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A particular situation in different areas of engineering and science is that one has

the observation y0 = Φx0 via a known (or random) linear operator Φ ∶ Rn → Rm

(m << n) and an unknown vector x0 ∈ Rn. To recover x0, we have to solve

Φx = y0. (1)

Let’s generate some random data:

x0 ∈ [−1,1]250 with nnz (x0) = 25 and Φ ∈ R100×250.

Solving (1) by the least-square method or the projection method:

(LS) min
x∈R250

∥Φx − y0∥2 or (PM) min
x∈R250

∥x∥2 subject to Φx = y0

gives us the same solution

xLS = Φ†y0 with nnz (xLS) = 250 and ∥xLS − x0∥ ≈ 2.9.

Solving the (ℓ1) problem

(ℓ1) min
x∈R250

∥x∥1 subject to Φx = y0

gives us nnz (x̄) = 25 and ∥x̄ − x0∥ ≈ 10−14, and recovers exactly x0.
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When there is some error/noise in the observation y0, i.e., our observation y

satisfies

∥Φx0 − y∥ ≤ δ = 0.001 for some δ > 0.

Solving the least square problem gives us xδ with

nnz (xδ) = 250 and ∥xδ − x0∥ ≈ 2.6.

As we want to recover a sparse vector, adding the ℓ1 norm to the least square

course is helpful:

min
x∈Rn

1

2
∥Ax − b∥2 + µ∥x∥1. (2)

With µ = δ, its optimal solution x̄µ satisfies

nnz (x̄µ) = 31 and ∥x̄µ − x0∥ ≈ 0.009.
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If x0 has low-complexity (e.g., sparsity, group-sparsity, or low-rank) and y ≈ Φx0 ,

we solve

(P (y,µ) min
x∈Rn

1

2µ
∥Φx − y∥2 + g(x), (3)

where µ > 0, y ∈ Rm, and g ∶ Rn → R is a convex regularizer (ℓ1 norm, ℓ1/ℓ2 norm,

nuclear norm, etc).

µ is called the tuning parameter.

y is also another parameter.

We are interested in studying stability and sensitivity of the solution mapping:

S(y,µ) ∶= argmin { 1

2µ
∥Φx − y∥2 + g(x)∣ x ∈ Rn} . (4)
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[Vaiter et al 2017] showed that S(y,µ) is a differentiable function around

(ȳ, µ̄) ∈ Rm ×R++ under the nondegeneracy condition (ND):

− 1

µ
Φ∗(Φx̄ − ȳ) ∈ ri∂g(x̄) with x̄ = S(ȳ, µ) (5)

together with another second-order condition.

When g = ∥ ⋅ ∥1, without the (ND) condition, [Bolte et al 2021] showed that if

S(y,µ) is Lipschitz continuous around (ȳ, µ̄), then it is path differentiable and

its conservative Jacobian at (ȳ, µ̄) is computable.
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When g = ∥ ⋅ ∥1, [Berk-Brugiapaglia-Hoheisel 2023] shows that the Tibshirani’s

condition [Tibshirani 2013] is a sufficient condition for Lipschitz stability of

S(y, b).

[N. 2024] obtained full characterizations for Lipschitz stability of this solution

mapping for different classes of g(x).

The common point of these papers is: they are heavy in second-order analysis !
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Lipschitz stability and second-order analysis

The solution mapping S is Lipschitz continuous around (ȳ, µ̄) provided that

∥Φw∥2 + inf{⟨z,w⟩∣ z ∈ ∂2g(x̄∣ v̄)(w) } > 0 for any w ≠ 0, (6)

where x̄ ∈ S(ȳ, µ̄), v̄ ∶= − 1
µ̄
Φ∗(Φx̄ − ȳ) ∈ ∂g(x̄), and ∂2g(x̄∣ v̄)(w) is the generalized

Hessian of g [Mordukhovich 1992] due to the theory of full stability

[Levy-Poliquin-Rockafellar 2000].

∂2g(x̄∣ v̄) ∶ Rn ⇉ Rn is a second-order structure and it could be very hard to

compute it, e.g., g is the nuclear norm.

Our question was: “Can we surpass the computation of second-order structures

and obtain simple conditions for Lipschitz stability?”
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Our approach via the dual problem

The dual problem of (3) reads

min
z∈Rm

µ

2
∥z∥2 − ⟨z, y⟩ + g∗(Φ∗z),

or equivalently

(D(y,µ)) min
z∈Rm

µ

2
∥z∥2 − ⟨z, y⟩ + t subject to (Φ∗z, t) ∈ epi g∗ . (7)

The key observation: This problem has a unique solution and TFAE:

x solves problem P (y,µ);

(z, g∗(Φ∗z)) solves problem (D(y,µ)) and (x,−1) is the corresponding

Lagrange multiplier of the constrained optimization problem (7).

