple sequence {(xk ,ek )} ⊆ Rm × R+ generated
by some algorithms such that

(i) Surrogate condition: there exists c > 0 such that

∥xk+1 − xk∥ ≤ c ek for all k ∈ N (H0)

(ii) Descent condition:

f (xk+1) + aφ(ek ) ≤ f (xk ) (H1)

where a > 0 and φ is an admissible function.
(iii) Relative error condition:

∃ wk+1 ∈ ∂f (xk+1) such that ∥wk+1∥ ≤ b β(ek ), (H2)

where b is a fixed positive constant, and β : R+ → R+ is an
admissible function.
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The framework is flexible. E.g.,
For many existing descent algorithms, the construction of
the algorithm satisfies

f (xk+1)+a ∥xk+1−xk∥2 ≤ f (xk ) and ∥∇f (xk+1)∥ ≤ β∥xk+1−xk∥

So, φ(t) = t2, β(t) = t and ek = ∥xk+1 − xk∥;

For cubic regularization method, φ(t) = t3, β(t) = t2 and
ek = ∥xk+1 − xk∥;

Having ek helps to deal with momentum steps.

Guoyin Li



Introduction on KL inequality and Motivations Part I: An extended analysis framework Part II: Estimating the KL exponents Conclusions and future workAn abstract convergence framework Interplay between generalized metric subregularity and KL property via strict saddle point condition Applications to high-order regularization methods with momentum steps

Abstract convergence result – a glimpse

ξ : [0, η) → R+ is a nondecreasing continuous function with
ξ(0) = 0 for some η > 0.
x ∈ Ω is a cluster point of xk , Ω is some (target) set.
Denote Λk ,k+1 := ξ(f (xk )− f (x))− ξ(f (xk+1)− f (x)).

Key Recurrence Inequality: Consider the case where the
surrogate sequence of successive change grows mildly,
i.e., there exist ℓ1 ∈ [0,1), ℓ2, ℓ3 ∈ [0,∞) such that

ek ≤ ℓ1ek−1 + ℓ2Λk ,k+1︸ ︷︷ ︸
Appeared in KL Analysis

+ ℓ3d(xk ,Ω)︸ ︷︷ ︸
New term

for all large k .
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Key Recurrence Inequality: There exist ℓ1 ∈ [0,1), ℓ2, ℓ3 ∈
[0,∞) such that

ek ≤ ℓ1ek−1 + ℓ2Λk ,k+1︸ ︷︷ ︸
Appeared in KL Analysis

+ ℓ3d(xk ,Ω)︸ ︷︷ ︸
New term

for all large k ,

where Ω is some (target) set.

Convergence. Let sk = ℓ3d(xk ,Ω). If sk asymptotically
shrinks *, then xk converges towards a point in the target
set Ω;
Sublinear/linear convergence can be deduced similar as in
KL analysis;

What about superlinear convergence?
*A sequence is called asymptotically shrinking if sk ≤ τ(sk−1) where τ

satisfies lim supt→0+
∑∞

n=0
τn(t)

t < ∞.
Guoyin Li
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Superlinear convergence

Superlinear convergence
under (pointwise) generalized metric subregularity with
respect to (ψ,Ω), rate explicitly depends on ψ, φ and β; †

Comments:

For the previous example, f (t) = |t |
3
2 , generalized metric

subregularity holds at 0 with ψ(t) = t1/2 ⇝ quadratic
convergence rate.
For cubic regularization methods with momentum steps,⇝
quadratic convergence rate under (pointwise) metric
subregularity w.r.t. Ω = Θ.

†it is possible to derive superlinear convergence rate under the
assumption of KL property with growth control of the desingularization
function ϑ, rate explicitly depends on ϑ, φ and β. But the derived rate is
weaker.
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Sufficient conditions

An important question is: For a C2-function f , how to check the
generalized (pointwise) metric subregularity condition, when
the target set is the set of second-order stationary points of f?

Here, we provide one possible way in connecting to KL
property.
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Motivating Example

Consider f (x) = (∥x∥2 − r)2 with r > 0.

