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Projection Equations

Piecewise Linear Equation (Bellocruz et al., 2016)

x+ + Tx = b.

with x+ being the positive part of x and T a matrix.

Second-Order Cone (Bellocruz et al., 2017)

ΠLn(x) + Tx = b.

Ln is the second-order cone.

General Cone

ΠK(x) + Tx = b.

K ⊂ X is a convex and closed cone, ΠK(x) is the projection of x
onto K and T : X → X is a linear mapping.
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Quadratic Programming Application

Piecewise Linear Case(
min 1

2xT Qx + qT x
s.t. x ∈ Rn

+

)

Second-Order Cone Case(
min 1

2xT Qx + qT x
s.t. x ∈ Ln

)

General Cone Case (
min 1

2⟨x , Qx⟩ + ⟨q, x⟩
s.t. x ∈ K

)
.

where Q : X → X is a linear mapping and ⟨·, ·⟩ is the inner product
in X.
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Optimality and Complementarity Conditions

Conic Quadratic Programming

Qx + q − µ = 0,

⟨µ, x⟩ = 0.

where µ ∈ K∗ is a Lagrange multiplier.

Equivalent Form

⟨Qx + q, x⟩ = 0, x ∈ K, Qx + q ∈ K∗.
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Corresponding Equations

Piecewise Linear Case

(Q − Id)x+ + x = −q

Case with Second-Order Cone

(Q − Id)ΠLn + x = −q

Case with General Cone

(Q − Id)ΠK + x = −q
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Conic Quadratic Programming

KKT

⟨Qx + q, x⟩ = 0, x ∈ K, Qx + q ∈ K∗.

Projection Equation

(Q − Id)ΠK + x = −q

Theorem (Bellocruz et al., 2017) - Solutions of the Equation →
KKT
If x is a solution of the Projection Equation, then x = ΠK(x) is a
solution of the KKT system.

Theorem - KKT → Solutions of the Projection Equation
If x is a KKT solution, then x = x − (Qx + q) is a solution of the
Projection Equation.
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Properties of the Projection

We can try to solve the equation using Newton’s method, but ΠK
is not differentiable at some points.

Theorem
The projection operator ΠK(·) is differentiable almost everywhere.
The Jacobian P ′

K(x) (when it exists) and the generalized Jacobian
V (x) ∈ ∂CΠK(x), for all x ∈ X, are self-adjoint and positive
definite operators. Furthermore, the following properties are
satisfied:
(i) ∥V (x)∥ ≤ 1, ∀V (x) ∈ ∂CΠK(x) with x ∈ X.
(ii) V (x)x = ΠK(x), ∀V (x) ∈ ∂CΠK(x) with x ∈ X.
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Conic Quadratic Programming

Solving the Equation
We can solve using Newton’s method or a variant of Newton’s
method. For F (x) = 0 we use

F (xk) + V (xk)(xk+1 − xk) = 0,

where V (x) ∈ ∂CF (x) is Clarke’s subdifferential.

Semismooth Newton for Quadratic Programming
For F (x) = (Q − Id)ΠK(x) + x + q it results in

((Q − Id)V (xk) + Id)xk+1 = −q,

where V (x) ∈ ∂CΠK(x) is Clarke’s subdifferential.
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Some Properties

Proposition
If ∥Q − Id∥ < 1, then (Q − Id)ΠK(x) + x = −q has a unique
solution for all q ∈ X.

Proposition
If Q is nonsingular and ∥Q−1 − Id∥ < 1, then
(Q − Id)ΠK(x) + x = −q has a unique solution for all q ∈ X.

Proposition
If V (xk+1) = V (xk), then xk+1 is a solution of the equation.
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Sufficient Conditions for Convergence

Theorem
Let q ∈ X and Q : X → X be a linear operator. Suppose that
Q − Id has an inverse and ∥Q − Id∥ < 1. Then, the equation has a
unique solution x , and for any initial point x0, the sequence
generated by the semismooth Newton method {xk} is well-defined.
Additionally, if ∥Q − Id∥ < 1

2 then the method converges
Q-linearly to x satisfying

∥xk+1 − x∥ ≤ ∥Q − Id∥
1 − ∥Q − Id∥

∥xk − x∥, k ∈ N.
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Sufficient Conditions for Convergence

Theorem
Let q ∈ X and Q : X → X be a positive definite operator. Then for
any x0, the sequence generated by the semismooth Newton
method {xk} is well-defined. Additionally, if Q − Id is nonsingular,
then the equation has a unique solution x , and if ∥Q − Id∥ < 1 the
sequence converges Q-linearly to x and satisfies

∥xk+1 − x∥ ≤ ∥Q − Id∥∥xk − x∥, k ∈ N.



