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Abstract6

We consider the problem of finding the best approximation point from a polyhedral set, and7

its applications, in particular to solving large-scale linear programs. The classical projection8

problem has many various and many applications. We study a regularized nonsmooth New-9

ton type solution method where the Jacobian is singular; and we compare the computational10

performance to that of the classical projection method of Halperin-Lions-Wittmann-Bauschke11

(HLWB).12

We observe empirically that the regularized nonsmooth method significantly outperforms13

the HLWB method. However, the HLWB has a convergence guarantee while the nonsmooth14

method is not monotonic and does not guarantee convergence due in part to singularity of the15

generalized Jacobian.16

Our application to solving large-scale linear programs uses a parametrized projection prob-17

lem. This leads to a stepping stone external path following algorithm. Other applications18

are finding triangles from branch and bound methods, and generalized constrained linear least19

squares. We include scaling methods that improve the efficiency and robustness.20
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1 Introduction80

The best approximation problem, BAP arises in many areas of optimization and approximation81

theory. In particular, we study finding the best approximation x∗ to a given point v from a82

polyhedral set, P ⊂ Rn, n-dimensional Euclidean space; namely, find x∗(v) ∈ Rn
83

x∗(v) = argmin
x∈P

∥x− v∥. (1.1)

There is an abundance of theory, algorithms, and applications for this problem. We follow a84

Newton type approach of an elegant compact optimality condition, even though the corresponding85

Jacobian resulting from the optimality conditions is possibly nonsmooth and/or singular. We86

include a regularization, as well as an inexact approach for large-scale problems. Empirical evidence87

illustrates the surprising success of this approach.88

We include several applications. In particular, we solve large-scale linear programming, (LP),89

problems using a parametrized projection problem. This introduces an efficient (stepping stone) ex-90

ternal path following algorithm. In addition, we consider large-scale systems of triangle inequalities.91

In our applications we do not assume differentiability and/or nonsingularity of the generalized Ja-92

cobian. We introduce a Newton type approach for our applications that overcomes the nonsmooth93

difficulties by applying regularization and scaling. We then provide extensive testing and compar-94

isons to illustrate the surprising high efficiency, accuracy, speed, and robustness of our propsed95

method.96
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The main contributions of the paper are as follows. (i) First, we present the basics for the main97

projection problem, see Theorem 2.1 below. This includes an application of the Moreau decom-98

position that yields a single elegant equation that captures all three, primal and dual feasibility99

and complementarity optimality conditions of the problem. (ii) Second, we present the nonsmooth,100

regularized Newton method. No line search is used. (See Section 2.1.1 below.) (iii) We show101

that the regularization from a modified Levenberg-Marquardt method yields a descent direction.102

(See Lemma 2.4 below.) (iv) We present our empirical test results that include an external path103

following approach to solving large-scale linear programs that fully exploits sparsity. (See Section 5104

below.) (v) We compare computationally our algorithm with the HLWB algorithm that belongs to105

a class of projection methods usually developed and investigated in the field of fixed point theory.106

1.1 Related Work107

Our approach uses a special decomposition from the optimality conditions that allows for a Newton108

method with a cone projection applied to a system whose size is of the order of the number of linear109

equality constraints forming the polyhedron P . This approach first appeared in infinite dimensional110

Hilbert space applications, e.g., [11, 17, 18, 37], where the projection mapping is differentiable, and111

typically P is the intersection of a cone and a linear manifold. This approach was applied to112

a parametrized quadratic problem to solve finite-dimensional linear programs in [44]. (See our113

application Section 4.1, below. In this finite-dimensional case differentiability was lost.) The114

approach in infinite-dimensional Hilbert spaces was followed up and extended in the theory of115

partially finite programs in [9, 10] and the many references therein. Further references are given116

in [3, 32,43].117

As mentioned above, differentiability is lost in the finite-dimensional cases, e.g., in [44]. This118

led to the application of semismoothness [38]. In particular, semismoothness for a nondifferen-119

tiable Newton type method is introduced and applied in [39, 40]. Further applications for nearest120

doubly stochastic and nearest Euclidean distance matrices are presented in [2, 30]. A regularized121

semismooth approach for general composite convex programs is given in [45].122

The optimum point x∗(v) is often called the projection of v onto the polyhedral set and is known123

to be unique. Differentiability properties are nontrivial as discussed in, e.g., [29]. A characterization124

of differentiability in terms of normal cones is given in [23]. Further results and connections to125

semismoothness is in, e.g., [25, 29]. A survey presentation on differentiability properties is at [42].126

