Motivation Conic Quadratic Programming Conic Quadratic Programming with Linear Constraints Nearest Correlation Matrix

A semi-smooth Newton method for solving general projection equations*

Nicolas F. Armijo [†] Yunier Bello-Cruz[‡] Gabriel Haeser [§]

Midwest Optimization Meeting, Waterloo 2024

*Supported by NSF Grant # DMS - 2307328 [†]Institute of Applied Mathematics, IME, USP, Brazil. [‡]Department of Mathematical Sciences, NIU, USA. [§]Institute of Applied Mathematics, IME, USP, Brazil.

Schedule

2 Conic Quadratic Programming

3 Conic Quadratic Programming with Linear Constraints

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Conic Quadratic Programming Conic Quadratic Programming with Linear Constraints Nearest Correlation Matrix

Projection Equations

Piecewise Linear Equation (Bellocruz et al., 2016)

$$x^+ + Tx = b.$$

with x^+ being the positive part of x and T a matrix.

Second-Order Cone (Bellocruz et al., 2017)

$$\Pi_{\mathbb{L}^n}(x) + Tx = b.$$

 \mathbb{L}^n is the second-order cone.

General Cone

$$\Pi_{\mathcal{K}}(x)+Tx=b.$$

 $\mathcal{K} \subset \mathbb{X}$ is a convex and closed cone, $\Pi_{\mathcal{K}}(x)$ is the projection of x onto \mathcal{K} and $\mathcal{T}: \mathbb{X} \to \mathbb{X}$ is a linear mapping.

Conic Quadratic Programming Conic Quadratic Programming with Linear Constraints Nearest Correlation Matrix

Quadratic Programming Application

Piecewise Linear Case

$$\begin{pmatrix} \min & \frac{1}{2}x^TQx + q^Tx \\ \text{s.t.} & x \in \mathbb{R}^n_+ \end{pmatrix}$$

Second-Order Cone Case

$$\begin{pmatrix} \min & \frac{1}{2}x^T Q x + q^T x \\ \text{s.t.} & x \in \mathbb{L}^n \end{pmatrix}$$

General Cone Case

$$\begin{pmatrix} \min & \frac{1}{2} \langle x, Qx \rangle + \langle q, x \rangle \\ \text{s.t.} & x \in \mathcal{K} \end{pmatrix}$$

where $Q: \mathbb{X} \to \mathbb{X}$ is a linear mapping and $\langle \cdot, \cdot \rangle$ is the inner product in X.

Optimality and Complementarity Conditions

Conic Quadratic Programming

$$Qx + q - \mu = 0,$$

 $\langle \mu, x \rangle = 0.$

where $\mu \in \mathcal{K}^*$ is a Lagrange multiplier.

Equivalent Form

$$\langle Qx + q, x \rangle = 0$$
, $x \in \mathcal{K}$, $Qx + q \in \mathcal{K}^*$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Conic Quadratic Programming Conic Quadratic Programming with Linear Constraints

Nearest Correlation Matrix

Corresponding Equations

Piecewise Linear Case

$$(Q-Id)x^+ + x = -q$$

Case with Second-Order Cone

$$(Q - Id)\Pi_{\mathbb{L}^n} + x = -q$$

Case with General Cone

$$(Q-Id)\Pi_{\mathcal{K}}+x=-q$$

▲□▶▲□▶▲□▶▲□▶ □ のQの

Conic Quadratic Programming Conic Quadratic Programming with Linear Constraints Nearest Correlation Matrix

Conic Quadratic Programming

KKT

$$\langle Qx + q, x \rangle = 0$$
, $x \in \mathcal{K}$, $Qx + q \in \mathcal{K}^*$.

Projection Equation

$$(Q - Id)\Pi_{\mathcal{K}} + x = -q$$

Theorem (Bellocruz et al., 2017) - Solutions of the Equation ightarrowKKT

If x is a solution of the Projection Equation, then $\overline{x} = \prod_{\mathcal{K}} (x)$ is a solution of the KKT system.

