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Outline: convex optimization without duality

▸ Negatively curved geodesic spaces
▸ Manifolds: hyperbolic space, Sn

++
, . . .

▸ Metric trees, BHV tree space, CAT(0) cubical complexes. . .

▸ A fresh look at the subgradient method
▸ Halfspaces as horoballs
▸ Subgradients as constant-speed geodesic rays.

▸ Averaging:
▸ convex combinations versus. . .
▸ . . . weighted means, and how we recognize them.

▸ Cutting planes for optimization on CAT(0) cubical complexes

2 / 159



Outline: convex optimization without duality

▸ Negatively curved geodesic spaces

▸ Manifolds: hyperbolic space, Sn
++

, . . .
▸ Metric trees, BHV tree space, CAT(0) cubical complexes. . .

▸ A fresh look at the subgradient method
▸ Halfspaces as horoballs
▸ Subgradients as constant-speed geodesic rays.

▸ Averaging:
▸ convex combinations versus. . .
▸ . . . weighted means, and how we recognize them.

▸ Cutting planes for optimization on CAT(0) cubical complexes

3 / 159



Outline: convex optimization without duality

▸ Negatively curved geodesic spaces
▸ Manifolds: hyperbolic space, Sn

++
, . . .

▸ Metric trees, BHV tree space, CAT(0) cubical complexes. . .

▸ A fresh look at the subgradient method
▸ Halfspaces as horoballs
▸ Subgradients as constant-speed geodesic rays.

▸ Averaging:
▸ convex combinations versus. . .
▸ . . . weighted means, and how we recognize them.

▸ Cutting planes for optimization on CAT(0) cubical complexes

4 / 159



Outline: convex optimization without duality

▸ Negatively curved geodesic spaces
▸ Manifolds: hyperbolic space, Sn

++
, . . .

▸ Metric trees, BHV tree space, CAT(0) cubical complexes. . .

▸ A fresh look at the subgradient method
▸ Halfspaces as horoballs
▸ Subgradients as constant-speed geodesic rays.

▸ Averaging:
▸ convex combinations versus. . .
▸ . . . weighted means, and how we recognize them.

▸ Cutting planes for optimization on CAT(0) cubical complexes

5 / 159



Outline: convex optimization without duality

▸ Negatively curved geodesic spaces
▸ Manifolds: hyperbolic space, Sn

++
, . . .

▸ Metric trees, BHV tree space, CAT(0) cubical complexes. . .

▸ A fresh look at the subgradient method

▸ Halfspaces as horoballs
▸ Subgradients as constant-speed geodesic rays.

▸ Averaging:
▸ convex combinations versus. . .
▸ . . . weighted means, and how we recognize them.

▸ Cutting planes for optimization on CAT(0) cubical complexes

6 / 159



Outline: convex optimization without duality

▸ Negatively curved geodesic spaces
▸ Manifolds: hyperbolic space, Sn

++
, . . .

▸ Metric trees, BHV tree space, CAT(0) cubical complexes. . .

▸ A fresh look at the subgradient method
▸ Halfspaces as horoballs

▸ Subgradients as constant-speed geodesic rays.

▸ Averaging:
▸ convex combinations versus. . .
▸ . . . weighted means, and how we recognize them.

▸ Cutting planes for optimization on CAT(0) cubical complexes

7 / 159



Outline: convex optimization without duality

▸ Negatively curved geodesic spaces
▸ Manifolds: hyperbolic space, Sn

++
, . . .

▸ Metric trees, BHV tree space, CAT(0) cubical complexes. . .

▸ A fresh look at the subgradient method
▸ Halfspaces as horoballs
▸ Subgradients as constant-speed geodesic rays.

▸ Averaging:
▸ convex combinations versus. . .
▸ . . . weighted means, and how we recognize them.

▸ Cutting planes for optimization on CAT(0) cubical complexes

8 / 159



Outline: convex optimization without duality

▸ Negatively curved geodesic spaces
▸ Manifolds: hyperbolic space, Sn

++
, . . .