2 Projection onto a Polyhedral Set127

We begin with the projection onto the polyhedral set given in standard form, since every polyhedron
can be transformed into this form. Suppose we are given v ∈ Rn, b ∈ Rm, A ∈ Rm×n, rankA = m.
We define the following projection onto a polyhedral set , i.e., the best approximation problem, BAP
to the generalized simplex ,

(P)

x∗(v) := argminx
1
2 ∥x− v∥2

s.t. Ax = b
x ∈ Rn

+,

optimal value: p∗(v) = 1
2 ∥x

∗(v)− v∥2 ,

(2.1)
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i.e., the optimum and optimal value are, respectively, x∗(v), p∗(v); and Rn
+ is the nonnegative128

orthant. We now proceed to derive the regularized nonsmooth Newton method, (RNNM) to129

solve (2.1).130

2.1 Basic Theory and Algorithm131

In this section we briefly describe the properties of problem (2.1) as well as some background and
motivation behind using a generalized Newton method. We assume that

P := {x ∈ Rn
+ : Ax = b} ≠ ∅. (2.2)

Problem (2.1) has a strongly convex smooth objective function and nonempty closed convex con-132

straint set. Therefore, the optimal value is finite, uniquely attained, and strong duality holds. In133

the following, we precisely formulate this conclusion.134

Throughout the rest of the paper we set1

F (y) := A(v +AT y)+ − b, f(y) :=
1

2
∥F (y)∥2. (2.3)

Theorem 2.1. Consider the generalized simplex best approximation problem (2.1) with primal135

optimal value and optimum p∗(v) and x∗(v), respectively. Then the following hold:136

(i) The optimum x∗(v) exists and is unique. Moreover, strong duality holds and the dual problem
of (2.1) is the maximization of the dual functional, ϕ(y, z):

p∗(v) = d∗(v) := max
z∈Rn

+
y∈Rm

ϕ(y, z) := −1

2

∥∥z −AT y
∥∥2 + yT (Av − b)− zT v.

137

(ii) Let y ∈ Rm. Then

F (y) = 0 ⇐⇒ y ∈ argmin f(y) and x∗(v) = (v +AT y)+. (2.4)

Proof. Recall that the Lagrangian L(x, y, z) for (2.1), and its gradient, are respectively

L(x, y, z) =
1

2
∥x− v∥2 + yT (b−Ax)− zTx, ∇xL(x, y, z) = x− v −AT y − z. (2.5)

(i): The solution of the problem (2.1) is a projection onto a nonempty polyhedral set, which is138

a closed and convex set, see (2.2). Therefore, the optimum exists and is unique and strong duality139

holds, i.e., there is a zero duality gap and the dual is attained.140

Let x be a stationary point of the Lagrangian i.e., ∇xL(x, y, z) = 0. Then we have the following
equivalent representation

x = v +AT y + z.

1Let x ∈ Rn. Here and elsewhere we use x+ (respectively x−) to denote projection of the vector x onto the
nonnnegative orthant defined by x+ = (max{0, xi})ni=1 (respectively onto the nonpositive orthant defined by x− =
(min{0, xi})ni=1) .
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It then follows that at a stationary point x we have

L(x, y, z) = 1
2

∥∥v +AT y + z − v
∥∥2 + yT (b−A(v +AT y + z))− zT (v +AT y + z)

= 1
2

∥∥AT y + z
∥∥2 + yT b− yTAv − (AT y)T (AT y + z)− zT v − zT (AT y + z)

= 1
2

∥∥AT y + z
∥∥2 + yT b− yTAv − (AT y + z)T (AT y + z)− zT v

= −1
2

∥∥z +AT y
∥∥2 + yT (b−Av)− zT v.

The Lagrangian dual is

d∗ = maxy∈Rm,z∈Rn
+
minx∈Rn L(x, y, z) = 1

2 ∥x− v∥2 + yT (b−Ax)− zTx

= maxx∈Rn,y∈Rm,z∈Rn
+

{L(x, y, z) : ∇xL(x, y, z) = 0}
= maxx∈Rn,y∈Rm,z∈Rn

+
{L(x, y, z) : x = v +AT y + z}

= maxy∈Rm,z∈Rn
+

−1
2

∥∥z +AT y
∥∥2 + yT (b−Av)− zT v.

