Lipschitz stability of least-squares problems regularized by functions with C^2 -cone reducible conjugates

TRAN T. A. $NGHIA^1$

The 26th Midwest Optimization Meeting University of Waterloo

(Based on the joint work with Y. Cui (UC), T. Hoheisel (MU), and D. Sun (HKPU))

¹Department of Mathematics and Statistics, Oakland University, Rochester, MI 48309, USA. Email: nttran@oakland.edu A particular situation in different areas of engineering and science is that one has the observation $y_0 = \Phi x_0$ via a known (or random) linear operator $\Phi : \mathbb{R}^n \to \mathbb{R}^m$ $(m \ll n)$ and an unknown vector $x_0 \in \mathbb{R}^n$. To recover x_0 , we have to solve

$$\Phi x = y_0. \tag{1}$$

æ

2/24

イロト イヨト イヨト イヨト

A particular situation in different areas of engineering and science is that one has the observation $y_0 = \Phi x_0$ via a known (or random) linear operator $\Phi : \mathbb{R}^n \to \mathbb{R}^m$ $(m \ll n)$ and an unknown vector $x_0 \in \mathbb{R}^n$. To recover x_0 , we have to solve

$$\Phi x = y_0.$$
 (1)

Let's generate some random data:

$$x_0 \in [-1, 1]^{250}$$
 with $nnz(x_0) = 25$ and $\Phi \in \mathbb{R}^{100 \times 250}$.

Solving (1) by the least-square method or the projection method:

(LS)
$$\min_{x \in \mathbb{R}^{250}} \|\Phi x - y_0\|^2$$
 or (PM) $\min_{x \in \mathbb{R}^{250}} \|x\|_2$ subject to $\Phi x = y_0$
gives us the same solution

 $x_{LS} = \Phi^{\dagger} y_0$ with $\operatorname{nnz}(x_{LS}) = 250$ and $||x_{LS} - x_0|| \approx 2.9$.

イロト イヨト イヨト イヨト 二日

A particular situation in different areas of engineering and science is that one has the observation $y_0 = \Phi x_0$ via a known (or random) linear operator $\Phi : \mathbb{R}^n \to \mathbb{R}^m$ $(m \ll n)$ and an unknown vector $x_0 \in \mathbb{R}^n$. To recover x_0 , we have to solve

$$\Phi x = y_0.$$
 (1)

Let's generate some random data:

$$x_0 \in [-1, 1]^{250}$$
 with $nnz(x_0) = 25$ and $\Phi \in \mathbb{R}^{100 \times 250}$

Solving (1) by the least-square method or the projection method:

(LS)
$$\min_{x \in \mathbb{R}^{250}} \|\Phi x - y_0\|^2$$
 or (PM) $\min_{x \in \mathbb{R}^{250}} \|x\|_2$ subject to $\Phi x = y_0$ gives us the same solution

$$x_{LS} = \Phi^{\dagger} y_0$$
 with $\operatorname{nnz}(x_{LS}) = 250$ and $||x_{LS} - x_0|| \approx 2.9$.

Solving the (ℓ_1) problem

$$(\ell_1) \quad \min_{x \in \mathbb{R}^{250}} \|x\|_1 \text{ subject to } \Phi x = y_0$$

Gives us $\operatorname{nnz}(\bar{x}) = 25$ and $\|\bar{x} - x_0\| \approx 10^{-14}$, and recovers exactly $x_0 = x_0 = x_0$
TRAN T. A. NGHIA Lipschitz stability Nov 9, 2024 2/24

When there is some error/noise in the observation y_0 , i.e., our observation y satisfies

$$\|\Phi x_0 - y\| \le \delta = 0.001 \quad \text{for some} \quad \delta > 0.$$

Solving the least square problem gives us x_{δ} with

nnz
$$(x_{\delta}) = 250$$
 and $||x_{\delta} - x_0|| \approx 2.6$.

As we want to recover a sparse vector, adding the ℓ_1 norm to the least square course is helpful:

$$\min_{x \in \mathbb{R}^n} \quad \frac{1}{2} \|Ax - b\|^2 + \mu \|x\|_1.$$
(2)

With $\mu = \delta$, its optimal solution \bar{x}_{μ} satisfies

nnz $(\bar{x}_{\mu}) = 31$ and $\|\bar{x}_{\mu} - x_0\| \approx 0.009$.

