Convex optimization in negatively curved geodesic spaces

Adrian Lewis

Joint work with A. Goodwin, G. Lopez, and A. Nicolae

Midwest Optimization at Waterloo November 2024

▸ Negatively curved geodesic spaces

 \blacktriangleright Manifolds: hyperbolic space, S_{++}^n , ...

- \blacktriangleright Manifolds: hyperbolic space, S_{++}^n , ...
- ▸ Metric trees, BHV tree space, CAT(0) cubical complexes. . .

- \blacktriangleright Manifolds: hyperbolic space, S_{++}^n , ...
- ▸ Metric trees, BHV tree space, CAT(0) cubical complexes. . .
- ▸ A fresh look at the subgradient method

- \blacktriangleright Manifolds: hyperbolic space, S_{++}^n , ...
- ▸ Metric trees, BHV tree space, CAT(0) cubical complexes. . .
- ▸ A fresh look at the subgradient method
	- ▸ Halfspaces as horoballs

- \blacktriangleright Manifolds: hyperbolic space, S_{++}^n , ...
- ▸ Metric trees, BHV tree space, CAT(0) cubical complexes. . .
- ▸ A fresh look at the subgradient method
	- ▸ Halfspaces as horoballs
	- ▸ Subgradients as constant-speed geodesic rays.

- \blacktriangleright Manifolds: hyperbolic space, S_{++}^n , ...
- ▸ Metric trees, BHV tree space, CAT(0) cubical complexes. . .
- ▸ A fresh look at the subgradient method
	- ▸ Halfspaces as horoballs
	- ▸ Subgradients as constant-speed geodesic rays.
- ▸ Averaging:

- \blacktriangleright Manifolds: hyperbolic space, S_{++}^n , ...
- ▸ Metric trees, BHV tree space, CAT(0) cubical complexes. . .
- ▸ A fresh look at the subgradient method
	- ▸ Halfspaces as horoballs
	- ▸ Subgradients as constant-speed geodesic rays.
- ▸ Averaging:
	- \triangleright convex combinations versus.

- \blacktriangleright Manifolds: hyperbolic space, S_{++}^n , ...
- ▸ Metric trees, BHV tree space, CAT(0) cubical complexes. . .
- ▸ A fresh look at the subgradient method
	- ▸ Halfspaces as horoballs
	- ▸ Subgradients as constant-speed geodesic rays.
- ▸ Averaging:
	- ▸ convex combinations versus. . .
	- ▸ . . . weighted means, and how we recognize them.

- \blacktriangleright Manifolds: hyperbolic space, S_{++}^n , ...
- ▸ Metric trees, BHV tree space, CAT(0) cubical complexes. . .
- ▸ A fresh look at the subgradient method
	- ▸ Halfspaces as horoballs
	- ▸ Subgradients as constant-speed geodesic rays.
- ▸ Averaging:
	- \triangleright convex combinations versus.
	- ▸ . . . weighted means, and how we recognize them.
- \triangleright Cutting planes for optimization on CAT (0) cubical complexes

PART I Negative curvature

a complete metric space (X, d)

a complete metric space (X, d) where points connect via geodesics

a complete metric space (X, d) where points connect via geodesics (isometries from compact intervals into X),

a complete metric space (X, d) where points connect via geodesics (isometries from compact intervals into X), and $CAT(0)$

a complete metric space (X, d) where points connect via geodesics (isometries from compact intervals into X), and **CAT(0)**, meaning d_y^2 is **strongly convex** for all points $y \in X$:

a complete metric space (X, d) where points connect via geodesics (isometries from compact intervals into X), and **CAT(0)**, meaning d_y^2 is **strongly convex** for all points $y \in X$:

$$
\tau \mapsto d^2(g(\tau), y) - \tau^2
$$
 convex for geodesics g.

a complete metric space (X, d) where points connect via geodesics (isometries from compact intervals into X), and **CAT(0)**, meaning d_y^2 is **strongly convex** for all points $y \in X$:

 τ \mapsto $d^2(g(\tau), y)$ – τ^2 convex for geodesics g .

Triangles in $CAT(0)$ spaces are **skinny**.

a complete metric space (X, d) where points connect via geodesics (isometries from compact intervals into X), and **CAT(0)**, meaning d_y^2 is **strongly convex** for all points $y \in X$:

 τ \mapsto $d^2(g(\tau), y)$ – τ^2 convex for geodesics g .

Triangles in $CAT(0)$ spaces are **skinny**.

Example: **hyperbolic space**,

a complete metric space (X, d) where points connect via geodesics (isometries from compact intervals into X), and **CAT(0)**, meaning d_y^2 is **strongly convex** for all points $y \in X$:

 τ \mapsto $d^2(g(\tau), y)$ – τ^2 convex for geodesics g .

Triangles in $CAT(0)$ spaces are **skinny**.

Example: **hyperbolic space**, the open unit ball in R^n with

$$
\cosh d(x,y) = 1 + 2 \frac{|x-y|^2}{(1-|x|^2)(1-|y|^2)}.
$$

a complete metric space (X, d) where points connect via geodesics (isometries from compact intervals into X), and **CAT(0)**, meaning d_y^2 is **strongly convex** for all points $y \in X$:

 τ \mapsto $d^2(g(\tau), y)$ – τ^2 convex for geodesics g .

Triangles in $CAT(0)$ spaces are **skinny**.

Example: **hyperbolic space**, the open unit ball in R^n with

$$
\cosh d(x,y) = 1 + 2 \frac{|x-y|^2}{(1-|x|^2)(1-|y|^2)}.
$$

● Euclidean and Hilbert spaces: classical optimization

- Euclidean and Hilbert spaces: classical optimization
- Simply connected, negatively curved manifolds:

- Euclidean and Hilbert spaces: classical optimization
- Simply connected, negatively curved manifolds:
	- \triangleright hyperbolic space: classify hierarchical data (De Sa... '18)...

- Euclidean and Hilbert spaces: classical optimization
- Simply connected, negatively curved manifolds:
	- \triangleright hyperbolic space: classify hierarchical data (De Sa... '18)...
	- ▶ positive definite matrices S_{++}^n with affine-invariant metric

$$
d(X,Y) = \left\| \log \left(X^{-\frac{1}{2}} Y X^{-\frac{1}{2}} \right) \right\|_{\text{Frob}}
$$

- Euclidean and Hilbert spaces: classical optimization
- Simply connected, negatively curved manifolds:
	- \triangleright hyperbolic space: classify hierarchical data (De Sa... '18)...
	- ▶ positive definite matrices S_{++}^n with affine-invariant metric

$$
d(X,Y) = \left\| \log(X^{-\frac{1}{2}} Y X^{-\frac{1}{2}}) \right\|_{\text{Frob}} : \text{ matrix means (Bhatia...'12)}
$$

- Euclidean and Hilbert spaces: classical optimization
- Simply connected, negatively curved manifolds:
	- \triangleright hyperbolic space: classify hierarchical data (De Sa... '18)...
	- ▶ positive definite matrices S_{++}^n with affine-invariant metric

$$
d(X,Y) = \left\| \log(X^{-\frac{1}{2}} Y X^{-\frac{1}{2}}) \right\|_{\text{Frob}} : \text{ matrix means (Bhatia...'12)}
$$

• Metric trees:

- Euclidean and Hilbert spaces: classical optimization
- Simply connected, negatively curved manifolds:
	- \triangleright hyperbolic space: classify hierarchical data (De Sa... '18)...
	- ▶ positive definite matrices S_{++}^n with affine-invariant metric

$$
d(X,Y) = \left\| \log(X^{-\frac{1}{2}} Y X^{-\frac{1}{2}}) \right\|_{\text{Frob}} : \text{ matrix means (Bhatia...'12)}
$$

• Metric trees: facility location (Hansen. . . '87), . . .

