next up previous
Next: About this document ... Up: Typos in Chapter 17 Previous: Typos in Chapter 17

Bibliography

1
Atwood, C.L. (1973). ``Sequences Converging to=20 D-optimal Designs of Experiments.'' Ann. Stat., 1,=20 342-352.

2
Atkinson, G.L. and Donev, A.N. (1992). =20 Optimum Experimental Designs, Clarendon Press, Oxford.

3
Balakrishnan, A. (1971) Introduction to Optimization Theory in Hilbert Space, Springer, New York.

4
Box G.E.P. and Draper, N. (1987). Empirical Model Building and Responce Surfaces. Wiley, New York.

5
Cook, R.D. and Fedorov, V.V. (1995). ``Constrained Optimization of Experimental design (with Discussion).'' Statistics, 26, 129-178.

6
Cook, R.D. and Nachtsheim, C.J. (1989). =20 ``Computer-aided Blocking for Factorial and Response-Surface=20 Designs.'' Technometrics, 31, 339-346.

7
Cook, R. D. and Thibodeau, L.A. (1980). ``Marginally Restricted D-optimal Designs.'' JASA, 75, 366-3= 71.

8
Cook, R.D. and Wong, W.K. (1994). `` On the Equivalence=20 of Constrained and Compound Optimal Designs.'' JASA, 89, 687-6= 92.

9
Holger, D. (1995). ``Contribution to the Discussion''. Statistics, 26, 153-161.

10
Fedorov, V.V. (1972). Theory of Optimal=20 Experiments. Academic Press, New York.

11
Fedorov, V.V. (1989). ``Optimal Design with=20 Bounded Density: Optimization Algorithms of the Exchange=20 Type.'' JSPI, 22, 1-13.

12
Fedorov, V.V. and Hackl, P. (1997). Model-Oriented Design of Experiments. Springer, New York.

13
Fedorov, V.V. and Gaivoronski, A. (1984). =20 Design of Experiments Under Constraints. International=20 Institute for Applied System Analysis. WP-84-8, Austria,=20 Laxenburg.

14
Fedorov, V.V. and Malyutov, A.B. (1972). =20 ``Design of Experiments in Regression Problems.'' Mathemat.=20 Operationsforschung und Statist., 3, 281-321.

15
Fedorov, V.V. and Nachtsheim, C. (1995) ``Optimal Design for Time-Dependent Responces.'' in MODA4 - Advances in Model-Oriented Data Analysis. Eds. Kitsos, C. and Müller, W.. Springer, New York.

16
Fedorov, V.V. and Uspensky, A.B. (1975). =20 Numerical Aspects of Design and Analysis of Experiments. =20 Moscow State University.

17
Gaffke N. and Heligers, B. (1995). ``Algorithms for Optimal Design with Application to Multiple Polynomial Regression.'' Metrika, 42, 173-190.

18
Gaffke N. and Heligers, B. (1995). ``Second Order Methods for Solving Extremum Problems from Optimal Linear Regression Design.'' Optimization, 36, 41-57.

19
Gaffke N. and Mathar, R. (1992). ``On a Class of Algorithms from Experimental Design Theory.'' Optimization, 24, 91-126.

20
Huang, M.L. and Hsu, M.C. (1993). ``Marginally Restricted Linear-optimal Designs.'' JSPI, 35, 251-266.

21
Gaivoronski, A. (1986). ``Linearization Methods=20 for Optimization of Functionals Which Depend on Probability=20 Measures.'' Mathematical Programming Study, 28,=20 157-181.

22
Hiriart-Urrurty J.-P. and Lemaréchal C. (1993) Convex Analysis and Minimization Algorithms I. Springer, New York.

23
S. Karlin and W.J. Studden (1966). Tchebycheff=20 Systems: with Applications in Analysis and Statistics. Wiley=20 and Sons, New York.

24
Kiefer, J. (1959). `` Optimal Experimental=20 Design.'' Journal of the Royal Statistical Society, B,=20 21, 272-319.

25
Krein, M. and Nudelman, A. (1977). The Markov=20 Moment Problem and Extremal Problems. Translation=20 Mathem. Monographs 50, American Mathematical Society,=20 Providence, EI.

26
Läuter, E. (1976). Optimal Multipurpose=20 Designs for Regression Models. Math. Operationsforschung und Statist., 7, 51-68.

27
Lee, C.M.-S. (1988). ``Constrained Optimal=20 Designs.'' JSPI, 18, 377-389.

28
Lewis, A.S. (1996). ``Convex Analysis on Hermitian Matrices.'= '=20 SIAM J. Optimization, 6, 164-177.

29
Mitchell, T.J. (1974). `` An Algorithm for the=20 Construction of D-optimal Experimental Designs.'' =20 Technometrics, 16, 203-211.

30
Pukelsheim, F. (1980). ``On Linear Regression=20 Designs Which Maximize Information.'' JSPI, 4,=20 339-364.=20

31
Pukelsheim, F. (1993) Optimal Design of Experiments. Wiley, New York.

32
Schwabe, R. (1996). Optimum Designs for Multi-Factor Models. Springer, New York.

33
Silvey, S.D. (1980). Optimal Design,=20 Chapman and Hall, London, 1980.

34
Vandenbeghe, L. and Boyd, S. (1996). ``Semidefinite Programming.'' SIAM Review, 38, 49-95.

35
Vandenbeghe, L., Boyd, S. and Wu, S.P. (1996). ``Determinant Maximization with Linear Matrix Inequality Constraints.'' TR, Stanford University, Stanford.

36
Wang, B.Y. and Zhang, F. (1995). ``Trace and Eigenvalue Inequalities for Ordinary and Hadamard Products of Semidefinite Hermitian Matrices.'' SIAM J. Matrix Anal. Appl., 16, 1173-1183.=20

37
Whittle, P. (1973). ``Some General Points in the=20 Theory of Optimal Experimental Design.'' Journal of the=20 Royal Statistical Society, Ser. B, 35, 123-130.

38
Wu, C.F. and Wynn, H. (1978). ``The Convergence=20 of General Step-Length Algorithms for Regular Optimum Design=20 Criteria.'' Ann. Statist., 6, 1273-1285.

39
Wynn, H. (1982). `` Optimum Submeasures=20 with Applications to Finite Population Sampling.'' Statistical Decision Theory and Related=20 TopicsIII, Vol. 2, Academic Press, New York, 485-495.


Henry Wolkowicz
2000-12-22