Primal-dual first-order methods for conic optimization

Lieven Vandenberghe

Department of Electrical and Computer Engineering, UCLA

Midwest Optimization Meeting University of Waterloo, November 9, 2024

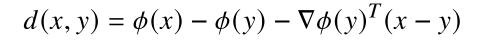
minimize
$$c^T x$$

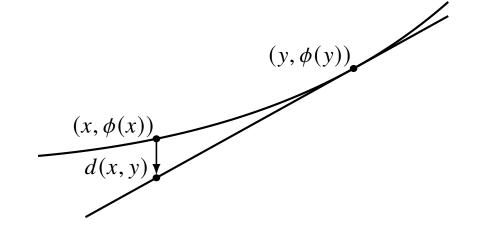
subject to $Ax - b \in L$
 $x \in K$

- *K*, *L* are closed convex cones
- widely used for convex optimization modeling since 1990s
- often solved via IPMs for second order cone and semidefinite optimization

Primal-dual proximal methods

- avoid cost of assembling and solving "Schur complement" system in IPMs
- per-iteration complexity dominated by application of A, A^T , projections on K, L^*
- use of non-Euclidean (Bregman) projections can further reduce complexity





- ϕ is the *kernel function*, convex and continuously differentiable on int (dom ϕ)
- squared Euclidean distance

$$d(x, y) = \frac{1}{2} ||x - y||_2^2, \qquad \phi(x) = \frac{1}{2} ||x||_2^2$$

• relative entropy

$$d(x, y) = \sum_{i=1}^{n} (x_i \log(x_i/y_i) - x_i + y_i), \qquad \phi(x) = \sum_{i=1}^{n} x_i \log x_i, \qquad \text{dom } \phi = \mathbf{R}_+^n$$

Generalized (Bregman) proximal mapping

• for $d(x, y) = \frac{1}{2} ||x - y||_2^2$, the proximal mapping is defined as

$$\operatorname{prox}_{f}(y-a) = \operatorname*{argmin}_{x} \left(f(x) + \frac{1}{2} \|x - y + a\|_{2}^{2} \right)$$

• the proximal mapping for a generalized distance maps a and $y \in int(dom \phi)$ to

$$\underset{x}{\operatorname{argmin}} \left(f(x) + a^{T}x + d(x, y) \right) = \underset{x}{\operatorname{argmin}} \left(f(x) + (a - \nabla \phi(y))^{T}x + \phi(x) \right)$$

Requirements

- for all $y \in int(\operatorname{dom} \phi)$ and all a, unique minimizer exists in $int(\operatorname{dom} \phi)$
- minimizer is inexpensive to compute
- convergence results often assume ϕ is strongly convex on dom f:

$$d(x, y) \ge \frac{1}{2} ||x - y||^2 \quad \text{for all } x, y \in \text{dom } f$$

Generalized projection on cone

suppose *K* is a proper (regular) cone and *S* is the "simplex"

$$S = \{x \in K \mid \hat{s}^T x \le 1\}$$

where $\hat{s} \in int(K^*)$

• generalized projection on *S* maps $y \in int(dom \phi)$ and *a* to

$$\underset{x \in S}{\operatorname{argmin}} \left(a^T x + d(x, y) \right)$$

this is the generalized proximal mapping of indicator function δ_S

• conjugate of indicator function δ_S is Minkowski gauge for K^* :

$$\delta_{S}^{*}(h) = \sup \{h^{T}x \mid \hat{s}^{T}x \leq 1, x \in K\}$$
$$= \inf \{\beta \geq 0 \mid \beta \hat{s} - h \in K^{*}\}$$

• non-Euclidean kernel may be strongly convex on S, not necessarily on K

Outline

- 1. Nonnegative trigonometric polynomials [Hsiao-Han Chao, LV 2018]
- 2. Sparse positive semidefinite completable matrices
- 3. Proximal methods for self-dual LP

$$F_x(\omega) = x_0 + \sum_{k=1}^n (x_k e^{-jk\omega} + \bar{x}_k e^{jk\omega}) \ge 0 \quad \text{for all } \omega \qquad (j = \sqrt{-1})$$