- Euclidean and Hilbert spaces: classical optimization
- Simply connected, negatively curved manifolds:
	- \triangleright hyperbolic space: classify hierarchical data (De Sa... '18)...
	- ▶ positive definite matrices S_{++}^n with affine-invariant metric

$$
d(X,Y) = \left\| \log(X^{-\frac{1}{2}} Y X^{-\frac{1}{2}}) \right\|_{\text{Frob}} : \text{ matrix means (Bhatia...'12)}
$$

• Metric trees: facility location (Hansen...'87), ...

- Euclidean and Hilbert spaces: classical optimization
- Simply connected, negatively curved manifolds:
	- \triangleright hyperbolic space: classify hierarchical data (De Sa... '18)...
	- ▶ positive definite matrices S_{++}^n with affine-invariant metric

$$
d(X,Y) = \left\| \log(X^{-\frac{1}{2}} Y X^{-\frac{1}{2}}) \right\|_{\text{Frob}} : \text{ matrix means (Bhatia...'12)}
$$

- Metric trees: facility location (Hansen. . . '87), . . .
- More general cubical complexes,

- Euclidean and Hilbert spaces: classical optimization
- Simply connected, negatively curved manifolds:
	- \triangleright hyperbolic space: classify hierarchical data (De Sa... '18)...
	- ▶ positive definite matrices S_{++}^n with affine-invariant metric

$$
d(X,Y) = \left\| \log(X^{-\frac{1}{2}} Y X^{-\frac{1}{2}}) \right\|_{\text{Frob}} : \text{ matrix means (Bhatia...'12)}
$$

- Metric trees: facility location (Hansen. . . '87), . . .
- More general cubical complexes, phylogenetic tree space (Billera-H-V '01)

- Euclidean and Hilbert spaces: classical optimization
- Simply connected, negatively curved manifolds:
	- \triangleright hyperbolic space: classify hierarchical data (De Sa... '18)...
	- ▶ positive definite matrices S_{++}^n with affine-invariant metric

$$
d(X,Y) = \left\| \log(X^{-\frac{1}{2}} Y X^{-\frac{1}{2}}) \right\|_{\text{Frob}} : \text{ matrix means (Bhatia...'12)}
$$

• Metric trees: facility location (Hansen. . . '87), . . .

• More general cubical complexes, phylogenetic tree space (Billera-H-V '01) robot configurations (Ardila-Mantilla '20)

Modeling using Hadamard spaces

- Euclidean and Hilbert spaces: classical optimization
- Simply connected, negatively curved manifolds:
	- \triangleright hyperbolic space: classify hierarchical data (De Sa... '18)...
	- ▶ positive definite matrices S_{++}^n with affine-invariant metric

$$
d(X,Y) = \left\| \log(X^{-\frac{1}{2}} Y X^{-\frac{1}{2}}) \right\|_{\text{Frob}} : \text{ matrix means (Bhatia...'12)}
$$

• Metric trees: facility location (Hansen. . . '87),

• More general cubical complexes, phylogenetic tree space (Billera-H-V '01) robot configurations (Ardila-Mantilla '20)

Assumption: geodesics are tractable

Modeling using Hadamard spaces

- Euclidean and Hilbert spaces: classical optimization
- Simply connected, negatively curved manifolds:
	- \triangleright hyperbolic space: classify hierarchical data (De Sa... '18)...
	- ▶ positive definite matrices S_{++}^n with affine-invariant metric

$$
d(X,Y) = \left\| \log(X^{-\frac{1}{2}} Y X^{-\frac{1}{2}}) \right\|_{\text{Frob}} : \text{ matrix means (Bhatia...'12)}
$$

• Metric trees: facility location (Hansen. . . '87),

• More general cubical complexes, phylogenetic tree space (Billera-H-V '01) robot configurations (Ardila-Mantilla '20)

Assumption: geodesics are tractable

Example Find the **circumcenter** of a finite set $A \subset \mathbf{X}$:

Example Find the **circumcenter** of a finite set $A \subset \mathbf{X}$: minimize (\ast) $\phi_A(x) = \max_{a \in A} d(x, a).$

Example Find the **circumcenter** of a finite set $A \subset \mathbf{X}$: minimize (\ast) $\phi_A(x) = \max_{a \in A} d(x, a).$

Zhang-Sra '16 extends classical (sub)gradient methods to Hadamard *manifolds* X,

Example Find the **circumcenter** of a finite set $A \subset \mathbf{X}$: minimize (\ast) $\phi_A(x) = \max_{a \in A} d(x, a).$

Zhang-Sra '16 extends classical (sub)gradient methods to Hadamard *manifolds* X , but with wrinkles...

Example Find the **circumcenter** of a finite set $A \subset \mathbf{X}$: minimize (\ast) $\phi_A(x) = \max_{a \in A} d(x, a).$

Zhang-Sra '16 extends classical (sub)gradient methods to Hadamard *manifolds* X , but with wrinkles...

 \triangleright "subgradients" at $x \in \mathsf{X}$ are **tangents** in $T_x \mathsf{X}$,

Example Find the **circumcenter** of a finite set $A \subset \mathbf{X}$: minimize (\ast) $\phi_A(x) = \max_{a \in A} d(x, a).$

Zhang-Sra '16 extends classical (sub)gradient methods to Hadamard *manifolds* X , but with wrinkles...

- \triangleright "subgradients" at $x \in \mathsf{X}$ are tangents in $\mathcal{T}_{x} \mathsf{X}$, so ...
- ▶ the algorithm needs **exponentials** $Exp_x: T_x X \rightarrow X$

Example Find the **circumcenter** of a finite set $A \subset \mathbf{X}$: minimize (\ast) $\phi_A(x) = \max_{a \in A} d(x, a).$

Zhang-Sra '16 extends classical (sub)gradient methods to Hadamard *manifolds* X , but with wrinkles...

- \triangleright "subgradients" at $x \in \mathsf{X}$ are tangents in $\mathcal{T}_{x} \mathsf{X}$, so ...
- ▶ the algorithm needs exponentials $Exp_x: T_x X \rightarrow X$ and ...
- ▶ complexity analysis needs a **curvature lower bound** for **X**.

Example Find the **circumcenter** of a finite set $A \subset \mathbf{X}$: minimize (\ast) $\phi_A(x) = \max_{a \in A} d(x, a).$

Zhang-Sra '16 extends classical (sub)gradient methods to Hadamard *manifolds* X , but with wrinkles...

- \triangleright "subgradients" at $x \in \mathsf{X}$ are tangents in $\mathcal{T}_{x} \mathsf{X}$, so ...
- ▶ the algorithm needs exponentials $Exp_x: T_x X \rightarrow X$ and ...
- ▶ complexity analysis needs a **curvature lower bound** for **X**.

Furthermore, beyond manifolds, only **proximal** methods are known (Bačák '13. . .):

Example Find the **circumcenter** of a finite set $A \subset \mathbf{X}$: minimize (\ast) $\phi_A(x) = \max_{a \in A} d(x, a).$

Zhang-Sra '16 extends classical (sub)gradient methods to Hadamard *manifolds* X , but with wrinkles...

- \triangleright "subgradients" at $x \in \mathsf{X}$ are tangents in $\mathcal{T}_{x} \mathsf{X}$, so ...
- ▶ the algorithm needs exponentials $Exp_x: T_x X \rightarrow X$ and ...
- ▶ complexity analysis needs a **curvature lower bound** for **X**.