Theorem - KKT \rightarrow Solutions of the Projection Equation

If \overline{x} is a KKT solution, then $x = \overline{x} - (Q\overline{x} + q)$ is a solution of the Projection Equation.

Properties of the Projection

We can try to solve the equation using Newton's method, but $\Pi_{\mathcal{K}}$ is not differentiable at some points.

Theorem

The projection operator $\Pi_{\mathcal{K}}(\cdot)$ is differentiable almost everywhere. The Jacobian $P'_{\mathcal{K}}(x)$ (when it exists) and the generalized Jacobian $V(x) \in \partial_C \Pi_{\mathcal{K}}(x)$, for all $x \in \mathbb{X}$, are self-adjoint and positive definite operators. Furthermore, the following properties are satisfied:

(i)
$$\|V(x)\| \le 1$$
, $\forall V(x) \in \partial_C \Pi_{\mathcal{K}}(x)$ with $x \in \mathbb{X}$.
(ii) $V(x)x = \Pi_{\mathcal{K}}(x), \forall V(x) \in \partial_C \Pi_{\mathcal{K}}(x)$ with $x \in \mathbb{X}$

Conic Quadratic Programming

Solving the Equation

We can solve using Newton's method or a variant of Newton's method. For F(x) = 0 we use

$$F(x^k) + V(x^k)(x^{k+1} - x^k) = 0,$$

where $V(x) \in \partial_C F(x)$ is Clarke's subdifferential.

Semismooth Newton for Quadratic Programming

For $F(x) = (Q - Id)\Pi_{\mathcal{K}}(x) + x + q$ it results in

$$((Q-Id)V(x^k)+Id)x^{k+1}=-q,$$

where $V(x) \in \partial_C \Pi_{\mathcal{K}}(x)$ is Clarke's subdifferential.

Some Properties

Proposition

If
$$||Q - Id|| < 1$$
, then $(Q - Id)\Pi_{\mathcal{K}}(x) + x = -q$ has a unique solution for all $q \in \mathbb{X}$.

Proposition

If Q is nonsingular and $||Q^{-1} - Id|| < 1$, then $(Q - Id)\Pi_{\mathcal{K}}(x) + x = -q$ has a unique solution for all $q \in \mathbb{X}$.

Proposition

If
$$V(x^{k+1}) = V(x^k)$$
, then x^{k+1} is a solution of the equation.

Sufficient Conditions for Convergence

Theorem

Let $q \in \mathbb{X}$ and $Q: \mathbb{X} \to \mathbb{X}$ be a linear operator. Suppose that Q - Id has an inverse and ||Q - Id|| < 1. Then, the equation has a unique solution \overline{x} , and for any initial point x^0 , the sequence generated by the semismooth Newton method $\{x^k\}$ is well-defined. Additionally, if $||Q - Id|| < \frac{1}{2}$ then the method converges Q-linearly to \overline{x} satisfying

$$||x^{k+1} - \overline{x}|| \le \frac{||Q - Id||}{1 - ||Q - Id||} ||x^k - \overline{x}||, \ k \in \mathbb{N}.$$

(日)

Sufficient Conditions for Convergence

Theorem

Let $q \in \mathbb{X}$ and $Q: \mathbb{X} \to \mathbb{X}$ be a positive definite operator. Then for any x^0 , the sequence generated by the semismooth Newton method $\{x^k\}$ is well-defined. Additionally, if Q - Id is nonsingular, then the equation has a unique solution \overline{x} , and if ||Q - Id|| < 1 the sequence converges Q-linearly to \overline{x} and satisfies

$$\|x^{k+1} - \overline{x}\| \le \|Q - Id\| \|x^k - \overline{x}\|, \ k \in \mathbb{N}.$$

Nearest Correlation Matrix Problem

Definition

$$\begin{pmatrix} \min & \frac{1}{2} \| X - G \|^2 \\ \text{s.t.} & \text{diag}(X) = e \\ & X \in \mathbb{S}^n_+ \end{pmatrix},$$

where e is the vector of 1s and diag(X) returns the diagonal vector of X.