- coefficients $x = (x_0, ..., x_n)$ form a semidefinite-representable convex cone *K*
- for simplicity, we'll assume x is real (F_x is a cosine polynomial)

Applications

- source of many SDP applications in signal processing since 1990s
- 2010s: applications to grid-free compressed sensing
- via transformation $t = \cos \omega$, a nonnegative polynomial in Chebyshev basis
- SDP formulations extend to matrix polynomials, rational (Popov) functions, ...

$$K = \{ D(X) \mid X \in \mathbf{S}^{n+1}, X \ge 0 \}, \qquad K^* = \{ y \in \mathbf{R}^{n+1} \mid T(y) \ge 0 \}$$

- we use the inner product $\langle x, y \rangle = x_0 y_0 + 2x_1 y_1 + \dots + 2x_n y_n$
- $D: \mathbf{S}^{n+1} \to \mathbf{R}^{n+1}$ maps symmetric matrix X to vector of diagonal sums

$$D(X) = \begin{bmatrix} X_{00} + X_{11} + \dots + X_{nn} \\ X_{01} + X_{12} + \dots + X_{n-1,n} \\ \vdots \\ X_{0n} \end{bmatrix}$$

• $T : \mathbb{R}^{n+1} \to \mathbb{S}^{n+1}$ maps vector (y_0, \dots, y_n) to the symmetric Toeplitz matrix

$$T(y) = \begin{bmatrix} y_0 & y_1 & \cdots & y_n \\ y_1 & y_0 & \cdots & y_{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ y_n & y_{n-1} & \cdots & y_0 \end{bmatrix}$$

Interior-point algorithms

- conic inequality contributes dense term to Schur complement system
- general-purpose interior-point SDP solvers: $O(n^4)$ per iteration
- customized interior-point solvers: $O(n^3)$ per iteration

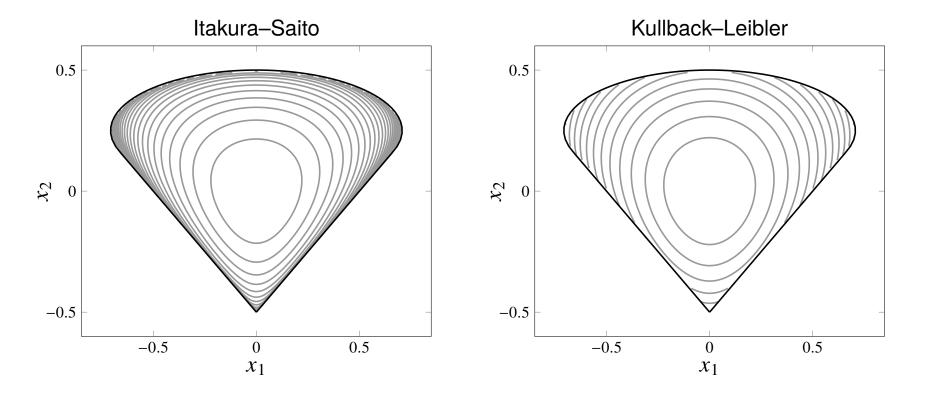
Proximal algorithms

- for Euclidean norm: $O(n^3)$ per iteration (for projection on p.s.d. cone)
- reduction below $O(n^3)$ requires non-Euclidean distance

Generalized distances

kernels for Itakura–Saito distance and Kullback–Leibler distance

$$\phi(x) = -\frac{1}{2\pi} \int_0^{2\pi} \log F_x(\omega) d\omega \qquad \qquad \phi_{kl}(x) = \frac{1}{2\pi} \int_0^{2\pi} F_x(\omega) \log F_x(\omega) d\omega$$



- plots show contour lines of ϕ and ϕ_{kl} on section $\{x \in K \mid x_0 = 1\}$
- ϕ is essentially smooth; ϕ_{kl} is not