Furthermore, beyond manifolds, only **proximal** methods are known (Bačák '13...): rarely implementable.

Example Find the **circumcenter** of a finite set $A \subset \mathbf{X}$: minimize (\ast) $\phi_A(x) = \max_{a \in A} d(x, a).$

Zhang-Sra '16 extends classical (sub)gradient methods to Hadamard *manifolds* X , but with wrinkles...

- \triangleright "subgradients" at $x \in \mathsf{X}$ are tangents in $\mathcal{T}_{x} \mathsf{X}$, so ...
- ▶ the algorithm needs exponentials $Exp_x: T_x X \rightarrow X$ and ...
- ▶ complexity analysis needs a **curvature lower bound** for **X**.

Furthermore, beyond manifolds, only **proximal** methods are known (Bačák '13...): rarely implementable.

Question Are circumcenters in Hadamard space computable?

PART II

The subgradient method: a fresh look

Seek to minimize convex objective $\phi: \mathbf{R}^n \to \mathbf{R}$.

Seek to minimize convex objective $\phi: \mathbf{R}^n \to \mathbf{R}$. At current point $x \in \mathbb{R}^n$,

 $\partial \phi(x)$ consists of **subgradients** $z \in \mathbb{R}^n$:

x minimizes $\phi - \langle z, \cdot \rangle$.

Seek to minimize convex objective $\phi: \mathbf{R}^n \to \mathbf{R}$. At current point $x \in \mathbb{R}^n$, $\partial \phi(x)$ consists of **subgradients** $z \in \mathbb{R}^n$:

x minimizes $\phi - \langle z, \cdot \rangle$.

Seek to minimize convex objective $\phi: \mathbf{R}^n \to \mathbf{R}$. At current point $x \in \mathbb{R}^n$, $\partial \phi(x)$ consists of **subgradients** $z \in \mathbb{R}^n$:

x minimizes $\phi - \langle z, \cdot \rangle$.

Move distance ϵ along ray from x in direction z: $x \leftarrow x - \epsilon \frac{z}{|z|}$ $\frac{z}{|z|}$.

Seek to minimize convex objective $\phi: \mathbf{R}^n \to \mathbf{R}$. At current point $x \in \mathbb{R}^n$, $\partial \phi(x)$ consists of **subgradients** $z \in \mathbb{R}^n$:

x minimizes $\phi - \langle z, \cdot \rangle$.

Move distance ϵ along ray from x in direction z: $x \leftarrow x - \epsilon \frac{z}{|z|}$ $\frac{z}{|z|}$. Iterating *n* times ensures objective excess $\phi(x)$ – min $\phi = O\left(\frac{1}{\sqrt{2}}\right)$ $\frac{1}{n}$.

Seek to minimize convex objective $\phi: \mathbf{R}^n \to \mathbf{R}$. At current point $x \in \mathbb{R}^n$, $\partial \phi(x)$ consists of **subgradients** $z \in \mathbb{R}^n$:

x minimizes $\phi - \langle z, \cdot \rangle$.

Move distance ϵ along ray from x in direction z: $x \leftarrow x - \epsilon \frac{z}{|z|}$ $\frac{z}{|z|}$. Iterating *n* times ensures objective excess $\phi(x)$ – min $\phi = O\left(\frac{1}{\sqrt{2}}\right)$ $\frac{1}{n}$.

Underlying geometry: **level set** C where $\phi \leq \phi(x)$, and halfspace H where $\langle z, \cdot \rangle \leq \langle z, x \rangle$ satisfy $C \subset H$.

Seek to minimize convex objective $\phi: \mathbf{R}^n \to \mathbf{R}$. At current point $x \in \mathbb{R}^n$, $\partial \phi(x)$ consists of **subgradients** $z \in \mathbb{R}^n$:

x minimizes $\phi - \langle z, \cdot \rangle$.

Move distance ϵ along ray from x in direction z: $x \leftarrow x - \epsilon \frac{z}{|z|}$ $\frac{z}{|z|}$. Iterating *n* times ensures objective excess $\phi(x)$ – min $\phi = O\left(\frac{1}{\sqrt{2}}\right)$ $\frac{1}{n}$.

Underlying geometry: **level set** C where $\phi \leq \phi(x)$, and halfspace H where $\langle z, \cdot \rangle \leq \langle z, x \rangle$ satisfy $C \subset H$.

Subgradients are **dual** objects. Any analogue in Hadamard space?

Rays from x are isometries $g: \mathbf{R}_{+} \to \mathbf{X}$ with $g(0) = x$,

Rays from x are isometries $g: \mathbf{R}_{+} \to \mathbf{X}$ with $g(0) = x$, and correspond to Busemann functions (1955)

$$
b_g(y) = \lim_{\tau \to +\infty} \left(d(g(\tau), y) - \tau \right)
$$

Rays from x are isometries $g: \mathbf{R}_{+} \to \mathbf{X}$ with $g(0) = x$, and correspond to Busemann functions (1955)

$$
b_g(y) = \lim_{\tau \to +\infty} \left(d(g(\tau), y) - \tau \right)
$$

and **horoballs** H where $b_{\epsilon} \leq 0$.

Rays from x are isometries $g: \mathbf{R}_{+} \to \mathbf{X}$ with $g(0) = x$, and correspond to Busemann functions (1955)

$$
b_g(y) = \lim_{\tau \to +\infty} \left(d(g(\tau), y) - \tau \right)
$$

and **horoballs** H where $b_g \leq 0$.

Rays from x are isometries $g: \mathbf{R}_{+} \to \mathbf{X}$ with $g(0) = x$, and correspond to Busemann functions (1955)

$$
b_g(y) = \lim_{\tau \to +\infty} \left(d(g(\tau), y) - \tau \right)
$$

and **horoballs** H where $b_{\epsilon} \leq 0$.

The ray supports objective $\phi: \mathsf{X} \to \mathsf{R}$ at x if H contains the **level set** C where $\phi \leq \phi(x)$.

Rays from x are isometries $g: \mathbf{R}_{+} \to \mathbf{X}$ with $g(0) = x$, and correspond to Busemann functions (1955)

$$
b_g(y) = \lim_{\tau \to +\infty} \left(d(g(\tau), y) - \tau \right)
$$

and **horoballs** H where $b_{\epsilon} \leq 0$.

The ray supports objective $\phi: \mathsf{X} \to \mathsf{R}$ at x if H contains the **level set** C where $\phi \leq \phi(x)$.

Example: Euclidean space

Rays from x are isometries $g: \mathbf{R}_{+} \to \mathbf{X}$ with $g(0) = x$, and correspond to Busemann functions (1955)

$$
b_g(y) = \lim_{\tau \to +\infty} \left(d(g(\tau), y) - \tau \right)
$$

and **horoballs** H where $b_{\epsilon} \leq 0$.

The ray supports objective $\phi: \mathsf{X} \to \mathsf{R}$ at x if H contains the **level set** C where $\phi \leq \phi(x)$.

Example: Euclidean space Rays are **halflines**,

Rays from x are isometries $g: \mathbf{R}_{+} \to \mathbf{X}$ with $g(0) = x$, and correspond to Busemann functions (1955)

$$
b_g(y) = \lim_{\tau \to +\infty} \left(d(g(\tau), y) - \tau \right)
$$

and **horoballs** H where $b_{\epsilon} \leq 0$.

The ray supports objective $\phi: \mathsf{X} \to \mathsf{R}$ at x if H contains the **level set** C where $\phi \leq \phi(x)$.

Example: Euclidean space Rays are **halflines**, Busemann functions are **affine**.