TRAN	T	A N	GHIA
TICITIA			omn

If x_0 has low-complexity (e.g., sparsity, group-sparsity, or low-rank) and $y \approx \Phi x_0$, we solve

$$(P(y,\mu) \qquad \min_{x \in \mathbb{R}^n} \quad \frac{1}{2\mu} \|\Phi x - y\|^2 + g(x), \tag{3}$$

where $\mu > 0, y \in \mathbb{R}^m$, and $g : \mathbb{R}^n \to \mathbb{R}$ is a convex regularizer (ℓ_1 norm, ℓ_1/ℓ_2 norm, nuclear norm, etc).

- μ is called the tuning parameter.
- y is also another parameter.

We are interested in studying stability and sensitivity of the solution mapping:

$$S(y,\mu) \coloneqq \operatorname{argmin} \left\{ \frac{1}{2\mu} \| \Phi x - y \|^2 + g(x) \| x \in \mathbb{R}^n \right\}.$$
(4)

TRAN T. A. NGHIA

Nov 9, 2024

• [Vaiter et al 2017] showed that $S(y,\mu)$ is a *differentiable* function around $(\bar{y},\bar{\mu}) \in \mathbb{R}^m \times \mathbb{R}_{++}$ under the nondegeneracy condition (ND):

$$-\frac{1}{\mu}\Phi^*(\Phi\bar{x}-\bar{y})\in\operatorname{ri}\partial g(\bar{x})\quad\text{with}\quad\bar{x}=S(\bar{y},\mu)\tag{5}$$

together with another second-order condition.

• When $g = \|\cdot\|_1$, without the (ND) condition, [Bolte et al 2021] showed that if $S(y,\mu)$ is Lipschitz continuous around $(\bar{y},\bar{\mu})$, then it is path differentiable and its conservative Jacobian at $(\bar{y},\bar{\mu})$ is computable.

(日) (四) (三) (三) (三)

- When $g = \|\cdot\|_1$, [Berk-Brugiapaglia-Hoheisel 2023] shows that the Tibshirani's condition [Tibshirani 2013] is a sufficient condition for Lipschitz stability of S(y, b).
- [N. 2024] obtained full characterizations for Lipschitz stability of this solution mapping for different classes of g(x).

The common point of these papers is: they are heavy in second-order analysis !

・ロト ・回ト ・ヨト ・ ヨト

Lipschitz stability and second-order analysis

The solution mapping S is Lipschitz continuous around $(\bar{y}, \bar{\mu})$ provided that

$$\|\Phi w\|^{2} + \inf\{\langle z, w\rangle| z \in \frac{\partial^{2} g(\bar{x}|\bar{v})(w)}{\partial^{2} g(\bar{x}|\bar{v})(w)}\} > 0 \quad \text{for any} \quad w \neq 0,$$
(6)

where $\bar{x} \in S(\bar{y}, \bar{\mu}), \ \bar{v} \coloneqq -\frac{1}{\bar{\mu}} \Phi^*(\Phi \bar{x} - \bar{y}) \in \partial g(\bar{x}), \ \text{and} \ \partial^2 g(\bar{x}|\bar{v})(w) \ \text{is the generalized}$ Hessian of g [Mordukhovich 1992] due to the theory of full stability [Levy-Poliquin-Rockafellar 2000].

 $\partial^2 g(\bar{x}|\bar{v}) : \mathbb{R}^n \Rightarrow \mathbb{R}^n$ is a second-order structure and it could be very hard to compute it, e.g., g is the nuclear norm.

Our question was: "Can we surpass the computation of second-order structures and obtain simple conditions for Lipschitz stability?"

7/24

イロト イロト イヨト イヨト 二日

Our approach via the dual problem

The dual problem of (3) reads

$$\min_{z\in\mathbb{R}^m} \quad \frac{\mu}{2} \|z\|^2 - \langle z,y\rangle + g^*(\Phi^*z),$$

or equivalently

$$(D(y,\mu)) \qquad \min_{z \in \mathbb{R}^m} \quad \frac{\mu}{2} \|z\|^2 - \langle z, y \rangle + t \quad \text{subject to} \quad (\Phi^* z, t) \in \operatorname{epi} g^* .$$
(7)

The key observation: This problem has a unique solution and TFAE:

- x solves problem $P(y, \mu)$;
- $(z, g^*(\Phi^* z))$ solves problem $(D(y, \mu))$ and (x, -1) is the corresponding

Lagrange multiplier of the constrained optimization problem (7).