Semidefinite representation of entropy kernel ϕ

minimize (over X) $-\log X_{00}$ subject to D(X) = x $X \ge 0$

• for $x \in K \setminus \{0\}$, optimal value is

$$\phi(x) = -\frac{1}{2\pi} \int_0^{2\pi} \log F_x(\omega) d\omega$$

• optimal *X* has rank one:

$$X = bb^T, \qquad \phi(x) = -2\log b_0$$

- *b* is minimum-phase spectral factor $(b_0 + b_1 z^{-1} + \dots + b_n z^{-n} \neq 0$ for |z| > 1)
- *b* is efficiently computed by spectral factorization of *x*: solve quadratic equation

$$D(bb^T) = x$$

maximize (over y) $-\psi(y) - \langle x, y \rangle + 1$

• convex function ψ is defined as

 $\psi(y) = \log(e^T T(y)^{-1} e), \quad \text{dom}\,\psi = \{y \mid T(y) > 0\} = \text{int}(K^*)$

where e = (1, 0, ..., 0)

- by duality, optimal value is $\phi(x)$
- optimal y is $y = -\nabla \phi(x)$, and related to primal solution $X = bb^T$ as

$$T(y)b = e$$

y can be computed from spectral factor b by reverse Levinson algorithm

$$d(x, y) = \frac{1}{2\pi} \int_0^{2\pi} \left(\frac{F_x(\omega)}{F_y(\omega)} - \log\frac{F_x(\omega)}{F_y(\omega)} - 1\right) d\omega$$

where $F_x(\omega) = x_0 + 2x_1 \cos \omega + \dots + 2x_n \cos n\omega$

- proposed in 1970s as spectral distance measure in speech processing
- generalized projection on $H = \{x \in K \mid \langle e, x \rangle = 1\}$ (where $\langle e, x \rangle = x_0$):

$$\underset{x_0=1}{\operatorname{argmin}} \left(\langle a, x \rangle + d(x, y) \right) = \underset{x_0=1}{\operatorname{argmin}} \left(\langle a - \nabla \phi(y), x \rangle + \phi(x) \right)$$

• dual problem (scalar variable λ is multiplier for constraint $x_0 = 1$)

maximize $-\log (e^T (T(c) + \lambda I)^{-1} e) - \lambda$ (where $c = a - \nabla \phi(y)$)

 $e^{T}(T(c) + \lambda I)^{-1}e$ is leading element of inverse Toeplitz matrix $T(c + \lambda e)^{-1}$

Computing Itakura–Saito projection

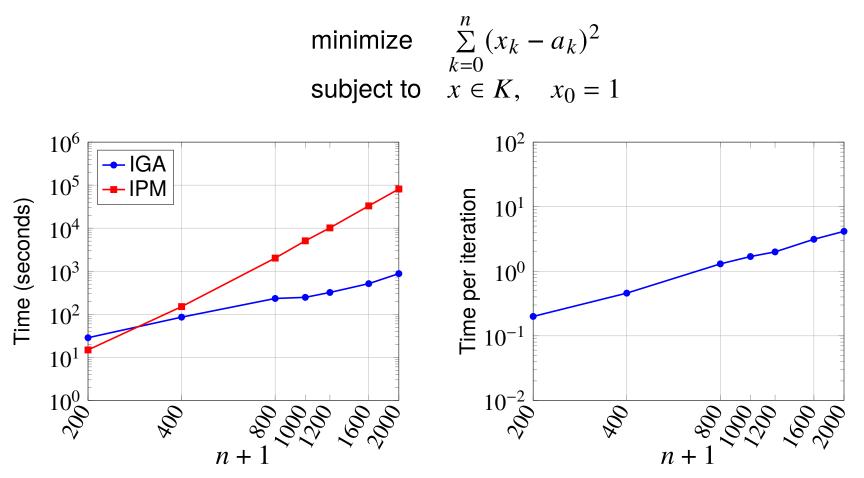
solve dual problem with scalar variable λ , for example, by Newton's method

maximize
$$h(\lambda) = -\log(e^T (T(c) + \lambda I)^{-1} e) - \lambda$$

 $h'(\lambda)$
 $-\lambda_{\min}(T(c))$

- at each Newton step, factorize positive definite Toeplitz matrix $T(c + \lambda e)$
- complexity: $O(n^2)$ with Levinson algorithm, $O(n(\log n)^2)$ with superfast solvers
- from optimal λ , compute solution $x = (1/b_0)D(bb^T)$ where $b = T(c + \lambda e)^{-1}e$

