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Abstract. This paper considers the NP-hard protein side-chain positioning (SCP) problem, an 
important final task of protein structure prediction. We formulate the SCP as an integer 
quadratic program and derive its doubly nonnegative (DNN) (convex) relaxation. Strict 
feasibility fails for this DNN relaxation. We apply facial reduction to regularize the prob-
lem. This gives rise to a natural splitting of the variables. We then use a variation of the 
Peaceman-Rachford splitting method to solve the DNN relaxation. The resulting relaxation 
and rounding procedures provide strong approximate solutions. Empirical evidence 
shows that almost all our instances of this NP-hard SCP problem, taken from the Protein 
Data Bank, are solved to provable optimality. Our large problems correspond to solving a 
DNN relaxation with 2,883,601 binary variables to provable optimality.
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1. Introduction
In this paper, we consider the NP-hard protein side-chain positioning (SCP) problem, an important final task of pro-
tein structure prediction. We formulate the SCP as an integer quadratic program (IQP) and derive its doubly 
nonnegative (DNN) (convex) relaxation. Strict feasibility fails for this DNN relaxation. We apply facial reduction 
(FR) to regularize the problem. This gives rise to a natural splitting of the variables. We then use a variation of 
the Peaceman-Rachford splitting method (PRSM) to solve the DNN relaxation. The resulting relaxation and round-
ing procedures provide strong approximate solutions. Surprisingly, empirical evidence shows that almost all our 
instances of this NP-hard SCP problem, taken from the Protein Data Bank (PDB), are solved to provable optimality. 
Our large problem solutions correspond to solving a DNN relaxation with 2,883,601 binary variables to provable 
optimality, see Section A and Remark A.1 in the Online Appendix.

The applications of SCP extend to ligand binding (Laudet and Gronemeyer 2002, Looger et al. 2003) and 
protein-protein docking with backbone flexibility (Wang et al. 2007, Marze et al. 2018). A protein is a macromole-
cule consisting of a long main chain backbone that provides a set of anchors for a sequence of amino acid side- 
chains. The backbone is comprised of a repeating triplet of atoms (nitrogen, carbon, carbon) with the central 
carbon atom being designated as the alpha carbon. An amino acid side-chain is a smaller (1–18 atoms) side 
branch that is anchored to an alpha carbon. The positions of the atoms in a side-chain can be established by 
knowing the three-dimensional (3D) position of its alpha carbon and the dihedral angles defined by atoms in the 
side-chain. The number of dihedral angles varies from one to five depending on the length of the side-chain. 
This is true for 18 of the 20 amino acids, with glycine and alanine being exceptions because their low atom counts 
preclude dihedral angles.

It has been observed that the values of dihedral angles are not uniformly distributed. They tend to form clus-
ters with cluster centers that are equally separated (with approximate values, (+60, 180, �60) depending on the 
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length of the side chain). Consequently, if the dihedral angles are unknown, we at least have a reasonable esti-
mate of their values by appealing to these discretized values. With this strategy being applied, a side-chain with 
one dihedral angle would have three possible sets of positions for its atoms. We refer to each set of atomic posi-
tions as a rotamer. A side-chain with two dihedral angles will have three times three or nine different arrange-
ments of the atoms (i.e., nine rotamers). Three dihedral angles will result in 27 rotamers and four dihedral angles 
will give 81 rotamers.

In the SCP problem, we are given the coordinates of all atoms in the fixed backbone along with a designation 
of the amino acid type attached to each alpha carbon. Knowing the coordinates of the backbone atoms allows us 
to compute the backbone dihedral angles associated with a particular alpha carbon atom. These two angles along 
with the amino acid type provide the information that is needed to build a rotamer database query. We have 
used the rotamer database provided by the Dunbrack Laboratory (Dunbrack and Karplus 1993). The response to 
such a query provides a set of rotamers most suitable for the amino acid at that alpha carbon position (and con-
sistent with the specified backbone dihedral angles). As noted earlier, the number of rotamers for a particular 
amino acid position will be 3, 9, 27, or 81 depending on the amino acid type. To solve the SCP problem, we need 
to select a particular residue from each rotamer set so that the entire collection of selected residues yields the low-
est energy for the system. In particular, we must avoid the selection of a rotamer that collides with the selected 
rotamer of any neighboring side chain. After the SCP algorithm is completed, we will have a set of optimal rota-
mers. Because each of the selected rotamers is a member of the rotamer library, it has a discretized set of χ1 and 
χ2 angles and should be regarded as a reasonable approximation of the true conformation that would be seen in 
the actual molecule (Xu and Berger 2006, Burkowski 2015). In practice, a biochemist would execute the SCP algo-
rithm and follow this analysis with a molecular dynamics simulation (or perhaps a simple energy minimization 
procedure) that would then refine the chi angles to get values that are much closer to those observed in the mole-
cule. Output from the SCP algorithm will provide the initial conformations necessary for the molecular dynamics 
program. As an aside, it should be noted that the utilization of a molecular dynamics program with arbitrary (or 
random) initial side-chain angle settings will not be successful in generating the full set of chi angles because the 
system will simply settle into a local energy minimum that is typically much higher than the empirically 
observed energy minimum. See Section 4.2 for more details on constructing the energies between the rotamers.

The SCP problem is known to be NP-hard (Akutsu 1997). The nature of the SCP problem has motivated the 
development of many heuristic based algorithms (Desmet et al. 1992, Bower et al. 1997, Samudrala and Moult 
1998, Canutescu et al. 2003, Bahadur et al. 2004, Xu and Berger 2006). Many of these approaches rely on the graph 
structure of the underlying SCP problem with the rotamers considered as the nodes of the graph. Other 
approaches for SCP range from probabilistic (Holm and Sander 1991, Lee 1994, Shenkin et al. 1996), integer pro-
gramming (Eriksson et al. 2001, Althaus et al. 2002, Kingsford et al. 2005), and semidefinite programming (Cha-
zelle et al. 2004, Burkowski et al. 2014). Given a rotamer library, the SCP problem can be modelled using an IQP. 
We then obtain a semidefinite programming (SDP) relaxation to the IQP using a lifting of variables. Strict feasibility 
fails for the SDP relaxation. FR is then used to regularize the problem. Finally, a DNN relaxation results from 
adding nonnegativity, as well as other polyhedral constraints.

