Next: About this document ...
Up: Typos in Chapter 17
Previous: Typos in Chapter 17
- 1
- Atwood, C.L. (1973). ``Sequences Converging to=20
D-optimal Designs of Experiments.'' Ann. Stat., 1,=20
342-352.
- 2
- Atkinson, G.L. and Donev, A.N. (1992). =20
Optimum Experimental Designs, Clarendon Press, Oxford.
- 3
- Balakrishnan, A. (1971) Introduction to
Optimization Theory in Hilbert Space, Springer, New York.
- 4
- Box G.E.P. and Draper, N. (1987). Empirical Model
Building and Responce Surfaces. Wiley, New York.
- 5
- Cook, R.D. and Fedorov, V.V. (1995). ``Constrained
Optimization of Experimental design (with Discussion).''
Statistics, 26, 129-178.
- 6
- Cook, R.D. and Nachtsheim, C.J. (1989). =20
``Computer-aided Blocking for Factorial and Response-Surface=20
Designs.'' Technometrics, 31, 339-346.
- 7
- Cook, R. D. and Thibodeau, L.A. (1980).
``Marginally Restricted D-optimal Designs.'' JASA, 75, 366-3=
71.
- 8
- Cook, R.D. and Wong, W.K. (1994). `` On the Equivalence=20
of Constrained and Compound Optimal Designs.'' JASA, 89, 687-6=
92.
- 9
- Holger, D. (1995). ``Contribution to the
Discussion''. Statistics, 26, 153-161.
- 10
- Fedorov, V.V. (1972). Theory of Optimal=20
Experiments. Academic Press, New York.
- 11
- Fedorov, V.V. (1989). ``Optimal Design with=20
Bounded Density: Optimization Algorithms of the Exchange=20
Type.'' JSPI, 22, 1-13.
- 12
- Fedorov, V.V. and Hackl, P. (1997). Model-Oriented
Design of Experiments. Springer, New York.
- 13
- Fedorov, V.V. and Gaivoronski, A. (1984). =20
Design of Experiments Under Constraints. International=20
Institute for Applied System Analysis. WP-84-8, Austria,=20
Laxenburg.
- 14
- Fedorov, V.V. and Malyutov, A.B. (1972). =20
``Design of Experiments in Regression Problems.'' Mathemat.=20
Operationsforschung und Statist., 3, 281-321.
- 15
- Fedorov, V.V. and Nachtsheim, C. (1995) ``Optimal Design
for Time-Dependent Responces.'' in MODA4 - Advances in
Model-Oriented Data Analysis. Eds. Kitsos, C. and Müller,
W.. Springer, New York.
- 16
- Fedorov, V.V. and Uspensky, A.B. (1975). =20
Numerical Aspects of Design and Analysis of Experiments. =20
Moscow State University.
- 17
- Gaffke N. and Heligers, B. (1995). ``Algorithms for
Optimal Design with Application to Multiple Polynomial
Regression.'' Metrika, 42, 173-190.
- 18
- Gaffke N. and Heligers, B. (1995). ``Second Order Methods
for Solving Extremum Problems from Optimal Linear Regression
Design.'' Optimization, 36, 41-57.
- 19
- Gaffke N. and Mathar, R. (1992). ``On a Class of Algorithms
from Experimental Design Theory.'' Optimization, 24, 91-126.
- 20
- Huang, M.L. and Hsu, M.C. (1993).
``Marginally Restricted Linear-optimal Designs.'' JSPI, 35,
251-266.
- 21
- Gaivoronski, A. (1986). ``Linearization Methods=20
for Optimization of Functionals Which Depend on Probability=20
Measures.'' Mathematical Programming Study, 28,=20
157-181.
- 22
- Hiriart-Urrurty J.-P. and Lemaréchal C. (1993)
Convex Analysis and Minimization Algorithms I. Springer, New York.
- 23
- S. Karlin and W.J. Studden (1966). Tchebycheff=20
Systems: with Applications in Analysis and Statistics. Wiley=20
and Sons, New York.
- 24
- Kiefer, J. (1959). `` Optimal Experimental=20
Design.'' Journal of the Royal Statistical Society, B,=20
21, 272-319.
- 25
- Krein, M. and Nudelman, A. (1977). The Markov=20
Moment Problem and Extremal Problems. Translation=20
Mathem. Monographs 50, American Mathematical Society,=20
Providence, EI.
- 26
- Läuter, E. (1976). Optimal Multipurpose=20
Designs for Regression Models. Math. Operationsforschung
und Statist., 7, 51-68.
- 27
- Lee, C.M.-S. (1988). ``Constrained Optimal=20
Designs.'' JSPI, 18, 377-389.
- 28
- Lewis, A.S. (1996). ``Convex Analysis on Hermitian Matrices.'=
'=20
SIAM J. Optimization, 6, 164-177.
- 29
- Mitchell, T.J. (1974). `` An Algorithm for the=20
Construction of D-optimal Experimental Designs.'' =20
Technometrics, 16, 203-211.
- 30
- Pukelsheim, F. (1980). ``On Linear Regression=20
Designs Which Maximize Information.'' JSPI, 4,=20
339-364.=20
- 31
- Pukelsheim, F. (1993) Optimal Design of
Experiments. Wiley, New York.
- 32
- Schwabe, R. (1996). Optimum Designs for Multi-Factor
Models. Springer, New York.
- 33
- Silvey, S.D. (1980). Optimal Design,=20
Chapman and Hall, London, 1980.
- 34
- Vandenbeghe, L. and Boyd, S. (1996). ``Semidefinite
Programming.'' SIAM Review, 38, 49-95.
- 35
- Vandenbeghe, L., Boyd, S. and Wu,
S.P. (1996). ``Determinant Maximization with Linear Matrix
Inequality Constraints.'' TR, Stanford University, Stanford.
- 36
- Wang, B.Y. and Zhang, F. (1995). ``Trace and Eigenvalue
Inequalities for Ordinary and Hadamard Products of Semidefinite
Hermitian Matrices.'' SIAM J. Matrix Anal. Appl., 16,
1173-1183.=20
- 37
- Whittle, P. (1973). ``Some General Points in the=20
Theory of Optimal Experimental Design.'' Journal of the=20
Royal Statistical Society, Ser. B, 35, 123-130.
- 38
- Wu, C.F. and Wynn, H. (1978). ``The Convergence=20
of General Step-Length Algorithms for Regular Optimum Design=20
Criteria.'' Ann. Statist., 6, 1273-1285.
- 39
- Wynn, H. (1982). `` Optimum Submeasures=20
with Applications to Finite
Population Sampling.'' Statistical Decision Theory and Related=20
TopicsIII, Vol. 2,
Academic Press, New York, 485-495.
Henry Wolkowicz
2000-12-22