Lipschitz stability of the Lagrange system reminds us about Robinson’s strong

regularity [Robinson 1980]!
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Constrained Optimization Problems and Robinson’s Strong Regularity

Consider the parametric optimization problem

OPT(p) ∶ min
x∈Rn

φ(x, p) subject to G(x, p) ∈ Θ, (8)

where Θ ⊂ Rm is a closed and convex set, φ ∶ Rn ×Rd → R and G ∶ Rn ×Rd → Rm

are twice continuously differentiable functions.

The Lagrangian of problem OPT(p) is L ∶ Rn ×Rd ×Rm → R given by

L (x, p, λ) ∶= φ(x, p) + ⟨λ,G(x, p)⟩ for (x, p, λ) ∈ Rn ×Rd ×Rm.

A feasible point x ∈ Rn is called a stationary point of OPT(p) if there exists a

Lagrange multiplier λ ∈ Rm satisfying

0 = ∇xL (x, p, λ) and λ ∈ NΘ(G(x, p)).
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The Lagrange system can be written as a generalized equation

GE(p) ∶ 0 ∈
⎛
⎜
⎝
∇xφ(x, p) +JxG(x, p)∗λ

−G(x, p)

⎞
⎟
⎠
+
⎛
⎜
⎝

0

N−1Θ (λ)

⎞
⎟
⎠
. (9)

Let H ∶ Rd ⇉ Rn ×Rm be its solution mapping. [Robinson 1980] showed that this

mapping has a single-valued and Lipschitz continuous localization around some p̄

for some (x̄, λ̄) ∈H(p̄) if its linearized system

δ ∈
⎛
⎜
⎝

0

−G(x̄, p̄)

⎞
⎟
⎠
+
⎛
⎜
⎝
∇2

xxL (x̄, p̄, λ̄)(x − x̄) +JxG(x̄, p̄)∗(λ − λ̄)

−JxG(x̄, p̄)(x − x̄)

⎞
⎟
⎠
+
⎛
⎜
⎝

0

N−1Θ (λ)

⎞
⎟
⎠

(10)

does around (0,0) ∈ Rn ×Rm for (x̄, λ̄). Lipschitz stability of this linearized system

is known as Robinson’s strong regularity at (x̄, p̄) for the corresponding Lagrange

multiplier λ̄.
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Characterizations of Robinson’s strong regularity

For nonlinear programming (NP)

min φ(x, p) subject to G(x, p) ∈ −Rm
+

[Robinson 1980] showed that strong regularity occurs at (x̄, p̄) for λ̄ if

The linear independence constraint qualification holds at (x̄, p̄), i.e.,

{∇xGi(x̄, p̄)}i∈I are linearly independent with I ∶= {i∣Gi(x̄, p̄) = 0}.

The strong second-order sufficient condition (SSOSC) holds

⟨∇
2
xxL (x̄, p̄, λ̄)w,w⟩ > 0 whenever ⟨∇xGi(x̄, p̄),w⟩ = 0 with λ̄i > 0. (11)

[Bonnans-Ramirez 2005] extended it to second-order cone programming

(SOCP).

[Sun 2006] generalized the result to semidefinite programming when Θ = −Sn
+ .
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C2-reducible cone programming

Back to our dual problem:

(D(y,µ)) min
z∈Rm

µ

2
∥z∥2 − ⟨z, y⟩ + t subject to (Φ∗z, t) ∈ Θ ∶= epi g∗.

This is a constrained problem, but it is neither NP, SOCP, nor SDP!

[Mordukhovich-N.-Rockafellar 2017] obtained full characterization of Robinson’s

strong regularity for C2-cone reducible programming [Bonnans-Shapiro 2000].

Definition 1 (C2-cone reducible sets)

A closed convex set Θ ⊂ Rm is said to be C2-cone reducible at v̄ ∈ Θ if there exist a

neighborhood V of v̄, a pointed, closed, convex cone C in Rq, and a C2-smooth

mapping h ∶ V → Rq such that h(v̄) = 0, J h(v̄) is surjective, and that

Θ ∩ V = {v ∈ V ∣ h(v) ∈ C}.

We say Θ is C2-cone reducible if it is C2-cone reducible at any v̄ ∈ Θ.
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Polyhedral sets, the positive semi-definite cone, the second-order cone are

C2-cone reducible.