Linear Constraint

The linear constraint diag(X) = e does not fit directly. We have to generalize it!!

Quadratic Cone Problem with Linear Constraints

Definition

$$egin{pmatrix} \min & rac{1}{2}\langle x, Qx
angle + \langle q, x
angle \ ext{s.t.} & \mathcal{A}x = b \ & x \in \mathcal{K} \end{pmatrix},$$

where $\mathcal{A} \colon \mathbb{X} \to \mathbb{Y}$ is a linear mapping and $b \in \mathbb{Y}$.

Optimality and Complementarity Conditions

$$egin{aligned} Qx+q+\mathcal{A}^*\lambda-\mu&=0\ \mathcal{A}x-b&=0\ \langle\mu,x
angle&=0, \end{aligned}$$

where $\mu \in \mathcal{K}^*$ and $\lambda \in \mathbb{Y}$.

Quadratic Cone Problem with Linear Constraints

Equivalent Formulation

$$\left\langle \begin{pmatrix} Qx + \mathcal{A}^*\lambda + q \\ \mathcal{A}x - b \end{pmatrix}, \begin{pmatrix} x \\ \lambda \end{pmatrix} \right\rangle = 0, \quad \begin{pmatrix} Qx + \mathcal{A}^*\lambda + q \\ \mathcal{A}x - b \end{pmatrix} \in \mathcal{K}^*.$$

with $(x, \lambda) \in K := \mathcal{K} \times \mathbb{Y}$ and $K^* := \mathcal{K}^* \times \{0\}$.

Equation for Problem with Linear Constraints

$$igg(igg(Q - Id ig) \Pi_{\mathcal{K}}(x) + \mathcal{A}^* \lambda + x \ \mathcal{A} \Pi_{\mathcal{K}}(x) igg) = igg(-q \ b igg),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Quadratic Cone Problem with Linear Constraints

System of Equations for the Problem

$$\left(\left(egin{array}{cc} Q & \mathcal{A}^* \\ \mathcal{A} & 0 \end{array}
ight) - \mathit{Id}
ight) \Pi_{\mathcal{K}}(x,\lambda) + \left(egin{array}{cc} x \\ \lambda \end{array}
ight) = \left(egin{array}{cc} -q \\ b \end{array}
ight),$$

The same results can be applied but now for the matrix (linear mapping) $\begin{pmatrix} Q & A^* \\ A & 0 \end{pmatrix}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Quadratic Cone Problem with Linear Constraints

Semismooth Newton for the Quadratic Problem with Linear Constraints

$$\binom{(Q-Id)V(x^k)x^{k+1}+x^{k+1}+\mathcal{A}^*\lambda^{k+1}}{\mathcal{A}V(x^k)x^{k+1}} = \binom{-q}{b},$$

Conic Quadratic Programming Conic Quadratic Programming with Linear Constraints

٠

Nearest Correlation Matrix

Nearest Correlation Matrix

Returning to the Problem

$$\begin{pmatrix} \min & \frac{1}{2} \| X - G \|^2 \\ \text{s.t.} & \mathcal{A}(X) = b \\ & X \in \mathbb{S}^n_+ \end{pmatrix}$$

Iteration

$$\binom{X^{k+1}+\mathcal{A}^*(\Lambda^{k+1})}{\mathcal{A}V(X^k)X^{k+1}} = \binom{G}{b}.$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Conic Quadratic Programming Conic Quadratic Programming with Linear Constraints

Nearest Correlation Matrix

Nearest Correlation Matrix

Problem

$$\begin{array}{ll} \min & \frac{1}{2} \| X - G \|^2 \\ \text{s.t.} & \operatorname{diag}(X) = e \\ & X \in \mathbb{S}^n_+ \end{array}$$

Equations and Iteration

$$egin{pmatrix} X+\operatorname{Diag}(\lambda)\ \operatorname{diag}(\Pi_{\mathbb{S}^n_+}(X)) \end{pmatrix} = egin{pmatrix} G\ e \end{pmatrix}.$$