▸ Metric trees, BHV tree space, CAT(0) cubical complexes. . .

▸ A fresh look at the subgradient method
▸ Halfspaces as horoballs
▸ Subgradients as constant-speed geodesic rays.

▸ Averaging:

▸ convex combinations versus. . .
▸ . . . weighted means, and how we recognize them.

▸ Cutting planes for optimization on CAT(0) cubical complexes

9 / 159



Outline: convex optimization without duality

▸ Negatively curved geodesic spaces
▸ Manifolds: hyperbolic space, Sn

++
, . . .

▸ Metric trees, BHV tree space, CAT(0) cubical complexes. . .

▸ A fresh look at the subgradient method
▸ Halfspaces as horoballs
▸ Subgradients as constant-speed geodesic rays.

▸ Averaging:
▸ convex combinations versus. . .

▸ . . . weighted means, and how we recognize them.

▸ Cutting planes for optimization on CAT(0) cubical complexes

10 / 159



Outline: convex optimization without duality

▸ Negatively curved geodesic spaces
▸ Manifolds: hyperbolic space, Sn

++
, . . .

▸ Metric trees, BHV tree space, CAT(0) cubical complexes. . .

▸ A fresh look at the subgradient method
▸ Halfspaces as horoballs
▸ Subgradients as constant-speed geodesic rays.

▸ Averaging:
▸ convex combinations versus. . .
▸ . . . weighted means, and how we recognize them.

▸ Cutting planes for optimization on CAT(0) cubical complexes

11 / 159



Outline: convex optimization without duality

▸ Negatively curved geodesic spaces
▸ Manifolds: hyperbolic space, Sn

++
, . . .

▸ Metric trees, BHV tree space, CAT(0) cubical complexes. . .

▸ A fresh look at the subgradient method
▸ Halfspaces as horoballs
▸ Subgradients as constant-speed geodesic rays.

▸ Averaging:
▸ convex combinations versus. . .
▸ . . . weighted means, and how we recognize them.

▸ Cutting planes for optimization on CAT(0) cubical complexes

12 / 159



PART I

Negative curvature
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Optimization over a Hadamard space X:

a complete metric space (X,d) where points connect via
geodesics (isometries from compact intervals into X), and
CAT(0), meaning d2

y is strongly convex for all points y ∈ X :

τ ↦ d2(g(τ), y) − τ2 convex for geodesics g .

Triangles in CAT(0) spaces are skinny.

Example: hyperbolic space,
the open unit ball in Rn with

coshd(x , y) = 1 + 2
∣x − y ∣2

(1 − ∣x ∣2)(1 − ∣y ∣2) .
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Modeling using Hadamard spaces

● Euclidean and Hilbert spaces: classical optimization

● Simply connected, negatively curved manifolds:

▸ hyperbolic space: classify hierarchical data (De Sa. . . ’18). . .

▸ positive definite matrices Sn
++ with affine-invariant metric

d(X ,Y ) = ∥ log(X− 1
2YX− 1

2 )∥
Frob

∶ matrix means (Bhatia. . . ’12)

● Metric trees: facility location
(Hansen. . . ’87), . . .

● More general cubical complexes,
phylogenetic tree space (Billera-H-V ’01)
robot configurations (Ardila-Mantilla ’20)

Assumption: geodesics are tractable
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Convex optimization on Hadamard spaces

Example Find the circumcenter of a finite set A ⊂ X:

minimize

(∗) φA(x) = max
a∈A

d(x , a).

Zhang-Sra ’16 extends classical (sub)gradient methods to
Hadamard manifolds X, but with wrinkles. . .

▸ “subgradients” at x ∈ X are tangents in TxX, so . . .

▸ the algorithm needs exponentials Expx ∶TxX→ X and . . .

▸ complexity analysis needs a curvature lower bound for X.