∇f (x) = 4(∥x∥2 − r)x and ∇2f (x) = 8xxT + 4(∥x∥2 − r)Im;
Γ = {x | ∇f (x) = 0} = {x : ∥x∥ =

√
r} ∪ {0} and

Θ = {x | ∥x∥ =
√

r}
What do we observe here?

Γ ̸= Θ.
But d(x , Γ) = d(x ,Θ) for any x in a small neighborhood of
x ∈ Θ.
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A useful lemma

Lemma

Given a C2-smooth function f : Rm → R and x ∈ Θ. Suppose
that both the KL property and strict saddle point property holds
at x. Then, there exists γ > 0 such that

d(x ,Θ) = d(x , Γ) for all x ∈ BRm
(
x , γ

)
. (3.0)

Strict saddle point property at x ∈ Γ: if x is either a local
minimizer for f , or a strict saddle point for f (i.e.,
λmin(∇2f (x)) < 0.
KL property can be replaced by the more general weak
separation property (WSP) at x ∈ Γ in the paper (which
covers the convex composite cases under regularity)
Generalized metric subregularity w.r.t. Θ can be deduced
under KL + strict saddle point property.
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Classes with explicit generalized metric subreguarity

The results can be used to determine explicit generalized
metric subreguarity such as

Over-parameterized compressive sensing models
Rank-one matrix/tensor approximation
Generalized phase retrieval problems.

We illustrate the first class below.
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Consider the least squares problem with ℓ1-regularization

min
x∈Rm

∥Ax − b∥2 + ν∥x∥1,

where A ∈ Rn×m, b ∈ Rn, ν > 0, and ∥ · ∥1 is the usual ℓ1-norm.

Example (Over-parameterization model)

A recent interesting way to solve this problem is to transform it into
an equivalent smooth problem (e.g. Poon & Peyré, MP, 2023)

min
(u,v)∈Rm×Rm

fOP(u, v) := ∥A(u ◦ v)− b∥2 +
ν

2
(∥u∥2 + ∥v∥2),

where u ◦ v is the Hadamard (entrywise) product between the vector
u and v in the sense that (u ◦ v)i := uivi , i = 1, . . . ,m.
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For the problem,

min
x=(u,v)∈Rm×Rm

fOP(u, v) := ∥A(u◦v)−b∥2+
ν

2
(∥u∥2+∥v∥2),

fOP satisfies generalized metric subregularity at x̄ ∈ Θ w.r.t (ψ,Θ),
where Θ is the set of 2nd-order stationary pts. ‡

Under strict complementarity condition (SCC) at x , § ψ(t) = t ;

Otherwise, ψ(t) = t3.

As an illustration of the idea, it can be proved by seeing

fOP is C2, and it satisfies a (stronger version of) strict saddle
point property (e.g. Poon & Peyré, 2023);

Identifying the KL exponent for fOP depending on whether strict
complementarity condition holds.

‡The result can be extended to the case when the least squares loss
∥Ax − b∥2 is replaced by g(Ax) where g is a C2-strongly convex function.

§SCC: 0 ∈ 2AT (Ax − b) + ri
(
ν ∂∥ · ∥1(x)

)
,
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Application to high-order regularization methods

We now discuss the convergence rate analysis for high-order
regularization methods

Basic Assumptions:
f is C2-smooth and bounded below.
L(f (x0)) ⊆ F for some compact convex set F .
∇f is Lipschitz continuous with modulus L1 > 0 on F , and
the Hessian of f is Hölder-continuous on F with exponent
q, ¶ i.e., L2 > 0 and q ∈ (0,1] such that

∥∇2f (x)−∇2f (y)∥ ≤ L2∥x − y∥q for all x , y ∈ F .

¶The case where the Hessian of f is Hölder-continuous was considered
e.g. in Grapigla & Nesterov, 2017.
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Algorithm 1 Regularization method with momentum ||

1: Input: x0 = x̂0 ∈ Rm, σ ∈
(

2L2
q+2 ,L2

]
and ζ ∈ [0,1).

2: for k = 0,1, . . . do
3: Regularization step: Choose σk ∈ [σ,2L2] and find

x̂k+1 ∈ argmin
y∈Rm

fσk (xk ).** (3.0)
4: Momentum step:

βk+1 = min
{
ζ, ∥∇f (x̂k+1)∥, ∥x̂k+1 − xk∥

}
,

x̃k+1 = x̂k+1 + βk+1(x̂k+1 − x̂k ).

