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Conic linear program

minimize 𝑐𝑇𝑥
subject to 𝐴𝑥 − 𝑏 ∈ 𝐿

𝑥 ∈ 𝐾

• 𝐾, 𝐿 are closed convex cones

• widely used for convex optimization modeling since 1990s

• often solved via IPMs for second order cone and semidefinite optimization

Primal-dual proximal methods

• avoid cost of assembling and solving “Schur complement” system in IPMs

• per-iteration complexity dominated by application of 𝐴, 𝐴𝑇 , projections on 𝐾, 𝐿∗

• use of non-Euclidean (Bregman) projections can further reduce complexity
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Bregman distance

𝑑 (𝑥, 𝑦) = 𝜙(𝑥) − 𝜙(𝑦) − ∇𝜙(𝑦)𝑇 (𝑥 − 𝑦) (H, q(H))

(G, q(G))
3 (G, H)

• 𝜙 is the kernel function, convex and continuously differentiable on int (dom 𝜙)
• squared Euclidean distance

𝑑 (𝑥, 𝑦) = 1
2∥𝑥 − 𝑦∥2

2, 𝜙(𝑥) = 1
2∥𝑥∥2

2

• relative entropy

𝑑 (𝑥, 𝑦) =
𝑛∑︁
𝑖=1

(𝑥𝑖 log(𝑥𝑖/𝑦𝑖) − 𝑥𝑖 + 𝑦𝑖), 𝜙(𝑥) =
𝑛∑︁
𝑖=1

𝑥𝑖 log 𝑥𝑖, dom 𝜙 = R𝑛
+
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Generalized (Bregman) proximal mapping

• for 𝑑 (𝑥, 𝑦) = 1
2∥𝑥 − 𝑦∥2

2, the proximal mapping is defined as

prox 𝑓 (𝑦 − 𝑎) = argmin
𝑥

( 𝑓 (𝑥) + 1
2∥𝑥 − 𝑦 + 𝑎∥2

2)

• the proximal mapping for a generalized distance maps 𝑎 and 𝑦 ∈ int(dom 𝜙) to

argmin
𝑥

( 𝑓 (𝑥) + 𝑎𝑇𝑥 + 𝑑 (𝑥, 𝑦)) = argmin
𝑥

( 𝑓 (𝑥) + (𝑎 − ∇𝜙(𝑦))𝑇𝑥 + 𝜙(𝑥))

Requirements

• for all 𝑦 ∈ int(dom 𝜙) and all 𝑎, unique minimizer exists in int(dom 𝜙)
• minimizer is inexpensive to compute

• convergence results often assume 𝜙 is strongly convex on dom 𝑓 :

𝑑 (𝑥, 𝑦) ≥ 1
2∥𝑥 − 𝑦∥2 for all 𝑥, 𝑦 ∈ dom 𝑓
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Generalized projection on cone

suppose 𝐾 is a proper (regular) cone and 𝑆 is the “simplex”

𝑆 = {𝑥 ∈ 𝐾 | 𝑠𝑇𝑥 ≤ 1}

where 𝑠 ∈ int(𝐾∗)

• generalized projection on 𝑆 maps 𝑦 ∈ int(dom 𝜙) and 𝑎 to

argmin
𝑥∈𝑆

(𝑎𝑇𝑥 + 𝑑 (𝑥, 𝑦))

this is the generalized proximal mapping of indicator function 𝛿𝑆

• conjugate of indicator function 𝛿𝑆 is Minkowski gauge for 𝐾∗:

𝛿∗𝑆 (ℎ) = sup {ℎ𝑇𝑥 | 𝑠𝑇𝑥 ≤ 1, 𝑥 ∈ 𝐾}
= inf {𝛽 ≥ 0 | 𝛽𝑠 − ℎ ∈ 𝐾∗}

• non-Euclidean kernel may be strongly convex on 𝑆, not necessarily on 𝐾
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Outline

1. Nonnegative trigonometric polynomials
[Hsiao-Han Chao, LV 2018]

2. Sparse positive semidefinite completable matrices

3. Proximal methods for self-dual LP



Nonnegative trigonometric polynomials

𝐹𝑥 (𝜔) = 𝑥0 +
𝑛∑︁
𝑘=1

(𝑥𝑘𝑒−j𝑘𝜔 + 𝑥𝑘𝑒j𝑘𝜔) ≥ 0 for all 𝜔 (j =
√
−1)