Euclidean projection



- IPM is SDPT3/SeDuMi via CVX
- IGA is Auslender-Teboulle proximal gradient algorithm [2006]
- number of IGA iterations is 100–200 to reach relative accuracy 10^{-4}
- about 10 Newton steps per projection; Toeplitz solver is Levinson algorithm

Extensions

- projection on $\{x \in K \mid \langle \hat{s}, x \rangle = 1\}$ or $\{x \in K \mid \langle \hat{s}, x \rangle \le 1\}$ where $\hat{s} \in K^*$
- nonnegative trigonometric matrix polynomials [Cederberg 2023]

Outline

- 1. Nonnegative trigonometric polynomials
- 2. Sparse positive semidefinite completable matrices [Xin Jiang, LV 2022]
- 3. Proximal methods for self-dual LP

$$\begin{array}{ll} \text{minimize} & \operatorname{tr}(CX) \\ \text{subject to} & \operatorname{tr}(A_iX) = b_i, \quad i = 1, \dots, m \\ & X \geq 0 \end{array}$$

- C, A_1, \ldots, A_m are sparse with common sparsity pattern E
- without loss of generality, we assume *E* is chordal (a filled Cholesky pattern)
- optimal X is typically dense, even for sparse coefficients C, A_1, \ldots, A_m

Equivalent conic linear program

 $\begin{array}{ll} \text{minimize} & \operatorname{tr}(CX) \\ \text{subject to} & \operatorname{tr}(A_iX) = b_i, \quad i = 1, \dots, m \\ & X \in K \end{array}$

- variable X is a *sparse* matrix with sparsity pattern E (notation: \mathbf{S}_{E}^{n})
- *K* is cone of matrices in \mathbf{S}_{E}^{n} that have a positive semidefinite completion

Bregman distance generated by logarithmic barrier

Logarithmic barrier (for cone *K* of p.s.d. completable matrices)

$$\phi(X) = \sup_{S \in \operatorname{int} K^*} (\log \det S - \operatorname{tr}(XS))$$

- dual cone K^* is cone of positive semidefinite matrices in \mathbf{S}_E^n
- optimal \hat{S}_X is inverse of maximum determinant pos. definite completion of X

$$\phi(X) = \log \det \hat{S}_X - n, \qquad \nabla \phi(X) = -\hat{S}_X$$

- for chordal *E*: efficient algorithms for computing \hat{S}_X given *X*
- complexity is comparable with sparse Cholesky factorization with pattern E

Bregman distance

$$d(X,Y) = -\log \det(\hat{S}_Y \hat{S}_X^{-1}) + tr(\hat{S}_Y \hat{S}_X^{-1}) + n$$

the relative entropy (Kullback–Leibler divergence) between completions \hat{S}_Y and \hat{S}_X

Bregman projection on $H = \{X \mid \text{tr } X = 1\}$

$$\underset{\operatorname{tr} X=1}{\operatorname{argmin}} \left(\operatorname{tr}(AX) + d(X, Y) \right) = \underset{\operatorname{tr} X=1}{\operatorname{argmin}} \left(\operatorname{tr}(BX) + \phi(X) \right)$$

where $B = A - \nabla \phi(Y)$

• solution is projection $\Pi_E((B + \lambda I)^{-1})$ on \mathbf{S}_E^n , where λ satisfies