Lipschitz stability of the Lagrange system reminds us about Robinson's strong regularity [Robinson 1980]!

TRAN T. A. NGHIA

Consider the parametric optimization problem

$$OPT(p): \min_{x \in \mathbb{R}^n} \quad \varphi(x, p) \quad \text{subject to} \quad G(x, p) \in \Theta, \tag{8}$$

where $\Theta \subset \mathbb{R}^m$ is a closed and convex set, $\varphi : \mathbb{R}^n \times \mathbb{R}^d \to \mathbb{R}$ and $G : \mathbb{R}^n \times \mathbb{R}^d \to \mathbb{R}^m$ are twice continuously differentiable functions.

The Lagrangian of problem OPT(p) is $\mathscr{L}: \mathbb{R}^n \times \mathbb{R}^d \times \mathbb{R}^m \to \mathbb{R}$ given by

$$\mathscr{L}(x,p,\lambda) \coloneqq \varphi(x,p) + \langle \lambda, G(x,p) \rangle \quad \text{for} \quad (x,p,\lambda) \in \mathbb{R}^n \times \mathbb{R}^d \times \mathbb{R}^m$$

A feasible point $x \in \mathbb{R}^n$ is called a stationary point of OPT(p) if there exists a Lagrange multiplier $\lambda \in \mathbb{R}^m$ satisfying

$$0 = \nabla_x \mathscr{L}(x, p, \lambda) \quad \text{and} \quad \lambda \in N_{\Theta}(G(x, p)).$$

TRAN T. A. NGHIA

The Lagrange system can be written as a generalized equation

$$GE(p): \quad 0 \in \left(\begin{array}{c} \nabla_x \varphi(x,p) + \mathcal{J}_x G(x,p)^* \lambda \\ -G(x,p) \end{array} \right) + \left(\begin{array}{c} 0 \\ N_{\Theta}^{-1}(\lambda) \end{array} \right). \tag{9}$$

Let $H : \mathbb{R}^d \Rightarrow \mathbb{R}^n \times \mathbb{R}^m$ be its solution mapping. [Robinson 1980] showed that this mapping has a single-valued and Lipschitz continuous localization around some \bar{p} for some $(\bar{x}, \bar{\lambda}) \in H(\bar{p})$ if its linearized system

$$\delta \in \begin{pmatrix} 0 \\ -G(\bar{x},\bar{p}) \end{pmatrix} + \begin{pmatrix} \nabla_{xx}^2 \mathscr{L}(\bar{x},\bar{p},\bar{\lambda})(x-\bar{x}) + \mathcal{J}_x G(\bar{x},\bar{p})^*(\lambda-\bar{\lambda}) \\ -\mathcal{J}_x G(\bar{x},\bar{p})(x-\bar{x}) \end{pmatrix} + \begin{pmatrix} 0 \\ N_{\Theta}^{-1}(\lambda) \end{pmatrix}$$
(10)

does around $(0,0) \in \mathbb{R}^n \times \mathbb{R}^m$ for $(\bar{x}, \bar{\lambda})$. Lipschitz stability of this linearized system is known as Robinson's strong regularity at (\bar{x}, \bar{p}) for the corresponding Lagrange multiplier $\bar{\lambda}$.

TRAN T. A. NGHIA

10/24

Characterizations of Robinson's strong regularity

• For nonlinear programming (NP)

min $\varphi(x,p)$ subject to $G(x,p) \in -\mathbb{R}^m_+$

[Robinson 1980] showed that strong regularity occurs at (\bar{x}, \bar{p}) for $\bar{\lambda}$ if

- The linear independence constraint qualification holds at (\bar{x}, \bar{p}) , i.e., $\{\nabla_x G_i(\bar{x}, \bar{p})\}_{i \in I}$ are linearly independent with $I \coloneqq \{i | G_i(\bar{x}, \bar{p}) = 0\}$.
- The strong second-order sufficient condition (SSOSC) holds

 $\langle \nabla^2_{xx} \mathscr{L}(\bar{x}, \bar{p}, \bar{\lambda}) w, w \rangle > 0$ whenever $\langle \nabla_x G_i(\bar{x}, \bar{p}), w \rangle = 0$ with $\bar{\lambda}_i > 0.$ (11)

- [Bonnans-Ramirez 2005] extended it to second-order cone programming (SOCP).
- [Sun 2006] generalized the result to semidefinite programming when $\Theta = -\mathbb{S}_{+}^{n}$.