• coefficients 𝑥 = (𝑥0, . . . , 𝑥𝑛) form a semidefinite-representable convex cone 𝐾

• for simplicity, we’ll assume 𝑥 is real (𝐹𝑥 is a cosine polynomial)

Applications

• source of many SDP applications in signal processing since 1990s

• 2010s: applications to grid-free compressed sensing

• via transformation 𝑡 = cos𝜔, a nonnegative polynomial in Chebyshev basis

• SDP formulations extend to matrix polynomials, rational (Popov) functions, . . .
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Semidefinite representation of 𝐾 and dual cone 𝐾∗

𝐾 = {𝐷 (𝑋) | 𝑋 ∈ S𝑛+1, 𝑋 ⪰ 0}, 𝐾∗ = {𝑦 ∈ R𝑛+1 | 𝑇 (𝑦) ⪰ 0}

• we use the inner product ⟨𝑥, 𝑦⟩ = 𝑥0𝑦0 + 2𝑥1𝑦1 + · · · + 2𝑥𝑛𝑦𝑛
• 𝐷 : S𝑛+1 → R𝑛+1 maps symmetric matrix 𝑋 to vector of diagonal sums

𝐷 (𝑋) =


𝑋00 + 𝑋11 + · · · + 𝑋𝑛𝑛
𝑋01 + 𝑋12 + · · · + 𝑋𝑛−1,𝑛

...
𝑋0𝑛


• 𝑇 : R𝑛+1 → S𝑛+1 maps vector (𝑦0, . . . , 𝑦𝑛) to the symmetric Toeplitz matrix

𝑇 (𝑦) =

𝑦0 𝑦1 · · · 𝑦𝑛
𝑦1 𝑦0 · · · 𝑦𝑛−1
... ... . . . ...
𝑦𝑛 𝑦𝑛−1 · · · 𝑦0
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Complexity of common algorithms

Interior-point algorithms

• conic inequality contributes dense term to Schur complement system

• general-purpose interior-point SDP solvers: 𝑂 (𝑛4) per iteration

• customized interior-point solvers: 𝑂 (𝑛3) per iteration

Proximal algorithms

• for Euclidean norm: 𝑂 (𝑛3) per iteration (for projection on p.s.d. cone)

• reduction below 𝑂 (𝑛3) requires non-Euclidean distance
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Generalized distances

kernels for Itakura–Saito distance and Kullback–Leibler distance

𝜙(𝑥) = − 1
2𝜋

∫ 2𝜋

0
log 𝐹𝑥 (𝜔)𝑑𝜔 𝜙kl(𝑥) =

1
2𝜋

∫ 2𝜋

0
𝐹𝑥 (𝜔) log 𝐹𝑥 (𝜔)𝑑𝜔

Itakura–Saito Kullback–Leibler

−0.5 0 0.5

−0.5

0

0.5

𝑥1

𝑥 2

−0.5 0 0.5

−0.5

0

0.5

𝑥1

𝑥 2

• plots show contour lines of 𝜙 and 𝜙kl on section {𝑥 ∈ 𝐾 | 𝑥0 = 1}
• 𝜙 is essentially smooth; 𝜙kl is not
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Semidefinite representation of entropy kernel 𝜙

minimize (over 𝑋) − log 𝑋00
subject to 𝐷 (𝑋) = 𝑥

𝑋 ⪰ 0

• for 𝑥 ∈ 𝐾 \ {0}, optimal value is

𝜙(𝑥) = − 1
2𝜋

∫ 2𝜋

0
log 𝐹𝑥 (𝜔)𝑑𝜔

• optimal 𝑋 has rank one:

𝑋 = 𝑏𝑏𝑇 , 𝜙(𝑥) = −2 log 𝑏0

• 𝑏 is minimum-phase spectral factor (𝑏0 + 𝑏1𝑧
−1 + · · · + 𝑏𝑛𝑧−𝑛 ≠ 0 for |𝑧 | > 1)

• 𝑏 is efficiently computed by spectral factorization of 𝑥: solve quadratic equation

𝐷 (𝑏𝑏𝑇) = 𝑥
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Dual of semidefinite representation of 𝜙

maximize (over 𝑦) −𝜓(𝑦) − ⟨𝑥, 𝑦⟩ + 1

• convex function 𝜓 is defined as

𝜓(𝑦) = log(𝑒𝑇𝑇 (𝑦)−1𝑒), dom𝜓 = {𝑦 | 𝑇 (𝑦) ≻ 0} = int(𝐾∗)

where 𝑒 = (1, 0, . . . , 0)

