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Structured Nonconvex Optimization Problems
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Structured Nonconvex Optimization Problems

Our target optimization problem is

minimize φ(x) := f (x) + g(x), (1)

where f : IRn → IR is C2-smooth, and g : IRn → IR := (−∞,∞] is
a lower semicontinuous, and prox-bounded1

Note that both f and g are generally nonconvex and
nonsmooth. This makes (1) appropriate for applications to
signal and image processing, machine learning, statistics,
control, system identification, etc.

If, in particular, g is the indicator function of a closed set,
then (1) becomes a constrained optimization problems with
numerous applications.

1A function is prox-bounded if it is bounded from below by some quadratic
function.
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Classical Newton’s Method and Tools of
Variational Analysis
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Classical Newton’s Method

Consider the gradient system

∇φ(x) = 0, (2)

where φ : IRn → IR be a C2-smooth function.

The classical version of Newton’s method: x0 ∈ IRn is given, then

xk+1 = xk + dk with −∇φ(xk) = ∇2φ(xk)dk , k = 0, 1, ...
(3)

This algorithm is locally well-defined and superlinearly converges to
a solution x̄ of (2) if ∇2φ(x̄) is nonsingular.2

2Izmailov, A. F., & Solodov, M. V. (2014). Newton-type methods for
optimization and variational problems (Vol. 1). New York: Springer.
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Generalized Differentiation

Requirement of generalized derivatives for generalized
Newton method:

Comprehensive calculus rules: sum rules, chain rules, product
rules, etc.

Explicit calculations in a number of settings important for
applications.

Can characterize the convexity, generalized convexity, local
optimality, etc.

To develop Newton’s method, we use the generalized derivatives
including limiting first- and second-order subdifferentials
introduced by Mordukhovich, which are presented in the books 34.

3Mordukhovich, B. S. (2018). Variational analysis and applications (Vol.
30). Cham: Springer.

4Rockafellar, R. T., & Wets, R. J. B. (2009). Variational analysis (Vol.
317). Springer Science & Business Media.
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Generalized Differentiation

The normal cone to Ω ⊂ IRn at x̄ ∈ Ω from

NΩ(x̄) :=
{
v
∣∣ ∃ xk → x̄ , αk ≥ 0, wk ∈ ΠΩ(xk), αk(xk − wk) → v

}
where ΠΩ stands for the Euclidean projection. The coderivative of
F : IRn ⇒ IRm at (x̄ , ȳ) ∈ gphF

D∗F (x̄ , ȳ)(v) :=
{
u ∈ IRn

∣∣ (u,−v) ∈ NgphF (x̄ , ȳ)
}
, v ∈ IRm.

When F : IRn → IRn is C1-smooth, then

D∗F (x̄)(v) =
{
∇F (x̄)∗v

}
, v ∈ IRn,

via the adjoint/transpose Jacobian matrix. The (first-order)
subdifferential of φ : IRn → (−∞,∞] at x̄ ∈ domφ

∂φ(x̄) :=
{
v ∈ IRn

∣∣ (v ,−1) ∈ Nepiφ

(
x̄ , φ(x̄)

)}
.
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Generalized Differentiation - Second-order
Subdifferential

Second-order subdifferential/generalized Hessian5 of φ at x̄ relative
to v̄ ∈ ∂φ(x̄) is

∂2φ(x̄ , v̄)(u) :=
(
D∗∂φ

)
(x̄ , v̄)(u), u ∈ IRn

If φ ∈ C2-smooth around x̄ , then

∂2φ(x̄ , v̄)(u) =
{
∇2φ(x̄)u

}
, u ∈ IRn

It is realized that the generalized Hessian ∂2φ enjoys
well-developed second-order calculus and can be viewed as an
appropriate replacement of the Hessian ∇2φ for nonsmooth
problems. ∂2φ is fully computed in terms of the given data for
broad classes of problems in optimization and variational analysis.

5Mordukhovich, B.S.: Sensitivity analysis in nonsmooth optimization. In:
Field, D.A., Komkov, V.(eds) Theoretical Aspects of Industrial Design, 32–46.
SIAM Proc. Appl. Math. 58. Philadelphia, PA (1992)
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Ideas

Goal: Approximate an optimal solution to the following
optimization problem

minimize φ(x) subject to x ∈ IRn (4)

where φ : IRn → IR is not necessarily smooth.

Ideas:

∇φ(xk) −→ [vk ∈ ∂φ(xk)].

∇2φ(xk) −→ ∂2φ(xk , vk), for some vk ∈ ∂φ(xk).