Rays from x are isometries $g: \mathbf{R}_{+} \to \mathbf{X}$ with $g(0) = x$, and correspond to Busemann functions (1955)

$$
b_g(y) = \lim_{\tau \to +\infty} \left(d(g(\tau), y) - \tau \right)
$$

and **horoballs** H where $b_{\epsilon} \leq 0$.

The ray supports objective $\phi: \mathsf{X} \to \mathsf{R}$ at x if H contains the **level set** C where $\phi \leq \phi(x)$.

Example: Euclidean space Rays are **halflines**, Busemann functions are **affine**, horoballs are **halfspaces**,

Rays from x are isometries $g: \mathbf{R}_{+} \to \mathbf{X}$ with $g(0) = x$, and correspond to Busemann functions (1955)

$$
b_g(y) = \lim_{\tau \to +\infty} \left(d(g(\tau), y) - \tau \right)
$$

and **horoballs** H where $b_{\epsilon} \leq 0$.

The ray supports objective $\phi: \mathsf{X} \to \mathsf{R}$ at x if H contains the **level set** C where $\phi \leq \phi(x)$.

Example: Euclidean space Rays are **halflines**, Busemann functions are **affine**, horoballs are **halfspaces**, **subgradients** $z \in \partial \phi(x)$ give supporting rays $g(\tau) = x - \tau \frac{z}{|z|}$ $\frac{z}{|z|}$.

Rays from x are isometries $g: \mathbf{R}_{+} \to \mathbf{X}$ with $g(0) = x$, and correspond to Busemann functions (1955)

$$
b_g(y) = \lim_{\tau \to +\infty} \left(d(g(\tau), y) - \tau \right)
$$

and **horoballs** H where $b_{\epsilon} \leq 0$.

The ray supports objective $\phi: \mathsf{X} \to \mathsf{R}$ at x if H contains the **level set** C where $\phi \leq \phi(x)$.

Example: Euclidean space Rays are **halflines**, Busemann functions are **affine**, horoballs are **halfspaces**, **subgradients** $z \in \partial \phi(x)$ give supporting rays $g(\tau) = x - \tau \frac{z}{|z|}$ $\frac{z}{|z|}$.

Example: circumenter $\phi(x) = \max_{a \in A} d(x, a)$

Rays from x are isometries $g: \mathbf{R}_{+} \to \mathbf{X}$ with $g(0) = x$, and correspond to Busemann functions (1955)

$$
b_g(y) = \lim_{\tau \to +\infty} \left(d(g(\tau), y) - \tau \right)
$$

and **horoballs** H where $b_{\epsilon} \leq 0$.

The ray supports objective $\phi: \mathsf{X} \to \mathsf{R}$ at x if H contains the **level set** C where $\phi \leq \phi(x)$.

Example: Euclidean space Rays are **halflines**, Busemann functions are **affine**, horoballs are **halfspaces**, **subgradients** $z \in \partial \phi(x)$ give supporting rays $g(\tau) = x - \tau \frac{z}{|z|}$ $\frac{z}{|z|}$.

Example: circumenter $\phi(x) = \max_{a \in A} d(x, a)$ is supported by rays from x through any maximizing point a . A subgradient-style algorithm in Hadamard space

A subgradient-style algorithm in Hadamard space

Theorem (Complexity of supporting ray pursuit)
Theorem (Complexity of supporting ray pursuit) For L-Lipschitz objective ϕ

Theorem (Complexity of supporting ray pursuit) For L-Lipschitz objective ϕ attaining its minimum,

Theorem (Complexity of supporting ray pursuit)

For L-Lipschitz objective ϕ attaining its minimum, initial point x_0 and any upper diameter bound D for $\{x : \phi(x) \leq \phi(x_0)\}\,$,

Theorem (Complexity of supporting ray pursuit)

For L-Lipschitz objective ϕ attaining its minimum, initial point x_0 and any upper diameter bound D for $\{x : \phi(x) \leq \phi(x_0)\}\,$, n successive steps of constant size $\frac{D}{\sqrt{D}}$ $\frac{1}{n}$ along supporting rays

Theorem (Complexity of supporting ray pursuit)

For L-Lipschitz objective ϕ attaining its minimum, initial point x_0 and any upper diameter bound D for $\{x : \phi(x) \leq \phi(x_0)\}\,$, n successive steps of constant size $\frac{D}{\sqrt{D}}$ $\frac{1}{n}$ along supporting rays guarantees average objective excess less than $\frac{LD}{\sqrt{r}}$ $\frac{2}{n}$.

Theorem (Complexity of supporting ray pursuit)

For L-Lipschitz objective ϕ attaining its minimum, initial point x_0 and any upper diameter bound D for $\{x : \phi(x) \leq \phi(x_0)\}\,$, n successive steps of constant size $\frac{D}{\sqrt{D}}$ $\frac{1}{n}$ along supporting rays guarantees average objective excess less than $\frac{LD}{\sqrt{r}}$ $\frac{2}{n}$.

Example: circumcenter of three points in a cubical complex

Theorem (Complexity of supporting ray pursuit)

For L-Lipschitz objective ϕ attaining its minimum, initial point x_0 and any upper diameter bound D for $\{x : \phi(x) \leq \phi(x_0)\}\,$, n successive steps of constant size $\frac{D}{\sqrt{D}}$ $\frac{1}{n}$ along supporting rays guarantees average objective excess less than $\frac{LD}{\sqrt{r}}$ $\frac{2}{n}$.

Example: circumcenter of three points in a cubical complex

But finding supporting rays for composite objectives is hard, so. . .

Euclidean space supports subgradient calculus:

Euclidean space supports subgradient calculus: to minimize

$$
\phi = \sum_{j=1}^k \phi_j
$$

Euclidean space supports subgradient calculus: to minimize

$$
\phi = \sum_{j=1}^k \phi_j \qquad \text{we can use} \qquad \partial \phi(x) = \sum_j \partial \phi_j(x).
$$

Euclidean space supports subgradient calculus: to minimize

$$
\phi = \sum_{j=1}^{k} \phi_j
$$
 we can use $\partial \phi(x) = \sum_j \partial \phi_j(x)$.

In Hadamard space, subgradients $(g, s) \in \partial \phi(x)$ consist of:

 \triangleright direction of ray g from x with Busemann function b_{\varnothing}

Euclidean space supports **subgradient calculus**: to minimize

$$
\phi = \sum_{j=1}^k \phi_j \qquad \text{we can use} \qquad \partial \phi(x) = \sum_j \partial \phi_j(x).
$$

In Hadamard space, subgradients $(g, s) \in \partial \phi(x)$ consist of:

- \triangleright direction of ray g from x with Busemann function b_{\varnothing}
- **► magnitude** (or "speed") $s \ge 0$

Euclidean space supports **subgradient calculus**: to minimize

$$
\phi = \sum_{j=1}^k \phi_j \qquad \text{we can use} \qquad \partial \phi(x) = \sum_j \partial \phi_j(x).
$$

In Hadamard space, subgradients $(g, s) \in \partial \phi(x)$ consist of:

- \triangleright direction of ray g from x with Busemann function b_g
- **► magnitude** (or "speed") $s \ge 0$ such that x minimizes ϕsb_g .

Euclidean space supports subgradient calculus: to minimize

$$
\phi = \sum_{j=1}^k \phi_j \qquad \text{we can use} \qquad \partial \phi(x) = \sum_j \partial \phi_j(x).
$$

In Hadamard space, subgradients $(g, s) \in \partial \phi(x)$ consist of:

- \triangleright direction of ray g from x with Busemann function b_g
- **► magnitude** (or "speed") $s \ge 0$ such that x minimizes ϕsb_g . Example: Euclidean subgradient $z \neq 0$ gives Hadamard subgradient

$$
(g,|z|) \in \partial \phi(x)
$$
 for the ray $g(\tau) = x - \tau \frac{z}{|z|}$.