5: Monotone step: xk+1 = argminx∈{x̂k+1,x̃k+1} f (x).
6: end for

||
In the case q = 1, has been considered in Lan et. al. 22 in convex cases and with complexity guarantees.

**Here, we have

fσ(y) = f (xk ) + ∇f (xk )
T (y − x) +

1

2
(y − xk )

T ∇2f (xk )(y − xk )+
σ

(q + 1)(q + 2)
∥y − xk∥

q+2
..
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Why momentum steps?
Illustrating cubic regularization method vs Algorithm 1 with
momentum parameter ζ = 0.1.

Matrix completion problem
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Superlinear Convergence results

Apply Algorithm 1 for a C2-function f whose Hessian is
qth-order Hölder continuous. ††

Proposition
Suppose that there exists η > 0 such that the generalized
metric subregularity condition holds with respect to (ψ,Θ), i.e.,

ψ
(
d(x ,Θ)) ≤ ∥∇f (x)∥ for all x ∈ BRm(x , η)

and τ(t)/t → 0 with τ(t) = ψ−1(Ctq+1) for some C > 0. Then,
the sequence {xk} generated converges to x ∈ Θ at least
superlinearly with the rate

lim sup
k→∞

∥xk − x∥
τ(∥xk−1 − x∥)

<∞.

††Sublinear/linear convergence can also be discussed
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Over-parameterized models

Consider the ℓ1-regularization model and the associated
over-parameterized smooth optimization problem

min
x=(u,v)∈Rm×Rm

fOP(u, v) := ∥A(u◦v)−b∥2+
ν

2
(∥u∥2+∥v∥2),

Corollary

The iterative sequence {xk} of Algorithm 1 converges to a
global minimizer x of (OP), and

(i) Under the strict complementary condition, {xk} converges
to x in a quadratic rate, i.e., lim supk→∞

∥xk−x∥
∥xk−1−x∥2 <∞.

(ii) If the strict complementary condition fails, then {xk}
converges to x with a sublinear rate O(k−2).
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Part II: Estimating KL exponents

We have seen the KL exponents (if they exist) give us concrete
information on the (asymptotic) convergence rates. How to
estimate these exponents for general nonsmooth & nonconvex
functions in general?

One possible strategy:
Lift and project approach, then exploit the underlying
polynomial structure or conic structure (such as
semi-definite representability and C2-cone structure)

Based on: P. Yu, G. Li and T.K. Pong, Kurdyka-Łojasiewicz exponent
via inf-projection, FOCM 2022, arXiv:1902.03635,
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Why polynomial or conic structure?

Problems with polynomial or conic structures are
ubiquitous.
Many useful tools/concepts potentially can be used e.g.
facial structure and singular degree for conic optimization
(Borwein & Wolkowicz; Drusvyatskiy & L. & Wolkowicz;
Sturm; Lourenco; Pataki; Roshchina & Tunçel),
semi-algebraic geometry (Bochnak & Coste & Roy) etc.
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Lift and project approach via inf-projection

We call the function f (x) := infy∈Y F (x , y) for x ∈ X an
inf-projection of F .

The strict epigraph of f , defined as
{(x , r) ∈ X× R : f (x) < r}, is equal to the projection of the
strict epigraph of F onto X× R.
Arises naturally in studying sensitivity analysis as value
function.
Used frequently in characterizing complicated functions via
optimal value of conic programs.
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Lemma (KL exponent via inf-projection Yu, L. Pong, 2022)

Let F : X× Y → R ∪ {∞} be a proper closed function and
define f (x) := infy∈Y F (x , y) and Y (x) := Argminy∈YF (x , y) for
x ∈ X. Let x̄ ∈ dom ∂f . Suppose that

(i) It holds that ∂F (x̄ , ȳ) ̸= ∅ for all ȳ ∈ Y (x̄).
(ii) F is level-bounded in y locally uniformly in x.
(iii) The function F satisfies the KL property with exponent

α ∈ [0,1) at every point in {x̄} × Y (x̄).
Then f satisfies the KL property at x̄ with exponent α.