• by duality, optimal value is 𝜙(𝑥)

• optimal 𝑦 is 𝑦 = −∇𝜙(𝑥), and related to primal solution 𝑋 = 𝑏𝑏𝑇 as

𝑇 (𝑦)𝑏 = 𝑒

𝑦 can be computed from spectral factor 𝑏 by reverse Levinson algorithm
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Itakura–Saito distance and projection

𝑑 (𝑥, 𝑦) = 1
2𝜋

∫ 2𝜋

0
(𝐹𝑥 (𝜔)
𝐹𝑦 (𝜔) − log

𝐹𝑥 (𝜔)
𝐹𝑦 (𝜔) − 1)𝑑𝜔

where 𝐹𝑥 (𝜔) = 𝑥0 + 2𝑥1 cos𝜔 + · · · + 2𝑥𝑛 cos 𝑛𝜔

• proposed in 1970s as spectral distance measure in speech processing

• generalized projection on 𝐻 = {𝑥 ∈ 𝐾 | ⟨𝑒, 𝑥⟩ = 1} (where ⟨𝑒, 𝑥⟩ = 𝑥0):

argmin
𝑥0=1

(⟨𝑎, 𝑥⟩ + 𝑑 (𝑥, 𝑦)) = argmin
𝑥0=1

(⟨𝑎 − ∇𝜙(𝑦), 𝑥⟩ + 𝜙(𝑥))

• dual problem (scalar variable 𝜆 is multiplier for constraint 𝑥0 = 1)

maximize − log (𝑒𝑇 (𝑇 (𝑐) + 𝜆𝐼)−1𝑒) − 𝜆 (where 𝑐 = 𝑎 − ∇𝜙(𝑦))

𝑒𝑇 (𝑇 (𝑐) + 𝜆𝐼)−1𝑒 is leading element of inverse Toeplitz matrix 𝑇 (𝑐 + 𝜆𝑒)−1
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Computing Itakura–Saito projection

solve dual problem with scalar variable 𝜆, for example, by Newton’s method

maximize ℎ(𝜆) = − log(𝑒𝑇 (𝑇 (𝑐) + 𝜆𝐼)−1𝑒) − 𝜆

ℎ′(𝜆)

ℎ′(𝜆)

−𝜆min(𝑇 (𝑐))

𝜆

• at each Newton step, factorize positive definite Toeplitz matrix 𝑇 (𝑐 + 𝜆𝑒)
• complexity: 𝑂 (𝑛2) with Levinson algorithm, 𝑂 (𝑛(log 𝑛)2) with superfast solvers

• from optimal 𝜆, compute solution 𝑥 = (1/𝑏0)𝐷 (𝑏𝑏𝑇) where 𝑏 = 𝑇 (𝑐 + 𝜆𝑒)−1𝑒
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Euclidean projection

minimize
𝑛∑
𝑘=0

(𝑥𝑘 − 𝑎𝑘)2

subject to 𝑥 ∈ 𝐾, 𝑥0 = 1
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• IPM is SDPT3/SeDuMi via CVX

• IGA is Auslender–Teboulle proximal gradient algorithm [2006]

• number of IGA iterations is 100–200 to reach relative accuracy 10−4

• about 10 Newton steps per projection; Toeplitz solver is Levinson algorithm
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Extensions

• projection on {𝑥 ∈ 𝐾 | ⟨𝑠, 𝑥⟩ = 1} or {𝑥 ∈ 𝐾 | ⟨𝑠, 𝑥⟩ ≤ 1} where 𝑠 ∈ 𝐾∗

• nonnegative trigonometric matrix polynomials [Cederberg 2023]
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Sparse semidefinite program

minimize tr(𝐶𝑋)
subject to tr(𝐴𝑖𝑋) = 𝑏𝑖, 𝑖 = 1, . . . , 𝑚

𝑋 ⪰ 0

• 𝐶, 𝐴1, . . . , 𝐴𝑚 are sparse with common sparsity pattern 𝐸

• without loss of generality, we assume 𝐸 is chordal (a filled Cholesky pattern)