Euclidean space supports **subgradient calculus**: to minimize

$$
\phi = \sum_{j=1}^k \phi_j \qquad \text{we can use} \qquad \partial \phi(x) = \sum_j \partial \phi_j(x).
$$

In Hadamard space, subgradients $(g, s) \in \partial \phi(x)$ consist of:

- \triangleright direction of ray g from x with Busemann function b_g
- **► magnitude** (or "speed") $s \ge 0$ such that x minimizes ϕsb_g . Example: Euclidean subgradient $z \neq 0$ gives Hadamard subgradient

$$
(g,|z|) \in \partial \phi(x)
$$
 for the ray $g(\tau) = x - \tau \frac{z}{|z|}$.

No calculus. . . .

Euclidean space supports **subgradient calculus**: to minimize

$$
\phi = \sum_{j=1}^k \phi_j \qquad \text{we can use} \qquad \partial \phi(x) = \sum_j \partial \phi_j(x).
$$

In Hadamard space, subgradients $(g, s) \in \partial \phi(x)$ consist of:

- \triangleright direction of ray g from x with Busemann function b_g
- **► magnitude** (or "speed") $s \ge 0$ such that x minimizes ϕsb_g . Example: Euclidean subgradient $z \neq 0$ gives Hadamard subgradient

$$
(g, |z|) \in \partial \phi(x)
$$
 for the ray $g(\tau) = x - \tau \frac{z}{|z|}$.

No calculus. . . . However, following (Bertsekas-Nedic '01). . .

Euclidean space supports **subgradient calculus**: to minimize

$$
\phi = \sum_{j=1}^k \phi_j \qquad \text{we can use} \qquad \partial \phi(x) = \sum_j \partial \phi_j(x).
$$

In Hadamard space, subgradients $(g, s) \in \partial \phi(x)$ consist of:

- \triangleright direction of ray g from x with Busemann function b_g
- **► magnitude** (or "speed") $s \ge 0$ such that x minimizes ϕsb_g . Example: Euclidean subgradient $z \neq 0$ gives Hadamard subgradient

$$
(g,|z|) \in \partial \phi(x)
$$
 for the ray $g(\tau) = x - \tau \frac{z}{|z|}$.

No calculus. . . . However, following (Bertsekas-Nedic '01). . . Theorem For suitable $\delta > 0$, repeating for cycle $n = 1 \dots, N$

Euclidean space supports **subgradient calculus**: to minimize

$$
\phi = \sum_{j=1}^k \phi_j \qquad \text{we can use} \qquad \partial \phi(x) = \sum_j \partial \phi_j(x).
$$

In Hadamard space, subgradients $(g, s) \in \partial \phi(x)$ consist of:

- \triangleright direction of ray g from x with Busemann function b_g
- **► magnitude** (or "speed") $s \ge 0$ such that x minimizes ϕsb_g . Example: Euclidean subgradient $z \neq 0$ gives Hadamard subgradient

$$
(g,|z|) \in \partial \phi(x)
$$
 for the ray $g(\tau) = x - \tau \frac{z}{|z|}$.

No calculus. . . . However, following (Bertsekas-Nedic '01). . . Theorem For suitable $\delta > 0$, repeating for cycle $n = 1 \dots, N$

for
$$
j = 1...k
$$
 find $(g, s) \in \partial \phi_j(x)$ and update $x \leftarrow g\left(\frac{\delta s}{\sqrt{n}}\right)$

Euclidean space supports **subgradient calculus**: to minimize

$$
\phi = \sum_{j=1}^k \phi_j \qquad \text{we can use} \qquad \partial \phi(x) = \sum_j \partial \phi_j(x).
$$

In Hadamard space, subgradients $(g, s) \in \partial \phi(x)$ consist of:

- \triangleright direction of ray g from x with Busemann function b_g
- **► magnitude** (or "speed") $s \ge 0$ such that x minimizes ϕsb_g . Example: Euclidean subgradient $z \neq 0$ gives Hadamard subgradient

$$
(g,|z|) \in \partial \phi(x)
$$
 for the ray $g(\tau) = x - \tau \frac{z}{|z|}$.

No calculus. . . . However, following (Bertsekas-Nedic '01). . . Theorem For suitable $\delta > 0$, repeating for cycle $n = 1 \dots, N$

for
$$
j = 1...k
$$
 find $(g, s) \in \partial \phi_j(x)$ and update $x \leftarrow g\left(\frac{\delta s}{\sqrt{n}}\right)$

ensures objective excess $O(\frac{1}{\sqrt{2}})$ $\frac{1}{\overline{N}}$).

BHV tree space consists of binary trees with weighted internal edges,

BHV tree space consists of binary trees with weighted internal edges, living in a CAT(0) orthant complex

BHV tree space consists of binary trees with weighted internal edges, living in a CAT(0) orthant complex with polytime computable geodesics (Owen-Provan '11)

BHV tree space consists of binary trees with weighted internal edges, living in a CAT(0) orthant complex with polytime computable geodesics (Owen-Provan '11) implemented in SturmMean.

BHV tree space consists of binary trees with weighted internal edges, living in a CAT(0) orthant complex with polytime computable geodesics (Owen-Provan '11) implemented in SturmMean.

Medians of finite sets A in Hadamard spaces X

BHV tree space consists of binary trees with weighted internal edges, living in a CAT(0) orthant complex with polytime computable geodesics (Owen-Provan '11) implemented in SturmMean.

Medians of finite sets A in Hadamard spaces X minimize $\sum_{a \in A} d_a$.

BHV tree space consists of binary trees with weighted internal edges, living in a CAT(0) orthant complex with polytime computable geodesics (Owen-Provan '11) implemented in SturmMean.

Medians of finite sets A in Hadamard spaces X minimize $\sum_{a \in A} d_a$. To run incremental subgradient method

BHV tree space consists of binary trees with weighted internal edges, living in a CAT(0) orthant complex with polytime computable geodesics (Owen-Provan '11) implemented in SturmMean.

Medians of finite sets A in Hadamard spaces X minimize $\sum_{a \in A} d_a$. To run incremental subgradient method note rays g from x through $a \in A$ satisfy $(g, 1) \in \partial d_a(x)$.

BHV tree space consists of binary trees with weighted internal edges, living in a CAT(0) orthant complex with polytime computable geodesics (Owen-Provan '11) implemented in SturmMean.

Medians of finite sets A in Hadamard spaces X minimize $\sum_{a \in A} d_a$. To run incremental subgradient method note rays g from x through $a \in A$ satisfy $(g, 1) \in \partial d_a(x)$.

Example (Owen-Miller-Provan '15) A median of three trees. . .

BHV tree space consists of binary trees with weighted internal edges, living in a CAT(0) orthant complex with polytime computable geodesics (Owen-Provan '11) implemented in SturmMean.

Medians of finite sets A in Hadamard spaces X minimize $\sum_{a \in A} d_a$. To run incremental subgradient method note rays g from x through $a \in A$ satisfy $(g, 1) \in \partial d_a(x)$.

Example (Owen-Miller-Provan '15) A median of three trees. . .

BHV tree space consists of binary trees with weighted internal edges, living in a CAT(0) orthant complex with polytime computable geodesics (Owen-Provan '11) implemented in SturmMean.

Medians of finite sets A in Hadamard spaces X minimize $\sum_{a \in A} d_a$. To run incremental subgradient method note rays g from x through $a \in A$ satisfy $(g, 1) \in \partial d_a(x)$.