\mathcal{C}^2 -reducible cone programming

Back to our dual problem:

$$(D(y,\mu)) \qquad \min_{z \in \mathbb{R}^m} \quad \frac{\mu}{2} \|z\|^2 - \langle z, y \rangle + t \quad \text{subject to} \quad (\Phi^* z, t) \in \Theta \coloneqq \operatorname{epi} g^*.$$

This is a constrained problem, but it is neither NP, SOCP, nor SDP!

TRAN	T. A.	NGHIA

12/24

(日) (四) (三) (三) (三)

\mathcal{C}^2 -reducible cone programming

Back to our dual problem:

$$(D(y,\mu)) \qquad \min_{z \in \mathbb{R}^m} \quad \frac{\mu}{2} \|z\|^2 - \langle z, y \rangle + t \quad \text{subject to} \quad (\Phi^* z, t) \in \Theta := \operatorname{epi} g^*$$

This is a constrained problem, but it is neither NP, SOCP, nor SDP! [Mordukhovich-N.-Rockafellar 2017] obtained full characterization of Robinson's strong regularity for C^2 -cone reducible programming [Bonnans-Shapiro 2000].

Definition 1 (\mathcal{C}^2 -cone reducible sets)

A closed convex set $\Theta \subset \mathbb{R}^m$ is said to be \mathcal{C}^2 -cone reducible at $\bar{v} \in \Theta$ if there exist a neighborhood V of \bar{v} , a pointed, closed, convex cone C in \mathbb{R}^q , and a \mathcal{C}^2 -smooth mapping $h: V \to \mathbb{R}^q$ such that $h(\bar{v}) = 0$, $\mathcal{J}h(\bar{v})$ is surjective, and that $\Theta \cap V = \{v \in V | h(v) \in C\}.$

We say Θ is \mathcal{C}^2 -cone reducible if it is \mathcal{C}^2 -cone reducible at any $\bar{v} \in \Theta$.

(日) (同) (日) (日)

• Polyhedral sets, the positive semi-definite cone, the second-order cone are C^2 -cone reducible.

[Mordukhovich-N.-Rockafellar 2017] showed that Robinson's strong regularity occurs around (\bar{x}, \bar{p}) for $\bar{\lambda}$ if and only if

• The following constraint nondegeneracy condition holds

$$\operatorname{Ker} \mathcal{J}_{x} G(\bar{x}, \bar{p})^{*} \bigcap \operatorname{span} N_{\Theta}(G(\bar{x}, \bar{p})) = \{0\}.$$

$$(12)$$

• A Generalized Strong Second-order Sufficient Condition (GSSOSC) holds.

	TRAN	T. A.	NGHIA
--	------	-------	-------

13/24

Back to the dual problem again:

 $(D(y,\mu)) \qquad \min_{z\in\mathbb{R}^m} \quad \frac{\mu}{2} \|z\|^2 - \langle z,y\rangle + t \quad \text{subject to} \quad (\Phi^*z,t)\in\Theta \coloneqq \operatorname{epi} g^*.$

To apply [Mordukhovich-N.-Rockafellar 2017], we need $\Theta \coloneqq epi g^*$ to be C^2 -cone reducible.

- All convex piecewise linear functions g have C²-cone reducible epig^{*}, e.g., ℓ₁ norm, ℓ_∞ norm, 1-D total variation (semi)norm ||Dx||₁, 2-D anisotropic total variation (semi)norm, ...
- The ℓ_1/ℓ_2 norm.
- Support function $g(x) = \sigma_C(x) = \sup\{\langle v, x \rangle | v \in C\}$ with closed convex set $C \subset \mathbb{R}^n$, when C is \mathcal{C}^2 -cone reducible.
- The nuclear norm and many spectral functions.

・ロト ・四ト ・ヨト ・ヨト 三日

When applying [Mordukhovich-N.-Rockafellar 2017] to the dual problems

$$(D(y,\mu)) \qquad \min_{z \in \mathbb{R}^m} \quad \frac{\mu}{2} \|z\|^2 - \langle z, y \rangle + t \quad \text{subject to} \quad (\Phi^* z, t) \in \Theta \coloneqq \operatorname{epi} g^*,$$

we showed that

• The GSSOSC is free!