Furthermore, beyond manifolds, only proximal methods
are known (Bac̆ák ’13. . . ): rarely implementable.

Question Are circumcenters in Hadamard space computable?
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Question Are circumcenters in Hadamard space computable?
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PART II

The subgradient method:

a fresh look
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Review: the subgradient method in Euclidean space

Seek to minimize convex objective φ∶Rn → R.
At current point x ∈ Rn,
∂φ(x) consists of subgradients z ∈ Rn:

x minimizes φ − ⟨z , ⋅⟩ .

Move distance ε along ray from x in direction z : x ← x − ε z
∣z ∣ .

Iterating n times ensures objective excess φ(x) −minφ = O( 1√
n
).

Underlying geometry:
level set C where φ ≤ φ(x), and
halfspace H where ⟨z , ⋅⟩ ≤ ⟨z , x⟩
satisfy C ⊂ H.

Subgradients are dual objects. Any analogue in Hadamard space?
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Rays, Busemann functions, and horoballs

Rays from x are isometries g ∶R+ → X
with g(0) = x , and correspond to
Busemann functions (1955)

bg(y) = lim
τ→+∞

(d(g(τ), y) − τ)

and horoballs H where bg ≤ 0.

The ray supports objective φ∶X→ R at x
if H contains the level set C where φ ≤ φ(x).

Example: Euclidean space Rays are halflines,
Busemann functions are affine, horoballs are halfspaces,
subgradients z ∈ ∂φ(x) give supporting rays g(τ) = x − τ z

∣z ∣ .

Example: circumenter φ(x) = maxa∈A d(x , a)
is supported by rays from x through any maximizing point a.
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A subgradient-style algorithm in Hadamard space

Theorem (Complexity of supporting ray pursuit)

For L-Lipschitz objective φ attaining its minimum, initial point x0

and any upper diameter bound D for {x ∶ φ(x) ≤ φ(x0)},
n successive steps of constant size D√

n
along supporting rays

guarantees average objective excess less than LD√
n

.

Example: circumcenter of three points in a cubical complex

But finding supporting rays for composite objectives is hard, so. . .
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Incremental subgradient methods

Euclidean space supports subgradient calculus: to minimize

φ =
k

∑
j=1

φj we can use ∂φ(x) = ∑
j

∂φj(x).

In Hadamard space, subgradients (g , s) ∈ ∂φ(x) consist of:
▸ direction of ray g from x with Busemann function bg
▸ magnitude (or “speed”) s ≥ 0 such that x minimizes φ − sbg .

Example: Euclidean subgradient z ≠ 0 gives Hadamard subgradient

(g , ∣z ∣) ∈ ∂φ(x) for the ray g(τ) = x − τ z

∣z ∣ .

No calculus. . . . However, following (Bertsekas-Nedic ’01). . .

Theorem For suitable δ > 0, repeating for cycle n = 1 . . . ,N

for j = 1 . . . k find (g , s) ∈ ∂φj(x) and update x ← g( δs√
n
)

ensures objective excess O( 1√
N
).
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Example in tree space (Billera-Holmes-Vogtmann ’01)

BHV tree space consists of binary
trees with weighted internal edges,
living in a CAT(0) orthant complex
with polytime computable
geodesics (Owen-Provan ’11)
implemented in SturmMean.

Medians of finite sets A
in Hadamard spaces X
minimize ∑a∈A da. To run
incremental subgradient method
note rays g from x through a ∈ A
satisfy (g ,1) ∈ ∂da(x).

Example (Owen-Miller-Provan ’15)
A median of three trees. . .

(See Ariel Goodwin’s poster: “Incremental minimization. . . ”)
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PART III

Weighted means in Hadamard spaces
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Averaging finite sets

Examples: matrix means (Bhatia. . . ’12), computational geometry
(Arnaudon. . . ’05), phylogenetic trees (Billera. . . ’01, Bac̆ák ’13). . .