[Mordukhovich-N.-Rockafellar 2017] showed that Robinson’s strong regularity

occurs around (x̄, p̄) for λ̄ if and only if

The following constraint nondegeneracy condition holds

KerJxG(x̄, p̄)∗⋂ spanNΘ(G(x̄, p̄)) = {0}. (12)

A Generalized Strong Second-order Sufficient Condition (GSSOSC) holds.
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Back to the dual problem again:

(D(y,µ)) min
z∈Rm

µ

2
∥z∥2 − ⟨z, y⟩ + t subject to (Φ∗z, t) ∈ Θ ∶= epi g∗.

To apply [Mordukhovich-N.-Rockafellar 2017], we need Θ ∶= epi g∗ to be C2-cone

reducible.

All convex piecewise linear functions g have C2-cone reducible epi g∗, e.g., ℓ1

norm, ℓ∞ norm, 1-D total variation (semi)norm ∥Dx∥1, 2-D anisotropic total

variation (semi)norm, . . .

The ℓ1/ℓ2 norm.

Support function g(x) = σC(x) = sup{⟨v, x⟩∣ v ∈ C} with closed convex set

C ⊂ Rn, when C is C2-cone reducible.

The nuclear norm and many spectral functions.
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When applying [Mordukhovich-N.-Rockafellar 2017] to the dual problems

(D(y,µ)) min
z∈Rm

µ

2
∥z∥2 − ⟨z, y⟩ + t subject to (Φ∗z, t) ∈ Θ ∶= epi g∗,

we showed that

The GSSOSC is free!

The constraint nondegeneracy condition turns to

KerΦ ∩ par∂g∗(v̄) = {0} with v̄ ∶= 1

µ̄
Φ∗(Φx̄ − ȳ), (13)

where par∂g∗(v̄) is the parallel space of ∂g∗(v̄).
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Theorem 2 (Sufficient condition for Lipschitz stability)

Let x̄ be a solution of P (ȳ, µ̄) with (ȳ, µ̄) ∈ Rm ×R++ and suppose that epi g∗ is

C2-cone reducible. If

KerΦ ∩ par∂g∗(v̄) = {0},

then S(y,µ) is single-valued and Lipschitz continuous around (ȳ, µ̄).

Although our approach is based on second-order analysis, this is a first-order

condition for Lipschitz stability. It is very simple to check.

It does NOT need the nondegeneracy condition v̄ ∈ ri∂g(x̄).

Is it a necessary condition?

Theorem 3 (Necessary condition for single-valuedness)

Let x̄ be a solution of P (ȳ, µ̄) with (ȳ, µ̄) ∈ Rm ×R++. If S(y,µ) is single-valued

around (ȳ, µ̄), then

KerΦ ∩ par∂g∗(v̄) = {0}.
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Corollary 4 (Full characterization of Lipschitz stability)

Let x̄ be a solution of P (ȳ, µ̄) with (ȳ, µ̄) ∈ Rm ×R++ and suppose that epi g∗ is

C2-cone reducible. TFAE:

(i) S(y,µ) is single-valued around (ȳ, µ̄).

(ii) KerΦ ∩ par∂g∗(v̄) = {0}.

(iii) S(y,µ) is single-valued and Lipschitz continuous around (ȳ, µ̄).

Proof. [(i)⇒(ii)⇒(iii)⇒(i)]. 2

Recover quickly the results in [Berk-Brugiapaglia-Hoheisel 2023] for ℓ1 norm

and ℓ1/ℓ2 and nuclear norms in [N. 2024].
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No C2-cone reducibility?

Example 5 (No Lipschitz-stability without C2-cone reducibility)

Consider the following problem

(P (y)) min
x∈R2

1

2
[(x1 − x2 − y1)2 + (x1 − x2 − y2)2] +

1

4
(x4

1 + x4
2) .

With ȳ = (0,0), x̄ = (0,0) is an optimal solution. Moreover, (y
1
3
1 , y

1
3
1 ) ∈ S(y1, y1) is

NOT Lipschitz continuous around (0,0). With g(x) = 1

4
(x4

1 + x4
2), we have

g∗(v) = 3

4
(v

4
3
1 + v

4
3
2 ) and ∂g∗(v̄) = {(0,0)} with v̄ = (0,0).

Obviously, KerΦ ∩ par∂g∗(v̄) = {0} and epi g∗ is not C2-cone reducible.

Some important functions may be not C2-cone reducible:

Convex piecewise linear-quadratic functions.

Composite functions such as the 2-D anisotropic total variation (semi)norm

∥D∗x∥1,2 and the lifted nuclear norm ∥D∗X∥∗ for some linear operators D∗.
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With Nondegeneracy Condition

Corollary 6 (Lipschitz stability under Nondegeneracy Condition)

Let x̄ be a solution of P (ȳ, µ̄) with (ȳ, µ̄) ∈ Rm ×R++ and suppose that epi g∗ is

C2-cone reducible. Suppose further that the dual nondegeneracy condition

x̄ ∈ ri∂g∗(v̄) . (14)

TFAE:

(i) x̄ is the unique solution of P (ȳ, µ̄)

(ii) S(y,µ) is single-valued around (ȳ, µ̄).