Motivation Conic Quadratic Programming Conic Quadratic Programming with Linear Constraints Nearest Correlation Matrix

Nearest Correlation Matrix Problem

Definition min 1
2∥X − G∥2

s.t. diag(X ) = e
X ∈ Sn

+

 ,

where e is the vector of 1s and diag(X ) returns the diagonal vector
of X .

Linear Constraint
The linear constraint diag(X ) = e does not fit directly. We have to
generalize it!!
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Quadratic Cone Problem with Linear Constraints

Definition min 1
2⟨x , Qx⟩ + ⟨q, x⟩

s.t. Ax = b
x ∈ K

 ,

where A : X → Y is a linear mapping and b ∈ Y.

Optimality and Complementarity Conditions

Qx + q + A∗λ − µ = 0
Ax − b = 0

⟨µ, x⟩ = 0,

where µ ∈ K∗ and λ ∈ Y.
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Quadratic Cone Problem with Linear Constraints

Equivalent Formulation

〈(
Qx + A∗λ + q

Ax − b

)
,

(
x
λ

)〉
= 0,

(
Qx + A∗λ + q

Ax − b

)
∈ K ∗.

with (x , λ) ∈ K := K × Y and K ∗ := K∗ × {0}.

Equation for Problem with Linear Constraints(
(Q − Id)ΠK(x) + A∗λ + x

AΠK(x)

)
=
(

−q
b

)
,
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Quadratic Cone Problem with Linear Constraints

System of Equations for the Problem((
Q A∗

A 0

)
− Id

)
ΠK (x , λ) +

(
x
λ

)
=
(

−q
b

)
,

The same results can be applied but now for the matrix (linear

mapping)
(

Q A∗

A 0

)
.
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Quadratic Cone Problem with Linear Constraints

Semismooth Newton for the Quadratic Problem with Linear
Constraints(

(Q − Id)V (xk)xk+1 + xk+1 + A∗λk+1

AV (xk)xk+1

)
=
(

−q
b

)
,
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Nearest Correlation Matrix

Returning to the Problemmin 1
2∥X − G∥2

s.t. A(X ) = b
X ∈ Sn

+

 .

Iteration (
X k+1 + A∗(Λk+1)

AV (X k)X k+1

)
=
(

G
b

)
.
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Nearest Correlation Matrix

Problem min 1
2∥X − G∥2

s.t. diag(X ) = e
X ∈ Sn

+

 .

Equations and Iteration(
X + Diag(λ)
diag(ΠSn

+
(X ))

)
=
(

G
e

)
.

The semismooth Newton method for the Nearest Correlation
Matrix results in (

X k+1 + Diag(λk+1)
diag(V (X k)X k+1)

)
=
(

G
e

)
.



Motivation Conic Quadratic Programming Conic Quadratic Programming with Linear Constraints Nearest Correlation Matrix

Nearest Correlation Matrix

Observation
The off-diagonal elements of X k+1 must be equal to the
off-diagonal elements of G . We define Dk+1 = Diag(diag(X k+1))
and Ĝ = G − Diag(diag(G)), obtaining

X k+1 = Dk+1 + Ĝ ,

λk+1 = diag(G) − diag(Dk+1).

Final Iteration
After some calculations substituting into diag(V (X k)X k+1) = e
we get

diag(Dk+1) = (Diag(diag(V (X k)))−1[e − diag(V (X k)Ĝ)].
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Nearest Correlation Matrix

Choice of V (X )
A choice for V (X ) is the subdifferential by Malick, 2006.
We use

V (X ) = UDUT ,

where X = UΛUT , Dii = 1 if Λii > 0 and Dii = 0 if Λii ≤ 0.