臣

15/24

(日) (四) (三) (三) (三)

When applying [Mordukhovich-N.-Rockafellar 2017] to the dual problems

$$(D(y,\mu)) \qquad \min_{z \in \mathbb{R}^m} \quad \frac{\mu}{2} \|z\|^2 - \langle z, y \rangle + t \quad \text{subject to} \quad (\Phi^* z, t) \in \Theta \coloneqq \operatorname{epi} g^*,$$

we showed that

- The GSSOSC is free!
- The constraint nondegeneracy condition turns to

$$\operatorname{Ker} \Phi \cap \operatorname{par} \partial g^{*}(\bar{v}) = \{0\} \quad \text{with} \quad \bar{v} \coloneqq \frac{1}{\bar{\mu}} \Phi^{*}(\Phi \bar{x} - \bar{y}), \tag{13}$$

where par $\partial g^*(\bar{v})$ is the parallel space of $\partial g^*(\bar{v})$.

Theorem 2 (Sufficient condition for Lipschitz stability)

Let \bar{x} be a solution of $P(\bar{y},\bar{\mu})$ with $(\bar{y},\bar{\mu}) \in \mathbb{R}^m \times \mathbb{R}_{++}$ and suppose that $\operatorname{epi} g^*$ is \mathcal{C}^2 -cone reducible. If

 $\operatorname{Ker} \Phi \cap \operatorname{par} \partial g^*(\bar{v}) = \{0\},\$

then $S(y,\mu)$ is single-valued and Lipschitz continuous around $(\bar{y},\bar{\mu})$.

- Although our approach is based on second-order analysis, this is a first-order condition for Lipschitz stability. It is very simple to check.
- It does NOT need the nondegeneracy condition $\bar{v} \in \operatorname{ri} \partial g(\bar{x})$.

Is it a necessary condition?

16/24

(日)

Theorem 2 (Sufficient condition for Lipschitz stability)

Let \bar{x} be a solution of $P(\bar{y},\bar{\mu})$ with $(\bar{y},\bar{\mu}) \in \mathbb{R}^m \times \mathbb{R}_{++}$ and suppose that $\operatorname{epi} g^*$ is \mathcal{C}^2 -cone reducible. If

 $\operatorname{Ker} \Phi \cap \operatorname{par} \partial g^*(\bar{v}) = \{0\},\$

then $S(y,\mu)$ is single-valued and Lipschitz continuous around $(\bar{y},\bar{\mu})$.

- Although our approach is based on second-order analysis, this is a first-order condition for Lipschitz stability. It is very simple to check.
- It does NOT need the nondegeneracy condition $\bar{v} \in \operatorname{ri} \partial g(\bar{x})$.

Is it a necessary condition?

Theorem 3 (Necessary condition for single-valuedness)

Let \bar{x} be a solution of $P(\bar{y},\bar{\mu})$ with $(\bar{y},\bar{\mu}) \in \mathbb{R}^m \times \mathbb{R}_{++}$. If $S(y,\mu)$ is single-valued around $(\bar{y},\bar{\mu})$, then

 $\operatorname{Ker} \Phi \cap \operatorname{par} \partial g^*(\bar{v}) = \{0\}.$

TRAN T. A. NGHIA

Lipschitz stability

Nov 9, 2024

< ロ > < 回 > < 回 > < 回 > < 回 >

16/24

æ

Corollary 4 (Full characterization of Lipschitz stability)

Let \bar{x} be a solution of $P(\bar{y},\bar{\mu})$ with $(\bar{y},\bar{\mu}) \in \mathbb{R}^m \times \mathbb{R}_{++}$ and suppose that $\operatorname{epi} g^*$ is \mathcal{C}^2 -cone reducible. TFAE:

- (i) $S(y,\mu)$ is single-valued around $(\bar{y},\bar{\mu})$.
- (ii) Ker $\Phi \cap \operatorname{par} \partial g^*(\bar{v}) = \{0\}.$

(iii) $S(y,\mu)$ is single-valued and Lipschitz continuous around $(\bar{y},\bar{\mu})$.

Proof. $[(i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (i)].$

 Recover quickly the results in [Berk-Brugiapaglia-Hoheisel 2023] for l₁ norm and l₁/l₂ and nuclear norms in [N. 2024].

イロト イヨト イヨト イヨト 三日

No C^2 -cone reducibility?

