
Convex optimization in negatively curved
geodesic spaces

Adrian Lewis

Joint work with A. Goodwin, G. Lopez, and A. Nicolae

Midwest Optimization at Waterloo November 2024

1 / 159

Outline: convex optimization without duality

▸ Negatively curved geodesic spaces
▸ Manifolds: hyperbolic space, Sn

++
, . . .

▸ Metric trees, BHV tree space, CAT(0) cubical complexes. . .

▸ A fresh look at the subgradient method
▸ Halfspaces as horoballs
▸ Subgradients as constant-speed geodesic rays.

▸ Averaging:
▸ convex combinations versus. . .
▸ . . . weighted means, and how we recognize them.

▸ Cutting planes for optimization on CAT(0) cubical complexes

2 / 159

Outline: convex optimization without duality

▸ Negatively curved geodesic spaces

▸ Manifolds: hyperbolic space, Sn
++

, . . .
▸ Metric trees, BHV tree space, CAT(0) cubical complexes. . .

▸ A fresh look at the subgradient method
▸ Halfspaces as horoballs
▸ Subgradients as constant-speed geodesic rays.

▸ Averaging:
▸ convex combinations versus. . .
▸ . . . weighted means, and how we recognize them.

▸ Cutting planes for optimization on CAT(0) cubical complexes

3 / 159

Outline: convex optimization without duality

▸ Negatively curved geodesic spaces
▸ Manifolds: hyperbolic space, Sn

++
, . . .

▸ Metric trees, BHV tree space, CAT(0) cubical complexes. . .

▸ A fresh look at the subgradient method
▸ Halfspaces as horoballs
▸ Subgradients as constant-speed geodesic rays.

▸ Averaging:
▸ convex combinations versus. . .
▸ . . . weighted means, and how we recognize them.

▸ Cutting planes for optimization on CAT(0) cubical complexes

4 / 159

Outline: convex optimization without duality

▸ Negatively curved geodesic spaces
▸ Manifolds: hyperbolic space, Sn

++
, . . .

▸ Metric trees, BHV tree space, CAT(0) cubical complexes. . .

▸ A fresh look at the subgradient method
▸ Halfspaces as horoballs
▸ Subgradients as constant-speed geodesic rays.

▸ Averaging:
▸ convex combinations versus. . .
▸ . . . weighted means, and how we recognize them.

▸ Cutting planes for optimization on CAT(0) cubical complexes

5 / 159

Outline: convex optimization without duality

▸ Negatively curved geodesic spaces
▸ Manifolds: hyperbolic space, Sn

++
, . . .

▸ Metric trees, BHV tree space, CAT(0) cubical complexes. . .

▸ A fresh look at the subgradient method

▸ Halfspaces as horoballs
▸ Subgradients as constant-speed geodesic rays.

▸ Averaging:
▸ convex combinations versus. . .
▸ . . . weighted means, and how we recognize them.

▸ Cutting planes for optimization on CAT(0) cubical complexes

6 / 159

Outline: convex optimization without duality

▸ Negatively curved geodesic spaces
▸ Manifolds: hyperbolic space, Sn

++
, . . .

▸ Metric trees, BHV tree space, CAT(0) cubical complexes. . .

▸ A fresh look at the subgradient method
▸ Halfspaces as horoballs

▸ Subgradients as constant-speed geodesic rays.

▸ Averaging:
▸ convex combinations versus. . .
▸ . . . weighted means, and how we recognize them.

▸ Cutting planes for optimization on CAT(0) cubical complexes

7 / 159

Outline: convex optimization without duality

▸ Negatively curved geodesic spaces
▸ Manifolds: hyperbolic space, Sn

++
, . . .

▸ Metric trees, BHV tree space, CAT(0) cubical complexes. . .

▸ A fresh look at the subgradient method
▸ Halfspaces as horoballs
▸ Subgradients as constant-speed geodesic rays.

▸ Averaging:
▸ convex combinations versus. . .
▸ . . . weighted means, and how we recognize them.

▸ Cutting planes for optimization on CAT(0) cubical complexes

8 / 159

Outline: convex optimization without duality

▸ Negatively curved geodesic spaces
▸ Manifolds: hyperbolic space, Sn

++
, . . .

▸ Metric trees, BHV tree space, CAT(0) cubical complexes. . .

▸ A fresh look at the subgradient method
▸ Halfspaces as horoballs
▸ Subgradients as constant-speed geodesic rays.

▸ Averaging:

▸ convex combinations versus. . .
▸ . . . weighted means, and how we recognize them.

▸ Cutting planes for optimization on CAT(0) cubical complexes

9 / 159

Outline: convex optimization without duality

▸ Negatively curved geodesic spaces
▸ Manifolds: hyperbolic space, Sn

++
, . . .

▸ Metric trees, BHV tree space, CAT(0) cubical complexes. . .

▸ A fresh look at the subgradient method
▸ Halfspaces as horoballs
▸ Subgradients as constant-speed geodesic rays.

▸ Averaging:
▸ convex combinations versus. . .

▸ . . . weighted means, and how we recognize them.

▸ Cutting planes for optimization on CAT(0) cubical complexes

10 / 159

Outline: convex optimization without duality

▸ Negatively curved geodesic spaces
▸ Manifolds: hyperbolic space, Sn

++
, . . .

▸ Metric trees, BHV tree space, CAT(0) cubical complexes. . .

▸ A fresh look at the subgradient method
▸ Halfspaces as horoballs
▸ Subgradients as constant-speed geodesic rays.

▸ Averaging:
▸ convex combinations versus. . .
▸ . . . weighted means, and how we recognize them.

▸ Cutting planes for optimization on CAT(0) cubical complexes

11 / 159

Outline: convex optimization without duality

▸ Negatively curved geodesic spaces
▸ Manifolds: hyperbolic space, Sn

++
, . . .

▸ Metric trees, BHV tree space, CAT(0) cubical complexes. . .

▸ A fresh look at the subgradient method
▸ Halfspaces as horoballs
▸ Subgradients as constant-speed geodesic rays.

▸ Averaging:
▸ convex combinations versus. . .
▸ . . . weighted means, and how we recognize them.

▸ Cutting planes for optimization on CAT(0) cubical complexes

12 / 159

PART I

Negative curvature

13 / 159

Optimization over a Hadamard space X:

a complete metric space (X,d) where points connect via
geodesics (isometries from compact intervals into X), and
CAT(0), meaning d2

y is strongly convex for all points y ∈ X :

τ ↦ d2(g(τ), y) − τ2 convex for geodesics g .

Triangles in CAT(0) spaces are skinny.

Example: hyperbolic space,
the open unit ball in Rn with

coshd(x , y) = 1 + 2
∣x − y ∣2

(1 − ∣x ∣2)(1 − ∣y ∣2) .

14 / 159

Optimization over a Hadamard space X:

a complete metric space (X,d)

where points connect via
geodesics (isometries from compact intervals into X), and
CAT(0), meaning d2

y is strongly convex for all points y ∈ X :

τ ↦ d2(g(τ), y) − τ2 convex for geodesics g .

Triangles in CAT(0) spaces are skinny.

Example: hyperbolic space,
the open unit ball in Rn with

coshd(x , y) = 1 + 2
∣x − y ∣2

(1 − ∣x ∣2)(1 − ∣y ∣2) .

15 / 159

Optimization over a Hadamard space X:

a complete metric space (X,d) where points connect via
geodesics

(isometries from compact intervals into X), and
CAT(0), meaning d2

y is strongly convex for all points y ∈ X :

τ ↦ d2(g(τ), y) − τ2 convex for geodesics g .

Triangles in CAT(0) spaces are skinny.

Example: hyperbolic space,
the open unit ball in Rn with

coshd(x , y) = 1 + 2
∣x − y ∣2

(1 − ∣x ∣2)(1 − ∣y ∣2) .

16 / 159

Optimization over a Hadamard space X:

a complete metric space (X,d) where points connect via
geodesics (isometries from compact intervals into X),

and
CAT(0), meaning d2

y is strongly convex for all points y ∈ X :

τ ↦ d2(g(τ), y) − τ2 convex for geodesics g .

Triangles in CAT(0) spaces are skinny.

Example: hyperbolic space,
the open unit ball in Rn with

coshd(x , y) = 1 + 2
∣x − y ∣2

(1 − ∣x ∣2)(1 − ∣y ∣2) .

17 / 159

Optimization over a Hadamard space X:

a complete metric space (X,d) where points connect via
geodesics (isometries from compact intervals into X), and
CAT(0),

meaning d2
y is strongly convex for all points y ∈ X :

τ ↦ d2(g(τ), y) − τ2 convex for geodesics g .

Triangles in CAT(0) spaces are skinny.

Example: hyperbolic space,
the open unit ball in Rn with

coshd(x , y) = 1 + 2
∣x − y ∣2

(1 − ∣x ∣2)(1 − ∣y ∣2) .

18 / 159

Optimization over a Hadamard space X:

a complete metric space (X,d) where points connect via
geodesics (isometries from compact intervals into X), and
CAT(0), meaning d2

y is strongly convex for all points y ∈ X :

τ ↦ d2(g(τ), y) − τ2 convex for geodesics g .

Triangles in CAT(0) spaces are skinny.

Example: hyperbolic space,
the open unit ball in Rn with

coshd(x , y) = 1 + 2
∣x − y ∣2

(1 − ∣x ∣2)(1 − ∣y ∣2) .

19 / 159

Optimization over a Hadamard space X:

a complete metric space (X,d) where points connect via
geodesics (isometries from compact intervals into X), and
CAT(0), meaning d2

y is strongly convex for all points y ∈ X :

τ ↦ d2(g(τ), y) − τ2 convex for geodesics g .

Triangles in CAT(0) spaces are skinny.

Example: hyperbolic space,
the open unit ball in Rn with

coshd(x , y) = 1 + 2
∣x − y ∣2

(1 − ∣x ∣2)(1 − ∣y ∣2) .

20 / 159

Optimization over a Hadamard space X:

a complete metric space (X,d) where points connect via
geodesics (isometries from compact intervals into X), and
CAT(0), meaning d2

y is strongly convex for all points y ∈ X :

τ ↦ d2(g(τ), y) − τ2 convex for geodesics g .

Triangles in CAT(0) spaces are skinny.

Example: hyperbolic space,
the open unit ball in Rn with

coshd(x , y) = 1 + 2
∣x − y ∣2

(1 − ∣x ∣2)(1 − ∣y ∣2) .

21 / 159

Optimization over a Hadamard space X:

a complete metric space (X,d) where points connect via
geodesics (isometries from compact intervals into X), and
CAT(0), meaning d2

y is strongly convex for all points y ∈ X :

τ ↦ d2(g(τ), y) − τ2 convex for geodesics g .

Triangles in CAT(0) spaces are skinny.

Example: hyperbolic space,

the open unit ball in Rn with

coshd(x , y) = 1 + 2
∣x − y ∣2

(1 − ∣x ∣2)(1 − ∣y ∣2) .

22 / 159

Optimization over a Hadamard space X:

a complete metric space (X,d) where points connect via
geodesics (isometries from compact intervals into X), and
CAT(0), meaning d2

y is strongly convex for all points y ∈ X :

τ ↦ d2(g(τ), y) − τ2 convex for geodesics g .

Triangles in CAT(0) spaces are skinny.

Example: hyperbolic space,
the open unit ball in Rn with

coshd(x , y) = 1 + 2
∣x − y ∣2

(1 − ∣x ∣2)(1 − ∣y ∣2) .

23 / 159

Optimization over a Hadamard space X:

a complete metric space (X,d) where points connect via
geodesics (isometries from compact intervals into X), and
CAT(0), meaning d2

y is strongly convex for all points y ∈ X :

τ ↦ d2(g(τ), y) − τ2 convex for geodesics g .

Triangles in CAT(0) spaces are skinny.

Example: hyperbolic space,
the open unit ball in Rn with

coshd(x , y) = 1 + 2
∣x − y ∣2

(1 − ∣x ∣2)(1 − ∣y ∣2) .

24 / 159

Modeling using Hadamard spaces

● Euclidean and Hilbert spaces: classical optimization

● Simply connected, negatively curved manifolds:

▸ hyperbolic space: classify hierarchical data (De Sa. . . ’18). . .

▸ positive definite matrices Sn
++ with affine-invariant metric

d(X ,Y) = ∥ log(X− 1
2YX− 1

2)∥
Frob

∶ matrix means (Bhatia. . . ’12)

● Metric trees: facility location
(Hansen. . . ’87), . . .