Question: given a finite set A, is a given point x̄ an “average”?

Theorem (weighted averages versus convex combinations)

A point x̄ minimizes ∑awad
2(⋅, a) for some weighting 0 ≠ w ≥ 0

if and only if x̄ minimizes test function maxa{d(⋅, a) − d(x̄ , a)}.
In that case, x̄ ∈ convA (but the converse fails outside Rn).

Three points in a
cubical complex

with 3-dimensional
convex hull. . .

. . . but 2-dimensional
weighted mean set.
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Recognizing weighted means computationally

For x̄ ∈ X (locally compact Hadamard), assume geodesics [x̄ , a]
extend to rays. Traversing at speed d(x̄ , a) gives tangents [x̄ , a]
comprising “cone” Tx̄X. Suppose Tx̄X ≅ Rn. (Eg: X a manifold.)

The test function maxa∈A{d(⋅, a) − d(x̄ , a)} then has slope

dist(0, conv{[x̄ , a] ∶ a ∈ A}),

quantifying whether x̄ is a weighted mean.

3 points in a cubical complex Heat map of test function slope

119 / 159



Recognizing weighted means computationally

For x̄ ∈ X (locally compact Hadamard),

assume geodesics [x̄ , a]
extend to rays. Traversing at speed d(x̄ , a) gives tangents [x̄ , a]
comprising “cone” Tx̄X. Suppose Tx̄X ≅ Rn. (Eg: X a manifold.)

The test function maxa∈A{d(⋅, a) − d(x̄ , a)} then has slope

dist(0, conv{[x̄ , a] ∶ a ∈ A}),

quantifying whether x̄ is a weighted mean.

3 points in a cubical complex Heat map of test function slope

120 / 159



Recognizing weighted means computationally

For x̄ ∈ X (locally compact Hadamard), assume geodesics [x̄ , a]
extend to rays.

Traversing at speed d(x̄ , a) gives tangents [x̄ , a]
comprising “cone” Tx̄X. Suppose Tx̄X ≅ Rn. (Eg: X a manifold.)

The test function maxa∈A{d(⋅, a) − d(x̄ , a)} then has slope

dist(0, conv{[x̄ , a] ∶ a ∈ A}),

quantifying whether x̄ is a weighted mean.

3 points in a cubical complex Heat map of test function slope

121 / 159



Recognizing weighted means computationally

For x̄ ∈ X (locally compact Hadamard), assume geodesics [x̄ , a]
extend to rays. Traversing at speed d(x̄ , a) gives tangents [x̄ , a]

comprising “cone” Tx̄X. Suppose Tx̄X ≅ Rn. (Eg: X a manifold.)

The test function maxa∈A{d(⋅, a) − d(x̄ , a)} then has slope

dist(0, conv{[x̄ , a] ∶ a ∈ A}),

quantifying whether x̄ is a weighted mean.

3 points in a cubical complex Heat map of test function slope

122 / 159



Recognizing weighted means computationally

For x̄ ∈ X (locally compact Hadamard), assume geodesics [x̄ , a]
extend to rays. Traversing at speed d(x̄ , a) gives tangents [x̄ , a]
comprising “cone” Tx̄X.

Suppose Tx̄X ≅ Rn. (Eg: X a manifold.)

The test function maxa∈A{d(⋅, a) − d(x̄ , a)} then has slope

dist(0, conv{[x̄ , a] ∶ a ∈ A}),

quantifying whether x̄ is a weighted mean.

3 points in a cubical complex Heat map of test function slope

123 / 159



Recognizing weighted means computationally

For x̄ ∈ X (locally compact Hadamard), assume geodesics [x̄ , a]
extend to rays. Traversing at speed d(x̄ , a) gives tangents [x̄ , a]
comprising “cone” Tx̄X. Suppose Tx̄X ≅ Rn.

(Eg: X a manifold.)