The FR yields a natural splitting of variables into cone constrained and polyhedral constrained variables. The 
elegant splitting of variables fits into the framework of splitting methods that allow for simplified subproblems 
that deal with the split variables individually. The framework gives an efficient procedure of engaging con-
straints that are difficult to process simultaneously (Oliveira et al. 2018, Li et al. 2019, Graham et al. 2020). We 
solve the DNN relaxation using a variation of the so-called Peaceman-Rachford splitting method (PRSM). The usage 
of the splitting method for the DNN relaxation allows for an effective treatment for handling implicit redundant 
constraints and the ill-posed data that stems from collisions between rotamers.

1.1. Notation
We let Rn,Rm×n denote the standard real Euclidean spaces; Sn denotes the Euclidean space of n-by-n real sym-
metric matrices; Sn

+ (Sn
++, respectively) denotes the cone of n-by-n positive semidefinite (definite, respectively) 

matrices. We write X ≽ 0 if X ∈ Sn
+, and X ≻ 0 if X ∈ Sn

++. range(X) and null(X) denote the range and null space of 
X, respectively. Given X ∈ Rn×n, trace(X) denotes the trace of X. For two matrices X, Y ∈ Rm×n, 〈X, Y〉 � trace(XYT)

denotes the usual trace inner product between X and Y; X ◦Y denotes the element-wise, or Hadamard, product 
of X and Y. Given a closed convex set C in a Euclidean space, N C(x) denotes the normal cone of C at x. Given X ∈
Rn×n, diag(X) denotes the vector formed from the diagonal entries of X. Then, Diag(v) � diag∗(v) is the adjoint 
linear transformation that forms the diagonal matrix from the vector v. Given a collection of matrices {Ai}

m
i�1, we 

let BlkDiag(A1, : : : , Am) denote the block diagonal matrix with the ith diagonal block Ai; en denotes the 
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n-dimensional ones vector. We omit the subscript when the dimension is clear. Given a positive integer m, [m] is 
the set {1, : : : , m}.

1.2. Contributions and Outline
The model for SCP as an IQP is formulated in Section 2. This includes the derivations of the SDP and DNN 
relaxations. The derivation for the SDP relaxation was first presented in (Burkowski et al. 2014) via Lagrangian 
relaxation. Here, we present a much simpler derivation via a direct lifting of the variables to symmetric matrix 
space. Included are the details for the FR that gives rise to a natural splitting of variables and the so-called gang-
ster constraints. The PRSM algorithm for the DNN relaxation is presented in Section 3. This includes upper and 
lower bounding techniques that allow for increased efficiency and accuracy. In Section 4, we use the real-world 
data from the PDB1 to illustrate the strength of our approach. The splitting method applied to the DNN relaxa-
tion effectively handles collisions between rotamers indicated by large values in the data. Moreover, the numeri-
cal experiments demonstrate that our approach provably solves almost all instances2 to the global optimum of the 
NP-hard protein SCP problem.

2. Model Derivation
The goal of this section is to obtain the DNN relaxation of the SCP problem. We start by presenting a formulation 
of the SCP as an IQP in Section 2.1. We then derive its SDP relaxation in Section 2.2. We continue the derivation 
by identifying redundant constraints in the IQP and in the SDP relaxation in order to obtain a complete (stable) 
DNN relaxation in Section 2.3.

2.1. Problem Formulation as IQP
We are given a collection of p disjoint sets of positive integers

Vi :� {v1
i , v2

i , : : : , vmi
i }, i � 1, : : : , p:

We call each set Vi a rotamer set and its members rotamers. We use n0 �
Pp

i�1 mi and V �∪p
i�1 Vi. The protein side- 

chain positioning problem seeks to 
1. Select exactly one rotamer vj

i , from each set Vi, where j ∈ [mi] (Figure 13); and
2. Minimize the sum of the weights (energy) between the chosen rotamers plus between each chosen rotamer 

and the backbone.
By viewing the rotamers as a set of nodes of a graph, the SCP problem can be realized as a discrete optimiza-

tion problem. We start by setting an energy matrix E ∈ Sn0 that obeys the following rules:

Euv �

∞ if u, v ∈ Vi for some i ∈ [p],
(energy between rotamer u and backbone) if u � v,

(energy between rotamers u, v) otherwise:

8
<

:

UCSF Chimera application4 is used to obtain a particular setting of the energy matrix for the numerical experi-
ments in Section 4. This records the energy values of pairs of rotamers and between rotamers to the backbone. 
We use the convention that 0 · ∞ � 0 when adding up the weights (energies). This is simplified in our algorithm 
by using constraints so that exactly one rotamer from each set is chosen. Moreover, each diagonal block of E of 

Figure 1. Diagram of the Protein Side-Chain Positioning Problem 
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size mi can be assumed to be a diagonal matrix as we are looking to choose exactly one rotamer per set Vi (see 
Section 4.2 for more details on constructing the energies between the rotamers).

The resulting IQP over the indicator vector x is

p∗IQP :� min
x

X

u, v
Euvxuxv

s:t:
X

u∈Vk

xu � 1, k � 1, : : : , p

xu ∈ {0, 1}, ∀u ∈ V:

(2.1) 

The constraints in (2.1) ensures that exactly one rotamer is chosen for each rotamer set Vi. Denote the block diag-
onal matrix

A � BlkDiag(eT
m1

, eT
m2

, : : : , eT
mp
) ∈ Rp×n0 : (2.2) 

Then Ax � ep is a concise representation of the first equality constraints in (2.1). This yields the following repre-
sentation of the SCP problem:

(IQP)

p∗IQP �min
x

xTEx

s:t: Ax � ep

x ∈ {0, 1}n0 :

(2.3) 

2.2. SDP Relaxation
The SCP (2.3) is NP-hard (Akutsu 1997). In the remainder of this section, we discuss (convex) relaxations for the 
problem. In particular, we derive a DNN to (2.3). An equivalent formulation of the DNN is proposed in Bur-
kowski et al. (2014). The derivation in Burkowski et al. (2014) begins by replacing the linear constraint in (2.3) by 
‖Ax� ep‖

2
� 0 and the binary constraints by x ◦ x� x � 0. Then the Lagrangian relaxation to the quadratically 

constrained model results in a dual program, LD, that lower bounds p∗IQP and satisfies the Slater constraint qualifi-
cation. Finally, a dual to the dual LD is formulated to obtain a relaxation to (2.3). In this paper, we present a sim-
plified derivation for the SDP and DNN relaxations to (2.3) via a simple direct lifting.