TRAN T. A. NGHIA

Example 5 (No Lipschitz-stability without \mathcal{C}^2 -cone reducibility)

Consider the following problem

$$(P(y)) \qquad \min_{x \in \mathbb{R}^2} \quad \frac{1}{2} \left[(x_1 - x_2 - y_1)^2 + (x_1 - x_2 - y_2)^2 \right] + \frac{1}{4} \left(x_1^4 + x_2^4 \right)$$

With $\bar{y} = (0,0)$, $\bar{x} = (0,0)$ is an optimal solution. Moreover, $\left(y_1^{\frac{1}{3}}, y_1^{\frac{1}{3}}\right) \in S(y_1, y_1)$ is **NOT** Lipschitz continuous around (0,0). With $g(x) = \frac{1}{4}(x_1^4 + x_2^4)$, we have

$$g^{*}(v) = \frac{3}{4} \left(v_{1}^{\frac{4}{3}} + v_{2}^{\frac{4}{3}} \right)$$
 and $\partial g^{*}(\bar{v}) = \{(0,0)\}$ with $\bar{v} = (0,0).$

Obviously, Ker $\Phi \cap \operatorname{par} \partial g^*(\bar{v}) = \{0\}$ and $\operatorname{epi} g^*$ is not \mathcal{C}^2 -cone reducible.

Some important functions may be not \mathcal{C}^2 -cone reducible:

- Convex piecewise linear-quadratic functions.
- Composite functions such as the 2-D anisotropic total variation (semi)norm $||D^*x||_{1,2}$ and the lifted nuclear norm $||D^*X||_*$ for some linear operators D^* . Lipschitz stability Nov 9, 2024

18/24

With Nondegeneracy Condition

Corollary 6 (Lipschitz stability under Nondegeneracy Condition)

Let \bar{x} be a solution of $P(\bar{y},\bar{\mu})$ with $(\bar{y},\bar{\mu}) \in \mathbb{R}^m \times \mathbb{R}_{++}$ and suppose that $\operatorname{epi} g^*$ is \mathcal{C}^2 -cone reducible. Suppose further that the dual nondegeneracy condition

$$\overline{x} \in \operatorname{ri} \partial g^*(\overline{v})$$
.

TFAE:

- (i) \bar{x} is the unique solution of $P(\bar{y}, \bar{\mu})$
- (ii) $S(y,\mu)$ is single-valued around $(\bar{y},\bar{\mu})$.

(iii) $S(y,\mu)$ is single-valued and Lipschitz continuous around $(\bar{y},\bar{\mu})$.

- The dual ND condition (14) and the (primal) ND condition $\bar{v} \in \operatorname{ri} \partial g(\bar{x})$ are equivalent in many frameworks.
- Under the primal ND condition, [Lewis and Zhang 13] established the equivalence between strong solutions and tilt-stable solutions.

TRAN T. A. NGHIA

Lipschitz stability

Nov 9, 2024

19/24

(14)

Full stability

In this section, we study the following optimization problem

$$P(\bar{p}) \qquad \min_{x \in \mathbb{R}^n} \quad f(x, \bar{p}) + g(x), \tag{15}$$

where $f : \mathbb{R}^n \times \mathbb{R}^d \to \mathbb{R}$ and $g : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ are closed, proper, convex functions. Moreover, f is \mathcal{C}^2 differentiable.

Definition 7 (Full stability and tilt stability)

The point \bar{x} is called a fully stable optimal solution of problem (15) if there exists $\gamma > 0$ such that the solution map

$$M_{\gamma}(v,p) \coloneqq \operatorname{argmin} \left\{ f(x,p) + g(x) - \langle v, x \rangle \mid x \in \mathbb{B}_{\gamma}(\bar{x}) \right\} \quad \text{for} \quad (v,p) \in \mathbb{R}^{n} \times \mathbb{R}^{d}$$
(16)

is Lipschitz continuous around $(0, \bar{p}) \in \mathbb{R}^n \times \mathbb{R}^d$ with $M_{\gamma}(0, \bar{p}) = \bar{x}$. The point \bar{x} is called a tilt stable optimal solution of problem (15) if the mapping $M_{\gamma}(\cdot, \bar{p})$ is Lipschitz continuous around $0 \in \mathbb{R}^n$ with $M_{\gamma}(0, \bar{p}) = \bar{x}$. \bar{x} is a fully stable optimal solution of problem (15) iff it is fully stable for

$$\min_{x\in\mathbb{R}^n} \quad \frac{1}{2} \langle \nabla^2_{xx} f(\bar{x},\bar{p})(x-\bar{x}), x-\bar{x} \rangle + \langle \nabla_x f(\bar{x},\bar{p}), x-\bar{x} \rangle + f(\bar{x},\bar{p}) + g(x).$$

Theorem 8 (Characterization of full stability)

Suppose that \bar{x} is an optimal solution of problem (15) and that the function g^* is C^2 -cone reducible at $\bar{v} = -\nabla_x f(\bar{x}, \bar{p}) \in \partial g(\bar{x})$. Then the following are equivalent:

(i) \bar{x} is a fully stable optimal solution of problem (15).