• optimal 𝑋 is typically dense, even for sparse coefficients 𝐶, 𝐴1, . . . , 𝐴𝑚

Equivalent conic linear program

minimize tr(𝐶𝑋)
subject to tr(𝐴𝑖𝑋) = 𝑏𝑖, 𝑖 = 1, . . . , 𝑚

𝑋 ∈ 𝐾

• variable 𝑋 is a sparse matrix with sparsity pattern 𝐸 (notation: S𝑛𝐸)

• 𝐾 is cone of matrices in S𝑛𝐸 that have a positive semidefinite completion
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Bregman distance generated by logarithmic barrier

Logarithmic barrier (for cone 𝐾 of p.s.d. completable matrices)

𝜙(𝑋) = sup
𝑆∈int𝐾∗

(log det 𝑆 − tr(𝑋𝑆))

• dual cone 𝐾∗ is cone of positive semidefinite matrices in S𝑛𝐸
• optimal 𝑆𝑋 is inverse of maximum determinant pos. definite completion of 𝑋

𝜙(𝑋) = log det 𝑆𝑋 − 𝑛, ∇𝜙(𝑋) = −𝑆𝑋
• for chordal 𝐸 : efficient algorithms for computing 𝑆𝑋 given 𝑋

• complexity is comparable with sparse Cholesky factorization with pattern 𝐸

Bregman distance

𝑑 (𝑋,𝑌 ) = − log det(𝑆𝑌𝑆−1
𝑋 ) + tr(𝑆𝑌𝑆−1

𝑋 ) + 𝑛

the relative entropy (Kullback–Leibler divergence) between completions 𝑆𝑌 and 𝑆𝑋
16



Bregman projection

Bregman projection on 𝐻 = {𝑋 | tr 𝑋 = 1}

argmin
tr 𝑋=1

(tr(𝐴𝑋) + 𝑑 (𝑋,𝑌 )) = argmin
tr 𝑋=1

(tr(𝐵𝑋) + 𝜙(𝑋))

where 𝐵 = 𝐴 − ∇𝜙(𝑌 )

• solution is projection Π𝐸 ((𝐵 + 𝜆𝐼)−1) on S𝑛𝐸 , where 𝜆 satisfies

tr((𝐵 + 𝜆𝐼)−1) = 1, 𝐵 + 𝜆𝐼 ≻ 0

• easily extended to projection on {𝑋 | tr(𝑁𝑋) ≤ 1} with 𝑁 ∈ 𝐾∗

• similar problem for Bregman proximal operator of centering objective

𝑓 (𝑋) = tr(𝐶𝑋) + 𝜇𝜙(𝑋) + 𝛿𝐻 (𝑋)
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Evaluating the Bregman projection

minimize tr(𝐵𝑋) + 𝜙(𝑋)
subject to tr 𝑋 = 1

• use Newton’s method to find unique solution 𝜆 of the nonlinear equation

tr((𝐵 + 𝜆𝐼)−1) = 1 (with 𝐵 + 𝜆𝐼 ≻ 0)

• from 𝜆, compute solution �̂� = Π𝐸 ((𝐵 + 𝜆𝐼)−1) on S𝑛𝐸
• for chordal sparsity patterns 𝐸 , efficient algorithms exist for computing

𝑔(𝜆) = tr((𝐵 + 𝜆𝐼)−1), 𝑔′(𝜆) = − tr((𝐵 + 𝜆𝐼)−2), �̂� = Π𝐸 ((𝐵 + 𝜆𝐼)−1)

from sparse Cholesky factorization of 𝐵 + 𝜆𝐼

complexity ≈ # Newton iterations × cost of sparse Cholesky factorization
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Maximum-cut problem

maximize tr(𝐿𝑋)
subject to diag(𝑋) = 1, 𝑋 ⪰ 0

• compute approximate solution on central path (parameter 𝜇 = 0.001/𝑛)

• Bregman variant of PDHG

• four problems from SDPLIB, four graphs from SuiteSparse matrix collection

𝑛
time per Cholesky

factorization
Newton steps
per iteration

time per PDHG
iteration

PDHG
iterations

maxG51 1000 0.05 2.45 0.12 267
maxG32 2000 0.12 1.56 0.18 240
maxG55 5000 0.29 2.10 0.58 249
maxG60 7000 0.60 2.55 1.22 279
barth4 6019 0.42 3.57 1.55 346
tuma2 12992 0.48 4.36 1.89 375
biplane-9 21701 0.95 2.58 2.12 287
c-67 57975 0.76 3.58 3.56 378
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Primal-dual proximal methods

primal: minimize 𝑐𝑇𝑥 + 𝑓 (𝑥) + 𝑔(𝑏 − 𝐴𝑥)
dual: maximize 𝑏𝑇 𝑧 − 𝑔∗(𝑧) − 𝑓 ∗(𝐴𝑇 𝑧 − 𝑐)