Example (Owen-Miller-Provan '15) A median of three trees. . .

PART III Weighted means in Hadamard spaces

Averaging finite sets

Averaging finite sets

Examples: matrix means (Bhatia. . . '12),

Averaging finite sets

Examples: matrix means (Bhatia. . . '12), computational geometry (Arnaudon. . . '05),
Examples: matrix means (Bhatia. . . '12), computational geometry (Arnaudon...'05), phylogenetic trees (Billera...'01, Bačák '13)...

Examples: matrix means (Bhatia. . . '12), computational geometry (Arnaudon...'05), phylogenetic trees (Billera...'01, Bačák '13)...

Question: given a finite set A, is a given point \bar{x} an "average"?

Examples: matrix means (Bhatia. . . '12), computational geometry (Arnaudon...^{'05}), phylogenetic trees (Billera...^{'01}, Bačák ^{'13})...

Question: given a finite set A, is a given point \bar{x} an "average"?

Theorem (weighted averages versus convex combinations)

Examples: matrix means (Bhatia. . . '12), computational geometry (Arnaudon...^{'05}), phylogenetic trees (Billera...^{'01}, Bačák ^{'13})... Question: given a finite set A, is a given point \bar{x} an "average"?

Theorem (weighted averages versus convex combinations) A point \bar{x} minimizes $\sum_a w_a d^2(\cdot, a)$ for some weighting $0 \neq w \geq 0$

Examples: matrix means (Bhatia. . . '12), computational geometry (Arnaudon...^{'05}), phylogenetic trees (Billera...^{'01}, Bačák ^{'13})... Question: given a finite set A, is a given point \bar{x} an "average"?

Theorem (weighted averages versus convex combinations) A point \bar{x} minimizes $\sum_a w_a d^2(\cdot, a)$ for some weighting $0 \neq w \geq 0$ if and only if \bar{x} minimizes **test function** max_a{d(⋅, a) – d(\bar{x} , a)}.

Examples: matrix means (Bhatia. . . '12), computational geometry (Arnaudon...^{'05}), phylogenetic trees (Billera...^{'01}, Bačák ^{'13})... Question: given a finite set A, is a given point \bar{x} an "average"?

Theorem (weighted averages versus convex combinations) A point \bar{x} minimizes $\sum_a w_a d^2(\cdot, a)$ for some weighting $0 \neq w \geq 0$ if and only if \bar{x} minimizes **test function** max_a{d(⋅, a) – d(\bar{x} , a)}. In that case, $\bar{x} \in \text{conv } A$

Examples: matrix means (Bhatia. . . '12), computational geometry (Arnaudon...^{'05}), phylogenetic trees (Billera...^{'01}, Bačák ^{'13})... Question: given a finite set A, is a given point \bar{x} an "average"?

Theorem (weighted averages versus convex combinations) A point \bar{x} minimizes $\sum_a w_a d^2(\cdot, a)$ for some weighting $0 \neq w \geq 0$ if and only if \bar{x} minimizes **test function** max_a{d(⋅, a) – d(\bar{x} , a)}. In that case, $\bar{x} \in \text{conv } A$ (but the converse fails outside \mathbb{R}^n).

Examples: matrix means (Bhatia...'12), computational geometry (Arnaudon...^{'05}), phylogenetic trees (Billera...^{'01}, Bačák ^{'13})... Question: given a finite set A, is a given point \bar{x} an "average"?

Theorem (weighted averages versus convex combinations) A point \bar{x} minimizes $\sum_a w_a d^2(\cdot, a)$ for some weighting $0 \neq w \geq 0$ if and only if \bar{x} minimizes **test function** max_a{d(⋅, a) – d(\bar{x} , a)}. In that case, $\bar{x} \in \text{conv } A$ (but the converse fails outside \mathbb{R}^n).

Three points in a cubical complex

Examples: matrix means (Bhatia. . . '12), computational geometry (Arnaudon...^{'05}), phylogenetic trees (Billera...^{'01}, Bačák ^{'13})... Question: given a finite set A, is a given point \bar{x} an "average"?

Theorem (weighted averages versus convex combinations) A point \bar{x} minimizes $\sum_a w_a d^2(\cdot, a)$ for some weighting $0 \neq w \geq 0$ if and only if \bar{x} minimizes **test function** max_a{d(⋅, a) – d(\bar{x} , a)}. In that case, $\bar{x} \in \text{conv } A$ (but the converse fails outside \mathbb{R}^n).

Three points in a cubical complex

with 3-dimensional convex hull. . .

Examples: matrix means (Bhatia. . . '12), computational geometry (Arnaudon...^{'05}), phylogenetic trees (Billera...^{'01}, Bačák ^{'13})... Question: given a finite set A, is a given point \bar{x} an "average"?

Theorem (weighted averages versus convex combinations) A point \bar{x} minimizes $\sum_a w_a d^2(\cdot, a)$ for some weighting $0 \neq w \geq 0$ if and only if \bar{x} minimizes **test function** max_a{d(⋅, a) – d(\bar{x} , a)}. In that case, $\bar{x} \in \text{conv } A$ (but the converse fails outside \mathbb{R}^n).

Three points in a cubical complex

with 3-dimensional convex hull. . .

. . . but 2-dimensional weighted mean set.

For $\bar{x} \in \mathsf{X}$ (locally compact Hadamard),

For $\bar{x} \in X$ (locally compact Hadamard), assume geodesics $[\bar{x}, a]$ extend to rays.

For $\bar{x} \in X$ (locally compact Hadamard), assume geodesics $[\bar{x}, a]$ extend to rays. Traversing at speed $d(\bar{x}, a)$ gives tangents $[\bar{x}, a]$

For $\bar{x} \in X$ (locally compact Hadamard), assume geodesics $[\bar{x}, a]$ extend to rays. Traversing at speed $d(\bar{x}, a)$ gives tangents $[\bar{x}, a]$ comprising "cone" $T_{\bar{x}}\mathbf{X}$.

For $\bar{x} \in X$ (locally compact Hadamard), assume geodesics $[\bar{x}, a]$ extend to rays. Traversing at speed $d(\bar{x}, a)$ gives **tangents** $[\bar{x}, a]$ comprising "cone" $T_{\overline{x}}\mathbf{X}$. Suppose $T_{\overline{x}}\mathbf{X} \cong \mathbf{R}^n$.

For $\bar{x} \in X$ (locally compact Hadamard), assume geodesics $[\bar{x}, a]$ extend to rays. Traversing at speed $d(\bar{x}, a)$ gives **tangents** $[\bar{x}, a]$ comprising "cone" $\mathcal{T}_{\bar{\mathbf{x}}} \mathbf{X}$. Suppose $\mathcal{T}_{\bar{\mathbf{x}}} \mathbf{X} \cong \mathbf{R}^n$. (Eg: \mathbf{X} a manifold.)

For $\bar{x} \in X$ (locally compact Hadamard), assume geodesics $[\bar{x}, a]$ extend to rays. Traversing at speed $d(\bar{x}, a)$ gives **tangents** $[\bar{x}, a]$ comprising "cone" $\mathcal{T}_{\bar{\mathbf{x}}} \mathbf{X}$. Suppose $\mathcal{T}_{\bar{\mathbf{x}}} \mathbf{X} \cong \mathbf{R}^n$. (Eg: \mathbf{X} a manifold.)

The test function max_{a∈A}{ $d(·, a) - d(\bar{x} , a)$ }

For $\bar{x} \in X$ (locally compact Hadamard), assume geodesics [\bar{x} , a] extend to rays. Traversing at speed $d(\bar{x}, a)$ gives **tangents** $[\bar{x}, a]$ comprising "cone" $\mathcal{T}_{\bar{\mathbf{x}}} \mathbf{X}$. Suppose $\mathcal{T}_{\bar{\mathbf{x}}} \mathbf{X} \cong \mathbf{R}^n$. (Eg: \mathbf{X} a manifold.)