● More general cubical complexes,
phylogenetic tree space (Billera-H-V ’01)
robot configurations (Ardila-Mantilla ’20)

Assumption: geodesics are tractable

25 / 159

Modeling using Hadamard spaces

● Euclidean and Hilbert spaces: classical optimization

● Simply connected, negatively curved manifolds:

▸ hyperbolic space: classify hierarchical data (De Sa. . . ’18). . .

▸ positive definite matrices Sn
++ with affine-invariant metric

d(X ,Y) = ∥ log(X− 1
2YX− 1

2)∥
Frob

∶ matrix means (Bhatia. . . ’12)

● Metric trees: facility location
(Hansen. . . ’87), . . .

● More general cubical complexes,
phylogenetic tree space (Billera-H-V ’01)
robot configurations (Ardila-Mantilla ’20)

Assumption: geodesics are tractable

26 / 159

Modeling using Hadamard spaces

● Euclidean and Hilbert spaces: classical optimization

● Simply connected, negatively curved manifolds:

▸ hyperbolic space: classify hierarchical data (De Sa. . . ’18). . .

▸ positive definite matrices Sn
++ with affine-invariant metric

d(X ,Y) = ∥ log(X− 1
2YX− 1

2)∥
Frob

∶ matrix means (Bhatia. . . ’12)

● Metric trees: facility location
(Hansen. . . ’87), . . .

● More general cubical complexes,
phylogenetic tree space (Billera-H-V ’01)
robot configurations (Ardila-Mantilla ’20)

Assumption: geodesics are tractable

27 / 159

Modeling using Hadamard spaces

● Euclidean and Hilbert spaces: classical optimization

● Simply connected, negatively curved manifolds:

▸ hyperbolic space: classify hierarchical data (De Sa. . . ’18). . .

▸ positive definite matrices Sn
++ with affine-invariant metric

d(X ,Y) = ∥ log(X− 1
2YX− 1

2)∥
Frob

∶ matrix means (Bhatia. . . ’12)

● Metric trees: facility location
(Hansen. . . ’87), . . .

● More general cubical complexes,
phylogenetic tree space (Billera-H-V ’01)
robot configurations (Ardila-Mantilla ’20)

Assumption: geodesics are tractable

28 / 159

Modeling using Hadamard spaces

● Euclidean and Hilbert spaces: classical optimization

● Simply connected, negatively curved manifolds:

▸ hyperbolic space: classify hierarchical data (De Sa. . . ’18). . .

▸ positive definite matrices Sn
++ with affine-invariant metric

d(X ,Y) = ∥ log(X− 1
2YX− 1

2)∥
Frob

∶ matrix means (Bhatia. . . ’12)

● Metric trees: facility location
(Hansen. . . ’87), . . .

● More general cubical complexes,
phylogenetic tree space (Billera-H-V ’01)
robot configurations (Ardila-Mantilla ’20)

Assumption: geodesics are tractable

29 / 159

Modeling using Hadamard spaces

● Euclidean and Hilbert spaces: classical optimization

● Simply connected, negatively curved manifolds:

▸ hyperbolic space: classify hierarchical data (De Sa. . . ’18). . .

▸ positive definite matrices Sn
++ with affine-invariant metric

d(X ,Y) = ∥ log(X− 1
2YX− 1

2)∥
Frob

∶ matrix means (Bhatia. . . ’12)

● Metric trees: facility location
(Hansen. . . ’87), . . .

● More general cubical complexes,
phylogenetic tree space (Billera-H-V ’01)
robot configurations (Ardila-Mantilla ’20)

Assumption: geodesics are tractable

30 / 159

Modeling using Hadamard spaces

● Euclidean and Hilbert spaces: classical optimization

● Simply connected, negatively curved manifolds:

▸ hyperbolic space: classify hierarchical data (De Sa. . . ’18). . .

▸ positive definite matrices Sn
++ with affine-invariant metric

d(X ,Y) = ∥ log(X− 1
2YX− 1

2)∥
Frob

∶ matrix means (Bhatia. . . ’12)

● Metric trees:

facility location
(Hansen. . . ’87), . . .

● More general cubical complexes,
phylogenetic tree space (Billera-H-V ’01)
robot configurations (Ardila-Mantilla ’20)

Assumption: geodesics are tractable

31 / 159

Modeling using Hadamard spaces

● Euclidean and Hilbert spaces: classical optimization

● Simply connected, negatively curved manifolds:

▸ hyperbolic space: classify hierarchical data (De Sa. . . ’18). . .

▸ positive definite matrices Sn
++ with affine-invariant metric

d(X ,Y) = ∥ log(X− 1
2YX− 1

2)∥
Frob

∶ matrix means (Bhatia. . . ’12)

● Metric trees: facility location
(Hansen. . . ’87), . . .

● More general cubical complexes,
phylogenetic tree space (Billera-H-V ’01)
robot configurations (Ardila-Mantilla ’20)

Assumption: geodesics are tractable

32 / 159

Modeling using Hadamard spaces

● Euclidean and Hilbert spaces: classical optimization

● Simply connected, negatively curved manifolds:

▸ hyperbolic space: classify hierarchical data (De Sa. . . ’18). . .

▸ positive definite matrices Sn
++ with affine-invariant metric

d(X ,Y) = ∥ log(X− 1
2YX− 1

2)∥
Frob

∶ matrix means (Bhatia. . . ’12)

● Metric trees: facility location
(Hansen. . . ’87), . . .

● More general cubical complexes,
phylogenetic tree space (Billera-H-V ’01)
robot configurations (Ardila-Mantilla ’20)

Assumption: geodesics are tractable

33 / 159

Modeling using Hadamard spaces

● Euclidean and Hilbert spaces: classical optimization

● Simply connected, negatively curved manifolds:

▸ hyperbolic space: classify hierarchical data (De Sa. . . ’18). . .

▸ positive definite matrices Sn
++ with affine-invariant metric

d(X ,Y) = ∥ log(X− 1
2YX− 1

2)∥
Frob

∶ matrix means (Bhatia. . . ’12)

● Metric trees: facility location
(Hansen. . . ’87), . . .

● More general cubical complexes,

phylogenetic tree space (Billera-H-V ’01)
robot configurations (Ardila-Mantilla ’20)

Assumption: geodesics are tractable

34 / 159

Modeling using Hadamard spaces

● Euclidean and Hilbert spaces: classical optimization

● Simply connected, negatively curved manifolds:

▸ hyperbolic space: classify hierarchical data (De Sa. . . ’18). . .

▸ positive definite matrices Sn
++ with affine-invariant metric

d(X ,Y) = ∥ log(X− 1
2YX− 1

2)∥
Frob

∶ matrix means (Bhatia. . . ’12)

● Metric trees: facility location
(Hansen. . . ’87), . . .

● More general cubical complexes,
phylogenetic tree space (Billera-H-V ’01)

robot configurations (Ardila-Mantilla ’20)

Assumption: geodesics are tractable

35 / 159

Modeling using Hadamard spaces

● Euclidean and Hilbert spaces: classical optimization

● Simply connected, negatively curved manifolds:

▸ hyperbolic space: classify hierarchical data (De Sa. . . ’18). . .

▸ positive definite matrices Sn
++ with affine-invariant metric

d(X ,Y) = ∥ log(X− 1
2YX− 1

2)∥
Frob

∶ matrix means (Bhatia. . . ’12)

● Metric trees: facility location
(Hansen. . . ’87), . . .

● More general cubical complexes,
phylogenetic tree space (Billera-H-V ’01)
robot configurations (Ardila-Mantilla ’20)

Assumption: geodesics are tractable

36 / 159

Modeling using Hadamard spaces

● Euclidean and Hilbert spaces: classical optimization

● Simply connected, negatively curved manifolds:

▸ hyperbolic space: classify hierarchical data (De Sa. . . ’18). . .

▸ positive definite matrices Sn
++ with affine-invariant metric

d(X ,Y) = ∥ log(X− 1
2YX− 1

2)∥
Frob

∶ matrix means (Bhatia. . . ’12)

● Metric trees: facility location
(Hansen. . . ’87), . . .

● More general cubical complexes,
phylogenetic tree space (Billera-H-V ’01)
robot configurations (Ardila-Mantilla ’20)

Assumption: geodesics are tractable

37 / 159

Modeling using Hadamard spaces

● Euclidean and Hilbert spaces: classical optimization

● Simply connected, negatively curved manifolds:

▸ hyperbolic space: classify hierarchical data (De Sa. . . ’18). . .

▸ positive definite matrices Sn
++ with affine-invariant metric

d(X ,Y) = ∥ log(X− 1
2YX− 1

2)∥
Frob

∶ matrix means (Bhatia. . . ’12)

● Metric trees: facility location
(Hansen. . . ’87), . . .

● More general cubical complexes,
phylogenetic tree space (Billera-H-V ’01)
robot configurations (Ardila-Mantilla ’20)

Assumption: geodesics are tractable

38 / 159

Convex optimization on Hadamard spaces

Example Find the circumcenter of a finite set A ⊂ X:

minimize

(∗) φA(x) = max
a∈A

d(x , a).

Zhang-Sra ’16 extends classical (sub)gradient methods to
Hadamard manifolds X, but with wrinkles. . .

▸ “subgradients” at x ∈ X are tangents in TxX, so . . .

▸ the algorithm needs exponentials Expx ∶TxX→ X and . . .

▸ complexity analysis needs a curvature lower bound for X.

Furthermore, beyond manifolds, only proximal methods
are known (Bac̆ák ’13. . .): rarely implementable.

Question Are circumcenters in Hadamard space computable?

39 / 159

Convex optimization on Hadamard spaces

Example Find the circumcenter of a finite set A ⊂ X: minimize

(∗) φA(x) = max
a∈A

d(x , a).

Zhang-Sra ’16 extends classical (sub)gradient methods to
Hadamard manifolds X, but with wrinkles. . .

▸ “subgradients” at x ∈ X are tangents in TxX, so . . .

▸ the algorithm needs exponentials Expx ∶TxX→ X and . . .

▸ complexity analysis needs a curvature lower bound for X.

Furthermore, beyond manifolds, only proximal methods
are known (Bac̆ák ’13. . .): rarely implementable.

Question Are circumcenters in Hadamard space computable?

40 / 159

Convex optimization on Hadamard spaces

Example Find the circumcenter of a finite set A ⊂ X: minimize

(∗) φA(x) = max
a∈A

d(x , a).

Zhang-Sra ’16 extends classical (sub)gradient methods to
Hadamard manifolds X,

but with wrinkles. . .

▸ “subgradients” at x ∈ X are tangents in TxX, so . . .

▸ the algorithm needs exponentials Expx ∶TxX→ X and . . .

▸ complexity analysis needs a curvature lower bound for X.

Furthermore, beyond manifolds, only proximal methods
are known (Bac̆ák ’13. . .): rarely implementable.

Question Are circumcenters in Hadamard space computable?

41 / 159

Convex optimization on Hadamard spaces

Example Find the circumcenter of a finite set A ⊂ X: minimize

(∗) φA(x) = max
a∈A

d(x , a).

Zhang-Sra ’16 extends classical (sub)gradient methods to
Hadamard manifolds X, but with wrinkles. . .

▸ “subgradients” at x ∈ X are tangents in TxX, so . . .

▸ the algorithm needs exponentials Expx ∶TxX→ X and . . .

▸ complexity analysis needs a curvature lower bound for X.

Furthermore, beyond manifolds, only proximal methods
are known (Bac̆ák ’13. . .): rarely implementable.

Question Are circumcenters in Hadamard space computable?

42 / 159

Convex optimization on Hadamard spaces

Example Find the circumcenter of a finite set A ⊂ X: minimize

(∗) φA(x) = max
a∈A

d(x , a).

Zhang-Sra ’16 extends classical (sub)gradient methods to
Hadamard manifolds X, but with wrinkles. . .

▸ “subgradients” at x ∈ X are tangents in TxX,

so . . .

▸ the algorithm needs exponentials Expx ∶TxX→ X and . . .

▸ complexity analysis needs a curvature lower bound for X.

Furthermore, beyond manifolds, only proximal methods
are known (Bac̆ák ’13. . .): rarely implementable.

Question Are circumcenters in Hadamard space computable?

43 / 159

Convex optimization on Hadamard spaces

Example Find the circumcenter of a finite set A ⊂ X: minimize

(∗) φA(x) = max
a∈A

d(x , a).