$$\operatorname{tr}((B + \lambda I)^{-1}) = 1, \qquad B + \lambda I > 0$$

- easily extended to projection on $\{X \mid tr(NX) \le 1\}$ with $N \in K^*$
- similar problem for Bregman proximal operator of centering objective

$$f(X) = tr(CX) + \mu\phi(X) + \delta_H(X)$$

minimize $\operatorname{tr}(BX) + \phi(X)$ subject to $\operatorname{tr} X = 1$

• use Newton's method to find unique solution λ of the nonlinear equation

$$tr((B + \lambda I)^{-1}) = 1 \qquad (with B + \lambda I > 0)$$

- from λ , compute solution $\hat{X} = \prod_E ((B + \lambda I)^{-1})$ on \mathbf{S}_E^n
- for chordal sparsity patterns E, efficient algorithms exist for computing

$$g(\lambda) = tr((B + \lambda I)^{-1}), \qquad g'(\lambda) = -tr((B + \lambda I)^{-2}), \qquad \hat{X} = \Pi_E((B + \lambda I)^{-1})$$

from sparse Cholesky factorization of $B + \lambda I$

complexity \approx # Newton iterations \times cost of sparse Cholesky factorization

maximize tr(LX)subject to $diag(X) = 1, X \ge 0$

- compute approximate solution on central path (parameter $\mu = 0.001/n$)
- Bregman variant of PDHG
- four problems from SDPLIB, four graphs from SuiteSparse matrix collection

	п	time per Cholesky factorization	Newton steps per iteration	time per PDHG iteration	PDHG iterations
maxG51	1000	0.05	2.45	0.12	267
maxG32	2000	0.12	1.56	0.18	240
maxG55	5000	0.29	2.10	0.58	249
maxG60	7000	0.60	2.55	1.22	279
barth4	6019	0.42	3.57	1.55	346
tuma2	12992	0.48	4.36	1.89	375
biplane-9	21701	0.95	2.58	2.12	287
c-67	57975	0.76	3.58	3.56	378

Outline

- 1. Nonnegative trigonometric polynomials
- 2. Sparse positive semidefinite completable matrices
- 3. Proximal methods for self-dual LP

primal: minimize
$$c^T x + f(x) + g(b - Ax)$$

dual: maximize $b^T z - g^*(z) - f^*(A^T z - c)$

- *f*, *g* are closed convex functions
- conic LP is special case with $f = \delta_K$, $g = \delta_{-L}$ (indicators of cones K, -L)

minimize
$$c^T x$$

subject to $Ax - b \in L$
 $x \in K$

we discuss methods that evaluate prox-operators of f, g^* and products with A, A^T

Primal-dual hybrid gradient (PDHG) method

$$x_{k+1} = \operatorname{prox}_{\tau f}(x_k + \tau (A^T z_k - c))$$

$$z_{k+1} = \operatorname{prox}_{\sigma g^*}(z_k + \sigma (b - A(2x_{k+1} - x_k)))$$

[Esser, Zhang, Chan 2010, Pock, Cremers, Bischof, Chambolle 2009, Chambolle & Pock 2011, ...]

- dual variant applies this iteration to the dual problem
- recently used for large-scale linear programming [Applegate et al. 2021, 2023]

Proximal generalization of extragradient method

$$\bar{x}_{k} = \operatorname{prox}_{\tau f}(x_{k} + \tau(A^{T}z_{k} - c))$$

$$\bar{z}_{k} = \operatorname{prox}_{\sigma g^{*}}(z_{k} + \sigma(b - Ax_{k}))$$

$$x_{k+1} = \operatorname{prox}_{\tau f}(x_{k} + \tau(A^{T}\bar{z}_{k} - c))$$

$$z_{k+1} = \operatorname{prox}_{\sigma g^{*}}(z_{k} + \sigma(b - A\bar{x}_{k}))$$

Extensions with generalized distances

use primal and dual distances $d_{\rm p}, d_{\rm d}$ generated by kernels $\phi_{\rm p}, \phi_{\rm d}$

