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Projection Equations

Piecewise Linear Equation (Bellocruz et al., 2016)

xT 4+ Tx = b.

with x* being the positive part of x and T a matrix.

.

Second-Order Cone (Bellocruz et al., 2017)

Mea(x) + Tx = b.

IL" is the second-order cone.

A

General Cone

”K(X) + Tx = b.

K € X is a convex and closed cone, MNi(x) is the projection of x
onto K and T: X — X is a linear mapping.

V.
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Quadratic Programming Application

Piecewise Linear Case

<min %XTQX + qTX>

s.t. x € R}

A

Second-Order Cone Case

<min %XTQX + qTx>

s.t. x €L

.

General Cone Case

s.t. x e

(min (%, Qx) + <q,x>> ‘

where Q: X — X is a linear mapping and (-, -) is the inner product
in X.
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Optimality and Complementarity Conditions

Conic Quadratic Programming

Qx+q—p =0,
(u,x) =0.

where p € K* is a Lagrange multiplier.

A

Equivalent Form

(@x+4g,x) =0, xekK, Qx+gqgek
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Corresponding Equations

Piecewise Linear Case

(Q—Id)xt +x=—q

Case with Second-Order Cone

(Q—Id)Npn +x=—q

Case with General Cone

(Q—-Id)Nx +x=—¢q
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Conic Quadratic Programming

(@x+4g,x)=0, xekK, Qx+gek

Projection Equation

(Q—Id)Nk +x=—q

Theorem (Bellocruz et al., 2017) - Solutions of the Equation —
KKT

If x is a solution of the Projection Equation, then X = lNMi(x) is a
solution of the KKT system.

A

Theorem - KKT — Solutions of the Projection Equation

If X is a KKT solution, then x =X — (QX + q) is a solution of the
Projection Equation.

v

i = = =
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Properties of the Projection

We can try to solve the equation using Newton's method, but lNx
is not differentiable at some points.

The projection operator Mi(+) is differentiable almost everywhere.
The Jacobian Pi-(x) (when it exists) and the generalized Jacobian
V(x) € dcMi(x), for all x € X, are self-adjoint and positive
definite operators. Furthermore, the following properties are
satisfied:

(i) V()] <1, VV(x) € OcMNk(x) with x € X.

(ii) V(x)x = Nk(x),YV(x) € OcMi(x) with x € X.
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Conic Quadratic Programming

Solving the Equation

We can solve using Newton's method or a variant of Newton's
method. For F(x) = 0 we use

F(xX) + V) =X =0,

where V/(x) € OcF(x) is Clarke's subdifferential.

N

Semismooth Newton for Quadratic Programming
For F(x) = (Q — Id)MNk(x) + x + q it results in

((Q = [d)V(x) + ld)x" ! = —q,

where V/(x) € 0cMi(x) is Clarke's subdifferential.

.
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Some Properties

Proposition

If |Q —Id|| <1, then (Q — Id)[x(x) + x = —q has a unique
solution for all g € X.

Proposition

If @ is nonsingular and ||@~ — Id|| < 1, then
(Q — Id)Ni(x) + x = —q has a unique solution for all g € X.

Proposition

If V(xkt1) = V(x¥), then x**1 is a solution of the equation.
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Sufficient Conditions for Convergence

Let g € X and @: X — X be a linear operator. Suppose that

Q — Id has an inverse and ||Q — Id|| < 1. Then, the equation has a
unique solution X, and for any initial point x°, the sequence
generated by the semismooth Newton method {x*} is well-defined.
Additionally, if ||Q — Id|| < % then the method converges
Q-linearly to X satisfying

k1 _ |x* —x||, k e N.

I

Q-
< A 7
< T
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Sufficient Conditions for Convergence

Let g € X and Q: X — X be a positive definite operator. Then for
any x°, the sequence generated by the semismooth Newton
method {xk} is well-defined. Additionally, if @ — Id is nonsingular,
then the equation has a unique solution X, and if ||Q — /d|| < 1 the
sequence converges Q-linearly to X and satisfies

It —x|| < [|Q — ld||[Ix* — |, k €N.
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Nearest Correlation Matrix Problem

Definition

min  3||X — G|?
s.t. diag(X) =€,
X eSh

where e is the vector of 1s and diag(X) returns the diagonal vector
of X.

V

Linear Constraint

The linear constraint diag(X) = e does not fit directly. We have to
generalize it!!
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Quadratic Cone Problem with Linear Constraints

Definition

where A: X — Y is a linear mapping and b € Y.

Optimality and Complementarity Conditions

Qx+qg+AX—p =0
Ax—b =0
(1, x) =0,

where 1 € K* and A € Y.
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Quadratic Cone Problem with Linear Constraints

Equivalent Formulation

Qx + A*A+q\ (x\\ _ Qx + A*A+q )
() Q)0 (P e

with (x,A) € K=K x Y and K* := K* x {0}.