Let
Ê :� BlkDiag(0, E) ∈ Sn0+1, E00 :� e0eT

0 ∈ S
n0+1, 

where e0 is the first unit vector. In this section, we aim to obtain the following SDP relaxation to the discrete opti-
mization problem (2.3):

(SDP)

p∗SDP :� min
R, Y

trace(ÊY)

GĴ (Y) � E00

Y � VRVT

R ∈ Sn0+1�p
+ ,

(2.4) 

where the so-called gangster constraint GĴ (·) is described in Section 2.2.1 and the matrices V, R are defined in Sec-
tion 2.2.2.

The first step for deriving the SDP relaxation (2.4) is to lift the variables. Given x ∈ Rn0 , we lift to symmetric 
matrix space using the rank-one lifted matrix

Yx :�
1
x

� �
1
x

� �T
�

1 xT

x xxT

� �

∈ Sn0+1:

For the SDP relaxation, we index the rows and columns starting from zero, that is, the row and column indices are 
{0, 1, : : : , n0}. This lifting allows for an alternative representation of the objective function

xTEx � 〈 0 0
0 E

� �

, 1
x

� �
1
x

� �T

〉 � 〈Ê, Yx〉:

The convex relaxation is obtained by relaxing the hard nonconvex constraint of maintaining Y rank one (see 
below). We now show how this lifting process gives rise to the constraints of Model (2.4): 

1. The linear (gangster) constraint GĴ (Y) � E00 (Section 2.2.1);
2. Y � VRVT, where R ∈ Sn0+1�p

+ (Section 2.2.2).
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2.2.1. Gangster Constraint G
Ĵ
(Y)5 E00. Let W ∈ Sn0 be given, and define the set of indices

J :�
Xj

i�1
mi�1 + k,

Xj

i�1
mi�1 + ℓ

 !

: j ∈ {1, : : : , p� 1}, k, ℓ ∈ {2, : : : , mi� 1}, k ≠ ℓ
( )

:

Here, mi is the cardinality of rotamer set Vi, and m0 � 0. In other words, J is the set of off-diagonal indices of the 
mi-by-mi diagonal blocks of W ∈ Sn0 ; see Figure 2 for a visual illustration of the positioning of these indices. Note 
that these indices correspond to exactly

Wuv � xuxv � 0, u ≠ v, u, v ∈ Vi, 

that is, two distinct rotamers in the same rotamer set cannot be chosen.
With the above set of indices, we define the mapping

GJ : Sn0 → R |J | by GJ (W) � (W ij)ij∈J :

Alternatively, we also view the mapping GJ as the operator from Sn0 to Sn0 :

GJ : Sn0 → Sn0 , (GJ (W))i, j �
W i, j if (i, j) or (j, i) ∈ J ,

0 otherwise:

�

The map GJ can also be viewed as the operator on Sn0 defined by GJ (W) � (ATA� I) ◦W with A defined in 
(2.2). Recall ◦ is the element-wise matrix product. In other words, GJ (W) is the projection that chooses elements 
of W corresponding to the index set J . The constraint GJ (W) � 0 is often called the gangster constraint as it fixes 
elements of W with indices in J to zero (shoots holes in the matrix). The index set and operator are now 
extended to lifted variables in Sn0+1 with

Ĵ :� {(0, 0)} ∪ J ⊂ {0, 1, : : : , n0} × {0, 1, : : : , n0}

and

GĴ : Sn0+1→ R | Ĵ | , GĴ (Y) � (Y ij)ij∈Ĵ :

This yields the gangster constraint as a projection and as an operator, respectively,

GĴ (Y) � e0 ∈ R1+ |J | , GĴ (Y) � E00:

2.2.2. Facial Reduction. We now derive the constraint Y � VRVT, R ∈ Sn0+1�p
+ . Let x be a feasible solution to (2.3) 

and observe that

Ax � ep⇒
1

x

" #T
�eT

p

AT

" #

� 0

⇒
1

x

" #
1

x

" #T
�eT

p

AT

" #
�eT

p

AT

" #T

� 0

⇒ 〈 1

x

� �
1

x

� �T

|fflfflfflfflffl{zfflfflfflfflffl}
�Yx

, �eT
p

AT

� �
�eT

p

AT

� �T

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
≕K

〉 � 0:

Figure 2. Index Set J of Zeros 

Note. Members of J correspond to the off-diagonal elements of diagonal blocks of W indicated by the symbol ◦.
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Because both arguments in the last inner product are positive semidefinite, we obtain the useful property:
〈K, Yx〉 � 0⇒ KYx � 0⇒ range(Yx) ⊆ null(K): (2.5) 

In other words, null(K) yields the range that all lifted feasible points can have.
Now let V ∈ R(n0+1)×(n0+1�p) be a full-column rank matrix such that

range(V) � null(K) � null
�eT

p

AT

" #T
0

@

1

A: (2.6) 

For our purposes, we choose V with normalized columns. Because A is full-row rank, we get that rank(K) � p. 
Finally, we can represent any feasible Yx using V:

Yx ∈ VSn0+1�p
+ VT:

This is the well-known facial reduction technique (Drusvyatskiy and Wolkowicz 2017). The matrix K is an exposing 
vector for the feasible set. The matrix V is known as a facial range vector.

The remaining step for the SDP relaxation is simple. We note that we require rank(Yx) � 1, a nonconvex con-
straint. We discard this hard rank restriction and obtain a convex relaxation variables of the form

Y � VRVT where R ∈ Sn0+1�p
+ :

This completes the derivation of the relaxation in (2.4). It is known that there is a R̂ ∈ Sn0+1�p
++ (strictly) feasible for 

(2.4); see Burkowski et al. (2014).