The test function max_{a∈A}{ $d(·, a) - d(\bar{x} , a)$ } then has **slope**

$$
\mathsf{dist}\Big(0,\mathsf{conv}\big\{\underline{[\bar{x},a]}:a\in A\big\}\Big),\,
$$

For $\bar{x} \in X$ (locally compact Hadamard), assume geodesics [\bar{x} , a] extend to rays. Traversing at speed $d(\bar{x}, a)$ gives **tangents** $[\bar{x}, a]$ comprising "cone" $\mathcal{T}_{\bar{\mathbf{x}}} \mathbf{X}$. Suppose $\mathcal{T}_{\bar{\mathbf{x}}} \mathbf{X} \cong \mathbf{R}^n$. (Eg: \mathbf{X} a manifold.)

The test function max_{a∈A} $\{d(\cdot, a) - d(\bar{x}, a)\}\$ then has **slope**

$$
\mathsf{dist}\Big(0,\mathsf{conv}\big\{\underline{[\bar{x},a]}:a\in A\big\}\Big),\,
$$

quantifying whether \bar{x} is a weighted mean.

For $\bar{x} \in X$ (locally compact Hadamard), assume geodesics $[\bar{x}, a]$ extend to rays. Traversing at speed $d(\bar{x}, a)$ gives **tangents** $[\bar{x}, a]$ comprising "cone" $\mathcal{T}_{\bar{\mathbf{x}}} \mathbf{X}$. Suppose $\mathcal{T}_{\bar{\mathbf{x}}} \mathbf{X} \cong \mathbf{R}^n$. (Eg: \mathbf{X} a manifold.)

The test function max_{a∈A}{ $d(·, a) - d(\bar{x} , a)$ } then has **slope**

$$
\mathsf{dist}\Big(0,\mathsf{conv}\big\{\underline{[\bar{x},a]}:a\in A\big\}\Big),
$$

quantifying whether \bar{x} is a weighted mean.

3 points in a cubical complex

For $\bar{x} \in X$ (locally compact Hadamard), assume geodesics $[\bar{x}, a]$ extend to rays. Traversing at speed $d(\bar{x}, a)$ gives **tangents** $[\bar{x}, a]$ comprising "cone" $\mathcal{T}_{\bar{\mathbf{x}}} \mathbf{X}$. Suppose $\mathcal{T}_{\bar{\mathbf{x}}} \mathbf{X} \cong \mathbf{R}^n$. (Eg: \mathbf{X} a manifold.)

The test function max_{a∈A}{ $d(·, a) - d(\bar{x} , a)$ } then has **slope**

$$
\mathsf{dist}\Big(0,\mathsf{conv}\big\{\underline{[\bar{x},a]}:a\in A\big\}\Big),\,
$$

quantifying whether \bar{x} is a weighted mean.

3 points in a cubical complex Heat map of test function slope

PART IV Convex optimization on CAT(0) cubical complexes

A complex X of cells – Euclidean cubes and their faces –

A complex X of cells – Euclidean cubes and their faces – each pair of cells sharing at most one face

A complex X of cells $-$ Euclidean cubes and their faces $$ each pair of cells sharing at most one face — is $CAT(0) \Leftrightarrow$ simply connected and link condition holds (Gromov '81).

A complex X of cells $-$ Euclidean cubes and their faces $$ each pair of cells sharing at most one face — is $CAT(0) \Leftrightarrow$ simply connected and link condition holds (Gromov '81). Geodesics are **polynomial time** (Owen-Provan '11 ... Hayashi '21)

A complex X of cells $-$ Euclidean cubes and their faces $$ each pair of cells sharing at most one face — is $CAT(0) \Leftrightarrow$ simply connected and **link condition** holds (Gromov '81). Geodesics are **polynomial time** (Owen-Provan '11 . . . Hayashi '21)

Example: Minimize over square complex

$$
\phi(x) = d^2(x, a) + d^2(x, b) + d^2(x, c).
$$

Cyclic proximal point $(Bačák '13)$ is slow:

A complex X of cells $-$ Euclidean cubes and their faces $$ each pair of cells sharing at most one face — is $CAT(0) \Leftrightarrow$ simply connected and link condition holds (Gromov '81). Geodesics are *polynomial time* (Owen-Provan '11 ... Hayashi '21)

Example: Minimize over square complex $\phi(x) = d^2(x, a) + d^2(x, b) + d^2(x, c).$

Cyclic proximal point (Bačák '13) is slow:

for
$$
n = 1, 2, ..., \quad x \in \frac{n}{n+1}x + \frac{1}{n+1}\{a, b, c\}
$$
 end(for)

A complex X of cells $-$ Euclidean cubes and their faces $$ each pair of cells sharing at most one face — is $CAT(0) \Leftrightarrow$ simply connected and link condition holds (Gromov '81). Geodesics are *polynomial time* (Owen-Provan '11 ... Hayashi '21)

Example: Minimize over square complex $\phi(x) = d^2(x, a) + d^2(x, b) + d^2(x, c).$

Cyclic proximal point $(Bačák '13)$ is slow:

for $n = 1, 2, ..., \quad x \in \frac{n}{n+1}$ $\frac{n}{n+1}x + \frac{1}{n+1}$ $\frac{1}{n+1}\{a,b,c\}$ end(for) lnstead...

A complex X of cells $-$ Euclidean cubes and their faces $$ each pair of cells sharing at most one face — is $CAT(0) \Leftrightarrow$ simply connected and link condition holds (Gromov '81). Geodesics are *polynomial time* (Owen-Provan '11 ... Hayashi '21)

Example: Minimize over square complex $\phi(x) = d^2(x, a) + d^2(x, b) + d^2(x, c).$

Cyclic proximal point (Bačák '13) is slow:

for $n = 1, 2, ..., \quad x \in \frac{n}{n+1}$ $\frac{n}{n+1}x + \frac{1}{n+1}$ $\frac{1}{n+1}\{a,b,c\}$ end(for) lnstead... Algorithm: given current point x and list Ω of optimized cells

A complex X of cells $-$ Euclidean cubes and their faces $$ each pair of cells sharing at most one face — is $CAT(0) \Leftrightarrow$ simply connected and link condition holds (Gromov '81). Geodesics are *polynomial time* (Owen-Provan '11 ... Hayashi '21)

Example: Minimize over square complex $\phi(x) = d^2(x, a) + d^2(x, b) + d^2(x, c).$

Cyclic proximal point $(Bačák '13)$ is slow:

for $n = 1, 2, ..., \quad x \in \frac{n}{n+1}$ $\frac{n}{n+1}x + \frac{1}{n+1}$ $\frac{1}{n+1}\{a,b,c\}$ end(for) lnstead... Algorithm: given current point x and list Ω of optimized cells repeat

choose cell $P \notin \Omega$ containing x

A complex X of cells $-$ Euclidean cubes and their faces $$ each pair of cells sharing at most one face — is $CAT(0) \Leftrightarrow$ simply connected and link condition holds (Gromov '81). Geodesics are *polynomial time* (Owen-Provan '11 ... Hayashi '21)

Example: Minimize over square complex $\phi(x) = d^2(x, a) + d^2(x, b) + d^2(x, c).$

Cyclic proximal point $(Bačák '13)$ is slow:

for $n = 1, 2, ..., \quad x \in \frac{n}{n+1}$ $\frac{n}{n+1}x + \frac{1}{n+1}$ $\frac{1}{n+1}\{a,b,c\}$ end(for) lnstead... Algorithm: given current point x and list Ω of optimized cells repeat

choose cell $P \notin \Omega$ containing x $x = \arg\min_{p} \phi$

A complex X of cells $-$ Euclidean cubes and their faces $$ each pair of cells sharing at most one face — is $CAT(0) \Leftrightarrow$ simply connected and link condition holds (Gromov '81). Geodesics are *polynomial time* (Owen-Provan '11 ... Hayashi '21)

Example: Minimize over square complex $\phi(x) = d^2(x, a) + d^2(x, b) + d^2(x, c).$ Cyclic proximal point (Bačák '13) is slow:

for $n = 1, 2, ..., \quad x \in \frac{n}{n+1}$ $\frac{n}{n+1}x + \frac{1}{n+1}$ $\frac{1}{n+1}\{a,b,c\}$ end(for) lnstead... Algorithm: given current point x and list Ω of optimized cells repeat

choose cell $P \notin \Omega$ containing x $x = \arg\min_{P} \phi$ How?