Zhang-Sra ’16 extends classical (sub)gradient methods to
Hadamard manifolds X, but with wrinkles. . .

▸ “subgradients” at x ∈ X are tangents in TxX, so . . .

▸ the algorithm needs exponentials Expx ∶TxX→ X

and . . .

▸ complexity analysis needs a curvature lower bound for X.

Furthermore, beyond manifolds, only proximal methods
are known (Bac̆ák ’13. . .): rarely implementable.

Question Are circumcenters in Hadamard space computable?

44 / 159

Convex optimization on Hadamard spaces

Example Find the circumcenter of a finite set A ⊂ X: minimize

(∗) φA(x) = max
a∈A

d(x , a).

Zhang-Sra ’16 extends classical (sub)gradient methods to
Hadamard manifolds X, but with wrinkles. . .

▸ “subgradients” at x ∈ X are tangents in TxX, so . . .

▸ the algorithm needs exponentials Expx ∶TxX→ X and . . .

▸ complexity analysis needs a curvature lower bound for X.

Furthermore, beyond manifolds, only proximal methods
are known (Bac̆ák ’13. . .): rarely implementable.

Question Are circumcenters in Hadamard space computable?

45 / 159

Convex optimization on Hadamard spaces

Example Find the circumcenter of a finite set A ⊂ X: minimize

(∗) φA(x) = max
a∈A

d(x , a).

Zhang-Sra ’16 extends classical (sub)gradient methods to
Hadamard manifolds X, but with wrinkles. . .

▸ “subgradients” at x ∈ X are tangents in TxX, so . . .

▸ the algorithm needs exponentials Expx ∶TxX→ X and . . .

▸ complexity analysis needs a curvature lower bound for X.

Furthermore, beyond manifolds, only proximal methods
are known (Bac̆ák ’13. . .):

rarely implementable.

Question Are circumcenters in Hadamard space computable?

46 / 159

Convex optimization on Hadamard spaces

Example Find the circumcenter of a finite set A ⊂ X: minimize

(∗) φA(x) = max
a∈A

d(x , a).

Zhang-Sra ’16 extends classical (sub)gradient methods to
Hadamard manifolds X, but with wrinkles. . .

▸ “subgradients” at x ∈ X are tangents in TxX, so . . .

▸ the algorithm needs exponentials Expx ∶TxX→ X and . . .

▸ complexity analysis needs a curvature lower bound for X.

Furthermore, beyond manifolds, only proximal methods
are known (Bac̆ák ’13. . .): rarely implementable.

Question Are circumcenters in Hadamard space computable?

47 / 159

Convex optimization on Hadamard spaces

Example Find the circumcenter of a finite set A ⊂ X: minimize

(∗) φA(x) = max
a∈A

d(x , a).

Zhang-Sra ’16 extends classical (sub)gradient methods to
Hadamard manifolds X, but with wrinkles. . .

▸ “subgradients” at x ∈ X are tangents in TxX, so . . .

▸ the algorithm needs exponentials Expx ∶TxX→ X and . . .

▸ complexity analysis needs a curvature lower bound for X.

Furthermore, beyond manifolds, only proximal methods
are known (Bac̆ák ’13. . .): rarely implementable.

Question Are circumcenters in Hadamard space computable?

48 / 159

PART II

The subgradient method:

a fresh look

49 / 159

Review: the subgradient method in Euclidean space

Seek to minimize convex objective φ∶Rn → R.
At current point x ∈ Rn,
∂φ(x) consists of subgradients z ∈ Rn:

x minimizes φ − ⟨z , ⋅⟩ .

Move distance ε along ray from x in direction z : x ← x − ε z
∣z ∣ .

Iterating n times ensures objective excess φ(x) −minφ = O(1√
n
).

Underlying geometry:
level set C where φ ≤ φ(x), and
halfspace H where ⟨z , ⋅⟩ ≤ ⟨z , x⟩
satisfy C ⊂ H.

Subgradients are dual objects. Any analogue in Hadamard space?

50 / 159

Review: the subgradient method in Euclidean space

Seek to minimize convex objective φ∶Rn → R.

At current point x ∈ Rn,
∂φ(x) consists of subgradients z ∈ Rn:

x minimizes φ − ⟨z , ⋅⟩ .

Move distance ε along ray from x in direction z : x ← x − ε z
∣z ∣ .

Iterating n times ensures objective excess φ(x) −minφ = O(1√
n
).

Underlying geometry:
level set C where φ ≤ φ(x), and
halfspace H where ⟨z , ⋅⟩ ≤ ⟨z , x⟩
satisfy C ⊂ H.

Subgradients are dual objects. Any analogue in Hadamard space?

51 / 159

Review: the subgradient method in Euclidean space

Seek to minimize convex objective φ∶Rn → R.
At current point x ∈ Rn,
∂φ(x) consists of subgradients z ∈ Rn:

x minimizes φ − ⟨z , ⋅⟩ .

Move distance ε along ray from x in direction z : x ← x − ε z
∣z ∣ .

Iterating n times ensures objective excess φ(x) −minφ = O(1√
n
).

Underlying geometry:
level set C where φ ≤ φ(x), and
halfspace H where ⟨z , ⋅⟩ ≤ ⟨z , x⟩
satisfy C ⊂ H.

Subgradients are dual objects. Any analogue in Hadamard space?

52 / 159

Review: the subgradient method in Euclidean space

Seek to minimize convex objective φ∶Rn → R.
At current point x ∈ Rn,
∂φ(x) consists of subgradients z ∈ Rn:

x minimizes φ − ⟨z , ⋅⟩ .

Move distance ε along ray from x in direction z : x ← x − ε z
∣z ∣ .

Iterating n times ensures objective excess φ(x) −minφ = O(1√
n
).

Underlying geometry:
level set C where φ ≤ φ(x), and
halfspace H where ⟨z , ⋅⟩ ≤ ⟨z , x⟩
satisfy C ⊂ H.

Subgradients are dual objects. Any analogue in Hadamard space?

53 / 159

Review: the subgradient method in Euclidean space

Seek to minimize convex objective φ∶Rn → R.
At current point x ∈ Rn,
∂φ(x) consists of subgradients z ∈ Rn:

x minimizes φ − ⟨z , ⋅⟩ .

Move distance ε along ray from x in direction z : x ← x − ε z
∣z ∣ .

Iterating n times ensures objective excess φ(x) −minφ = O(1√
n
).

Underlying geometry:
level set C where φ ≤ φ(x), and
halfspace H where ⟨z , ⋅⟩ ≤ ⟨z , x⟩
satisfy C ⊂ H.

Subgradients are dual objects. Any analogue in Hadamard space?

54 / 159

Review: the subgradient method in Euclidean space

Seek to minimize convex objective φ∶Rn → R.
At current point x ∈ Rn,
∂φ(x) consists of subgradients z ∈ Rn:

x minimizes φ − ⟨z , ⋅⟩ .

Move distance ε along ray from x in direction z : x ← x − ε z
∣z ∣ .

Iterating n times ensures objective excess φ(x) −minφ = O(1√
n
).

Underlying geometry:
level set C where φ ≤ φ(x), and
halfspace H where ⟨z , ⋅⟩ ≤ ⟨z , x⟩
satisfy C ⊂ H.

Subgradients are dual objects. Any analogue in Hadamard space?

55 / 159

Review: the subgradient method in Euclidean space

Seek to minimize convex objective φ∶Rn → R.
At current point x ∈ Rn,
∂φ(x) consists of subgradients z ∈ Rn:

x minimizes φ − ⟨z , ⋅⟩ .

Move distance ε along ray from x in direction z : x ← x − ε z
∣z ∣ .

Iterating n times ensures objective excess φ(x) −minφ = O(1√
n
).

Underlying geometry:
level set C where φ ≤ φ(x), and
halfspace H where ⟨z , ⋅⟩ ≤ ⟨z , x⟩
satisfy C ⊂ H.

Subgradients are dual objects. Any analogue in Hadamard space?

56 / 159

Review: the subgradient method in Euclidean space

Seek to minimize convex objective φ∶Rn → R.
At current point x ∈ Rn,
∂φ(x) consists of subgradients z ∈ Rn:

x minimizes φ − ⟨z , ⋅⟩ .

Move distance ε along ray from x in direction z : x ← x − ε z
∣z ∣ .

Iterating n times ensures objective excess φ(x) −minφ = O(1√
n
).

Underlying geometry:
level set C where φ ≤ φ(x), and
halfspace H where ⟨z , ⋅⟩ ≤ ⟨z , x⟩
satisfy C ⊂ H.

Subgradients are dual objects. Any analogue in Hadamard space?

57 / 159

Rays, Busemann functions, and horoballs

Rays from x are isometries g ∶R+ → X
with g(0) = x , and correspond to
Busemann functions (1955)

bg(y) = lim
τ→+∞

(d(g(τ), y) − τ)

and horoballs H where bg ≤ 0.

The ray supports objective φ∶X→ R at x
if H contains the level set C where φ ≤ φ(x).

Example: Euclidean space Rays are halflines,
Busemann functions are affine, horoballs are halfspaces,
subgradients z ∈ ∂φ(x) give supporting rays g(τ) = x − τ z

∣z ∣ .

Example: circumenter φ(x) = maxa∈A d(x , a)
is supported by rays from x through any maximizing point a.

58 / 159

Rays, Busemann functions, and horoballs

Rays from x are isometries g ∶R+ → X
with g(0) = x ,

and correspond to
Busemann functions (1955)

bg(y) = lim
τ→+∞

(d(g(τ), y) − τ)

and horoballs H where bg ≤ 0.

The ray supports objective φ∶X→ R at x
if H contains the level set C where φ ≤ φ(x).

Example: Euclidean space Rays are halflines,
Busemann functions are affine, horoballs are halfspaces,
subgradients z ∈ ∂φ(x) give supporting rays g(τ) = x − τ z

∣z ∣ .

Example: circumenter φ(x) = maxa∈A d(x , a)
is supported by rays from x through any maximizing point a.

59 / 159

Rays, Busemann functions, and horoballs

Rays from x are isometries g ∶R+ → X
with g(0) = x , and correspond to
Busemann functions (1955)

bg(y) = lim
τ→+∞

(d(g(τ), y) − τ)

and horoballs H where bg ≤ 0.

The ray supports objective φ∶X→ R at x
if H contains the level set C where φ ≤ φ(x).

Example: Euclidean space Rays are halflines,
Busemann functions are affine, horoballs are halfspaces,
subgradients z ∈ ∂φ(x) give supporting rays g(τ) = x − τ z

∣z ∣ .

Example: circumenter φ(x) = maxa∈A d(x , a)
is supported by rays from x through any maximizing point a.

60 / 159

Rays, Busemann functions, and horoballs

Rays from x are isometries g ∶R+ → X
with g(0) = x , and correspond to
Busemann functions (1955)

bg(y) = lim
τ→+∞

(d(g(τ), y) − τ)

and horoballs H where bg ≤ 0.

The ray supports objective φ∶X→ R at x
if H contains the level set C where φ ≤ φ(x).

Example: Euclidean space Rays are halflines,
Busemann functions are affine, horoballs are halfspaces,
subgradients z ∈ ∂φ(x) give supporting rays g(τ) = x − τ z

∣z ∣ .

Example: circumenter φ(x) = maxa∈A d(x , a)
is supported by rays from x through any maximizing point a.

61 / 159

Rays, Busemann functions, and horoballs

Rays from x are isometries g ∶R+ → X
with g(0) = x , and correspond to
Busemann functions (1955)

bg(y) = lim
τ→+∞

(d(g(τ), y) − τ)

and horoballs H where bg ≤ 0.

The ray supports objective φ∶X→ R at x
if H contains the level set C where φ ≤ φ(x).

Example: Euclidean space Rays are halflines,
Busemann functions are affine, horoballs are halfspaces,
subgradients z ∈ ∂φ(x) give supporting rays g(τ) = x − τ z

∣z ∣ .

Example: circumenter φ(x) = maxa∈A d(x , a)
is supported by rays from x through any maximizing point a.

62 / 159

Rays, Busemann functions, and horoballs

Rays from x are isometries g ∶R+ → X
with g(0) = x , and correspond to
Busemann functions (1955)

bg(y) = lim
τ→+∞

(d(g(τ), y) − τ)

and horoballs H where bg ≤ 0.

The ray supports objective φ∶X→ R at x
if H contains the level set C where φ ≤ φ(x).