• 𝑓 , 𝑔 are closed convex functions

• conic LP is special case with 𝑓 = 𝛿𝐾 , 𝑔 = 𝛿−𝐿 (indicators of cones 𝐾,−𝐿)

minimize 𝑐𝑇𝑥
subject to 𝐴𝑥 − 𝑏 ∈ 𝐿

𝑥 ∈ 𝐾

we discuss methods that evaluate prox-operators of 𝑓 , 𝑔∗ and products with 𝐴, 𝐴𝑇
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PDHG and extragradient method

Primal-dual hybrid gradient (PDHG) method

𝑥𝑘+1 = prox𝜏 𝑓 (𝑥𝑘 + 𝜏(𝐴𝑇 𝑧𝑘 − 𝑐))
𝑧𝑘+1 = prox𝜎𝑔∗(𝑧𝑘 + 𝜎(𝑏 − 𝐴(2𝑥𝑘+1 − 𝑥𝑘))

[Esser, Zhang, Chan 2010, Pock, Cremers, Bischof, Chambolle 2009, Chambolle & Pock 2011, . . . ]

• dual variant applies this iteration to the dual problem

• recently used for large-scale linear programming [Applegate et al. 2021, 2023]

Proximal generalization of extragradient method

𝑥𝑘 = prox𝜏 𝑓 (𝑥𝑘 + 𝜏(𝐴𝑇 𝑧𝑘 − 𝑐))
𝑧𝑘 = prox𝜎𝑔∗(𝑧𝑘 + 𝜎(𝑏 − 𝐴𝑥𝑘))

𝑥𝑘+1 = prox𝜏 𝑓 (𝑥𝑘 + 𝜏(𝐴𝑇 𝑧𝑘 − 𝑐))
𝑧𝑘+1 = prox𝜎𝑔∗(𝑧𝑘 + 𝜎(𝑏 − 𝐴𝑥𝑘))
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Extensions with generalized distances

use primal and dual distances 𝑑p, 𝑑d generated by kernels 𝜙p, 𝜙d

PDHG [Chambolle and Pock 2016]

𝑥𝑘+1 = argmin
𝑥

(𝑐𝑇𝑥 + 𝑓 (𝑥) − 𝑧𝑇𝑘 𝐴𝑥 +
1
𝜏
𝑑p(𝑥, 𝑥𝑘))

𝑧𝑘+1 = argmin
𝑧

(−𝑏𝑇 𝑧 + 𝑔∗(𝑧) + 𝑧𝑇𝐴(2𝑥𝑘+1 − 𝑥𝑘) +
1
𝜎
𝑑d(𝑧, 𝑧𝑘))

Extragradient method [Nemirovski 2004, Auslender & Teboulle 2005, Tseng 2008]

𝑥𝑘 = argmin
𝑥

(𝑐𝑇𝑥 + 𝑓 (𝑥) − 𝑧𝑇𝑘 𝐴𝑥 + 𝑑p(𝑥, 𝑥𝑘)/𝜏)

𝑧𝑘 = argmin
𝑧

(−𝑏𝑇 𝑧 + 𝑔∗(𝑧) + 𝑧𝑇𝐴𝑥𝑘 + 𝑑d(𝑧, 𝑧𝑘)/𝜎)

𝑥𝑘+1 = argmin
𝑥

(𝑐𝑇𝑥 + 𝑓 (𝑥) − 𝑧𝑇𝑘 𝐴𝑥 + 𝑑p(𝑥, 𝑥𝑘)/𝜏)

𝑧𝑘+1 = argmin
𝑧

(−𝑏𝑇 𝑧 + 𝑔∗(𝑧) + 𝑧𝑇𝐴𝑥𝑘 + 𝑑d(𝑧, 𝑧𝑘)/𝜎)
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Condat–Vũ algorithm

minimize ℎ(𝑥) + 𝑓 (𝑥) + 𝑔(𝑏 − 𝐴𝑥)

additional term ℎ is differentiable convex function

Algorithm

𝑥𝑘+1 = argmin
𝑥

(∇ℎ(𝑥𝑘)𝑇𝑥 + 𝑓 (𝑥) − 𝑧𝑇𝑘 𝐴𝑥 +
1
𝜏
𝑑p(𝑥, 𝑥𝑘))