The test function maxa∈A{d(⋅, a) − d(x̄ , a)} then has slope

dist(0, conv{[x̄ , a] ∶ a ∈ A}),

quantifying whether x̄ is a weighted mean.

3 points in a cubical complex Heat map of test function slope

124 / 159



Recognizing weighted means computationally

For x̄ ∈ X (locally compact Hadamard), assume geodesics [x̄ , a]
extend to rays. Traversing at speed d(x̄ , a) gives tangents [x̄ , a]
comprising “cone” Tx̄X. Suppose Tx̄X ≅ Rn. (Eg: X a manifold.)

The test function maxa∈A{d(⋅, a) − d(x̄ , a)} then has slope

dist(0, conv{[x̄ , a] ∶ a ∈ A}),

quantifying whether x̄ is a weighted mean.

3 points in a cubical complex Heat map of test function slope

125 / 159



Recognizing weighted means computationally

For x̄ ∈ X (locally compact Hadamard), assume geodesics [x̄ , a]
extend to rays. Traversing at speed d(x̄ , a) gives tangents [x̄ , a]
comprising “cone” Tx̄X. Suppose Tx̄X ≅ Rn. (Eg: X a manifold.)

The test function maxa∈A{d(⋅, a) − d(x̄ , a)}

then has slope

dist(0, conv{[x̄ , a] ∶ a ∈ A}),

quantifying whether x̄ is a weighted mean.

3 points in a cubical complex Heat map of test function slope

126 / 159



Recognizing weighted means computationally

For x̄ ∈ X (locally compact Hadamard), assume geodesics [x̄ , a]
extend to rays. Traversing at speed d(x̄ , a) gives tangents [x̄ , a]
comprising “cone” Tx̄X. Suppose Tx̄X ≅ Rn. (Eg: X a manifold.)
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PART IV

Convex optimization on

CAT(0) cubical complexes
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CAT(0) cubical complexes

A complex X of cells — Euclidean cubes and their faces —
each pair of cells sharing at most one face — is CAT(0) ⇔
simply connected and link condition holds (Gromov ’81).
Geodesics are polynomial time (Owen-Provan ’11 . . . Hayashi ’21)

Example: Minimize over square complex

φ(x) = d2(x , a) + d2(x ,b) + d2(x , c).

Cyclic proximal point (Bac̆ák ’13) is slow:

for n = 1,2, . . ., x ∈ n
n+1x +

1
n+1{a,b, c} end(for) Instead. . .

Algorithm: given current point x and list Ω of optimized cells
repeat

choose cell P /∈ Ω containing x
x = argminP φ How?
update Ω

until done
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Cutting plane strategy for low-dimensional cells

In CAT(0) cubical complex, consider points a ≠ x ∈ cell P ⊂ Rn.

Aim: at x , find a (Euclidean) subgradient for the function

w ∈ Rn ↦ { d(w , a) (w ∈ P)
+∞ (w /∈ P)

Answer. Suppose geodesic [x , a]
has first segment [x , y] in cell Q.
Project y onto its nearest point z
in the face F shared by P and Q.
Then, one such subgradient is

cos(∠yxz)
∣x − z ∣ (x − z) (interpreted as 0 if z = x).
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Example: means via cutting planes

Minimize over cell P

d2(⋅, a) + d2(⋅,b) + d2(⋅, c)
using various cutting plane algorithms,
compared with the cyclic proximal point
method (Bac̆ák ’13).
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Summary

▸ Convex optimization in Hadamard spaces
models a range of interesting applications.

▸ Even without linear or smooth structure, or dual spaces,
classical convex optimization extends surprisingly well.

References

▸ Horoballs and the subgradient method
arXiv:2403.15749

▸ Recognizing weighted means in geodesic spaces
arXiv:2406.03913

▸ Convex optimization on CAT(0) cubical complexes
arXiv:2405.01968

▸ Incremental minimization in spaces of nonpositive curvature
arielgoodwin.github.io/talks
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