2.3. DNN Relaxation
We continue with the SDP relaxation derived in Section 2.2 to complete our relaxation by adding additional con-
straints to (2.4). In Theorem 2.1, we obtain two additional properties of Model (2.4).

Theorem 2.1. Suppose that (R, Y) are feasible to (2.4). Then the following hold. 
1. The first column of Y is equal to the diagonal of Y.
2. trace(R) � 1+ p.

Proof. We recall that range(V) � null([�ep A ]) from (2.6). Hence, we have

[�ep A ]Y � [�ep A ]VRVT � 0RVT � 0 (2.7) 

and exploit the structure of [�ep A ]Y. We first partition Y as follows:

Y �

1 YT
10 YT

20 ⋯ YT
p0

Y10 Y11 Y12 ⋯ Y1p

⋮ ⋮ ⋮ ⋮ ⋮

Yp0 Yp1 Yp2 ⋯ Ypp

2

6
6
6
6
6
4

3

7
7
7
7
7
5

∈ Sn0+1, (2.8) 

where Y ii ∈ Smi , Y ij ∈ Rmi×mj , Y i0 ∈ Rmi , ∀i, j ∈ [p]. Let Ycolℓ
ij denote the ℓth column of the (i, j)th block of Y and Y i0, ℓ�

to denote the ℓth coordinate of the vector Y i0 ∈ Rmi .
Then expanding [�ep A ]Y with the block representation (2.8) yields

[�ep A ]Y � [a0 A1 ⋯ Ap ] ∈ Rp×(n0+1), 

where

a0 �

�1+ eT
m1

Y10

�1+ eT
m2

Y20

⋮

�1+ eT
mp

Yp0

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

∈ Rp: (2.9) 
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Also, for each i ∈ [p],

Ai �

�Y i0, 1 + eT
m1

Ycol 1
1i �Y i0, 2 + eT

m1
Ycol 2

1i ⋯ �Y i0, mi + eT
m1

Ycol mi
1i

⋮ ⋮ ⋱ ⋮

�Y i0, 1 + eT
mj

Ycol 1
ji �Y i0, 2 + eT

mj
Ycol 2

ji ⋯ �Y i0, mi + eT
mj

Ycol mi
ji

⋮ ⋮ ⋱ ⋮

�Y i0, 1 + eT
mp

Ycol 1
pi �Y i0, 2 + eT

mp
Ycol 2

pi ⋯ �Y i0, mi + eT
mp

Ycol mi
pi

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

∈ Rp×mi :

By (2.7), we have Ai � 0, ∀i ∈ [p]. Thus, for each i ∈ [p], the ith row of Ai yields

Y i0, ℓ � eT
mi

Ycolℓ
ii , ℓ ∈ [mi]:

Because GĴ (Y) � E00 holds, we see that
diag(Y ii) � Y i0, ∀i ∈ [p]:

Consequently, the first column and the diagonal of Y are identical.
We now show that trace(R) � 1+ p. By (2.7), the vector a0 from (2.9) is zero. Thus, we obtain

eT
mi

Y i0 � 1, ∀i ∈ [p]:

Because diag(Y ii) � Y i0, ∀i ∈ [p] from Item 1, we must have that trace(Yii) � 1, ∀i ∈ [p]. Hence, Y � VRVT gives

1+ p � trace(Y) � trace(VRVT) � trace(R), 

where the last equality holds because VTV � I. w

Item 1 of Theorem 2.1 is known in the literature as the arrow constraint and arises from the Lagrangian dual 
(Burkowski et al. 2014). The derivation herein exploits the steps from the direct lifting.

We recall that the original model (2.3) has binary constraints on the variables x, and the direct lifting yields a 

rank one variable of the form 
h1 xT

x xxT

i
∈ Sn0+1. Hence, we can strengthen our model by including the constraint 

Y i, j ∈ [0, 1], ∀i, j.
We define the sets

R :� {R ∈ Sn0+1�p : R ≽ 0, trace(R) � p + 1},

Y :� {Y ∈ Sn0+1 : GĴ (Y) � E00, 0 ≤ Y ≤ 1}:

By including the additional constraints trace(R) � 1+ p and 0 ≤ Y ≤ 1 to the SDP relaxation (2.4), we obtain the 
DNN relaxation to (2.3):

(DNN)

p∗DNN :� min
R,Y

trace(ÊY)

Y � VRVT

R ∈R

Y ∈ Y:

(2.10) 

Note that both (DNN) and (SDP) are relaxations to (IQP), but (DNN) is a stronger model than (SDP), that is,

p∗SDP ≤ p∗DNN ≤ p∗IQP:

In addition, there are redundant constraints in Model (2.10). These (implicit) redundant constraints result in 
numerical instabilities when they are not handled properly. In Section 2.3, we use the splitting method to distrib-
ute constraints to two different subproblems wherein they are not redundant but in fact strengthen the 
subproblems.

We demonstrate the strength of (DNN) in Section 4.3.1. The DNN relaxation has a linear objective with an onto 
linear equality constraint, and compact, convex, feasible set constraints. The first-order optimality conditions 
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for (2.10) are

0 ∈ �VTZV +N R(R), (dual feasibility with respect to R)
0 ∈ Ê + Z +N Y(Y), (dual feasibility with respect to Y)
Y � V̂RV̂ T, R ∈ R, Y ∈ Y, (primal feasibility)

(2.11) 

where N R(R),N Y(Y) are the normal cones and Z is a Lagrange multiplier associated with the constraint 
Y � VRVT. Theorem 2.2 states that some elements of the dual optimal multiplier Z∗ are known in advance. We 
take advantage of this fact in our algorithm for solving the DNN in Section 3.

Theorem 2.2. Let (R∗, Y∗) be an optimal pair for (2.10), and let

ZA :� {Z ∈ Sn0+1 : Zi, i ��(Ê)i, i, Z0, i � Zi, 0 ��(Ê)0, i, i � 1, : : : , n0}:

Then there exists Z∗ ∈ZA such that (R∗, Y∗, Z∗) solves (2.11).