Example: Euclidean space Rays are halflines,
Busemann functions are affine, horoballs are halfspaces,
subgradients z ∈ ∂φ(x) give supporting rays g(τ) = x − τ z

∣z ∣ .

Example: circumenter φ(x) = maxa∈A d(x , a)
is supported by rays from x through any maximizing point a.

63 / 159

Rays, Busemann functions, and horoballs

Rays from x are isometries g ∶R+ → X
with g(0) = x , and correspond to
Busemann functions (1955)

bg(y) = lim
τ→+∞

(d(g(τ), y) − τ)

and horoballs H where bg ≤ 0.

The ray supports objective φ∶X→ R at x
if H contains the level set C where φ ≤ φ(x).

Example: Euclidean space

Rays are halflines,
Busemann functions are affine, horoballs are halfspaces,
subgradients z ∈ ∂φ(x) give supporting rays g(τ) = x − τ z

∣z ∣ .

Example: circumenter φ(x) = maxa∈A d(x , a)
is supported by rays from x through any maximizing point a.

64 / 159

Rays, Busemann functions, and horoballs

Rays from x are isometries g ∶R+ → X
with g(0) = x , and correspond to
Busemann functions (1955)

bg(y) = lim
τ→+∞

(d(g(τ), y) − τ)

and horoballs H where bg ≤ 0.

The ray supports objective φ∶X→ R at x
if H contains the level set C where φ ≤ φ(x).

Example: Euclidean space Rays are halflines,

Busemann functions are affine, horoballs are halfspaces,
subgradients z ∈ ∂φ(x) give supporting rays g(τ) = x − τ z

∣z ∣ .

Example: circumenter φ(x) = maxa∈A d(x , a)
is supported by rays from x through any maximizing point a.

65 / 159

Rays, Busemann functions, and horoballs

Rays from x are isometries g ∶R+ → X
with g(0) = x , and correspond to
Busemann functions (1955)

bg(y) = lim
τ→+∞

(d(g(τ), y) − τ)

and horoballs H where bg ≤ 0.

The ray supports objective φ∶X→ R at x
if H contains the level set C where φ ≤ φ(x).

Example: Euclidean space Rays are halflines,
Busemann functions are affine,

horoballs are halfspaces,
subgradients z ∈ ∂φ(x) give supporting rays g(τ) = x − τ z

∣z ∣ .

Example: circumenter φ(x) = maxa∈A d(x , a)
is supported by rays from x through any maximizing point a.

66 / 159

Rays, Busemann functions, and horoballs

Rays from x are isometries g ∶R+ → X
with g(0) = x , and correspond to
Busemann functions (1955)

bg(y) = lim
τ→+∞

(d(g(τ), y) − τ)

and horoballs H where bg ≤ 0.

The ray supports objective φ∶X→ R at x
if H contains the level set C where φ ≤ φ(x).

Example: Euclidean space Rays are halflines,
Busemann functions are affine, horoballs are halfspaces,

subgradients z ∈ ∂φ(x) give supporting rays g(τ) = x − τ z
∣z ∣ .

Example: circumenter φ(x) = maxa∈A d(x , a)
is supported by rays from x through any maximizing point a.

67 / 159

Rays, Busemann functions, and horoballs

Rays from x are isometries g ∶R+ → X
with g(0) = x , and correspond to
Busemann functions (1955)

bg(y) = lim
τ→+∞

(d(g(τ), y) − τ)

and horoballs H where bg ≤ 0.

The ray supports objective φ∶X→ R at x
if H contains the level set C where φ ≤ φ(x).

Example: Euclidean space Rays are halflines,
Busemann functions are affine, horoballs are halfspaces,
subgradients z ∈ ∂φ(x) give supporting rays g(τ) = x − τ z

∣z ∣ .

Example: circumenter φ(x) = maxa∈A d(x , a)
is supported by rays from x through any maximizing point a.

68 / 159

Rays, Busemann functions, and horoballs

Rays from x are isometries g ∶R+ → X
with g(0) = x , and correspond to
Busemann functions (1955)

bg(y) = lim
τ→+∞

(d(g(τ), y) − τ)

and horoballs H where bg ≤ 0.

The ray supports objective φ∶X→ R at x
if H contains the level set C where φ ≤ φ(x).

Example: Euclidean space Rays are halflines,
Busemann functions are affine, horoballs are halfspaces,
subgradients z ∈ ∂φ(x) give supporting rays g(τ) = x − τ z

∣z ∣ .

Example: circumenter φ(x) = maxa∈A d(x , a)

is supported by rays from x through any maximizing point a.

69 / 159

Rays, Busemann functions, and horoballs

Rays from x are isometries g ∶R+ → X
with g(0) = x , and correspond to
Busemann functions (1955)

bg(y) = lim
τ→+∞

(d(g(τ), y) − τ)

and horoballs H where bg ≤ 0.

The ray supports objective φ∶X→ R at x
if H contains the level set C where φ ≤ φ(x).

Example: Euclidean space Rays are halflines,
Busemann functions are affine, horoballs are halfspaces,
subgradients z ∈ ∂φ(x) give supporting rays g(τ) = x − τ z

∣z ∣ .

Example: circumenter φ(x) = maxa∈A d(x , a)
is supported by rays from x through any maximizing point a.

70 / 159

A subgradient-style algorithm in Hadamard space

Theorem (Complexity of supporting ray pursuit)

For L-Lipschitz objective φ attaining its minimum, initial point x0

and any upper diameter bound D for {x ∶ φ(x) ≤ φ(x0)},
n successive steps of constant size D√

n
along supporting rays

guarantees average objective excess less than LD√
n

.

Example: circumcenter of three points in a cubical complex

But finding supporting rays for composite objectives is hard, so. . .

71 / 159

A subgradient-style algorithm in Hadamard space

Theorem (Complexity of supporting ray pursuit)

For L-Lipschitz objective φ attaining its minimum, initial point x0

and any upper diameter bound D for {x ∶ φ(x) ≤ φ(x0)},
n successive steps of constant size D√

n
along supporting rays

guarantees average objective excess less than LD√
n

.

Example: circumcenter of three points in a cubical complex

But finding supporting rays for composite objectives is hard, so. . .

72 / 159

A subgradient-style algorithm in Hadamard space

Theorem (Complexity of supporting ray pursuit)

For L-Lipschitz objective φ

attaining its minimum, initial point x0

and any upper diameter bound D for {x ∶ φ(x) ≤ φ(x0)},
n successive steps of constant size D√

n
along supporting rays

guarantees average objective excess less than LD√
n

.

Example: circumcenter of three points in a cubical complex

But finding supporting rays for composite objectives is hard, so. . .

73 / 159

A subgradient-style algorithm in Hadamard space

Theorem (Complexity of supporting ray pursuit)

For L-Lipschitz objective φ attaining its minimum,

initial point x0

and any upper diameter bound D for {x ∶ φ(x) ≤ φ(x0)},
n successive steps of constant size D√

n
along supporting rays

guarantees average objective excess less than LD√
n

.

Example: circumcenter of three points in a cubical complex

But finding supporting rays for composite objectives is hard, so. . .

74 / 159

A subgradient-style algorithm in Hadamard space

Theorem (Complexity of supporting ray pursuit)

For L-Lipschitz objective φ attaining its minimum, initial point x0

and any upper diameter bound D for {x ∶ φ(x) ≤ φ(x0)},

n successive steps of constant size D√
n

along supporting rays

guarantees average objective excess less than LD√
n

.

Example: circumcenter of three points in a cubical complex

But finding supporting rays for composite objectives is hard, so. . .

75 / 159

A subgradient-style algorithm in Hadamard space

Theorem (Complexity of supporting ray pursuit)

For L-Lipschitz objective φ attaining its minimum, initial point x0

and any upper diameter bound D for {x ∶ φ(x) ≤ φ(x0)},
n successive steps of constant size D√

n
along supporting rays

guarantees average objective excess less than LD√
n

.

Example: circumcenter of three points in a cubical complex

But finding supporting rays for composite objectives is hard, so. . .

76 / 159

A subgradient-style algorithm in Hadamard space

Theorem (Complexity of supporting ray pursuit)

For L-Lipschitz objective φ attaining its minimum, initial point x0

and any upper diameter bound D for {x ∶ φ(x) ≤ φ(x0)},
n successive steps of constant size D√

n
along supporting rays

guarantees average objective excess less than LD√
n

.

Example: circumcenter of three points in a cubical complex

But finding supporting rays for composite objectives is hard, so. . .

77 / 159

A subgradient-style algorithm in Hadamard space

Theorem (Complexity of supporting ray pursuit)

For L-Lipschitz objective φ attaining its minimum, initial point x0

and any upper diameter bound D for {x ∶ φ(x) ≤ φ(x0)},
n successive steps of constant size D√

n
along supporting rays

guarantees average objective excess less than LD√
n

.

Example: circumcenter of three points in a cubical complex

But finding supporting rays for composite objectives is hard, so. . .

78 / 159

A subgradient-style algorithm in Hadamard space

Theorem (Complexity of supporting ray pursuit)

For L-Lipschitz objective φ attaining its minimum, initial point x0

and any upper diameter bound D for {x ∶ φ(x) ≤ φ(x0)},
n successive steps of constant size D√

n
along supporting rays

guarantees average objective excess less than LD√
n

.

Example: circumcenter of three points in a cubical complex

But finding supporting rays for composite objectives is hard, so. . .

79 / 159

Incremental subgradient methods

Euclidean space supports subgradient calculus: to minimize

φ =
k

∑
j=1

φj we can use ∂φ(x) = ∑
j

∂φj(x).

In Hadamard space, subgradients (g , s) ∈ ∂φ(x) consist of:
▸ direction of ray g from x with Busemann function bg
▸ magnitude (or “speed”) s ≥ 0 such that x minimizes φ − sbg .

Example: Euclidean subgradient z ≠ 0 gives Hadamard subgradient

(g , ∣z ∣) ∈ ∂φ(x) for the ray g(τ) = x − τ z

∣z ∣ .

No calculus. . . . However, following (Bertsekas-Nedic ’01). . .

Theorem For suitable δ > 0, repeating for cycle n = 1 . . . ,N

for j = 1 . . . k find (g , s) ∈ ∂φj(x) and update x ← g(δs√
n
)

ensures objective excess O(1√
N
).

80 / 159

Incremental subgradient methods
Euclidean space supports subgradient calculus:

to minimize

φ =
k

∑
j=1

φj we can use ∂φ(x) = ∑
j

∂φj(x).

In Hadamard space, subgradients (g , s) ∈ ∂φ(x) consist of:
▸ direction of ray g from x with Busemann function bg
▸ magnitude (or “speed”) s ≥ 0 such that x minimizes φ − sbg .

Example: Euclidean subgradient z ≠ 0 gives Hadamard subgradient

(g , ∣z ∣) ∈ ∂φ(x) for the ray g(τ) = x − τ z

∣z ∣ .

No calculus. . . . However, following (Bertsekas-Nedic ’01). . .

Theorem For suitable δ > 0, repeating for cycle n = 1 . . . ,N

for j = 1 . . . k find (g , s) ∈ ∂φj(x) and update x ← g(δs√
n
)

ensures objective excess O(1√
N
).

81 / 159

Incremental subgradient methods
Euclidean space supports subgradient calculus: to minimize

φ =
k

∑
j=1

φj

we can use ∂φ(x) = ∑
j

∂φj(x).

In Hadamard space, subgradients (g , s) ∈ ∂φ(x) consist of:
▸ direction of ray g from x with Busemann function bg
▸ magnitude (or “speed”) s ≥ 0 such that x minimizes φ − sbg .

Example: Euclidean subgradient z ≠ 0 gives Hadamard subgradient

(g , ∣z ∣) ∈ ∂φ(x) for the ray g(τ) = x − τ z

∣z ∣ .

No calculus. . . . However, following (Bertsekas-Nedic ’01). . .

Theorem For suitable δ > 0, repeating for cycle n = 1 . . . ,N

for j = 1 . . . k find (g , s) ∈ ∂φj(x) and update x ← g(δs√
n
)

ensures objective excess O(1√
N
).

82 / 159

Incremental subgradient methods
Euclidean space supports subgradient calculus: to minimize

φ =
k

∑
j=1

φj we can use ∂φ(x) = ∑
j

∂φj(x).

In Hadamard space, subgradients (g , s) ∈ ∂φ(x) consist of:
▸ direction of ray g from x with Busemann function bg
▸ magnitude (or “speed”) s ≥ 0 such that x minimizes φ − sbg .