However, ∂φ(xk) may be empty. So, we will choose the pair
(x̂k , v̂k) ∈ gph ∂φ such that ∂φ(x̂k) is nonempty in which x̂k is
not far from xk in some senses.
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General Framework of Coderivative-Based Newton
Method

Suppose that x̄ is a stationary point, i.e., 0 ∈ ∂φ(x̄). Our
generalized coderivative-based Newton method can be formulated
as: x0 ∈ IRn is given, then

xk+1 = x̂k + dk with −v̂k ∈ ∂2φ(x̂k , v̂k)(dk), v̂k ∈ ∂φ(x̂k),

where (x̂k , v̂k) satisfying the following inequality

∥(x̂k , v̂k)− (xk , 0)∥ ≤ η∥xk − x̄∥. (5)

The step in (5) is called the approximate step in our algorithm.

In fact, we can choose (x̂k , v̂k) as an “approximate projection” of
(xk , 0) on gph∂φ in the sense that

∥(x̂k , v̂k)− (xk , 0)∥ ≤ ηdist((xk , 0), gph∂φ).
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Convergence Analysis of Coderivative-Based
Newtonian Methods

Question: Do we guarantee the convergence of the iterative
sequence generated by our aforementioned method6?

6x0 ∈ IRn is given, then

xk+1 = x̂k + dk with −v̂ k ∈ ∂2φ(x̂k , v̂ k)(dk), v̂ k ∈ ∂φ(x̂k), (6)

where k ∈ IN.
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Prox-regularity

Definition

φ : IRn → IR is prox-regulara at x̄ ∈ domφ for v̄ ∈ ∂φ(x̄) if φ is
lower semicontinuous around x̄ and there are ε > 0 and ρ ≥ 0 such
that for all x ∈ Bε(x̄) with φ(x) ≤ φ(x̄) + ε we have

φ(x) ≥ φ(u) + ⟨v , x − u⟩ − ρ

2
∥x − u∥2

for all (u, v) ∈ (gph ∂φ) ∩ Bε(x̄ , v̄).

aPoliquin, R., & Rockafellar, R. (1996). Prox-regular functions in variational
analysis. Transactions of the American Mathematical Society, 348(5),
1805-1838.

φ is subdifferentially continuous at x̄ for v̄ if the convergence
(xk , vk) → (x̄ , v̄) with vk ∈ ∂φ(xk) yields φ(xk) → φ(x̄). If both
properties hold, φ is continuously prox-regular. This is the major
class in second-order variational analysis.
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Semismoothness∗

Definition
a A mapping F : IRn ⇒ IRm is semismooth∗ at (x̄ , ȳ) ∈ gphF if
whenever (u, v) ∈ IRn × IRm we have the equality

⟨u∗, u⟩ = ⟨v∗, v⟩ for all (v∗, u∗) ∈ gphD∗F
(
(x̄ , ȳ); (u, v)

)
.

aGfrerer, H., & Outrata, J. V. (2021). On a semismooth* Newton method
for solving generalized equations. SIAM Journal on Optimization, 31(1),
489-517.

Example:

(i) A continuously differentiable mapping is semismooth∗.

(ii) A set-valued mapping with the graph represented as a union
of finitely many closed and convex sets is semismooth∗.
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Convergence Analysis

Local Convergence: Guarantee the local convergence to a
local optimal solution x̄ if φ is continuously prox-regular at x̄
for 0, ∂φ is semismooth∗ at x̄ , and x̄ satisfies the
second-order sufficient optimality condition in the sense that

0 ∈ ∂φ(x̄) and ∂2φ(x̄ , 0) is positive definite.

Convergence Rate: superlinear in the sense that

lim
k→∞

∥xk+1 − x̄∥/∥xk − x̄∥ = 0.

More detail in our work7.

7Khanh, P.D., Mordukhovich, B.S., Phat, V.T.: Coderivative-based Newton
methods in structured nonconvex and nonsmooth optimization,
arXiv:2403.04262.
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Implementation of the Approximate Step

When φ is a C1,1-smooth function, we can choose

x̂k := xk and v̂k := ∇φ(xk).

When Proxλφ
8 can be computed explicitly, we can choose

x̂k := Proxλφ(x
k) and v̂k :=

1

λ

(
xk − Proxλφ(x

k)
)
.

The natural question is how to implement the approximate step
when φ = f + g , where f is C2-smooth, g is prox-bounded
function? We will discuss in more detail in the next section.

8Proxλφ(x) = argminy∈IRn{φ(y) + 1/(2λ)∥y − x∥2}
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Coderivative-Based Newton Method for
Structured Nonconvex Optimization Problems
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Coderivative-Based Newton Method for Structured
Nonconvex Optimization Problems

Consider the problem

minimize φ(x) := f (x) + g(x), (7)

where f : IRn → IR is C2-smooth, and g : IRn → IR := (−∞,∞] is
a lower semicontinuous, and prox-bounded function.

To use our coderivative-based Newton method to find a stationary
point x̄ to (7), i.e., 0 ∈ ∂φ(x̄), we need to clarify two following
questions:

How do we implement the approximate step?

