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Cutting planes for optimization on CAT(0) cubical complexes
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a complete metric space (X, d) where points connect via
geodesics (isometries from compact intervals into X), and
CAT(0), meaning d}% is strongly convex for all points y € X:

T e d (g(T),y) -7 convex for geodesics g.
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Example: hyperbolic space,
the open unit ball in R" with

x =yl
(1-[xP)(1-1]y[2)

coshd(x,y) = 1+2
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Convex optimization on Hadamard spaces

Example Find the circumcenter of a finite set A c X: minimize
(%) da(x) = maxd(x,a).
acA

Zhang-Sra '16 extends classical (sub)gradient methods to
Hadamard manifolds X, but with wrinkles. ..

» “subgradients” at x € X are tangents in T, X, so ...
> the algorithm needs exponentials Exp,: T, X - X and ...

> complexity analysis needs a curvature lower bound for X.

Furthermore, beyond manifolds, only proximal methods
are known (Bacak '13...): rarely implementable.

Question Are circumcenters in Hadamard space computable?
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Seek to minimize convex objective ¢:R"” — R.
At current point x € R”,
0¢(x) consists of subgradients z € R"™:

X minimizes ¢ —(z,-) .

v

Move distance € along ray from x in direction z: x <« x- eé.

Iterating n times ensures objective excess ¢(x) —min¢ = O(%)

Underlying geometry:

level set C where ¢ < ¢(x), and
halfspace H where (z,-) <(z,x)
satisfy C c H. p

Subgradients are dual objects. Any analogue in Hadamard space?
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Rays, Busemann functions, and horoballs

Rays from x are isometries g:R; — X
with g(0) = x, and correspond to
Busemann functions (1955)

be(y) = lim (d(g(7),y)-7)

and horoballs H where b, <0.

The ray supports objective ¢: X - R at x
if H contains the level set C where ¢ < ¢(x).

Example: Euclidean space Rays are halflines,
Busemann functions are affine, horoballs are halfspaces,
subgradients z € 0¢p(x) give supporting rays g(7) = x — 7-|—§|.

Example: circumenter d(x) = maxzen d(x, a)
is supported by rays from x through any maximizing point a.
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A subgradient-style algorithm in Hadamard space

Theorem (Complexity of supporting ray pursuit)
For L-Lipschitz objective ¢ attaining its minimum, initial point xy
and any upper diameter bound D for {x : ¢(x) < ¢(x0)},

n successive steps of constant size % along supporting rays

guarantees average objective excess less than L—\/L%.

Example: circumcenter of three points in a cubical complex

Min Value over N Iterations

3 4 5 5 5
Log of N, N = # of Iterations

But finding supporting rays for composite objectives is hard, so. ..
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k
¢ = Z¢j we can use 0¢(x) = Za¢j(x)-
j=1 J

In Hadamard space, subgradients (g,s) € 0¢(x) consist of:

» direction of ray g from x with Busemann function b,

» magnitude (or “speed”) s >0 such that x minimizes ¢ — sb,.
Example: Euclidean subgradient z # 0 gives Hadamard subgradient

(g7 |Z|) € a¢(X) for the ray g(T) =X — Tﬁ'
V4

No calculus. ... However, following (Bertsekas-Nedic '01). ..

89 /159



Incremental subgradient methods
Euclidean space supports subgradient calculus: to minimize

k
¢ = Z¢j we can use 0¢(x) = Za¢j(X)-
j=1 J

In Hadamard space, subgradients (g,s) € 0¢(x) consist of:

» direction of ray g from x with Busemann function b,

» magnitude (or “speed”) s >0 such that x minimizes ¢ — sb,.
Example: Euclidean subgradient z # 0 gives Hadamard subgradient

(g7 |Z|) € a¢(X) for the ray g(T) =X — Tﬁ'
V4

No calculus. ... However, following (Bertsekas-Nedic '01). ..
Theorem  For suitable § >0, repeating for cyclen=1..., N

90 /159



Incremental subgradient methods
Euclidean space supports subgradient calculus: to minimize

k
p=3 ¢; we can use Op(x) = > 0¢j(x)
j=1 J

In Hadamard space, subgradients (g,s) € 0¢(x) consist of:

» direction of ray g from x with Busemann function b,

» magnitude (or “speed”) s >0 such that x minimizes ¢ — sb,.
Example: Euclidean subgradient z # 0 gives Hadamard subgradient

(g.]2]) € dp(x)  fortheray  g(7)=x- T| !