PDHG [Chambolle and Pock 2016]

$$x_{k+1} = \operatorname*{argmin}_{x} \left(c^{T}x + f(x) - z_{k}^{T}Ax + \frac{1}{\tau}d_{p}(x, x_{k}) \right)$$

$$z_{k+1} = \operatorname*{argmin}_{z} \left(-b^{T}z + g^{*}(z) + z^{T}A(2x_{k+1} - x_{k}) + \frac{1}{\sigma}d_{d}(z, z_{k}) \right)$$

Extragradient method [Nemirovski 2004, Auslender & Teboulle 2005, Tseng 2008]

$$\bar{x}_{k} = \operatorname{argmin}_{x} (c^{T}x + f(x) - z_{k}^{T}Ax + d_{p}(x, x_{k})/\tau)$$

$$\bar{z}_{k} = \operatorname{argmin}_{z} (-b^{T}z + g^{*}(z) + z^{T}Ax_{k} + d_{d}(z, z_{k})/\sigma)$$

$$x_{k+1} = \operatorname{argmin}_{x} (c^{T}x + f(x) - \bar{z}_{k}^{T}Ax + d_{p}(x, x_{k})/\tau)$$

$$z_{k+1} = \operatorname{argmin}_{z} (-b^{T}z + g^{*}(z) + z^{T}A\bar{x}_{k} + d_{d}(z, z_{k})/\sigma)$$

minimize h(x) + f(x) + g(b - Ax)

additional term h is differentiable convex function

Algorithm

$$x_{k+1} = \operatorname*{argmin}_{x} \left(\nabla h(x_k)^T x + f(x) - z_k^T A x + \frac{1}{\tau} d_p(x, x_k) \right)$$

$$z_{k+1} = \operatorname*{argmin}_{z} \left(-b^T z + g^*(z) + z^T A (2x_{k+1} - x_k) + \frac{1}{\sigma} d_d(z, z_k) \right)$$

- Bregman generalization of Condat–Vũ algorithm [Condat 2013, Vũ 2013]
- three-term extension of PDHG (the special case with $h(x) = c^T x$)

[Xin Jiang, LV 2022]

apply Bregman proximal point method to optimality conditions

$$0 \in -A^T z + \partial f(x) + \nabla h(x), \qquad 0 \in Ax - b + \partial g^*(z)$$

with distance generated by

$$\phi_{\rm pd}(x,z) = \frac{1}{\tau}\phi_{\rm p}(x) + \frac{1}{\sigma}\phi_{\rm d}(z) + z^T A x - h(x)$$

Stepsize conditions: ϕ_{pd} is convex if the following assumptions hold

- ϕ_p , ϕ_d are 1-strongly convex with respect to norms $\|\cdot\|_p$, $\|\cdot\|_d$
- the function $L\phi_p h$ is convex
- $\sigma \tau \|A\|^2 + \tau L \le 1$ where $\|A\|$ is the matrix norm induced by $\|\cdot\|_p$, $\|\cdot\|_d$

this extends the PPA interpretation of PDHG [He & Yuan 2012]

Application to conic LP

• minimize $c^T x + f(x) + g(b - Ax)$ with $f = \delta_K$, $g = \delta_{-L}$

- primal-dual methods require (generalized) projections on K, L^*
- iterates satisfy $x_k \in K$, $z_k \in L^*$, not $Ax_k b \in L$ and $-A^T z_k + c \in K^*$

use of Bregman distances requires additional bounds on x, z

- often needed for well-defined generalized projections
- convergence results assume strong convexity of Bregman kernels
- stopping conditions, convergence results simplify if iterates are feasible

Self-dual problem

primal: minimize $c^T x + f(x) + g(b - Ax)$ dual: maximize $b^T z - g^*(z) - f^*(A^T z - c)$