(iii) S(y,µ) is single-valued and Lipschitz continuous around (ȳ, µ̄).

The dual ND condition (14) and the (primal) ND condition v̄ ∈ ri∂g(x̄) are

equivalent in many frameworks.

Under the primal ND condition, [Lewis and Zhang 13] established the

equvilance between strong solutions and tilt-stable solutions.
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Full stability

In this section, we study the following optimization problem

P (p̄) min
x∈Rn

f(x, p̄) + g(x), (15)

where f ∶ Rn ×Rd → R and g ∶ Rn → R ∪ {+∞} are closed, proper, convex functions.

Moreover, f is C2 differentiable.

Definition 7 (Full stability and tilt stability)

The point x̄ is called a fully stable optimal solution of problem (15) if there exists

γ > 0 such that the solution map

Mγ(v, p) ∶= argmin {f(x, p) + g(x) − ⟨v, x⟩ ∣ x ∈ Bγ(x̄)} for (v, p) ∈ Rn ×Rd (16)

is Lipschitz continuous around (0, p̄) ∈ Rn ×Rd with Mγ(0, p̄) = x̄.

The point x̄ is called a tilt stable optimal solution of problem (15) if the mapping

Mγ(⋅, p̄) is Lipschitz continuous around 0 ∈ Rn with Mγ(0, p̄) = x̄.
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x̄ is a fully stable optimal solution of problem (15) iff it is fully stable for

min
x∈Rn

1

2
⟨∇2

xxf(x̄, p̄)(x − x̄), x − x̄⟩ + ⟨∇xf(x̄, p̄), x − x̄⟩ + f(x̄, p̄) + g(x).

Theorem 8 (Characterization of full stability)

Suppose that x̄ is an optimal solution of problem (15) and that the function g∗ is

C2-cone reducible at v̄ = −∇xf(x̄, p̄) ∈ ∂g(x̄). Then the following are equivalent:

(i) x̄ is a fully stable optimal solution of problem (15).

(ii) x̄ is a tilt stable optimal solution of problem (15).

(iii) Ker∇2
xxf(x̄, p̄) ∩ par ∂g∗(v̄) = {0}.

(i) Ker∇2
xxf(x̄, p̄) ∩ Ker∂2g(x̄, v̄) = {0} .

Do we have

Ker∂2g(x̄, v̄) = par∂g∗(v̄)?
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So far, we have

span [Ker∂2g(x̄, v̄)] = par∂g∗(v̄).

This formula is very useful in second-order variational analysis especially for the

chain rule of composite function g ○G when G is a C2 differentiable functions:

δΘ ○G for constrained optimization problems, where δΘ is the indicator

function.

convex regularizers: isotopic total variation (semi) norm ∥D∗x∥1,2 and lifted

nuclear norm ∥D∗X∥∗.
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In this work, we obtain

A first-order simple characterization for Lipschitz stability of least-square

problems.

A first-order simple characterization for full/tilt stability of convex problems.

We are working on some directions:

Sensitivity analysis for our optimal solution mapping when it is single-valued

and Lipschitz continuous.

Extending these results to composite/constrained problems and variational

systems.

Using span[Ker∂2g(x̄, v̄)] = par∂g∗(v̄) to derive chain rule of second-order

structures.

TRAN T. A. NGHIA Lipschitz stability Nov 9, 2024 23 / 24



In this work, we obtain

A first-order simple characterization for Lipschitz stability of least-square

problems.

A first-order simple characterization for full/tilt stability of convex problems.

We are working on some directions:

Sensitivity analysis for our optimal solution mapping when it is single-valued

and Lipschitz continuous.

Extending these results to composite/constrained problems and variational

systems.

Using span[Ker∂2g(x̄, v̄)] = par∂g∗(v̄) to derive chain rule of second-order

structures.

TRAN T. A. NGHIA Lipschitz stability Nov 9, 2024 23 / 24



References

Y. Cui, T. Hoheisel, T. T. A. Nghia, D. Sun: Lipschitz stability of

least-squares problems regularized by functions with C2-cone reducible

conjugates, 2024, arXiv:2409.13118.

T. T. A. Nghia: Geometric characterizations of Lipschitz stability for convex

optimization problems, 2024, arXiv:2402.05215.

TRAN T. A. NGHIA Lipschitz stability Nov 9, 2024 24 / 24


	Conclusion and ongoing research