𝑧𝑘+1 = argmin
𝑧

(−𝑏𝑇 𝑧 + 𝑔∗(𝑧) + 𝑧𝑇𝐴(2𝑥𝑘+1 − 𝑥𝑘) +
1
𝜎
𝑑d(𝑧, 𝑧𝑘))

• Bregman generalization of Condat–Vũ algorithm [Condat 2013, Vũ 2013]

• three-term extension of PDHG (the special case with ℎ(𝑥) = 𝑐𝑇𝑥)

[Xin Jiang, LV 2022]
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Derivation of Bregman Condat–Vũ from proximal point method

apply Bregman proximal point method to optimality conditions

0 ∈ −𝐴𝑇 𝑧 + 𝜕 𝑓 (𝑥) + ∇ℎ(𝑥), 0 ∈ 𝐴𝑥 − 𝑏 + 𝜕𝑔∗(𝑧)

with distance generated by

𝜙pd(𝑥, 𝑧) =
1
𝜏
𝜙p(𝑥) + 1

𝜎
𝜙d(𝑧) + 𝑧𝑇𝐴𝑥 − ℎ(𝑥)

Stepsize conditions: 𝜙pd is convex if the following assumptions hold

• 𝜙p, 𝜙d are 1-strongly convex with respect to norms ∥ · ∥p, ∥ · ∥d

• the function 𝐿𝜙p − ℎ is convex

• 𝜎𝜏∥𝐴∥2 + 𝜏𝐿 ≤ 1 where ∥𝐴∥ is the matrix norm induced by ∥ · ∥p, ∥ · ∥d

this extends the PPA interpretation of PDHG [He & Yuan 2012]
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Application to conic LP

minimize 𝑐𝑇𝑥
subject to 𝐴𝑥 − 𝑏 ∈ 𝐿

𝑥 ∈ 𝐾

maximize 𝑏𝑇 𝑧
subject to −𝐴𝑇 𝑧 + 𝑐 ∈ 𝐾∗

𝑧 ∈ 𝐿∗

• minimize 𝑐𝑇𝑥 + 𝑓 (𝑥) + 𝑔(𝑏 − 𝐴𝑥) with 𝑓 = 𝛿𝐾 , 𝑔 = 𝛿−𝐿

• primal-dual methods require (generalized) projections on 𝐾, 𝐿∗

• iterates satisfy 𝑥𝑘 ∈ 𝐾, 𝑧𝑘 ∈ 𝐿∗, not 𝐴𝑥𝑘 − 𝑏 ∈ 𝐿 and −𝐴𝑇 𝑧𝑘 + 𝑐 ∈ 𝐾∗

use of Bregman distances requires additional bounds on 𝑥, 𝑧

• often needed for well-defined generalized projections

• convergence results assume strong convexity of Bregman kernels

• stopping conditions, convergence results simplify if iterates are feasible
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Self-dual problem

primal: minimize 𝑐𝑇𝑥 + 𝑓 (𝑥) + 𝑔(𝑏 − 𝐴𝑥)
dual: maximize 𝑏𝑇 𝑧 − 𝑔∗(𝑧) − 𝑓 ∗(𝐴𝑇 𝑧 − 𝑐)

• if 𝑏 = −𝑐, 𝑔 = 𝑓 ∗, 𝐴 = −𝐴𝑇 problem is self-dual and can be written as

minimize −𝑏𝑇𝑥 + 𝑓 (𝑥) + 𝑓 ∗(𝑏 − 𝐴𝑥)

• special case with 𝑓 = 𝛿𝐾 is self-dual conic LP

minimize −𝑏𝑇𝑥
subject to 𝐴𝑥 − 𝑏 ∈ 𝐾∗

𝑥 ∈ 𝐾

[Duffin 1956]

• if strictly consistent, optimal value is zero, optimal set is nonempty and bounded

[Rockafellar 1970, Rockafellar and Wets 1998]
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Exact penalty formulation of self-dual LP

minimize −𝑏𝑇𝑥
subject to 𝐴𝑥 − 𝑏 ∈ 𝐾∗ (with 𝐴 = −𝐴𝑇 )