Equation for Problem with Linear Constraints

(Q—Id)NMk(x)+ A*XN+x\ _ (—q
Al (x) - ’
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Quadratic Cone Problem with Linear Constraints

System of Equations for the Problem
Q A x\ [ —q
(25) - men+(5)-():

The same results can be applied but now for the matrix (linear

. Q A
mapping) <A 0 )
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Quadratic Cone Problem with Linear Constraints

Semismooth Newton for the Quadratic Problem with Linear
Constraints

(Q — Id)V(x*)xk+1 4 xkHL 4 ANy (g
AV (xF)xk+1 b )
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Nearest Correlation Matrix

Returning to the Problem

min  3[|X — G||?
st. AX)=0b
X eSSt

V

Xk+1_|_A*(/\k+1) B G
AV(XKxkt ) = b )
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Nearest Correlation Matrix

Problem

min 3| X — G|?
s.t. diag(X) =e
X eSh

X + Diag(A)\ (G
diag(l'lgi (X))  \e)

The semismooth Newton method for the Nearest Correlation

Matrix results in
XK+ 4 Diag(A*1)\ (G
diag(V(X) X1 )~ e )
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Nearest Correlation Matrix

Observation
The off-diagonal elements of X¥*1 must be equal to the
off-diagonal elements of G. We define D**! = Diag(diag(X**1))
and G = G — Diag(diag(G)), obtaining

Xk+1 — Dk+1 + é‘

AL — diag(G) — diag(D*t1).

A

Final Iteration

After some calculations substituting into diag(V/ (X*)Xk*1) = e
we get

diag(D*) = (Diag(diag(V(X*)))![e — diag(V(X¥)G)].
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Nearest Correlation Matrix

Choice of V(X)

A choice for V/(X) is the subdifferential by Malick, 2006.
We use

V(X) = UDUT,

where X = U/\UT, D,',' =1if /\,',' > 0 and D,',' =0if /\,',' < 0.

Proposition
Let X € S™. If diag(X) > 0, then diag(V/(X)) > 0.




Nearest Correlation Matrix
0000@0000000000

Numerical Experiments

Proposed Method
Qi and Sun in 2006 applied semismooth Newton to

F(y) = Algn (G + A%y) — e,

in particular for

F(y) == diag(MNss (G + Diag(y))) — e.




Nearest Correlation Matrix
00000@000000000

Numerical Experiments

Qi and Sun, 2006

- They use the Clarke subdifferential found by Malick in 2006.
- They use Conjugate Gradients to solve the linear systems.

Higham, 2010

- Uses minres preconditioning the matrix G before iterating,
1 1
D 2GD 2.
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Numerical Experiments

Proportion of problems

e Foy P Fy P
Within this factor of the best (log scale)

Figura: Performance profile
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Figura: Performance profiles
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Work in Progress

Nonlinear Cone Problem

The problem and method can be generalized to the NCP problem.

(min f(x) )
st. gx) ek

with f: X - R, g: X — Y and K C Y being a convex closed cone. |
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Work in Progress

Vf(x)—(Dg(x))'A = 0
(\e(x)) = 0
g(x) € K.

v

Equivalent Form

VF(x) = (Dg() N\ (x\\ _o (V) = (Dg()yN) _
() () =o (e ex

(X, A) € K, where K:= X x K* and therefore K* = {0} x K.
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Work in Progress

Equations for the NCP
The equation for the new case is
Vi(x) — (Dg(x)) Mk-(A) =0
g(x) —Mgx(A)+X =0.

We can return to the original cone using the Moreau
decomposition A = Mic(A) — Mie=(—A).

v

- If (x, \) solves the system of equations, then (x, Mi+(X)) solves
KKT.

- If (x,0) is a solution of the KKT system, then (x, A) is a solution
of the system of equations \ := o — g(y).

V
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Work in Progress

Particular Case g = Id

Vi(x)—MNg=(A) =0
x—I'I;C*(/\)—i—)\ =0.

Resulting in
VE(Mk(y)) = Mi(y) +y =0.

Proposition

Let f: X — R such that Vf is Lipschitz continuous. If
|ld — V2£(2)|| < 1, ¥z then the equation has a unique solution.
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Work in Progress

Semismooth Newton for NCP

<VZ( “) - (D’g ( “))* M= (A%) —(Dg(xk))*Vfc*(’\k)> (XHI_Xk) +
Dg(x*) Id — Vicx(\) AL \K

(Vf(xk) - (Dg(xk))*ﬂzc*(kk)> _ (0>
g(x*) — M= (AF) + ¥ 0/
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Work in Progress

Mixed Projection Cone Problem

min (C, X) + ARank(X)
s.t. AX =B
Rank(X) <o
x € K.
Ac Rlxny Bc Rlxm’ X € R”Xm, Ce R”X"’, o>0 and C is a
cone.

Some Applications

@ Low-Rank Matrix Completion.
@ Minimum Dimension Euclidean Distance Embedding.

@ Quadratically Constrained Quadratic Optimization (QCQP)
Relaxation.
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Work in Progress

Proposition (Bertsimas, 2022)

For any X € R™™ Rank(X) <o <= 3JY € Y,: Tr(Y) <o,
X = YX. Where Y, := {P € S": P2 = P} is the set of orthogonal
projection matrices of size n X n.

Resulting Problem

min  (C, X) + ATr(Y)
s.t. AX =B
X =YX
Y2 =Y
T(Y)<o
YesS"
X ek.
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Conclusions and Future ldeas

@ We managed to generalize the results for cone programming.

@ We applied the method to the Nearest Correlation Matrix
problem obtaining some results, but we can improve!!

e Consider another choice for V/(x).

o Consider the Newton matrix and the step size of the method,
especially for the problems of interest.




	Motivation
	Conic Quadratic Programming
	Conic Quadratic Programming with Linear Constraints
	Nearest Correlation Matrix