Example: Euclidean subgradient z ≠ 0 gives Hadamard subgradient

(g , ∣z ∣) ∈ ∂φ(x) for the ray g(τ) = x − τ z

∣z ∣ .

No calculus. . . . However, following (Bertsekas-Nedic ’01). . .

Theorem For suitable δ > 0, repeating for cycle n = 1 . . . ,N

for j = 1 . . . k find (g , s) ∈ ∂φj(x) and update x ← g(δs√
n
)

ensures objective excess O(1√
N
).

83 / 159

Incremental subgradient methods
Euclidean space supports subgradient calculus: to minimize

φ =
k

∑
j=1

φj we can use ∂φ(x) = ∑
j

∂φj(x).

In Hadamard space, subgradients (g , s) ∈ ∂φ(x) consist of:
▸ direction of ray g from x with Busemann function bg

▸ magnitude (or “speed”) s ≥ 0 such that x minimizes φ − sbg .

Example: Euclidean subgradient z ≠ 0 gives Hadamard subgradient

(g , ∣z ∣) ∈ ∂φ(x) for the ray g(τ) = x − τ z

∣z ∣ .

No calculus. . . . However, following (Bertsekas-Nedic ’01). . .

Theorem For suitable δ > 0, repeating for cycle n = 1 . . . ,N

for j = 1 . . . k find (g , s) ∈ ∂φj(x) and update x ← g(δs√
n
)

ensures objective excess O(1√
N
).

84 / 159

Incremental subgradient methods
Euclidean space supports subgradient calculus: to minimize

φ =
k

∑
j=1

φj we can use ∂φ(x) = ∑
j

∂φj(x).

In Hadamard space, subgradients (g , s) ∈ ∂φ(x) consist of:
▸ direction of ray g from x with Busemann function bg
▸ magnitude (or “speed”) s ≥ 0

such that x minimizes φ − sbg .

Example: Euclidean subgradient z ≠ 0 gives Hadamard subgradient

(g , ∣z ∣) ∈ ∂φ(x) for the ray g(τ) = x − τ z

∣z ∣ .

No calculus. . . . However, following (Bertsekas-Nedic ’01). . .

Theorem For suitable δ > 0, repeating for cycle n = 1 . . . ,N

for j = 1 . . . k find (g , s) ∈ ∂φj(x) and update x ← g(δs√
n
)

ensures objective excess O(1√
N
).

85 / 159

Incremental subgradient methods
Euclidean space supports subgradient calculus: to minimize

φ =
k

∑
j=1

φj we can use ∂φ(x) = ∑
j

∂φj(x).

In Hadamard space, subgradients (g , s) ∈ ∂φ(x) consist of:
▸ direction of ray g from x with Busemann function bg
▸ magnitude (or “speed”) s ≥ 0 such that x minimizes φ − sbg .

Example: Euclidean subgradient z ≠ 0 gives Hadamard subgradient

(g , ∣z ∣) ∈ ∂φ(x) for the ray g(τ) = x − τ z

∣z ∣ .

No calculus. . . . However, following (Bertsekas-Nedic ’01). . .

Theorem For suitable δ > 0, repeating for cycle n = 1 . . . ,N

for j = 1 . . . k find (g , s) ∈ ∂φj(x) and update x ← g(δs√
n
)

ensures objective excess O(1√
N
).

86 / 159

Incremental subgradient methods
Euclidean space supports subgradient calculus: to minimize

φ =
k

∑
j=1

φj we can use ∂φ(x) = ∑
j

∂φj(x).

In Hadamard space, subgradients (g , s) ∈ ∂φ(x) consist of:
▸ direction of ray g from x with Busemann function bg
▸ magnitude (or “speed”) s ≥ 0 such that x minimizes φ − sbg .

Example: Euclidean subgradient z ≠ 0 gives Hadamard subgradient

(g , ∣z ∣) ∈ ∂φ(x) for the ray g(τ) = x − τ z

∣z ∣ .

No calculus. . . . However, following (Bertsekas-Nedic ’01). . .

Theorem For suitable δ > 0, repeating for cycle n = 1 . . . ,N

for j = 1 . . . k find (g , s) ∈ ∂φj(x) and update x ← g(δs√
n
)

ensures objective excess O(1√
N
).

87 / 159

Incremental subgradient methods
Euclidean space supports subgradient calculus: to minimize

φ =
k

∑
j=1

φj we can use ∂φ(x) = ∑
j

∂φj(x).

In Hadamard space, subgradients (g , s) ∈ ∂φ(x) consist of:
▸ direction of ray g from x with Busemann function bg
▸ magnitude (or “speed”) s ≥ 0 such that x minimizes φ − sbg .

Example: Euclidean subgradient z ≠ 0 gives Hadamard subgradient

(g , ∣z ∣) ∈ ∂φ(x) for the ray g(τ) = x − τ z

∣z ∣ .

No calculus. . . .

However, following (Bertsekas-Nedic ’01). . .

Theorem For suitable δ > 0, repeating for cycle n = 1 . . . ,N

for j = 1 . . . k find (g , s) ∈ ∂φj(x) and update x ← g(δs√
n
)

ensures objective excess O(1√
N
).

88 / 159

Incremental subgradient methods
Euclidean space supports subgradient calculus: to minimize

φ =
k

∑
j=1

φj we can use ∂φ(x) = ∑
j

∂φj(x).

In Hadamard space, subgradients (g , s) ∈ ∂φ(x) consist of:
▸ direction of ray g from x with Busemann function bg
▸ magnitude (or “speed”) s ≥ 0 such that x minimizes φ − sbg .

Example: Euclidean subgradient z ≠ 0 gives Hadamard subgradient

(g , ∣z ∣) ∈ ∂φ(x) for the ray g(τ) = x − τ z

∣z ∣ .

No calculus. . . . However, following (Bertsekas-Nedic ’01). . .

Theorem For suitable δ > 0, repeating for cycle n = 1 . . . ,N

for j = 1 . . . k find (g , s) ∈ ∂φj(x) and update x ← g(δs√
n
)

ensures objective excess O(1√
N
).

89 / 159

Incremental subgradient methods
Euclidean space supports subgradient calculus: to minimize

φ =
k

∑
j=1

φj we can use ∂φ(x) = ∑
j

∂φj(x).

In Hadamard space, subgradients (g , s) ∈ ∂φ(x) consist of:
▸ direction of ray g from x with Busemann function bg
▸ magnitude (or “speed”) s ≥ 0 such that x minimizes φ − sbg .

Example: Euclidean subgradient z ≠ 0 gives Hadamard subgradient

(g , ∣z ∣) ∈ ∂φ(x) for the ray g(τ) = x − τ z

∣z ∣ .

No calculus. . . . However, following (Bertsekas-Nedic ’01). . .

Theorem For suitable δ > 0, repeating for cycle n = 1 . . . ,N

for j = 1 . . . k find (g , s) ∈ ∂φj(x) and update x ← g(δs√
n
)

ensures objective excess O(1√
N
).

90 / 159

Incremental subgradient methods
Euclidean space supports subgradient calculus: to minimize

φ =
k

∑
j=1

φj we can use ∂φ(x) = ∑
j

∂φj(x).

In Hadamard space, subgradients (g , s) ∈ ∂φ(x) consist of:
▸ direction of ray g from x with Busemann function bg
▸ magnitude (or “speed”) s ≥ 0 such that x minimizes φ − sbg .

Example: Euclidean subgradient z ≠ 0 gives Hadamard subgradient

(g , ∣z ∣) ∈ ∂φ(x) for the ray g(τ) = x − τ z

∣z ∣ .

No calculus. . . . However, following (Bertsekas-Nedic ’01). . .

Theorem For suitable δ > 0, repeating for cycle n = 1 . . . ,N

for j = 1 . . . k find (g , s) ∈ ∂φj(x) and update x ← g(δs√
n
)

ensures objective excess O(1√
N
).

91 / 159

Incremental subgradient methods
Euclidean space supports subgradient calculus: to minimize

φ =
k

∑
j=1

φj we can use ∂φ(x) = ∑
j

∂φj(x).

In Hadamard space, subgradients (g , s) ∈ ∂φ(x) consist of:
▸ direction of ray g from x with Busemann function bg
▸ magnitude (or “speed”) s ≥ 0 such that x minimizes φ − sbg .

Example: Euclidean subgradient z ≠ 0 gives Hadamard subgradient

(g , ∣z ∣) ∈ ∂φ(x) for the ray g(τ) = x − τ z

∣z ∣ .

No calculus. . . . However, following (Bertsekas-Nedic ’01). . .

Theorem For suitable δ > 0, repeating for cycle n = 1 . . . ,N

for j = 1 . . . k find (g , s) ∈ ∂φj(x) and update x ← g(δs√
n
)

ensures objective excess O(1√
N
).

92 / 159

Example in tree space (Billera-Holmes-Vogtmann ’01)

BHV tree space consists of binary
trees with weighted internal edges,
living in a CAT(0) orthant complex
with polytime computable
geodesics (Owen-Provan ’11)
implemented in SturmMean.

Medians of finite sets A
in Hadamard spaces X
minimize ∑a∈A da. To run
incremental subgradient method
note rays g from x through a ∈ A
satisfy (g ,1) ∈ ∂da(x).

Example (Owen-Miller-Provan ’15)
A median of three trees. . .

(See Ariel Goodwin’s poster: “Incremental minimization. . . ”)

93 / 159

Example in tree space (Billera-Holmes-Vogtmann ’01)
BHV tree space consists of binary
trees with weighted internal edges,

living in a CAT(0) orthant complex
with polytime computable
geodesics (Owen-Provan ’11)
implemented in SturmMean.

Medians of finite sets A
in Hadamard spaces X
minimize ∑a∈A da. To run
incremental subgradient method
note rays g from x through a ∈ A
satisfy (g ,1) ∈ ∂da(x).

Example (Owen-Miller-Provan ’15)
A median of three trees. . .

(See Ariel Goodwin’s poster: “Incremental minimization. . . ”)

94 / 159

Example in tree space (Billera-Holmes-Vogtmann ’01)
BHV tree space consists of binary
trees with weighted internal edges,
living in a CAT(0) orthant complex

with polytime computable
geodesics (Owen-Provan ’11)
implemented in SturmMean.

Medians of finite sets A
in Hadamard spaces X
minimize ∑a∈A da. To run
incremental subgradient method
note rays g from x through a ∈ A
satisfy (g ,1) ∈ ∂da(x).

Example (Owen-Miller-Provan ’15)
A median of three trees. . .

(See Ariel Goodwin’s poster: “Incremental minimization. . . ”)

95 / 159

Example in tree space (Billera-Holmes-Vogtmann ’01)
BHV tree space consists of binary
trees with weighted internal edges,
living in a CAT(0) orthant complex
with polytime computable
geodesics (Owen-Provan ’11)

implemented in SturmMean.

Medians of finite sets A
in Hadamard spaces X
minimize ∑a∈A da. To run
incremental subgradient method
note rays g from x through a ∈ A
satisfy (g ,1) ∈ ∂da(x).

Example (Owen-Miller-Provan ’15)
A median of three trees. . .

(See Ariel Goodwin’s poster: “Incremental minimization. . . ”)

96 / 159

Example in tree space (Billera-Holmes-Vogtmann ’01)
BHV tree space consists of binary
trees with weighted internal edges,
living in a CAT(0) orthant complex
with polytime computable
geodesics (Owen-Provan ’11)
implemented in SturmMean.

Medians of finite sets A
in Hadamard spaces X
minimize ∑a∈A da. To run
incremental subgradient method
note rays g from x through a ∈ A
satisfy (g ,1) ∈ ∂da(x).

Example (Owen-Miller-Provan ’15)
A median of three trees. . .

(See Ariel Goodwin’s poster: “Incremental minimization. . . ”)

97 / 159

Example in tree space (Billera-Holmes-Vogtmann ’01)
BHV tree space consists of binary
trees with weighted internal edges,
living in a CAT(0) orthant complex
with polytime computable
geodesics (Owen-Provan ’11)
implemented in SturmMean.

Medians of finite sets A
in Hadamard spaces X

minimize ∑a∈A da. To run
incremental subgradient method
note rays g from x through a ∈ A
satisfy (g ,1) ∈ ∂da(x).

Example (Owen-Miller-Provan ’15)
A median of three trees. . .

(See Ariel Goodwin’s poster: “Incremental minimization. . . ”)

98 / 159

Example in tree space (Billera-Holmes-Vogtmann ’01)
BHV tree space consists of binary
trees with weighted internal edges,
living in a CAT(0) orthant complex
with polytime computable
geodesics (Owen-Provan ’11)
implemented in SturmMean.