Proposition
Let X ∈ Sn. If diag(X ) > 0, then diag(V (X )) > 0.
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Numerical Experiments

Proposed Method
Qi and Sun in 2006 applied semismooth Newton to

F̃ (y) := AΠSn
+
(G + A∗y) − e,

in particular for

F̃ (y) := diag(ΠSn
+
(G + Diag(y))) − e.
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Numerical Experiments

Qi and Sun, 2006
- They use the Clarke subdifferential found by Malick in 2006.
- They use Conjugate Gradients to solve the linear systems.

Higham, 2010
- Uses minres preconditioning the matrix G before iterating,
D− 1

2 GD− 1
2 .
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Numerical Experiments

Figura: Performance profile

(a) n = 5000 (b) n = 8000 (c) n = 10000

Figura: Performance profiles
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Work in Progress

Nonlinear Cone Problem
The problem and method can be generalized to the NCP problem.(

min f (x)
s.t. g(x) ∈ K

)
with f : X → R, g : X → Y and K ⊂ Y being a convex closed cone.
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Work in Progress

KKT System

∇f (x) − (Dg(x))∗λ = 0
⟨λ, g(x)⟩ = 0

g(x) ∈ K.

Equivalent Form

〈(
∇f (x) − (Dg(x))∗λ

g(x)

)
,

(
x
λ

)〉
= 0,

(
∇f (x) − (Dg(x))∗λ

g(x)

)
∈ K∗

(x , λ) ∈ K, where K:= X × K∗ and therefore K∗ = {0} × K.
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Work in Progress

Equations for the NCP
The equation for the new case is

∇f (x) − (Dg(x))∗ΠK∗(λ) = 0
g(x) − ΠK∗(λ) + λ = 0.

We can return to the original cone using the Moreau
decomposition λ = ΠK(λ) − ΠK∗(−λ).

Theorem
- If (x , λ) solves the system of equations, then (x , ΠK∗(λ)) solves
KKT.
- If (x , σ) is a solution of the KKT system, then (x , λ) is a solution
of the system of equations λ := σ − g(y).
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Work in Progress

Particular Case g ≡ Id

∇f (x) − ΠK∗(λ) = 0
x − ΠK∗(λ) + λ = 0.

Resulting in
∇f (ΠK(y)) − ΠK(y) + y = 0.

Proposition
Let f : X → R such that ∇f is Lipschitz continuous. If
∥Id − ∇2f (z)∥ < 1, ∀z then the equation has a unique solution.
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Work in Progress

Semismooth Newton for NCP(
∇2f (x k) − (D2g(x k))∗ΠK∗ (λk) −(Dg(x k))∗VK∗ (λk)

Dg(x k) Id − VK∗ (λk)

)(
x k+1 − x k

λk+1 − λk

)
+(

∇f (x k) − (Dg(x k))∗ΠK∗ (λk)
g(x k) − ΠK∗ (λk) + λk

)
=
(

0
0

)
.
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Work in Progress

Mixed Projection Cone Problem
min ⟨C , X ⟩ + λRank(X )
s.t. AX = B

Rank(X ) ≤ σ
x ∈ K.


A ∈ Rl×n, B ∈ Rl×m, X ∈ Rn×m, C ∈ Rn×m, σ ≥ 0 and K is a
cone.

Some Applications
Low-Rank Matrix Completion.
Minimum Dimension Euclidean Distance Embedding.
Quadratically Constrained Quadratic Optimization (QCQP)
Relaxation.
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Work in Progress

Proposition (Bertsimas, 2022)
For any X ∈ Rn×m, Rank(X ) ≤ σ ⇐⇒ ∃Y ∈ Yn : Tr(Y ) ≤ σ,
X = YX . Where Yn := {P ∈ Sn : P2 = P} is the set of orthogonal
projection matrices of size n × n.

Resulting Problem 

min ⟨C , X ⟩ + λTr(Y )
s.t. AX = B

X = YX
Y 2 = Y

Tr(Y ) ≤ σ
Y ∈ Sn

X ∈ K.


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Conclusions and Future Ideas

We managed to generalize the results for cone programming.
We applied the method to the Nearest Correlation Matrix
problem obtaining some results, but we can improve!!
Consider another choice for V (x).
Consider the Newton matrix and the step size of the method,
especially for the problems of interest.
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