• if b = -c, $g = f^*$, $A = -A^T$ problem is self-dual and can be written as

minimize
$$-b^T x + f(x) + f^*(b - Ax)$$

• special case with $f = \delta_K$ is self-dual conic LP

minimize
$$-b^T x$$

subject to $Ax - b \in K^*$
 $x \in K$

[Duffin 1956]

 if strictly consistent, optimal value is zero, optimal set is nonempty and bounded [Rockafellar 1970, Rockafellar and Wets 1998]

Exact penalty formulation of self-dual LP

minimize
$$-b^T x$$

subject to $Ax - b \in K^*$ (with $A = -A^T$)
 $x \in K$

- we assume (for simplicity) that *K* is a proper cone
- assume that a point $\hat{x} \in int(K)$ is known that satisfies $\hat{s} = A\hat{x} b \in int(K^*)$
- for example, constructed via Ye–Todd–Mizuno embedding of general LP

Self-dual exact penalty formulation

minimize
$$-b^T x + f(x) + f^*(b - Ax)$$

- *f* is indicator function of $\{x \in K \mid \hat{s}^T x \le \mu\}$ where $\mu > \hat{s}^T \hat{x}$
- $f^*(y) = \inf \{\beta \ge 0 \mid \beta \hat{s} \mu y \in K^*\}$ is Minkowski gauge for K^*
- $f^*(b Ax)$ is an exact penalty for constraint $Ax b \in K^*$

minimize
$$-b^T x + f(x) + f^*(b - Ax)$$
 (with $A = -A^T$)

• if $x_0 = z_0$, $d_p = d_d$, $\sigma_k = \tau_k$ the four steps in extragradient algorithm reduce to

$$\bar{x}_{k} = \operatorname*{argmin}_{x} (f(x) + (Ax_{k} - b)^{T}x + \frac{1}{\tau_{k}}d(x, x_{k}))$$
$$x_{k+1} = \operatorname*{argmin}_{x} (f(x) + (A\bar{x}_{k} - b)^{T}x + \frac{1}{\tau_{k}}d(x, x_{k}))$$

• for the exact penalty formulation of the self-dual LP

$$\bar{x}_k = \underset{x \in K, \ \hat{s}^T x \le \mu}{\operatorname{argmin}} \left((Ax_k - b)^T x + \frac{1}{\tau_k} d(x, x_k) \right)$$
$$x_{k+1} = \underset{x \in K, \ \hat{s}^T x \le \mu}{\operatorname{argmin}} \left((A\bar{x}_k - b)^T x + \frac{1}{\tau_k} d(x, x_k) \right)$$

• PDHG iterations are similar

Convergence result

- assume kernel is 1-strongly convex on dom f with respect to norm $\|\cdot\|$
- $\tau_k = 1/||A||$ where A is matrix norm induced by $||\cdot||$, or determined adaptively
- define $\mathcal{L}(y, x) = b^T(x y) + f(y) f(x) y^T A x$
- define averaged iterate

$$y_k = \frac{1}{\sum_{i=0}^k \tau_i} \sum_{i=0}^k \tau_k \bar{x}_i$$

• adapting results for extragradient method to self-dual problem [Tseng 2008]:

$$\mathcal{L}(y_k, x) \le \frac{d(x, x_0)}{\sum_{i=0}^k \tau_i}$$
 for all $x \in \text{dom } f$

• maximizing over $x \in \text{dom } f$ gives

$$-b^{T}y_{k} + f(y_{k}) + f^{*}(b - Ay_{k}) \leq \frac{1}{\sum_{i=0}^{k} \tau_{i}} \sup_{x \in \text{dom } f} d(x, x_{0})$$

Summary

Bregman projections for two classes of SDP-representable cones

- Itakura–Saito distance for nonnegative trigonometric polynomials cost of generalized projection is roughly $O(n^2)$
- distance generated by logarithmic barrier of p.s.d. completable sparse matrices cost roughly on the same order as sparse Cholesky factorization

Primal-dual proximal methods for conic LP

- adding bounds to conic constraints is important for several reasons
- self-dual embedding provides useful bounding inequality constraint
- can be interpreted as solving self-dual exact penalty reformulation