The semismooth Newton method for the Nearest Correlation Matrix results in

$$\begin{pmatrix} X^{k+1} + \text{Diag}(\lambda^{k+1}) \\ \text{diag}(V(X^k)X^{k+1}) \end{pmatrix} = \begin{pmatrix} G \\ e \end{pmatrix}$$

Observation

The off-diagonal elements of X^{k+1} must be equal to the off-diagonal elements of G. We define $D^{k+1} = \text{Diag}(\text{diag}(X^{k+1}))$ and $\hat{G} = G - \text{Diag}(\text{diag}(G))$, obtaining

$$\begin{split} X^{k+1} &= D^{k+1} + \hat{G}, \\ \lambda^{k+1} &= \mathsf{diag}(G) - \mathsf{diag}(D^{k+1}). \end{split}$$

Final Iteration

After some calculations substituting into diag($V(X^k)X^{k+1}$) = e we get

$$\mathsf{diag}(D^{k+1}) = (\mathsf{Diag}(\mathsf{diag}(V(X^k)))^{-1}[e - \mathsf{diag}(V(X^k)\hat{G})].$$

Motivation

Conic Quadratic Programming Conic Quadratic Programming with Linear Constraints Nearest Correlation Matrix

Nearest Correlation Matrix

Choice of V(X)

A choice for V(X) is the subdifferential by Malick, 2006. We use

$$V(X) = UDU^{T},$$

where $X = U\Lambda U^T$, $D_{ii} = 1$ if $\Lambda_{ii} > 0$ and $D_{ii} = 0$ if $\Lambda_{ii} \leq 0$.

Proposition

Let $X \in \mathbb{S}^n$. If diag(X) > 0, then diag(V(X)) > 0.

Motivation

Conic Quadratic Programming Conic Quadratic Programming with Linear Constraints

Nearest Correlation Matrix

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Numerical Experiments

Proposed Method

Qi and Sun in 2006 applied semismooth Newton to

$$ilde{F}(y) := \mathcal{A}\Pi_{\mathbb{S}^n_+}(G + \mathcal{A}^*y) - e,$$

in particular for

$$\widetilde{F}(y) := \operatorname{diag}(\Pi_{\mathbb{S}^n_+}(G + \operatorname{Diag}(y))) - e.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Numerical Experiments

Qi and Sun, 2006

- They use the Clarke subdifferential found by Malick in 2006.
- They use Conjugate Gradients to solve the linear systems.

Higham, 2010

- Uses minres preconditioning the matrix G before iterating, $D^{-\frac{1}{2}}GD^{-\frac{1}{2}}$

Motivation

Conic Quadratic Programming Conic Quadratic Programming with Linear Constraints

Nearest Correlation Matrix

Numerical Experiments

Figura: Performance profile

Figura: Performance profiles

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Nonlinear Cone Problem

The problem and method can be generalized to the NCP problem.

$$\begin{pmatrix} \min & f(x) \\ \text{s.t.} & g(x) \in \mathcal{K} \end{pmatrix}$$

with $f : \mathbb{X} \to \mathbb{R}$, $g : \mathbb{X} \to \mathbb{Y}$ and $\mathcal{K} \subset \mathbb{Y}$ being a convex closed cone.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

KKT System

$$abla f(x) - (Dg(x))^*\lambda = 0$$

 $\langle \lambda, g(x) \rangle = 0$
 $g(x) \in \mathcal{K}$

Equivalent Form

$$\left\langle \begin{pmatrix} \nabla f(x) - (Dg(x))^* \lambda \\ g(x) \end{pmatrix}, \begin{pmatrix} x \\ \lambda \end{pmatrix} \right\rangle = 0, \ \begin{pmatrix} \nabla f(x) - (Dg(x))^* \lambda \\ g(x) \end{pmatrix} \in K^*$$

 $(\overline{x},\overline{\lambda}) \in \mathsf{K}$, where $\mathsf{K} := \mathbb{X} \times \mathcal{K}^*$ and therefore $\mathsf{K}^* = \{0\} \times \mathcal{K}$.