Medians of finite sets A
in Hadamard spaces X
minimize ∑a∈A da.

To run
incremental subgradient method
note rays g from x through a ∈ A
satisfy (g ,1) ∈ ∂da(x).

Example (Owen-Miller-Provan ’15)
A median of three trees. . .

(See Ariel Goodwin’s poster: “Incremental minimization. . . ”)

99 / 159

Example in tree space (Billera-Holmes-Vogtmann ’01)
BHV tree space consists of binary
trees with weighted internal edges,
living in a CAT(0) orthant complex
with polytime computable
geodesics (Owen-Provan ’11)
implemented in SturmMean.

Medians of finite sets A
in Hadamard spaces X
minimize ∑a∈A da. To run
incremental subgradient method

note rays g from x through a ∈ A
satisfy (g ,1) ∈ ∂da(x).

Example (Owen-Miller-Provan ’15)
A median of three trees. . .

(See Ariel Goodwin’s poster: “Incremental minimization. . . ”)

100 / 159

Example in tree space (Billera-Holmes-Vogtmann ’01)
BHV tree space consists of binary
trees with weighted internal edges,
living in a CAT(0) orthant complex
with polytime computable
geodesics (Owen-Provan ’11)
implemented in SturmMean.

Medians of finite sets A
in Hadamard spaces X
minimize ∑a∈A da. To run
incremental subgradient method
note rays g from x through a ∈ A
satisfy (g ,1) ∈ ∂da(x).

Example (Owen-Miller-Provan ’15)
A median of three trees. . .

(See Ariel Goodwin’s poster: “Incremental minimization. . . ”)

101 / 159

Example in tree space (Billera-Holmes-Vogtmann ’01)
BHV tree space consists of binary
trees with weighted internal edges,
living in a CAT(0) orthant complex
with polytime computable
geodesics (Owen-Provan ’11)
implemented in SturmMean.

Medians of finite sets A
in Hadamard spaces X
minimize ∑a∈A da. To run
incremental subgradient method
note rays g from x through a ∈ A
satisfy (g ,1) ∈ ∂da(x).

Example (Owen-Miller-Provan ’15)
A median of three trees. . .

(See Ariel Goodwin’s poster: “Incremental minimization. . . ”)

102 / 159

Example in tree space (Billera-Holmes-Vogtmann ’01)
BHV tree space consists of binary
trees with weighted internal edges,
living in a CAT(0) orthant complex
with polytime computable
geodesics (Owen-Provan ’11)
implemented in SturmMean.

Medians of finite sets A
in Hadamard spaces X
minimize ∑a∈A da. To run
incremental subgradient method
note rays g from x through a ∈ A
satisfy (g ,1) ∈ ∂da(x).

Example (Owen-Miller-Provan ’15)
A median of three trees. . .

(See Ariel Goodwin’s poster: “Incremental minimization. . . ”)

103 / 159

Example in tree space (Billera-Holmes-Vogtmann ’01)
BHV tree space consists of binary
trees with weighted internal edges,
living in a CAT(0) orthant complex
with polytime computable
geodesics (Owen-Provan ’11)
implemented in SturmMean.

Medians of finite sets A
in Hadamard spaces X
minimize ∑a∈A da. To run
incremental subgradient method
note rays g from x through a ∈ A
satisfy (g ,1) ∈ ∂da(x).

Example (Owen-Miller-Provan ’15)
A median of three trees. . .

(See Ariel Goodwin’s poster: “Incremental minimization. . . ”)

104 / 159

PART III

Weighted means in Hadamard spaces

105 / 159

Averaging finite sets

Examples: matrix means (Bhatia. . . ’12), computational geometry
(Arnaudon. . . ’05), phylogenetic trees (Billera. . . ’01, Bac̆ák ’13). . .

Question: given a finite set A, is a given point x̄ an “average”?

Theorem (weighted averages versus convex combinations)

A point x̄ minimizes ∑awad
2(⋅, a) for some weighting 0 ≠ w ≥ 0

if and only if x̄ minimizes test function maxa{d(⋅, a) − d(x̄ , a)}.
In that case, x̄ ∈ convA (but the converse fails outside Rn).

Three points in a
cubical complex

with 3-dimensional
convex hull. . .

. . . but 2-dimensional
weighted mean set.

106 / 159

Averaging finite sets
Examples: matrix means (Bhatia. . . ’12),

computational geometry
(Arnaudon. . . ’05), phylogenetic trees (Billera. . . ’01, Bac̆ák ’13). . .

Question: given a finite set A, is a given point x̄ an “average”?

Theorem (weighted averages versus convex combinations)

A point x̄ minimizes ∑awad
2(⋅, a) for some weighting 0 ≠ w ≥ 0

if and only if x̄ minimizes test function maxa{d(⋅, a) − d(x̄ , a)}.
In that case, x̄ ∈ convA (but the converse fails outside Rn).

Three points in a
cubical complex

with 3-dimensional
convex hull. . .

. . . but 2-dimensional
weighted mean set.

107 / 159

Averaging finite sets
Examples: matrix means (Bhatia. . . ’12), computational geometry
(Arnaudon. . . ’05),

phylogenetic trees (Billera. . . ’01, Bac̆ák ’13). . .

Question: given a finite set A, is a given point x̄ an “average”?

Theorem (weighted averages versus convex combinations)

A point x̄ minimizes ∑awad
2(⋅, a) for some weighting 0 ≠ w ≥ 0

if and only if x̄ minimizes test function maxa{d(⋅, a) − d(x̄ , a)}.
In that case, x̄ ∈ convA (but the converse fails outside Rn).

Three points in a
cubical complex

with 3-dimensional
convex hull. . .

. . . but 2-dimensional
weighted mean set.

108 / 159

Averaging finite sets
Examples: matrix means (Bhatia. . . ’12), computational geometry
(Arnaudon. . . ’05), phylogenetic trees (Billera. . . ’01, Bac̆ák ’13). . .

Question: given a finite set A, is a given point x̄ an “average”?

Theorem (weighted averages versus convex combinations)

A point x̄ minimizes ∑awad
2(⋅, a) for some weighting 0 ≠ w ≥ 0

if and only if x̄ minimizes test function maxa{d(⋅, a) − d(x̄ , a)}.
In that case, x̄ ∈ convA (but the converse fails outside Rn).

Three points in a
cubical complex

with 3-dimensional
convex hull. . .

. . . but 2-dimensional
weighted mean set.

109 / 159

Averaging finite sets
Examples: matrix means (Bhatia. . . ’12), computational geometry
(Arnaudon. . . ’05), phylogenetic trees (Billera. . . ’01, Bac̆ák ’13). . .

Question: given a finite set A, is a given point x̄ an “average”?

Theorem (weighted averages versus convex combinations)

A point x̄ minimizes ∑awad
2(⋅, a) for some weighting 0 ≠ w ≥ 0

if and only if x̄ minimizes test function maxa{d(⋅, a) − d(x̄ , a)}.
In that case, x̄ ∈ convA (but the converse fails outside Rn).

Three points in a
cubical complex

with 3-dimensional
convex hull. . .

. . . but 2-dimensional
weighted mean set.

110 / 159

Averaging finite sets
Examples: matrix means (Bhatia. . . ’12), computational geometry
(Arnaudon. . . ’05), phylogenetic trees (Billera. . . ’01, Bac̆ák ’13). . .

Question: given a finite set A, is a given point x̄ an “average”?

Theorem (weighted averages versus convex combinations)

A point x̄ minimizes ∑awad
2(⋅, a) for some weighting 0 ≠ w ≥ 0

if and only if x̄ minimizes test function maxa{d(⋅, a) − d(x̄ , a)}.
In that case, x̄ ∈ convA (but the converse fails outside Rn).

Three points in a
cubical complex

with 3-dimensional
convex hull. . .

. . . but 2-dimensional
weighted mean set.

111 / 159

Averaging finite sets
Examples: matrix means (Bhatia. . . ’12), computational geometry
(Arnaudon. . . ’05), phylogenetic trees (Billera. . . ’01, Bac̆ák ’13). . .

Question: given a finite set A, is a given point x̄ an “average”?

Theorem (weighted averages versus convex combinations)

A point x̄ minimizes ∑awad
2(⋅, a) for some weighting 0 ≠ w ≥ 0

if and only if x̄ minimizes test function maxa{d(⋅, a) − d(x̄ , a)}.
In that case, x̄ ∈ convA (but the converse fails outside Rn).

Three points in a
cubical complex

with 3-dimensional
convex hull. . .

. . . but 2-dimensional
weighted mean set.

112 / 159

Averaging finite sets
Examples: matrix means (Bhatia. . . ’12), computational geometry
(Arnaudon. . . ’05), phylogenetic trees (Billera. . . ’01, Bac̆ák ’13). . .

Question: given a finite set A, is a given point x̄ an “average”?

Theorem (weighted averages versus convex combinations)

A point x̄ minimizes ∑awad
2(⋅, a) for some weighting 0 ≠ w ≥ 0

if and only if x̄ minimizes test function maxa{d(⋅, a) − d(x̄ , a)}.

In that case, x̄ ∈ convA (but the converse fails outside Rn).

Three points in a
cubical complex

with 3-dimensional
convex hull. . .

. . . but 2-dimensional
weighted mean set.

113 / 159

Averaging finite sets
Examples: matrix means (Bhatia. . . ’12), computational geometry
(Arnaudon. . . ’05), phylogenetic trees (Billera. . . ’01, Bac̆ák ’13). . .

Question: given a finite set A, is a given point x̄ an “average”?

Theorem (weighted averages versus convex combinations)

A point x̄ minimizes ∑awad
2(⋅, a) for some weighting 0 ≠ w ≥ 0

if and only if x̄ minimizes test function maxa{d(⋅, a) − d(x̄ , a)}.
In that case, x̄ ∈ convA

(but the converse fails outside Rn).

Three points in a
cubical complex

with 3-dimensional
convex hull. . .

. . . but 2-dimensional
weighted mean set.

114 / 159

Averaging finite sets
Examples: matrix means (Bhatia. . . ’12), computational geometry
(Arnaudon. . . ’05), phylogenetic trees (Billera. . . ’01, Bac̆ák ’13). . .

Question: given a finite set A, is a given point x̄ an “average”?

Theorem (weighted averages versus convex combinations)

A point x̄ minimizes ∑awad
2(⋅, a) for some weighting 0 ≠ w ≥ 0

if and only if x̄ minimizes test function maxa{d(⋅, a) − d(x̄ , a)}.
In that case, x̄ ∈ convA (but the converse fails outside Rn).

Three points in a
cubical complex

with 3-dimensional
convex hull. . .

. . . but 2-dimensional
weighted mean set.

115 / 159

Averaging finite sets
Examples: matrix means (Bhatia. . . ’12), computational geometry
(Arnaudon. . . ’05), phylogenetic trees (Billera. . . ’01, Bac̆ák ’13). . .

Question: given a finite set A, is a given point x̄ an “average”?

Theorem (weighted averages versus convex combinations)

A point x̄ minimizes ∑awad
2(⋅, a) for some weighting 0 ≠ w ≥ 0

if and only if x̄ minimizes test function maxa{d(⋅, a) − d(x̄ , a)}.
In that case, x̄ ∈ convA (but the converse fails outside Rn).

Three points in a
cubical complex

with 3-dimensional
convex hull. . .

. . . but 2-dimensional
weighted mean set.

116 / 159

Averaging finite sets
Examples: matrix means (Bhatia. . . ’12), computational geometry
(Arnaudon. . . ’05), phylogenetic trees (Billera. . . ’01, Bac̆ák ’13). . .

Question: given a finite set A, is a given point x̄ an “average”?

Theorem (weighted averages versus convex combinations)

A point x̄ minimizes ∑awad
2(⋅, a) for some weighting 0 ≠ w ≥ 0

if and only if x̄ minimizes test function maxa{d(⋅, a) − d(x̄ , a)}.
In that case, x̄ ∈ convA (but the converse fails outside Rn).

Three points in a
cubical complex

with 3-dimensional
convex hull. . .

. . . but 2-dimensional
weighted mean set.

117 / 159

Averaging finite sets
Examples: matrix means (Bhatia. . . ’12), computational geometry
(Arnaudon. . . ’05), phylogenetic trees (Billera. . . ’01, Bac̆ák ’13). . .