Proof. The proof uses the optimality conditions (2.11) and Theorem 2.1. The proof can be found in Graham et al. 
(2020, theorem 2.11). w

3. Algorithm
In this section, we present the algorithm for solving the DNN relaxation (2.10). For β > 0, define the augmented 
Lagrangian LA of Model (2.10) as

LA(R, Y, Z) :� 〈Ê, Y〉 + 〈Z, Y �VRVT〉 +
β

2 ‖Y �VRVT‖2F: (3.1) 

Let PZ0(Z) denote the linear projection operator onto the linear manifold

Z0 � {Z ∈ Sn0+1 : Zi, i � Z0, i � Zi, 0 � 0, i � 1, : : : , n0}:

In other words, the projection operator PZ0(Z) sets the first column, first row, and the diagonal elements of Z to 
be zero, except for the (0, 0)th entry.

We use the restricted dual PRSM (rPRSM) (Algorithm 1), a variation of the strictly contractive PRSM to solve 
Model (2.10).

Algorithm 1 (rPRSM (Graham et al. 2020) for Solving (2.10)) 
1: Initialize: Y0 ∈ Sn0+1, Z0 ∈ZA, β ∈ (0,∞),γ ∈ (0, 1)
2: while termination criteria are not met do
3: Rk+1 � arg min

R∈R
LA(R, Yk, Zk)

4: Zk+1
2 � Zk + γβ ·PZ0(Y

k�VRk+1VT)

5: Yk+1 � arg min
Y∈Y

LA(Rk+1, Y, Zk+1
2)

6: Zk+1 � Zk+1
2 + γβ ·PZ0(Y

k+1 �VRk+1VT)

7: end while

Note that the standard PRSM updates the dual multipliers with the projection operator PZ0 set to the identity 
operator. The projection on the dual multiplier Z is motivated from the additional information from Theorem 
2.2. The algorithm fixes these known elements to be the optimal elements at every iteration. Details of the conver-
gence proof of the rPRSM scheme can be found in Graham et al. (2020, theorem 3.2). The Y-subproblem at line 5 
in Algorithm 1 differs from the one in Graham et al. (2020) due to the difference in the gangster constraints in the 
set Y.

Model (2.10) can be solved by using a standard interior point SDP solver. However, this approach encounters 
the difficulty that results from maintaining double nonnegativity, that is, VRVT ≥ 0, R ≽ 0 at each iteration. This 
was handled in Burkowski et al. (2014) by adding the most violated cutting planes from the nonnegativity. This 
approach becomes computationally expensive as the number of cutting planes increases.

The rationale for using a splitting method is as follows. Algorithm 1 can handle the polyhedral and cone con-
straints Y ∈ Y, R ∈R efficiently if we separate this into two problems. The R-subproblem (line 3 in Algorithm 1) 
concentrates on the positive semidefinite and trace constraints, whereas the Y-subproblem (line 5 in Algorithm 1) 
handles the interval and gangster constraints. Furthermore, the solutions that we typically look for from the SDP 
relaxations of hard combinatorial problems are rank one. The rank-one solutions are degenerate points in the 
sense of Wolkowicz et al. (2000, chapter 3) because the number of linear equality constraints is n0 + 1� p+

Burkowski, Im, and Wolkowicz: A Peaceman-Rachford Splitting Method for SCP Problem 
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Pp
i�1(mi(mi � 1)� 2)=2 in the SDP relaxation. The degeneracy results in ill-conditioned linear systems when com-

puting search directions of interior point methods. Hence, this approach can increase runtime and decrease accu-
racy. Lastly, Ê typically contains very large elements that arise from the collisions between rotamers. The large 
discrepancy among elements in Êi, j causes problems with the performance of typical interior point methods. We 
discuss how we handle this challenge in Section 4.2.

3.1. Update Formulae
We now present the formulae for the R and Y updates in Algorithm 1. These formulae are discussed (Graham 
et al. 2020) but are included here for completeness.

3.1.1. R-Update. The formula for the R-subproblem, with LA defined in (3.1), is as follows:

Rk+1 � arg min
R∈R

LA(R, Yk, Zk)

� arg min
R∈R

�
�
�
�

�
�
�
�Y

k �VRVT +
1
β

Zk
�
�
�
�

�
�
�
�

2

F

� arg min
R∈R

�
�
�
�

�
�
�
�R�VT Yk +

1
β

Zk
� �

V
�
�
�
�

�
�
�
�

2

F

� PR VT Yk +
1
β

Zk
� �

V
� �

�U Diag(P∆p+1(d)) UT, 

where the second equality holds by completing the square; the third equality holds due to VTV � I; and the last 
equality follows from the eigenvalue decomposition

VT Yk +
1
β

Zk
� �

V �U Diag(d)UT, 

and P∆p+1(·) is the projection operator onto the simplex ∆p+1 � {z ∈ R
n0+1�p
+ : eTz � 1+ p}.

3.1.2. Y-Update. The update rule for Y is as follows:
Yk+1 � arg min

Y∈Y
LA(Rk+1, Y, Zk+1

2)

� arg min
Y∈Y

�
�
�

�
�
�Y � VRk+1VT �

1
β
(Ê + Zk+1

2)

� ��
�
�

�
�
�
2

F

� Pbox G
Ĵ

c VRk+1VT �
1
β
(Ê + Zk+1

2)

� �� �

,

(3.2) 

where Pbox is the projection onto the polyhedral set {Y ∈ Sn0+1 : 0 ≤ Y ≤ 1}.

3.2. Bounding
In this section, we present some strategies for computing lower and upper bounds to (IQP).

3.2.1. Lower Bounds from Lagrange Relaxation. We now discuss a strategy for computing a valid lower bound 
to p∗IQP. Exact solutions of the DNN relaxation (2.10) provide lower bounds to (IQP). However, we often termi-
nate algorithms when the stopping criteria are met for a predefined tolerance, and we never set the tolerance to 
be exactly zero in practice. A near optimal point Ỹ can result in

p∗DNN ≤ 〈Ê, Ỹ〉 and p∗IQP < 〈Ê, Ỹ 〉

and produce an invalid lower bound to p∗IQP. Hence, we provide a method for computing a valid lower bound to 
(IQP) and avoid this issue.