(ii)
$$\bar{x}$$
 is a tilt stable optimal solution of problem (15).

(iii) Ker $\nabla_{xx}^2 f(\bar{x}, \bar{p}) \cap \operatorname{par} \partial g^*(\bar{v}) = \{0\}.$

(i) Ker $\nabla^2_{xx} f(\bar{x}, \bar{p}) \cap$ Ker $\partial^2 g(\bar{x}, \bar{v}) = \{0\}$.

TR.	AN.	T	4. N	GHIA

21/24

イロト イポト イヨト イヨト

 \bar{x} is a fully stable optimal solution of problem (15) iff it is fully stable for

$$\min_{x\in\mathbb{R}^n} \quad \frac{1}{2} \langle \nabla^2_{xx} f(\bar{x},\bar{p})(x-\bar{x}), x-\bar{x} \rangle + \langle \nabla_x f(\bar{x},\bar{p}), x-\bar{x} \rangle + f(\bar{x},\bar{p}) + g(x).$$

Theorem 8 (Characterization of full stability)

Suppose that \bar{x} is an optimal solution of problem (15) and that the function g^* is C^2 -cone reducible at $\bar{v} = -\nabla_x f(\bar{x}, \bar{p}) \in \partial g(\bar{x})$. Then the following are equivalent:

(i) \bar{x} is a fully stable optimal solution of problem (15).

(ii)
$$\bar{x}$$
 is a tilt stable optimal solution of problem (15).

(iii) Ker
$$\nabla_{xx}^2 f(\bar{x}, \bar{p}) \cap \operatorname{par} \partial g^*(\bar{v}) = \{0\}.$$

(i) Ker
$$\nabla_{xx}^2 f(\bar{x}, \bar{p}) \cap$$
 Ker $\partial^2 g(\bar{x}, \bar{v}) = \{0\}$.

Do we have

$$\operatorname{Ker} \partial^2 g(\bar{x}, \bar{v}) = \operatorname{par} \partial g^*(\bar{v})?$$

TRAN T. A. NGHIA

21/24

イロト イポト イヨト イヨト

So far, we have

span
$$\left[\operatorname{Ker} \partial^2 g(\bar{x}, \bar{v})\right] = \operatorname{par} \partial g^*(\bar{v}).$$

This formula is very useful in second-order variational analysis especially for the chain rule of composite function $g \circ G$ when G is a C^2 differentiable functions:

- $\delta_{\Theta} \circ G$ for constrained optimization problems, where δ_{Θ} is the indicator function.
- convex regularizers: isotopic total variation (semi) norm $||D^*x||_{1,2}$ and lifted nuclear norm $||D^*X||_*$.

22/24

In this work, we obtain

- A first-order simple characterization for Lipschitz stability of least-square problems.
- A first-order simple characterization for full/tilt stability of convex problems.

イロト イヨト イヨト イヨト

臣

In this work, we obtain

- A first-order simple characterization for Lipschitz stability of least-square problems.
- A first-order simple characterization for full/tilt stability of convex problems.

We are working on some directions:

- Sensitivity analysis for our optimal solution mapping when it is single-valued and Lipschitz continuous.
- Extending these results to composite/constrained problems and variational systems.
- Using span[Ker $\partial^2 g(\bar{x}, \bar{v})$] = par $\partial g^*(\bar{v})$ to derive chain rule of second-order structures.

- Y. Cui, T. Hoheisel, T. T. A. Nghia, D. Sun: Lipschitz stability of least-squares problems regularized by functions with C²-cone reducible conjugates, 2024, arXiv:2409.13118.
- T. T. A. Nghia: Geometric characterizations of Lipschitz stability for convex optimization problems, 2024, arXiv:2402.05215.

24 / 24

イロト イポト イヨト イヨト