How do we guarantee the global convergence of the iterative
sequence?
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Approximate Step in Structured Nonconvex
Optimization Problems

When φ = f + g , where f is C2-smooth, g is prox-bounded, we
can choose

x̂k ∈ Proxλg (x
k − λ∇f (xk))

and

v̂k := ∇f (x̂k)−∇f (xk) +
1

λ
(xk − x̂k).

In this case, we have

v̂k ∈ ∂φ(x̂k).

There is η > 0 such that

∥(x̂k , v̂k)− (xk , 0)∥ ≤ η∥xk − x̄∥.

=⇒ We can apply our method to guarantee the locally
superlinear convergence of {xk}.
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Globalization

To obtain the global convergence of our method for the nonconvex
optimization problem, a natural approach is to consider the
sequence {xk} as follows:

xk+1 := x̂k + τkd
k (8)

with an appropriate stepsize selection τk ∈ (0, 1], with an
expectation that the descent property holds

φ(xk+1) = φ(x̂k + τkd
k) < φ(xk), k = 0, 1, . . . .

However this is impossible to guarantee due to the discontinuity of
the cost function φ.
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Globalization

Fortunately, we can approximate the cost function φ by a
differentiable function called forward-backward envelope91011, and
we can guarantee the descent property of this function, i.e.,

φλ(x
k+1) = φλ(x̂

k + τkd
k) < φλ(x

k), k = 0, 1, . . . .,

where φλ is defined by

φλ(x) := inf
y∈IRn

{
f (x) + ⟨∇f (x), y − x⟩+ g(y) +

1

2λ
∥y − x∥2

}
,

(9)
9Patrinos, P., & Bemporad, A. (2013, December). Proximal Newton

methods for convex composite optimization. In 52nd IEEE Conference on
Decision and Control (pp. 2358-2363). IEEE.

10Stella, L., Themelis, A., & Patrinos, P. (2017). Forward–backward
quasi-Newton methods for nonsmooth optimization problems. Computational
Optimization and Applications, 67(3), 443-487.

11Themelis, A., Stella, L., & Patrinos, P. (2018). Forward-backward envelope
for the sum of two nonconvex functions: Further properties and nonmonotone
linesearch algorithms. SIAM Journal on Optimization, 28(3), 2274-2303.
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Globalized Coderivative-Based Newton Method

x0 ∈ IRn is given, then

xk+1 = x̂k + τkd
k with −v̂k ∈ ∂2φ(x̂k , v̂k)(dk),

where

x̂k ∈ Proxλg (x
k − λ∇f (xk)) and v̂k := ∇f (x̂k)−∇f (xk) +

1

λ
(xk − x̂k)

and τk ∈ (0, 1] satisfying

φλ(x̂
k + τkd

k) ≤ φλ(x
k)− σ

∥∥∥v̂k∥∥∥2 .
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Convergence analysis of our method

Well-Posedness: The sequence {xk} is well-defined. Both
sequences {v̂k} and {x̂k − xk} converge to 0 as k → ∞.
Finally, any accumulation point of {xk} is a stationary point.

Global Convergence: Guarantee the global convergence of
{xk} if g is continuously prox-regular at x̄ for −∇f (x̄), ∇2f
is strictly differentiable at x̄ , ∂g is semismooth∗ at x̄ , and x̄
satisfies the second-order sufficient optimality condition in the
sense that

0 ∈ ∂φ(x̄) and ∂2φ(x̄ , 0) is positive definite.

Convergence Rate: superlinear in the sense that

lim
k→∞

∥xk+1 − x̄∥/∥xk − x̄∥ = 0.

23 / 29



Applications
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Applications

Given an m × n matrix A and a vector b ∈ IRm, the ℓ0-ℓ2
regularized least square regression problem whose importance has
been well recognized in applications to practical models of
statistics, machine learning, etc12. This problem is formulated as:

min φ(x) :=
1

2
∥Ax − b∥2 + µ0∥x∥0 + µ2∥x∥22 subject to x ∈ IRn

where µ0 and µ2 are positive parameters, and where ∥x∥0 is the ℓ0
norm of x counting the number of nonzero elements of x .

Our numerical experiment in 13 shows that our method behaves
better than proximal gradient method for solving the above
problem.

12Hazimeh, H., & Mazumder, R. (2020). Fast best subset selection:
Coordinate descent and local combinatorial optimization algorithms.
Operations Research, 68(5), 1517-1537.

13Khanh, P.D., Mordukhovich, B.S., Phat, V.T.: Coderivative-based
Newton methods in structured nonconvex and nonsmooth optimization,
arXiv:2403.04262.
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Future Investigation
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Future Investigation

Establish the generalized Newton method for solving
difference programming.

Establish the generalized Newton method for solving
multiobjective optimization problems.

Establish the generalized Newton method for solving bilevel
optimization problems.

Establish the coderivative-based stochastic Newton method
for solving nonsmooth and nonconvex optimization problems
with high dimension.

Applications to other important classes of models in data
science, machine learning, statistic, and related disciplines.
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