No calculus. ... However, following (Bertsekas-Nedic '01). ..
Theorem  For suitable § >0, repeating for cyclen=1..., N

forj=1...k find (g,s) € 0¢j(x) and update x < g(é—\/s_)
n

91/159



Incremental subgradient methods
Euclidean space supports subgradient calculus: to minimize

k
p=3 ¢; we can use Op(x) = > 0¢j(x)
j=1 J

In Hadamard space, subgradients (g,s) € 0¢(x) consist of:

» direction of ray g from x with Busemann function b,

» magnitude (or “speed”) s >0 such that x minimizes ¢ — sb,.
Example: Euclidean subgradient z # 0 gives Hadamard subgradient

(g.]2]) € dp(x)  fortheray  g(7)=x- T| !

No calculus. ... However, following (Bertsekas-Nedic '01). ..
Theorem  For suitable § >0, repeating for cyclen=1..., N

forj=1...k find (g,s) € 0¢j(x) and update x < g(é—\/s_)
n

ensures objective excess O(ﬁ)

92/159



Example in tree space (Billera-Holmes-Vogtmann '01)

93 /159



Example in tree space (Billera-Holmes-Vogtmann '01)

BHV tree space consists of binary
trees with weighted internal edges,

94 /159



Example in tree space (Billera-Holmes-Vogtmann '01)

BHV tree space consists of binary
trees with weighted internal edges,
living in a CAT(0) orthant complex

95 /159



Example in tree space (Billera-Holmes-Vogtmann '01)

BHV tree space consists of binary
trees with weighted internal edges,
living in a CAT(0) orthant complex
with polytime computable
geodesics (Owen-Provan '11)

96 /159



Example in tree space (Billera-Holmes-Vogtmann '01)

BHV tree space consists of binary
trees with weighted internal edges,
living in a CAT(0) orthant complex
with polytime computable
geodesics (Owen-Provan '11)
implemented in SturmMean.

97 /159



Example in tree space (Billera-Holmes-Vogtmann '01)

BHV tree space consists of binary
trees with weighted internal edges,
living in a CAT(0) orthant complex
with polytime computable
geodesics (Owen-Provan '11)
implemented in SturmMean.

Medians of finite sets A
in Hadamard spaces X

98 /159



Example in tree space (Billera-Holmes-Vogtmann '01)

BHV tree space consists of binary
trees with weighted internal edges,
living in a CAT(0) orthant complex
with polytime computable
geodesics (Owen-Provan '11)
implemented in SturmMean.

Medians of finite sets A
in Hadamard spaces X
minimize Y. e da.

99 /159



Example in tree space (Billera-Holmes-Vogtmann '01)

BHV tree space consists of binary
trees with weighted internal edges,
living in a CAT(0) orthant complex
with polytime computable
geodesics (Owen-Provan '11)
implemented in SturmMean.

Medians of finite sets A

in Hadamard spaces X
minimize Y4 da. To run
incremental subgradient method

100/ 159



Example in tree space (Billera-Holmes-Vogtmann '01)

BHV tree space consists of binary
trees with weighted internal edges,
living in a CAT(0) orthant complex
with polytime computable
geodesics (Owen-Provan '11)
implemented in SturmMean.

Medians of finite sets A

in Hadamard spaces X

minimize Y4 da. To run
incremental subgradient method
note rays g from x through ac A
satisfy (g,1) € 0d,(x).

101 /159



Example in tree space (Billera-Holmes-Vogtmann '01)

BHV tree space consists of binary
trees with weighted internal edges,
living in a CAT(0) orthant complex
with polytime computable
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Medians of finite sets A
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Example in tree space (Billera-Holmes-Vogtmann '01)

BHV tree space consists of binary
trees with weighted internal edges,

living in a CAT(0) orthant complex | ‘0o A
with polytime computable

geodesics (Owen-Provan '11) o _—

implemented in SturmMean. & /(k
Medians of finite sets A ' ”
in Hadamard spaces X "l
minimize Y4 da. To run 'l
incremental subgradient method ‘

note rays g from x through ac A : NN T
satisfy (g,1) € Oda(x). I~

¢

F@*) = fope
/

Example (Owen-Miller-Provan '15) T
A median of three trees. ..
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Example in tree space (Billera-Holmes-Vogtmann '01)

BHV tree space consists of binary
trees with weighted internal edges,

living in a CAT(0) orthant complex | ‘0o A
with polytime computable

geodesics (Owen-Provan '11) o o

implemented in SturmMean. x /(k
Medians of finite sets A ' ”
in Hadamard spaces X "l
minimize Y4 da. To run 'l
incremental subgradient method |

note rays g from x through ac A : AN T——
satisfy (g,1) € 0d,(x).

Example (Owen-Miller-Provan '15) T
A median of three trees. ..