Equations for the NCP

The equation for the new case is

$$abla f(x) - (Dg(x))^* \Pi_{\mathcal{K}^*}(\lambda) = 0$$

 $g(x) - \Pi_{\mathcal{K}^*}(\lambda) + \lambda = 0.$

We can return to the original cone using the Moreau decomposition $\lambda = \Pi_{\mathcal{K}}(\lambda) - \Pi_{\mathcal{K}^*}(-\lambda)$.

Theorem

- If (x, λ) solves the system of equations, then $(x, \Pi_{\mathcal{K}^*}(\lambda))$ solves KKT.

- If (x, σ) is a solution of the KKT system, then (x, λ) is a solution of the system of equations $\lambda := \sigma - g(y)$.

Particular Case $g \equiv Id$

$$abla f(x) - \Pi_{\mathcal{K}^*}(\lambda) = 0$$

 $x - \Pi_{\mathcal{K}^*}(\lambda) + \lambda = 0.$

Resulting in

$$\nabla f(\Pi_{\mathcal{K}}(y)) - \Pi_{\mathcal{K}}(y) + y = 0.$$

Proposition

Let $f: \mathbb{X} \to \mathbb{R}$ such that ∇f is Lipschitz continuous. If $\| \text{Id} - \nabla^2 f(z) \| < 1$, $\forall z$ then the equation has a unique solution.

Semismooth Newton for NCP

$$\begin{pmatrix} \nabla^2 f(x^k) - (D^2 g(x^k))^* \Pi_{\mathcal{K}^*}(\lambda^k) & -(Dg(x^k))^* V_{\mathcal{K}^*}(\lambda^k) \\ Dg(x^k) & Id - V_{\mathcal{K}^*}(\lambda^k) \end{pmatrix} \begin{pmatrix} x^{k+1} - x^k \\ \lambda^{k+1} - \lambda^k \end{pmatrix} & + \\ \begin{pmatrix} \nabla f(x^k) - (Dg(x^k))^* \Pi_{\mathcal{K}^*}(\lambda^k) \\ g(x^k) - \Pi_{\mathcal{K}^*}(\lambda^k) + \lambda^k \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Mixed Projection Cone Problem

$$A \in \mathbb{R}^{l \times n}$$
, $B \in \mathbb{R}^{l \times m}$, $X \in \mathbb{R}^{n \times m}$, $C \in \mathbb{R}^{n \times m}$, $\sigma \ge 0$ and \mathcal{K} is a cone.

Some Applications

- Low-Rank Matrix Completion.
- Minimum Dimension Euclidean Distance Embedding.
- Quadratically Constrained Quadratic Optimization (QCQP) Relaxation.

Conic Quadratic Programming Conic Quadratic Programming with Linear Constraints 00000

Nearest Correlation Matrix

Work in Progress

Proposition (Bertsimas, 2022)

For any
$$X \in \mathbb{R}^{n \times m}$$
, $\operatorname{Rank}(X) \leq \sigma \iff \exists Y \in \mathcal{Y}_n : \operatorname{Tr}(Y) \leq \sigma$, $X = YX$. Where $\mathcal{Y}_n := \{P \in \mathbb{S}^n : P^2 = P\}$ is the set of orthogonal projection matrices of size $n \times n$.

Resulting Problem

$$\begin{pmatrix} \min & \langle C, X \rangle + \lambda \operatorname{Tr}(Y) \\ \text{s.t.} & AX = B \\ & X = YX \\ & Y^2 = Y \\ & \operatorname{Tr}(Y) \le \sigma \\ & Y \in \mathbb{S}^n \\ & X \in \mathcal{K}. \end{pmatrix}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Conclusions and Future Ideas

- We managed to generalize the results for cone programming.
- We applied the method to the Nearest Correlation Matrix problem obtaining some results, but we can improve!!
- Consider another choice for V(x).
- Consider the Newton matrix and the step size of the method, especially for the problems of interest.