Question: given a finite set A, is a given point x̄ an “average”?

Theorem (weighted averages versus convex combinations)

A point x̄ minimizes ∑awad
2(⋅, a) for some weighting 0 ≠ w ≥ 0

if and only if x̄ minimizes test function maxa{d(⋅, a) − d(x̄ , a)}.
In that case, x̄ ∈ convA (but the converse fails outside Rn).

Three points in a
cubical complex

with 3-dimensional
convex hull. . .

. . . but 2-dimensional
weighted mean set.

118 / 159

Recognizing weighted means computationally

For x̄ ∈ X (locally compact Hadamard), assume geodesics [x̄ , a]
extend to rays. Traversing at speed d(x̄ , a) gives tangents [x̄ , a]
comprising “cone” Tx̄X. Suppose Tx̄X ≅ Rn. (Eg: X a manifold.)

The test function maxa∈A{d(⋅, a) − d(x̄ , a)} then has slope

dist(0, conv{[x̄ , a] ∶ a ∈ A}),

quantifying whether x̄ is a weighted mean.

3 points in a cubical complex Heat map of test function slope

119 / 159

Recognizing weighted means computationally

For x̄ ∈ X (locally compact Hadamard),

assume geodesics [x̄ , a]
extend to rays. Traversing at speed d(x̄ , a) gives tangents [x̄ , a]
comprising “cone” Tx̄X. Suppose Tx̄X ≅ Rn. (Eg: X a manifold.)

The test function maxa∈A{d(⋅, a) − d(x̄ , a)} then has slope

dist(0, conv{[x̄ , a] ∶ a ∈ A}),

quantifying whether x̄ is a weighted mean.

3 points in a cubical complex Heat map of test function slope

120 / 159

Recognizing weighted means computationally

For x̄ ∈ X (locally compact Hadamard), assume geodesics [x̄ , a]
extend to rays.

Traversing at speed d(x̄ , a) gives tangents [x̄ , a]
comprising “cone” Tx̄X. Suppose Tx̄X ≅ Rn. (Eg: X a manifold.)

The test function maxa∈A{d(⋅, a) − d(x̄ , a)} then has slope

dist(0, conv{[x̄ , a] ∶ a ∈ A}),

quantifying whether x̄ is a weighted mean.

3 points in a cubical complex Heat map of test function slope

121 / 159

Recognizing weighted means computationally

For x̄ ∈ X (locally compact Hadamard), assume geodesics [x̄ , a]
extend to rays. Traversing at speed d(x̄ , a) gives tangents [x̄ , a]

comprising “cone” Tx̄X. Suppose Tx̄X ≅ Rn. (Eg: X a manifold.)

The test function maxa∈A{d(⋅, a) − d(x̄ , a)} then has slope

dist(0, conv{[x̄ , a] ∶ a ∈ A}),

quantifying whether x̄ is a weighted mean.

3 points in a cubical complex Heat map of test function slope

122 / 159

Recognizing weighted means computationally

For x̄ ∈ X (locally compact Hadamard), assume geodesics [x̄ , a]
extend to rays. Traversing at speed d(x̄ , a) gives tangents [x̄ , a]
comprising “cone” Tx̄X.

Suppose Tx̄X ≅ Rn. (Eg: X a manifold.)

The test function maxa∈A{d(⋅, a) − d(x̄ , a)} then has slope

dist(0, conv{[x̄ , a] ∶ a ∈ A}),

quantifying whether x̄ is a weighted mean.

3 points in a cubical complex Heat map of test function slope

123 / 159

Recognizing weighted means computationally

For x̄ ∈ X (locally compact Hadamard), assume geodesics [x̄ , a]
extend to rays. Traversing at speed d(x̄ , a) gives tangents [x̄ , a]
comprising “cone” Tx̄X. Suppose Tx̄X ≅ Rn.

(Eg: X a manifold.)

The test function maxa∈A{d(⋅, a) − d(x̄ , a)} then has slope

dist(0, conv{[x̄ , a] ∶ a ∈ A}),

quantifying whether x̄ is a weighted mean.

3 points in a cubical complex Heat map of test function slope

124 / 159

Recognizing weighted means computationally

For x̄ ∈ X (locally compact Hadamard), assume geodesics [x̄ , a]
extend to rays. Traversing at speed d(x̄ , a) gives tangents [x̄ , a]
comprising “cone” Tx̄X. Suppose Tx̄X ≅ Rn. (Eg: X a manifold.)

The test function maxa∈A{d(⋅, a) − d(x̄ , a)} then has slope

dist(0, conv{[x̄ , a] ∶ a ∈ A}),

quantifying whether x̄ is a weighted mean.

3 points in a cubical complex Heat map of test function slope

125 / 159

Recognizing weighted means computationally

For x̄ ∈ X (locally compact Hadamard), assume geodesics [x̄ , a]
extend to rays. Traversing at speed d(x̄ , a) gives tangents [x̄ , a]
comprising “cone” Tx̄X. Suppose Tx̄X ≅ Rn. (Eg: X a manifold.)

The test function maxa∈A{d(⋅, a) − d(x̄ , a)}

then has slope

dist(0, conv{[x̄ , a] ∶ a ∈ A}),

quantifying whether x̄ is a weighted mean.

3 points in a cubical complex Heat map of test function slope

126 / 159

Recognizing weighted means computationally

For x̄ ∈ X (locally compact Hadamard), assume geodesics [x̄ , a]
extend to rays. Traversing at speed d(x̄ , a) gives tangents [x̄ , a]
comprising “cone” Tx̄X. Suppose Tx̄X ≅ Rn. (Eg: X a manifold.)

The test function maxa∈A{d(⋅, a) − d(x̄ , a)} then has slope

dist(0, conv{[x̄ , a] ∶ a ∈ A}),

quantifying whether x̄ is a weighted mean.

3 points in a cubical complex Heat map of test function slope

127 / 159

Recognizing weighted means computationally

For x̄ ∈ X (locally compact Hadamard), assume geodesics [x̄ , a]
extend to rays. Traversing at speed d(x̄ , a) gives tangents [x̄ , a]
comprising “cone” Tx̄X. Suppose Tx̄X ≅ Rn. (Eg: X a manifold.)

The test function maxa∈A{d(⋅, a) − d(x̄ , a)} then has slope

dist(0, conv{[x̄ , a] ∶ a ∈ A}),

quantifying whether x̄ is a weighted mean.

3 points in a cubical complex Heat map of test function slope

128 / 159

Recognizing weighted means computationally

For x̄ ∈ X (locally compact Hadamard), assume geodesics [x̄ , a]
extend to rays. Traversing at speed d(x̄ , a) gives tangents [x̄ , a]
comprising “cone” Tx̄X. Suppose Tx̄X ≅ Rn. (Eg: X a manifold.)

The test function maxa∈A{d(⋅, a) − d(x̄ , a)} then has slope

dist(0, conv{[x̄ , a] ∶ a ∈ A}),

quantifying whether x̄ is a weighted mean.

3 points in a cubical complex

Heat map of test function slope

129 / 159

Recognizing weighted means computationally

For x̄ ∈ X (locally compact Hadamard), assume geodesics [x̄ , a]
extend to rays. Traversing at speed d(x̄ , a) gives tangents [x̄ , a]
comprising “cone” Tx̄X. Suppose Tx̄X ≅ Rn. (Eg: X a manifold.)

The test function maxa∈A{d(⋅, a) − d(x̄ , a)} then has slope

dist(0, conv{[x̄ , a] ∶ a ∈ A}),

quantifying whether x̄ is a weighted mean.

3 points in a cubical complex Heat map of test function slope

130 / 159

PART IV

Convex optimization on

CAT(0) cubical complexes

131 / 159

CAT(0) cubical complexes

A complex X of cells — Euclidean cubes and their faces —
each pair of cells sharing at most one face — is CAT(0) ⇔
simply connected and link condition holds (Gromov ’81).
Geodesics are polynomial time (Owen-Provan ’11 . . . Hayashi ’21)

Example: Minimize over square complex

φ(x) = d2(x , a) + d2(x ,b) + d2(x , c).

Cyclic proximal point (Bac̆ák ’13) is slow:

for n = 1,2, . . ., x ∈ n
n+1x +

1
n+1{a,b, c} end(for) Instead. . .

Algorithm: given current point x and list Ω of optimized cells
repeat

choose cell P /∈ Ω containing x
x = argminP φ How?
update Ω

until done

132 / 159

CAT(0) cubical complexes

A complex X of cells — Euclidean cubes and their faces —

each pair of cells sharing at most one face — is CAT(0) ⇔
simply connected and link condition holds (Gromov ’81).
Geodesics are polynomial time (Owen-Provan ’11 . . . Hayashi ’21)

Example: Minimize over square complex

φ(x) = d2(x , a) + d2(x ,b) + d2(x , c).

Cyclic proximal point (Bac̆ák ’13) is slow:

for n = 1,2, . . ., x ∈ n
n+1x +

1
n+1{a,b, c} end(for) Instead. . .

Algorithm: given current point x and list Ω of optimized cells
repeat

choose cell P /∈ Ω containing x
x = argminP φ How?
update Ω

until done

133 / 159

CAT(0) cubical complexes

A complex X of cells — Euclidean cubes and their faces —
each pair of cells sharing at most one face

— is CAT(0) ⇔
simply connected and link condition holds (Gromov ’81).
Geodesics are polynomial time (Owen-Provan ’11 . . . Hayashi ’21)

Example: Minimize over square complex

φ(x) = d2(x , a) + d2(x ,b) + d2(x , c).

Cyclic proximal point (Bac̆ák ’13) is slow:

for n = 1,2, . . ., x ∈ n
n+1x +

1
n+1{a,b, c} end(for) Instead. . .

Algorithm: given current point x and list Ω of optimized cells
repeat

choose cell P /∈ Ω containing x
x = argminP φ How?
update Ω

until done

134 / 159

CAT(0) cubical complexes

A complex X of cells — Euclidean cubes and their faces —
each pair of cells sharing at most one face — is CAT(0) ⇔
simply connected and link condition holds (Gromov ’81).

Geodesics are polynomial time (Owen-Provan ’11 . . . Hayashi ’21)

Example: Minimize over square complex

φ(x) = d2(x , a) + d2(x ,b) + d2(x , c).

Cyclic proximal point (Bac̆ák ’13) is slow:

for n = 1,2, . . ., x ∈ n
n+1x +

1
n+1{a,b, c} end(for) Instead. . .

Algorithm: given current point x and list Ω of optimized cells
repeat

choose cell P /∈ Ω containing x
x = argminP φ How?
update Ω

until done

135 / 159

CAT(0) cubical complexes

A complex X of cells — Euclidean cubes and their faces —
each pair of cells sharing at most one face — is CAT(0) ⇔
simply connected and link condition holds (Gromov ’81).
Geodesics are polynomial time (Owen-Provan ’11 . . . Hayashi ’21)

Example: Minimize over square complex

φ(x) = d2(x , a) + d2(x ,b) + d2(x , c).

Cyclic proximal point (Bac̆ák ’13) is slow:

for n = 1,2, . . ., x ∈ n
n+1x +

1
n+1{a,b, c} end(for) Instead. . .

Algorithm: given current point x and list Ω of optimized cells
repeat

choose cell P /∈ Ω containing x
x = argminP φ How?
update Ω

until done

136 / 159

CAT(0) cubical complexes

A complex X of cells — Euclidean cubes and their faces —
each pair of cells sharing at most one face — is CAT(0) ⇔
simply connected and link condition holds (Gromov ’81).
Geodesics are polynomial time (Owen-Provan ’11 . . . Hayashi ’21)

Example: Minimize over square complex

φ(x) = d2(x , a) + d2(x ,b) + d2(x , c).

Cyclic proximal point (Bac̆ák ’13) is slow:

for n = 1,2, . . ., x ∈ n
n+1x +

1
n+1{a,b, c} end(for) Instead. . .

Algorithm: given current point x and list Ω of optimized cells
repeat

choose cell P /∈ Ω containing x
x = argminP φ How?
update Ω

until done

137 / 159

CAT(0) cubical complexes

A complex X of cells — Euclidean cubes and their faces —
each pair of cells sharing at most one face — is CAT(0) ⇔
simply connected and link condition holds (Gromov ’81).
Geodesics are polynomial time (Owen-Provan ’11 . . . Hayashi ’21)

Example: Minimize over square complex

φ(x) = d2(x , a) + d2(x ,b) + d2(x , c).