This follows the approaches in Graham et al. (2020), Oliveira et al. (2018), and Eckstein (2020) and obtains 
lower bounds via the dual to the DNN relaxation in (2.10). Let the dual functional g : Sn0+1→ R be defined as

g(Z) :� min
R∈R,Y∈Y

〈Ê, Y〉 + 〈Z, Y �VRVT〉:

Burkowski, Im, and Wolkowicz: A Peaceman-Rachford Splitting Method for SCP Problem 
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Let Z ∈ Sn0+1 be given. Note that

min
R∈R,Y∈Y

〈Ê, Y〉 + 〈Z, Y �VRVT〉 �min
Y∈Y
〈Ê +Z, Y〉 +min

R∈R
〈�VTZV , R〉

�min
Y∈Y
〈Ê +Z, Y〉� (p+ 1)λmax(VTZV), 

where λmax is the maximum eigenvalue function. Hence, we compute a valid lower bound to the optimal value 
p∗DNN of the model (2.10) by using weak duality:

p∗DNN �max
Z

g(Z) ≥ g(Z) �min
Y∈Y
〈Ê +Z, Y〉� (p+ 1)λmax(VTZV), 

where the first equality holds since the constraint qualification holds for Model (2.10). The computation for 
minY∈Y 〈Ê +Z, Y〉 is inexpensive.

3.2.2. Upper Bounds from Nearest Binary Feasible Solutions. We now present two strategies for computing 
upper bounds to the SCP problem. These strategies are derived from those presented in Burkowski et al. (2014), 
and we include them here for completeness. We obtain upper bounds by finding feasible solutions to the original 
integer model in (2.3). Let (Rout, Yout, Zout) be the output of the algorithm. 

1. Let xapprox ∈ Rn0 be the second through to the last elements of the first column of Yout. Note that 
0 ≤ xapprox ≤ 1. Then the nearest feasible solution to (IQP) from xapprox can be found by solving the following pro-
jection:

min
x
{‖x� xapprox‖2 : Ax � ep, x ∈ {0, 1}n0}: (3.3) 

It is shown in Burkowski et al. (2014) that solving (3.3) is equivalent to solving the following linear program:
min

x
{〈x, xapprox〉 : Ax � ep, x ≥ 0}: (3.4) 

2. We now let xapprox be the second through to the last elements of the most dominant eigenvector of Yout. Note 
that we again have 0 ≤ xapprox ≤ 1 by the Perron-Frobenius theorem. We again obtain the nearest feasible solution 
to xapprox by solving (3.4).

Remark 3.1. In fact, solving (3.4) does not require using any linear program software; we can obtain the optimal 
solution for (3.4) as follows. We partition xapprox into p subvectors of sizes mi � |Vi | , for i � 1, : : : , p. Let xi ∈ Rmi be 
the subvector of xapprox associated with ith rotamer set Vi, that is, xapprox � [x1; x2; : : : ; xp]. We define x̂i ∈ Rmi as fol-
lows:

x̂i
j �

1, if xi
j �max
ℓ∈[mi]
{xi
ℓ}

0, otherwise:

8
<

:

If there is a subvector x̂i with more than one 1 in its components, we pick only one 1 and set the remaining to be 
zero. We then form x̂ � [x̂1; x̂2; : : : ; x̂p] ∈ Rn0 . It is clear that x̂ is feasible for (2.1). We use x̂TEx̂ as an upper bound 
to the SCP problem.

4. Computational Experiments for Algorithm 1 Using Real-World Data
Section 4.1 presents the parameter settings and stopping criteria. Section 4.2 explains how to process the data 
from the PDB to obtain the energy matrix E. Section 4.3 presents the numerical results using rPRSM and shows, 
using the bounding strategies presented in Section 3.2, that we provably solve many instances to optimality.

4.1. Stopping Criteria and Parameter Settings
4.1.1. Stopping Criteria. We terminate rPRSM when either of the following conditions is satisfied. 

1. Maximum number of iterations, denoted by “maxiter” is achieved.
2. For a given tolerance ɛ, the following bound on the primal and dual residuals holds for st sequential times:

max ‖Y
k � VRkVT‖F

‖Yk‖F
, β‖Yk � Yk�1‖F

( )

< ɛ:

Burkowski, Im, and Wolkowicz: A Peaceman-Rachford Splitting Method for SCP Problem 
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3. Let {l1, : : : , lk} and {u1, : : : , uk} be sequences of lower and upper bounds discussed in Sections 3.2.1 and 3.2.2, 
respectively. Any of the lower bounds achieve the best upper bound, that is,

max{l1, : : : , lk} ≥min{u1, : : : , uk}:

4.1.2. Parameter Settings. We use the following parameters related to the implementation of Algorithm 1:
β � max{⌊0:5 ∗ n0=p⌋, 1}, γ � 0:99:

The parameters related to stopping criteria are

maxiter � p(n0 + 1) + 104, ɛ � 10�10, st � 100:

For the initial iterates for rPRSM, we use

Y0 � 0, Z0 � PZA(Y
0):

4.2. Energy Matrix Computation
We now describe the process for constructing the energy matrix E. We use a Python script that is run as an exten-
sion of the University of California, San Francisco (UCSF) Chimera5 application. A detailed implementation can 
be found in Burkowski (2015, chapter 7). The protein data files were taken from the PDB to obtain the coordinates 
of all atoms in the protein. To get the energy values required by the algorithm, the native side chain conforma-
tions were replaced by rotamers extracted from a rotamer library provided by the Dunbrack Laboratory (Dun-
brack and Karplus 1993).

Some approaches use an energy evaluation based on a piece-wise linear approximation of the Lennard-Jones 
potential formula (Canutescu et al. 2003, Xu and Berger 2006). Here, we used the Lennard-Jones potential for-
mula, which provides a more accurate energy value computation. In brief, the Lennard-Jones potential formula 
takes the Euclidean distance between a pair of atoms in combination with certain parameters that are chosen 
dependent on the type of amino acids. A more detailed explanation of these energy computations can be found 
in Burkowski (2015, chapters 6 and 7).