¢

F@*) = fope
/

(See Ariel Goodwin's poster: “Incremental minimization...")
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PART Il

Weighted means in Hadamard spaces
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Averaging finite sets
Examples: matrix means (Bhatia. .. '12), computational geometry
(Arnaudon. .. '05), phylogenetic trees (Billera. .. 01, Bacak '13)...

Question: given a finite set A, is a given point X an “average"?

Theorem (weighted averages versus convex combinations)

A point X minimizes ¥, w,d?(-,a) for some weighting 0 # w >0
if and only if X minimizes test function max,{d(-,a) - d(x,a)}.
In that case, X € conv A (but the converse fails outside R" ).

Three points in a with 3-dimensional ... but 2-dimensional
cubical complex convex hull. .. weighted mean set.
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Recognizing weighted means computationally

For x € X (locally compact Hadamard), assume geodesics [X, a]
extend to rays. Traversing at speed d(X,a) gives tangents [x, a]

comprising “cone” TgX. Suppose TxX = R". (Eg: X a manifold.)
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dist(O,conv{[%, al:ace A}),

quantifying whether X is a weighted mean.
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Recognizing weighted means computationally

For x € X (locally compact Hadamard), assume geodesics [X, a]
extend to rays. Traversing at speed d(X,a) gives tangents [x, a]

comprising “cone” TgX. Suppose TxX = R". (Eg: X a manifold.)
The test function max,ca{d(-,a) — d(X,a)} then has slope

dist(O,conv{M: ae A})’

quantifying whether X is a weighted mean.

C ¥ X
‘ »
b o ?
; s
a lele od > b
" % . 10
a E o G
3 points in a cubical complex Heat map of test function slope
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PART IV

Convex optimization on
CAT(0) cubical complexes
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CAT(0) cubical complexes

A complex X of cells — Euclidean cubes and their faces —

each pair of cells sharing at most one face — is CAT(0) <«
simply connected and link condition holds (Gromov '81).
Geodesics are polynomial time (Owen-Provan '11 ... Hayashi '21)

Example: Minimize over square complex
d(x) = d?(x,a) +d?(x,b) + d?(x,c).
Cyclic proximal point (Bacak '13) is slow:

=|
.

b
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CAT(0) cubical complexes

A complex X of cells — Euclidean cubes and their faces —

each pair of cells sharing at most one face — is CAT(0) <«
simply connected and link condition holds (Gromov '81).
Geodesics are polynomial time (Owen-Provan '11 ... Hayashi '21)

Example: Minimize over square complex b

¢(x) = d?*(x,a) +d*(x,b) + d*(x; c). |

Cyclic proximal point (Bacak '13) is slow:

forn=1,2,..., xe-x+-1{abc} end(for) Instead...

Algorithm: given current point x and list Q of optimized cells

repeat
choose cell P ¢ Q containing x
X =argminp ¢ How?
update Q

until done
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In CAT(0) cubical complex, consider points a # x € cell P c R".

Aim: at x, find a (Euclidean) subgradient for the function
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Answer. Suppose geodesic [x, a
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Project y onto its nearest point z
in the face F shared by P and Q.
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Cutting plane strategy for low-dimensional cells

In CAT(0) cubical complex, consider points a # x € cell P c R".

Aim: at x, find a (Euclidean) subgradient for the function

CR" d(w,a) (weP)
weR {+oo (w¢P)

Answer. Suppose geodesic [x, a

a
has first segment [x, y] in cell Q.
Project y onto its nearest point z ;
in the face F shared by P and Q. Q P
Then, one such subgradient is X
cos( 2 yxz) (x-2)
[x - 2]
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Cutting plane strategy for low-dimensional cells

In CAT(0) cubical complex, consider points a # x € cell P c R".

Aim: at x, find a (Euclidean) subgradient for the function

CR" d(w,a) (weP)
weR {+oo (w¢P)

Answer. Suppose geodesic [x, a

a

has first segment [x, y] in cell Q.

Project y onto its nearest point z ;

in the face F shared by P and Q. Q P
Then, one such subgradient is X

pa
%(X -2z) (interpreted as 0 if z = x).
X—Zz
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Example: means via cutting planes
Minimize over cell P
d?(-,a) + d?(-, b) + d?(-,c)
using various cutting plane algorithms, a

compared with the cyclic proximal point
method (Bacak '13).
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Example: means via cutting planes
Minimize over cell P
d?(-,a) + d?(-,b) + d?(-, ¢)
using various cutting plane algorithms, a

compared with the cyclic proximal point
method (Bacak '13).

Cyclic
Subgradient
——— Ellipsoid

Min Optimality Gap Achieved

0 100 200 300
k Geodesics Computed
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Summary

» Convex optimization in Hadamard spaces
models a range of interesting applications.

» Even without linear or smooth structure, or dual spaces,
classical convex optimization extends surprisingly well.
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