Note: F is level-bounded in y locally uniformly in x means for
any x and β ∈ R, there exists ρ > 0 such that

{(u, y) : ∥u − x∥ ≤ ρ,F (u, y) ≤ β}

is bounded
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LMI-representable functions

Definition
We say f is LMI-representable if there exists d > 0 and
matrices {A00,A0,A1, . . . ,An} ⊂ Sdi such that

epi f =

(x , t) ∈ Rn × R : A00 +
n∑

j=1

Ajxj + A0t ⪰ 0

 .

Examples of LMI representable functions: ℓ1-norm, ℓ2-norm,
convex quadratic functions and indicator function of
second-order cone.
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Theorem (Sum of LMI-representable functions)

Let f =
∑m

i=1 fi , where each fi : Rn → R ∪ {∞} is a proper
closed function which is LMI-representable. Suppose that

Strict feasibility condition is satisfied for the LMI
representation;
Strict complementarity condition holds, 0 ∈ ri ∂f (x̄).

Then f satisfies the KL property at x̄ with exponent 1
2 .

Idea of the proof:
Write f (x) = inf(s,t) F (x , s, t) with F (x , s, t) = t + δD(x , s, t)
where D = {(x , s, t) : t ≥

∑m
i=1 si , si ≥ fi(x)} is a set

described by semi-definite constraints.
Argue the resulting semi-definite program has singular
degree one, then apply error bound result in SDP and
inf-projection theorem.

Guoyin Li



Introduction on KL inequality and Motivations Part I: An extended analysis framework Part II: Estimating the KL exponents Conclusions and future work

Explicit examples

Each of the following functions satisfies the KL property with
exponent 1

2 at an x̄ satisfying 0 ∈ ri ∂f (x̄):
(i) Group Lasso with overlapping blocks of variables:

f (x) =
1
2
∥Ax − b∥2 +

s∑
i=1

wi∥xJi∥,

where b ∈ Rp, A ∈ Rp×n,
⋃s

i=1 Ji = {1, . . . ,n}, xJi is the
subvector of x indexed by Ji , and wi ≥ 0, i = 1, . . . , s.

(ii) Group fused Lasso (Alaíz etal, 2013):

f (x) =
1
2
∥Ax − b∥2 +

s∑
i=1

wi∥xJi∥+
s∑

i=2

νi∥xJi − xJi−1∥,

where b ∈ Rp, A ∈ Rp×rs, Ji is an equi-partition of
{1, . . . ,n} in the sense that

⋃s
i=1 Ji = {1, . . . ,n}, Ji ∩ Jj = ∅

and |Ji | = |Jj | = r for i ̸= j , wi , νi ≥ 0, i = 1, . . . , s.
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Nuclear norm regularization

Similar strategy can be applied for the model problem

f (X ) :=

p∑
k=1

fk (X ) + τ∥X∥∗, (4.0)

where X ∈ Rm×n, ∥X∥∗ denotes the nuclear norm of X (the
sum of all singular values of X ) and each fk : Rm×n → R ∪ {∞}
is a proper closed LMI-representable function.

We do this by using the SDP representation (Rechet, Fazel &
Parrilo, 2010)

∥X∥∗ =
1
2
inf
U,V

{
tr(U) + tr(V ) :

[
U X

X T V

]
⪰ 0, U ∈ Sm,V ∈ Sn

}
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Theorem (Nuclear norm regularization, Yu, L. Pong, 2022)

Let f (X ) =
∑m

i=1 fi(X ) + τ∥X∥∗ with each fi is
LMI-representable. Suppose that

Strict feasibility condition is satisfied for each of the LMI
representation;
Strict complementarity condition holds, 0 ∈ ri ∂f (x̄).

Then f satisfies the KL property at X̄ with exponent 1
2 .

Note: In the case m = 1 and f1(X ) = 1
2∥AX − b∥2, this can be

derived using the error bound result in Zhou & So 2017 under
the strict complementarity condition.
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Beyond semi-algebraic structure: C2-cone reduciblity

Definition (Shapiro, 2003)
A closed set D ⊆ X is said to be

C2-cone reducible at w̄ ∈ D if ∃ a closed convex pointed
cone K ⊆ Y, ρ > 0 and a mapping Θ : X → Y such that
(1) Θ is twice continuously differentiable in B(w̄ , ρ);
(2) Θ(w̄) = 0 and DΘ(w̄) : X → Y is onto,
(3) D ∩ B(w̄ , ρ) = {w : Θ(w) ∈ K} ∩ B(w̄ , ρ).