A complex X of cells $-$ Euclidean cubes and their faces $$ each pair of cells sharing at most one face — is $CAT(0) \Leftrightarrow$ simply connected and link condition holds (Gromov '81). Geodesics are *polynomial time* (Owen-Provan '11 ... Hayashi '21)

Example: Minimize over square complex $\phi(x) = d^2(x, a) + d^2(x, b) + d^2(x, c).$ Cyclic proximal point (Bačák '13) is slow:

for $n = 1, 2, ..., \quad x \in \frac{n}{n+1}$ $\frac{n}{n+1}x + \frac{1}{n+1}$ $\frac{1}{n+1}\{a,b,c\}$ end(for) lnstead... Algorithm: given current point x and list Ω of optimized cells repeat

choose cell $P \notin \Omega$ containing x $x = \arg\min_{P} \phi$ How? update Ω
CAT(0) cubical complexes

A complex X of cells $-$ Euclidean cubes and their faces $$ each pair of cells sharing at most one face — is $CAT(0) \Leftrightarrow$ simply connected and link condition holds (Gromov '81). Geodesics are **polynomial time** (Owen-Provan '11 . . . Hayashi '21)

Example: Minimize over square complex $\phi(x) = d^2(x, a) + d^2(x, b) + d^2(x, c).$ Cyclic proximal point (Bačák '13) is slow:

for $n = 1, 2, ..., \quad x \in \frac{n}{n+1}$ $\frac{n}{n+1}x + \frac{1}{n+1}$ $\frac{1}{n+1}\{a,b,c\}$ end(for) lnstead... Algorithm: given current point x and list Ω of optimized cells repeat

choose cell $P \notin \Omega$ containing x $x = \arg\min_{P} \phi$ How? update Ω until done

In CAT(0) cubical complex, consider points $a \neq x \in$ cell $P \subset \mathbb{R}^n$. **Aim:** at x , find a (Euclidean) **subgradient** for the function

$$
w \in \mathbf{R}^n \ \mapsto \ \left\{ \begin{array}{ll} d(w, a) & (w \in P) \\ +\infty & (w \notin P) \end{array} \right.
$$

In CAT(0) cubical complex, consider points $a \neq x \in$ cell $P \subset \mathbb{R}^n$. **Aim:** at x , find a (Euclidean) **subgradient** for the function

$$
w \in \mathbf{R}^n \ \mapsto \ \left\{ \begin{array}{ll} d(w, a) & (w \in P) \\ +\infty & (w \notin P) \end{array} \right.
$$

Answer. Suppose geodesic $[x, a]$

In CAT(0) cubical complex, consider points $a \neq x \in$ cell $P \subset \mathbb{R}^n$. **Aim:** at x , find a (Euclidean) **subgradient** for the function

$$
w \in \mathbf{R}^n \ \mapsto \ \left\{ \begin{array}{ll} d(w, a) & (w \in P) \\ +\infty & (w \notin P) \end{array} \right.
$$

Answer. Suppose geodesic $[x, a]$ has first segment $[x, y]$

In CAT(0) cubical complex, consider points $a \neq x \in$ cell $P \subset \mathbb{R}^n$. **Aim:** at x , find a (Euclidean) **subgradient** for the function

$$
w \in \mathbf{R}^n \ \mapsto \ \left\{ \begin{array}{ll} d(w, a) & (w \in P) \\ +\infty & (w \notin P) \end{array} \right.
$$

Answer. Suppose geodesic $[x, a]$ has first segment $[x, y]$ in cell Q.

In CAT(0) cubical complex, consider points $a \neq x \in$ cell $P \subset \mathbb{R}^n$. **Aim:** at x , find a (Euclidean) **subgradient** for the function

$$
w \in \mathbf{R}^n \ \mapsto \ \left\{ \begin{array}{ll} d(w, a) & (w \in P) \\ +\infty & (w \notin P) \end{array} \right.
$$

Answer. Suppose geodesic $[x, a]$ has first segment $[x, y]$ in cell Q. Project y onto its nearest point z in the face F shared by P and Q .

In CAT(0) cubical complex, consider points $a \neq x \in$ cell $P \subset \mathbb{R}^n$. **Aim:** at x , find a (Euclidean) **subgradient** for the function

$$
w \in \mathbf{R}^n \ \mapsto \ \begin{cases} \ d(w, a) & (w \in P) \\ +\infty & (w \notin P) \end{cases}
$$

Answer. Suppose geodesic $[x, a]$ has first segment $[x, y]$ in cell Q. Project y onto its nearest point z in the face F shared by P and Q . Then, one such subgradient is

$$
\frac{\cos(\angle yxz)}{|x-z|}(x-z)
$$

In CAT(0) cubical complex, consider points $a \neq x \in$ cell $P \subset \mathbb{R}^n$. **Aim:** at x , find a (Euclidean) **subgradient** for the function

$$
w \in \mathbf{R}^n \ \mapsto \ \begin{cases} \ d(w, a) & (w \in P) \\ +\infty & (w \notin P) \end{cases}
$$

Answer. Suppose geodesic $[x, a]$ has first segment $[x, y]$ in cell Q. Project y onto its nearest point z in the face F shared by P and Q . Then, one such subgradient is

$$
\frac{\cos(\angle yxz)}{|x-z|}(x-z)
$$
 (interpreted as 0 if $z = x$).

Example: means via cutting planes

Example: means via cutting planes

Minimize over cell P

 $d^2(\cdot, a) + d^2(\cdot, b) + d^2(\cdot, c)$

using various cutting plane algorithms, compared with the cyclic proximal point method (Bačák '13).

Example: means via cutting planes

Minimize over cell P

 $d^2(\cdot, a) + d^2(\cdot, b) + d^2(\cdot, c)$

using various cutting plane algorithms, compared with the cyclic proximal point method (Bačák '13).

Summary

Summary

- ▸ Convex optimization in Hadamard spaces models a range of interesting applications.
- ▶ Even without linear or smooth structure, or dual spaces, classical convex optimization extends surprisingly well.

Summary

- ▸ Convex optimization in Hadamard spaces models a range of interesting applications.
- ▶ Even without linear or smooth structure, or dual spaces, classical convex optimization extends surprisingly well.

References

- ▸ Horoballs and the subgradient method arXiv:2403.15749
- ▸ Recognizing weighted means in geodesic spaces arXiv:2406.03913
- \triangleright Convex optimization on CAT(0) cubical complexes arXiv:2405.01968
- ▸ Incremental minimization in spaces of nonpositive curvature arielgoodwin.github.io/talks