Cyclic proximal point (Bac̆ák ’13) is slow:

for n = 1,2, . . ., x ∈ n
n+1x +

1
n+1{a,b, c} end(for)

Instead. . .

Algorithm: given current point x and list Ω of optimized cells
repeat

choose cell P /∈ Ω containing x
x = argminP φ How?
update Ω

until done

138 / 159

CAT(0) cubical complexes

A complex X of cells — Euclidean cubes and their faces —
each pair of cells sharing at most one face — is CAT(0) ⇔
simply connected and link condition holds (Gromov ’81).
Geodesics are polynomial time (Owen-Provan ’11 . . . Hayashi ’21)

Example: Minimize over square complex

φ(x) = d2(x , a) + d2(x ,b) + d2(x , c).

Cyclic proximal point (Bac̆ák ’13) is slow:

for n = 1,2, . . ., x ∈ n
n+1x +

1
n+1{a,b, c} end(for) Instead. . .

Algorithm: given current point x and list Ω of optimized cells
repeat

choose cell P /∈ Ω containing x
x = argminP φ How?
update Ω

until done

139 / 159

CAT(0) cubical complexes

A complex X of cells — Euclidean cubes and their faces —
each pair of cells sharing at most one face — is CAT(0) ⇔
simply connected and link condition holds (Gromov ’81).
Geodesics are polynomial time (Owen-Provan ’11 . . . Hayashi ’21)

Example: Minimize over square complex

φ(x) = d2(x , a) + d2(x ,b) + d2(x , c).

Cyclic proximal point (Bac̆ák ’13) is slow:

for n = 1,2, . . ., x ∈ n
n+1x +

1
n+1{a,b, c} end(for) Instead. . .

Algorithm: given current point x and list Ω of optimized cells

repeat
choose cell P /∈ Ω containing x
x = argminP φ How?
update Ω

until done

140 / 159

CAT(0) cubical complexes

A complex X of cells — Euclidean cubes and their faces —
each pair of cells sharing at most one face — is CAT(0) ⇔
simply connected and link condition holds (Gromov ’81).
Geodesics are polynomial time (Owen-Provan ’11 . . . Hayashi ’21)

Example: Minimize over square complex

φ(x) = d2(x , a) + d2(x ,b) + d2(x , c).

Cyclic proximal point (Bac̆ák ’13) is slow:

for n = 1,2, . . ., x ∈ n
n+1x +

1
n+1{a,b, c} end(for) Instead. . .

Algorithm: given current point x and list Ω of optimized cells
repeat

choose cell P /∈ Ω containing x

x = argminP φ How?
update Ω

until done

141 / 159

CAT(0) cubical complexes

A complex X of cells — Euclidean cubes and their faces —
each pair of cells sharing at most one face — is CAT(0) ⇔
simply connected and link condition holds (Gromov ’81).
Geodesics are polynomial time (Owen-Provan ’11 . . . Hayashi ’21)

Example: Minimize over square complex

φ(x) = d2(x , a) + d2(x ,b) + d2(x , c).

Cyclic proximal point (Bac̆ák ’13) is slow:

for n = 1,2, . . ., x ∈ n
n+1x +

1
n+1{a,b, c} end(for) Instead. . .

Algorithm: given current point x and list Ω of optimized cells
repeat

choose cell P /∈ Ω containing x
x = argminP φ

How?
update Ω

until done

142 / 159

CAT(0) cubical complexes

A complex X of cells — Euclidean cubes and their faces —
each pair of cells sharing at most one face — is CAT(0) ⇔
simply connected and link condition holds (Gromov ’81).
Geodesics are polynomial time (Owen-Provan ’11 . . . Hayashi ’21)

Example: Minimize over square complex

φ(x) = d2(x , a) + d2(x ,b) + d2(x , c).

Cyclic proximal point (Bac̆ák ’13) is slow:

for n = 1,2, . . ., x ∈ n
n+1x +

1
n+1{a,b, c} end(for) Instead. . .

Algorithm: given current point x and list Ω of optimized cells
repeat

choose cell P /∈ Ω containing x
x = argminP φ How?

update Ω
until done

143 / 159

CAT(0) cubical complexes

A complex X of cells — Euclidean cubes and their faces —
each pair of cells sharing at most one face — is CAT(0) ⇔
simply connected and link condition holds (Gromov ’81).
Geodesics are polynomial time (Owen-Provan ’11 . . . Hayashi ’21)

Example: Minimize over square complex

φ(x) = d2(x , a) + d2(x ,b) + d2(x , c).

Cyclic proximal point (Bac̆ák ’13) is slow:

for n = 1,2, . . ., x ∈ n
n+1x +

1
n+1{a,b, c} end(for) Instead. . .

Algorithm: given current point x and list Ω of optimized cells
repeat

choose cell P /∈ Ω containing x
x = argminP φ How?
update Ω

until done

144 / 159

CAT(0) cubical complexes

A complex X of cells — Euclidean cubes and their faces —
each pair of cells sharing at most one face — is CAT(0) ⇔
simply connected and link condition holds (Gromov ’81).
Geodesics are polynomial time (Owen-Provan ’11 . . . Hayashi ’21)

Example: Minimize over square complex

φ(x) = d2(x , a) + d2(x ,b) + d2(x , c).

Cyclic proximal point (Bac̆ák ’13) is slow:

for n = 1,2, . . ., x ∈ n
n+1x +

1
n+1{a,b, c} end(for) Instead. . .

Algorithm: given current point x and list Ω of optimized cells
repeat

choose cell P /∈ Ω containing x
x = argminP φ How?
update Ω

until done

145 / 159

Cutting plane strategy for low-dimensional cells

In CAT(0) cubical complex, consider points a ≠ x ∈ cell P ⊂ Rn.

Aim: at x , find a (Euclidean) subgradient for the function

w ∈ Rn ↦ { d(w , a) (w ∈ P)
+∞ (w /∈ P)

Answer. Suppose geodesic [x , a]
has first segment [x , y] in cell Q.
Project y onto its nearest point z
in the face F shared by P and Q.
Then, one such subgradient is

cos(∠yxz)
∣x − z ∣ (x − z) (interpreted as 0 if z = x).

146 / 159

Cutting plane strategy for low-dimensional cells

In CAT(0) cubical complex, consider points a ≠ x ∈ cell P ⊂ Rn.

Aim: at x , find a (Euclidean) subgradient for the function

w ∈ Rn ↦ { d(w , a) (w ∈ P)
+∞ (w /∈ P)

Answer. Suppose geodesic [x , a]
has first segment [x , y] in cell Q.
Project y onto its nearest point z
in the face F shared by P and Q.
Then, one such subgradient is

cos(∠yxz)
∣x − z ∣ (x − z) (interpreted as 0 if z = x).

147 / 159

Cutting plane strategy for low-dimensional cells

In CAT(0) cubical complex, consider points a ≠ x ∈ cell P ⊂ Rn.

Aim: at x , find a (Euclidean) subgradient for the function

w ∈ Rn ↦ { d(w , a) (w ∈ P)
+∞ (w /∈ P)

Answer. Suppose geodesic [x , a]

has first segment [x , y] in cell Q.
Project y onto its nearest point z
in the face F shared by P and Q.
Then, one such subgradient is

cos(∠yxz)
∣x − z ∣ (x − z) (interpreted as 0 if z = x).

148 / 159

Cutting plane strategy for low-dimensional cells

In CAT(0) cubical complex, consider points a ≠ x ∈ cell P ⊂ Rn.

Aim: at x , find a (Euclidean) subgradient for the function

w ∈ Rn ↦ { d(w , a) (w ∈ P)
+∞ (w /∈ P)

Answer. Suppose geodesic [x , a]
has first segment [x , y]

in cell Q.
Project y onto its nearest point z
in the face F shared by P and Q.
Then, one such subgradient is

cos(∠yxz)
∣x − z ∣ (x − z) (interpreted as 0 if z = x).

149 / 159

Cutting plane strategy for low-dimensional cells

In CAT(0) cubical complex, consider points a ≠ x ∈ cell P ⊂ Rn.

Aim: at x , find a (Euclidean) subgradient for the function

w ∈ Rn ↦ { d(w , a) (w ∈ P)
+∞ (w /∈ P)

Answer. Suppose geodesic [x , a]
has first segment [x , y] in cell Q.

Project y onto its nearest point z
in the face F shared by P and Q.
Then, one such subgradient is

cos(∠yxz)
∣x − z ∣ (x − z) (interpreted as 0 if z = x).

150 / 159

Cutting plane strategy for low-dimensional cells

In CAT(0) cubical complex, consider points a ≠ x ∈ cell P ⊂ Rn.

Aim: at x , find a (Euclidean) subgradient for the function

w ∈ Rn ↦ { d(w , a) (w ∈ P)
+∞ (w /∈ P)

Answer. Suppose geodesic [x , a]
has first segment [x , y] in cell Q.
Project y onto its nearest point z
in the face F shared by P and Q.

Then, one such subgradient is

cos(∠yxz)
∣x − z ∣ (x − z) (interpreted as 0 if z = x).

151 / 159

Cutting plane strategy for low-dimensional cells

In CAT(0) cubical complex, consider points a ≠ x ∈ cell P ⊂ Rn.

Aim: at x , find a (Euclidean) subgradient for the function

w ∈ Rn ↦ { d(w , a) (w ∈ P)
+∞ (w /∈ P)

Answer. Suppose geodesic [x , a]
has first segment [x , y] in cell Q.
Project y onto its nearest point z
in the face F shared by P and Q.
Then, one such subgradient is

cos(∠yxz)
∣x − z ∣ (x − z)

(interpreted as 0 if z = x).

152 / 159

Cutting plane strategy for low-dimensional cells

In CAT(0) cubical complex, consider points a ≠ x ∈ cell P ⊂ Rn.

Aim: at x , find a (Euclidean) subgradient for the function

w ∈ Rn ↦ { d(w , a) (w ∈ P)
+∞ (w /∈ P)

Answer. Suppose geodesic [x , a]
has first segment [x , y] in cell Q.
Project y onto its nearest point z
in the face F shared by P and Q.
Then, one such subgradient is

cos(∠yxz)
∣x − z ∣ (x − z) (interpreted as 0 if z = x).

153 / 159

Example: means via cutting planes

Minimize over cell P

d2(⋅, a) + d2(⋅,b) + d2(⋅, c)
using various cutting plane algorithms,
compared with the cyclic proximal point
method (Bac̆ák ’13).

154 / 159

Example: means via cutting planes
Minimize over cell P

d2(⋅, a) + d2(⋅,b) + d2(⋅, c)
using various cutting plane algorithms,
compared with the cyclic proximal point
method (Bac̆ák ’13).

155 / 159

Example: means via cutting planes
Minimize over cell P

d2(⋅, a) + d2(⋅,b) + d2(⋅, c)
using various cutting plane algorithms,
compared with the cyclic proximal point
method (Bac̆ák ’13).

156 / 159

Summary

▸ Convex optimization in Hadamard spaces
models a range of interesting applications.

▸ Even without linear or smooth structure, or dual spaces,
classical convex optimization extends surprisingly well.

References

▸ Horoballs and the subgradient method
arXiv:2403.15749

▸ Recognizing weighted means in geodesic spaces
arXiv:2406.03913

▸ Convex optimization on CAT(0) cubical complexes
arXiv:2405.01968

▸ Incremental minimization in spaces of nonpositive curvature
arielgoodwin.github.io/talks

157 / 159

Summary

▸ Convex optimization in Hadamard spaces
models a range of interesting applications.

▸ Even without linear or smooth structure, or dual spaces,
classical convex optimization extends surprisingly well.

References

▸ Horoballs and the subgradient method
arXiv:2403.15749

▸ Recognizing weighted means in geodesic spaces
arXiv:2406.03913

▸ Convex optimization on CAT(0) cubical complexes
arXiv:2405.01968

▸ Incremental minimization in spaces of nonpositive curvature
arielgoodwin.github.io/talks

158 / 159

Summary

▸ Convex optimization in Hadamard spaces
models a range of interesting applications.

▸ Even without linear or smooth structure, or dual spaces,
classical convex optimization extends surprisingly well.

References

▸ Horoballs and the subgradient method
arXiv:2403.15749

▸ Recognizing weighted means in geodesic spaces
arXiv:2406.03913

▸ Convex optimization on CAT(0) cubical complexes
arXiv:2405.01968

▸ Incremental minimization in spaces of nonpositive curvature
arielgoodwin.github.io/talks

159 / 159