To complete the process, we used a strategy (called dead end elimination) to reduce the size of the rotamer sets 
associated with each amino acid. The simple idea behind this strategy is that a rotamer can be removed from its 
rotamer set if there is another rotamer in that set that gives a better energy value regardless of the rotamer selec-
tions for the neighboring amino acids. From the various approaches for the dead end elimination, we followed 
Goldstein’s criteria (Goldstein 1994).

Let U be a side-chain conformation of a protein. The energy of the conformation U is

E(U) �
Xn0

i�1
Eself(ui) +

Xn0�1

i�1

Xn0

j�i+1
Epair(ui, uj), 

where ui is a side-chain conformation of an amino acid, Eself(ui) is the energy corresponding to ui and the back-
bone, and Epair(ui, uj) is the energy formed by ui and uj, a rotamer associated with a neighboring amino acid. In 
our formulation, we placed Eself(ui) along the diagonal of E and Epair(ui, uj) on the appropriate off-diagonal posi-
tions of E as shown in Section 2.1.

4.2.1. Removing Collisions. We typically observe that E contains some very large elements of the order of 
Ei, j ≈ 1010. This arises due to collisions between rotamers. Ei, j≫ 0 that are often greater than 1010 can be seen 
from the Lennard-Jones potential formula that small Euclidean distances between two distinct rotamers as part 
of the denominators of fractions.

In general, having a very large spread of values in data, bad scaling, results in numerical instabilities. The 
matrix E often has elements that are of the order O(1010), as well as elements that are of the order O(1). When 
there is a large discrepancy among the elements of E, scaling E would make the relatively small values close to 
zero and lead to loss of precision in the solution. However, this ill-posed data do not take place as a problem in 
our implementation. Recall that we update the Y iterate (3.2) as follows:

Yk+1 � PY GĴ c VRk+1VT �
1
β
(Ê +Zk+1

2)

� �� �

� PY GĴ c �
1
β

Ê + VRk+1VT �
1
β

Zk+1
2

� �� �� �

:
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For simplicity, we let T :�� 1
β Ê + [VRk+1VT � 1

βZk+1
2]. If the (î, ĵ )th element of Ê � BlkDiag(0, E) is very large, the 

projection PY sets the (î, ĵ )-element of T to zero beecause T î, ĵ ≪ 0. Hence, for those positions (î, ĵ) with very large 
energy values, the constraint Y î, ĵ � 0 is implicitly imposed. We can interpret this as having implicit gangster con-
straints on these elements. Consequently, the large elements do not contribute to the objective value because 
Ê î, ĵY î, ĵ � 0.

We can also take advantage of large values in the data to increase the number of the gangster indices (elimi-
nate edges in the graph).

Lemma 4.1. Let x be any feasible point for (IQP) and let f (x) � xTEx be its objective value. Let NE �
P
{(i, j):E(i, j) <0}Ei, j and 

suppose that

Ei0, j0 > f (x)�NE, for some i0, j0 

holds. Then for any optimal solution x∗ to (IQP), we have x∗i0 x∗j0 � 0.

Proof. Let x∗ be an optimal solution to (IQP). Let U∗ be the set of indices formed by the positive entries of 
� 1

x∗
�� 1

x∗
�T

. We note that, for any index set S, we have

X

(i, j)∈S
Ei, j �

X

(i, j)∈S∩{(i, j):Ei, j≥0}
Ei, j +

X

(i, j)∈S∩{(i, j):Ei, j<0}
Ei, j ≥ 0+NE �NE:

Supposed to the contrary that x∗ holds x∗i0 x∗j0 � 1, that is, x∗i0 � x∗j0 � 1. Then we reach the following contradiction:

p∗IQP � 〈x
∗, Ex∗〉 � Ei0, j0 + Ei0, j0 +

X

(i, j)∈U∗\{(i0, j0)}
Ei, j

0

@

1

A ≥ Ei0j0 +NE > f (x): w 

Corollary 4.1. Let i0 be an index such that Ei0, i0 > f (x)�NE, where f (x), NE defined in Lemma 4.1. Then, for any optimal 
solution x∗ to (IQP), we have

Yx∗ :�
1
x∗

� �
1
x∗

� �T
∈ {Y ∈ Sn0+1 : Y(: , i0) � 0, Y(i0, :) � 0}:

Proof. Let i0 be an index such that Ei0, i0 > f (x)�NE. Then x∗i0 � 0 by Lemma 4.1. We note that Yx∗ is a positive 
semidefinite matrix. If a diagonal entry of a positive semidefinite is zero, then its corresponding column and row 
must be zero. w

By Lemma 4.1 and Corollary 4.1, if we detect entries i0, j0 with the property Ei0, j0 > f (x)�NE, then we may 
strengthen the model by adding the constraints

K � Y ∈ Sn0+1 :
Y(i0, j0) � Y(j0, i0) � 0, for i0 ≠ j0 such that Ei0, j0 > f (x)�NE

Y(: , i0) � 0, Y(i0, :) � 0, for i0 such that Ei0, i0 > f (x)�NE

( )

:

This can be easily realized by adding more members to the gangster index set Ĵ .

4.3. Experiments with Real-World Data
In this section, we provide numerical experiments with real-world data from the PDB and discuss the strengths 
of the DNN relaxation. The data and codes used in the experiments are available at Burkowski et al. (2024). The 
empirics clearly illustrate the strengths of the DNN relaxation. In addition, this approach avoids the numerical 
instabilities that can originate from the large positive values in the data matrix E. The empirics also show that the 
DNN relaxation provides a significant improvement to just using the SDP relaxation.
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We select instances listed in Canutescu et al. (2003) with proteins that have up to 300 amino acids. All instances 
in Table 1 are tested using MATLAB version 2021a on Dell XPS 8940 with 11th Gen Intel(R) Core(TM) i5-11400 @ 
2.60 GHz with 32 GB memory. The following list defines the column headers used in Table 1; the same headers 
are used in the additional numerical experiments that are displayed in Section A of the Online Appendix. 