C2-cone reducible if D is C2-cone reducible at w̄ for all
w̄ ∈ D.

Examples:
Polyhedra, second order cone, positive semi-definite cone.
D = {w : gi(w) ≤ 0, i = 1, . . . ,m}, gi ∈ C2, LICQ holds at
w̄ ∈ D implies that D is C2-cone reducible at w̄ .

Guoyin Li



Introduction on KL inequality and Motivations Part I: An extended analysis framework Part II: Estimating the KL exponents Conclusions and future work

Theorem
Let ℓ : Y → R be a function that is strongly convex on any
compact convex set and has locally Lipschitz gradient,
A : X → Y be a linear map, and v ∈ X. Consider the function

f (x) := ℓ(Ax) + ⟨v , x⟩+ σD(x)

with D being a C2-cone reducible closed convex set. Suppose
that

A−1{Ax̄} ∩ riND(−A∗∇ℓ(Ax̄)− v) ̸= ∅.

Then f satisfies the KL property at x̄ with exponent 1
2 .

Note: The ri condition can be dropped if ND(·) is a polyhedral
set.
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Explicit examples

Let ℓ : Rm → R be strongly convex on any compact convex set
and have locally Lipschitz gradient, A : Sn → Rm be linear.

Each of the following functions satisfies the KL property with
exponent 1

2 at an X̄ satisfying the ri condition
(PSD cone constraint )

f (X ) = ℓ(AX ) + ⟨V ,X ⟩+ δSn
+
(X )

(Schatten p-norm regularization)

f (X ) = ℓ(AX ) + ⟨V ,X ⟩+ τ∥X∥p for all X ∈ Sn,

where p ∈ [1,2] ∪ {+∞}and ∥X∥p is the Schatten p-norm.
Problems with entropy regularization.
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One can also leverage polynomial structure.
A convex piecewise polynomial function of degree at most
d ≥ 2 on Rn is a KL function with exponent 1 − 1

(d−1)n+1
(Bolte et al. 2015)
(Gwoździewicz 1999 and Kollar 2002) If f is a polynomial
with degree d and 0 is a strict local minimizer, then, KL
exponent τ = 1 − 1

(d−1)n+1 ;

Dropping the strict minimizer assumption in
Gwoździewicz’s result, we have a new estimate of KL
exponent τ = 1 − R(n,d)−1 = 1 − 1

d(3d−3)n−1 (Kurdyka
2012, and L., Mordukhovich and Pham 2015).
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These approaches also allow us to consider other models such
as

(Least squares with rank constraint)

f (X ) =
1
2
∥AX − b∥2 + δrank(·)≤r (X )

for X ∈ Rm×n, A : Rm×n → Rp.
(Sparse generalized eigenvalue problem)

f (x) =
xT Ax
xT Bx

+ δ∥·∥=1(x) + λ∥x∥0

for A,B ∈ Sn, B is positive definite.
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Conclusions and future work

Conclusions
Discuss two aspects of KL property: usage for superlinear
convergence analysis & identifying the KL exponents
A form of generalized metric subregularity w.r.t to target set
places a role in identifying the superlinear convergence.
Some sufficient conditions are provided for generalized
metric subregularity w.r.t 2nd-order stationary pts via KL
property + strict saddle point conditions
One approach in estimating the KL exponents: Lift and
project approach, then exploit polynomial or conic
structure.
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Future work:

Verifiable sufficient conditions for generalized metric
subregularity in nonsmooth setting? ‡‡

Can the analysis framework be further extended to cover
non-monotone and/or stochastic setting?
The lift and project approach may depend on the
representation of the lifting. Is there an optimal lifting?

‡‡∃ nice concepts/results for strict (active) saddle point property for
nonsmooth functions (Davis & Drusvyatskiy, 22). Also, it is known that locally
Lip. semi-algebraic (more generally tame) function is semismooth (Bolte &
Daniilidis & Lewis, 09).
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Thanks !
Guoyin Li
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