𝑥 ∈ 𝐾

• we assume (for simplicity) that 𝐾 is a proper cone

• assume that a point 𝑥 ∈ int(𝐾) is known that satisfies 𝑠 = 𝐴𝑥 − 𝑏 ∈ int(𝐾∗)
• for example, constructed via Ye–Todd–Mizuno embedding of general LP

Self-dual exact penalty formulation

minimize −𝑏𝑇𝑥 + 𝑓 (𝑥) + 𝑓 ∗(𝑏 − 𝐴𝑥)

• 𝑓 is indicator function of {𝑥 ∈ 𝐾 | 𝑠𝑇𝑥 ≤ 𝜇} where 𝜇 > 𝑠𝑇𝑥

• 𝑓 ∗(𝑦) = inf {𝛽 ≥ 0 | 𝛽𝑠 − 𝜇𝑦 ∈ 𝐾∗} is Minkowski gauge for 𝐾∗

• 𝑓 ∗(𝑏 − 𝐴𝑥) is an exact penalty for constraint 𝐴𝑥 − 𝑏 ∈ 𝐾∗
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Primal-dual methods for self-dual problem

minimize −𝑏𝑇𝑥 + 𝑓 (𝑥) + 𝑓 ∗(𝑏 − 𝐴𝑥) (with 𝐴 = −𝐴𝑇 )

• if 𝑥0 = 𝑧0, 𝑑p = 𝑑d, 𝜎𝑘 = 𝜏𝑘 the four steps in extragradient algorithm reduce to

𝑥𝑘 = argmin
𝑥

( 𝑓 (𝑥) + (𝐴𝑥𝑘 − 𝑏)𝑇𝑥 +
1
𝜏𝑘
𝑑 (𝑥, 𝑥𝑘))

𝑥𝑘+1 = argmin
𝑥

( 𝑓 (𝑥) + (𝐴𝑥𝑘 − 𝑏)𝑇𝑥 +
1
𝜏𝑘
𝑑 (𝑥, 𝑥𝑘))

• for the exact penalty formulation of the self-dual LP

𝑥𝑘 = argmin
𝑥∈𝐾, 𝑠𝑇𝑥≤𝜇

((𝐴𝑥𝑘 − 𝑏)𝑇𝑥 +
1
𝜏𝑘
𝑑 (𝑥, 𝑥𝑘))

𝑥𝑘+1 = argmin
𝑥∈𝐾, 𝑠𝑇𝑥≤𝜇

((𝐴𝑥𝑘 − 𝑏)𝑇𝑥 +
1
𝜏𝑘
𝑑 (𝑥, 𝑥𝑘))

• PDHG iterations are similar
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Convergence result

• assume kernel is 1-strongly convex on dom 𝑓 with respect to norm ∥ · ∥
• 𝜏𝑘 = 1/∥𝐴∥ where 𝐴 is matrix norm induced by ∥ · ∥, or determined adaptively

• define L(𝑦, 𝑥) = 𝑏𝑇 (𝑥 − 𝑦) + 𝑓 (𝑦) − 𝑓 (𝑥) − 𝑦𝑇𝐴𝑥
• define averaged iterate

𝑦𝑘 =
1∑𝑘
𝑖=0 𝜏𝑖

𝑘∑︁
𝑖=0

𝜏𝑘𝑥𝑖

• adapting results for extragradient method to self-dual problem [Tseng 2008]:

L(𝑦𝑘 , 𝑥) ≤
𝑑 (𝑥, 𝑥0)∑𝑘
𝑖=0 𝜏𝑖

for all 𝑥 ∈ dom 𝑓

• maximizing over 𝑥 ∈ dom 𝑓 gives

−𝑏𝑇 𝑦𝑘 + 𝑓 (𝑦𝑘) + 𝑓 ∗(𝑏 − 𝐴𝑦𝑘) ≤
1∑𝑘
𝑖=0 𝜏𝑖

sup
𝑥∈dom 𝑓

𝑑 (𝑥, 𝑥0)
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Summary

Bregman projections for two classes of SDP-representable cones

• Itakura–Saito distance for nonnegative trigonometric polynomials

cost of generalized projection is roughly 𝑂 (𝑛2)
• distance generated by logarithmic barrier of p.s.d. completable sparse matrices

cost roughly on the same order as sparse Cholesky factorization

Primal-dual proximal methods for conic LP

• adding bounds to conic constraints is important for several reasons

• self-dual embedding provides useful bounding inequality constraint

• can be interpreted as solving self-dual exact penalty reformulation
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