1. name: instance name;
2. p: the number of amino acids;
3. n0: the total number of rotamers;
4. lbd: the lower bound obtained by running rPRSM;
5. ubd: the upper bound obtained by running rPRSM;
6. rel-gap: relative gap of each instance using rPRSM, where

relative gap :� 2 |best feasible upper bound� best lower bound |
|best feasible upper bound + best lower bound + 1 | ;

7. iterations: number of iterations used by rPRSM with tolerance ɛ � 10�10;
8. time (s): CPU time (in seconds) used by rPRSM.

4.3.1. Discussion. We observe from the relative gap (rel-gap) column of Table 1 that many instances are solved 
to near machine precision; that is, most of the instances display relative gaps that are essentially zero. We recall 
from Section 3.2.2 that we obtain the upper bounds via finding feasible solutions to (IQP). That we have the rela-
tive gap essentially zero certifies the attainment of the globally optimal solutions to the SCP problem. Approaches 
involving heuristic algorithms do not provide a natural means of certifying optimality, relying solely on a com-
parison of the rotameric solution with naive χ1 and χ2 angles from the PDB while ignoring optimality of the dis-
cretized solution. We highlight that we provide not only the global optimal solutions but also a way to certify 
their optimality.

4.3.2. Tighter Relaxation. We illustrate the strengths of the DNN relaxation by computing the near optimal 
values of the DNN relaxation and the SDP relaxation. In our test, we selected five small instances. As discussed 
above, some elements of the energy matrix E are typically very large due to the collisions in rotamers, typically 
at least 10 digits. These cause numerical difficulties when a standard interior point solver is used. Hence, in our 
test, we set the entries Ei, j �min{104, Ei, j}, ∀i, j, in order to avoid the difficulties from having these large ele-
ments. The rPRSM is used for DNN relaxation, and SDPT36 is used for solving the SDP relaxation.

The displayed values in Table 2 are the best lower bounds found from the rPRSM and the optimal values 
reported by SDPT3. The DNN relaxation clearly shows superior performance over the SDP relaxation as shown 
by the larger values.

Table 1. Computational Results on Selected Protein Data Bank Instances

Problem data Numerical results Timing

No. Name p n0 lbd ubd rel-gap Iterations Time (s)

10 2IGD 50 126 �78.50608 �78.50608 5.39611 e-15 500 19.43
20 1VQB 75 406 �96.94940 �96.94940 4.34568 e-14 900 179.35
30 2ACY 84 580 �146.32254 �146.32254 1.06468 e-14 7,800 2,610.24
40 2TGI 100 355 �14.03554 �14.03554 2.46249 e-13 1,300 136.30
50 2SAK 111 214 �239.86975 �239.86975 1.08995 e-12 500 25.50
60 2CPL 132 819 �284.97180 �284.97180 9.75693 e-15 5,900 3,292.98
70 1CV8 146 730 �213.13554 �213.13554 3.28738 e-13 5,600 2,572.99
80 2ENG 162 867 82.01797 82.01797 1.33295 e-13 14,200 8,274.48
90 1A7S 179 524 �239.78218 �239.78218 1.00542 e-14 1,200 314.57
100 1MRJ 208 1,178 �295.13711 �295.13711 1.70740 e-13 2,300 2,421.15
110 1EZM 239 1,497 �217.36581 �217.36581 3.49620 e-13 2,300 3,876.18
120 1SBP 256 1,704 �271.08838 �271.08838 3.59996 e-14 40,000 609,487.29
130 3PTE 284 2,006 161.17216 161.17216 5.09815 e-15 13,500 250,604.17

Burkowski, Im, and Wolkowicz: A Peaceman-Rachford Splitting Method for SCP Problem 
INFORMS Journal on Computing, Articles in Advance, pp. 1–15, © 2024 INFORMS 13 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
9.

97
.2

02
.7

5]
 o

n 
04

 O
ct

ob
er

 2
02

4,
 a

t 0
8:

22
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



5. Conclusions
We presented a simplified way of formulating a relaxation of the SCP problem. The SCP problem was first for-
mulated as an IQP, and then the facially reduced SDP relaxation was derived. We then identified redundant con-
straints to the IQP to complete the facially reduced DNN relaxation. FR allowed for a natural splitting of the 
variables and provided an excellent environment for using splitting methods. We applied the rPRSM to solve the 
DNN relaxation of the SCP problem. The efficiency and accuracy of our approach are illustrated in the numerical 
experiments using data from the Protein Data Bank. In particular, we provably found the optimal solutions to 
many of the instances that we chose from the Protein Data Bank.

Endnotes
1 See https://www.rcsb.org/.
2 Of 131 test problems, one problem had a positive gap; five other problems had gaps of approximately 10�6.
3 Vi indicates the ith rotamer set and v j

i indicates the jth candidate in the ith rotamer set Vi.
4 The UCSF Chimera software can be found at https://www.cgl.ucsf.edu/chimera/download.html.
5 The UCSF Chimera software can be found at https://www.cgl.ucsf.edu/chimera/download.html.
6 See https://www.math.cmu.edu/~reha/sdpt3.html, version SDPT3 4.0 (Toh et al. 1999).
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Toh K, Todd M, Tütüncü R (1999) SDPT3—A MATLAB software package for semidefinite programming, version 1.3. Optim. Methods Software 

11/12(1–4):545–581.
Wang C, Bradley P, Baker D (2007) Protein-protein docking with backbone flexibility. J. Molecular Biology 373(2):503–519.
Wolkowicz H, Saigal R, Vandenberghe L, eds. (2000) Handbook of Semidefinite Programming, International Series in Operations Research & Man-

agement Science, vol. 27 (Kluwer Academic Publishers, Boston).
Xu J, Berger B (2006) Fast and accurate algorithms for protein side-chain packing. J. ACM 53(4):533–557.

Burkowski, Im, and Wolkowicz: A Peaceman-Rachford Splitting Method for SCP Problem 
INFORMS Journal on Computing, Articles in Advance, pp. 1–15, © 2024 INFORMS 15 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
9.

97
.2

02
.7

5]
 o

n 
04

 O
ct

ob
er

 2
02

4,
 a

t 0
8:

22
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 


	A Peaceman-Rachford Splitting Method for the Protein Side-Chain Positioning Problem
	Introduction
	Model Derivation
	Algorithm
	Computational Experiments for Algorithm 1 Using Real-World Data
	Conclusions