Moreover, p∗ := p∗(v) = d∗ := d∗(v), and the dual value is attained.141

(ii): Now the KKT optimality conditions for the primal-dual variables (x, y, z) are2:

∇xL(x, y, z) = x− v −AT y − z = 0, z ∈ Rn
+, (dual feasibility)

∇yL(x, y, z) = Ax− b = 0, x ∈ Rn
+, (primal feasibility)

∇zL(x, y, z) ∼= x ∈ (Rn
+ − z)+. (complementary slackness zTx = 0)

The above KKT conditions can be rewritten as :142 x− v −AT y − z
Ax− b
zTx

 =

0
0
0

 , x, z ∈ Rn
+, y ∈ Rm. (2.6)

It follows from the dual feasibility that v + AT y = x − z = x + (−z). Together with the comple-
mentary slackness we have

xT z = 0, x, z ∈ Rn
+, −z ∈ Rn

− = (Rn
+)

+,

and we learn that x− z is the Moreau decomposition of v +AT y. That is

x = (v +AT y)+ and −z = (v +AT y)−; equivalently, z = −(v +AT y)−. (2.7)

Substituting for x = (v +AT y)+ we obtain a simplification of the optimality conditions in (2.6) as
follows

A(v+AT y)+ = b, x = (v+AT y)+ =⇒ z = −(v+AT y)−, z
Tx = 0, x, z ∈ Rn

+, x− v−AT y− z = 0,

equivalently; F (y) = 0, for some y ∈ Rm. The inverse implication is clear.143

2Let S ⊂ Rn. Here and elsewhere we use S+ to denote the polar cone of the set S.
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2.1.1 Nonlinear Least Squares; Jacobians144

The BAP as described in (2.1) is equivalent to the minimization of f(y) in (2.3), i.e, to a nonlinear145

least squares problem where the nonlinearity arises from the projection.146

This system can be recharacterized by introducing the, possibly nonsmooth, projection of a147

vector p onto the nonnegative, respectively nonpositive, orthant denoted p+ = argminx{∥x − p∥ :148

x ≥ 0}, respectively p− = argminx{∥x − p∥ : x ≤ 0}. In general, we can define the Moreau149

decomposition of p with respect to Rn
+ as p = p+ + p−, p

T
+p− = 0.150

Note that in the differentiable case the gradient of the squared residual f(y) is

∇f(y) = (F ′(y))∗F (y),

where (·)∗ denotes the adjoint (here adjoint is transpose and F ′ denotes the Jacobian matrix). We151

note that we have differentiability of the function h(w) := w+ if, and only if, {i : wi = 0} = ∅ if,152

and only if, w−w+ is in the relative interior of the normal cone of Rn
+ at w+ (negative of the polar153

cone at w+).154

We now discuss the framework of nonsmooth terminology needed to discuss generalized gradi-155

ents.156

Definition 2.2 ((local) Lipschitz continuity). Let Ω ⊆ Rn. A function H : Ω → Rn is Lipschitz
continuous on Ω if there exists K > 0 such that

∥H(y)−H(z)∥ ≤ K∥y − z∥, ∀y, z ∈ Ω.

H is locally Lipschitz continuous on Ω if for each x ∈ Ω there exists a neighbourhood U of x such157

that H is Lipschitz continuous on U .158

Let Ω ⊆ Rn. It follows from Rademacher’s Theorem [24,41] that if H : Ω→ Rn locally Lipschitz159

on Ω then H is Frechét differentiable almost everywhere on Ω. Following Clarke [19, Def. 2.6.1],160

we recall the following definition of the generalized Jacobian3
161

Definition 2.3 (generalized Jacobian). Suppose that H : Rm → Rm is locally Lipschitz. Let DH

be the set of points such that F is differentiable. Let H ′(y) be the usual Jacobian matrix at y ∈ DH .
The generalized Jacobian of G at y, ∂H(y), is the convex hull4 of all matrices obtained as the limit
of usual Jacobians, defined as follows

∂H(y) = conv

 lim
yi→y

yi∈DH

H ′(yi)

 .

In addition, ∂H(y) is called nonsingular if every V ∈ ∂H(y) is nonsingular.162

Let H : Rm → Rm be locally Lipschitz. In the differentiable case, if H ′(y) is invertible, the
Newton direction is the solution of the Newton equation

(H ′(y))∗(H ′(y))∆y = −(H ′(y))∗H(y) ; equivalently, H ′(y)∆y = −H(y).

3For our application we restrict ourselves to square Jacobians.
4Let S ⊂ Rn. The convex hull of S, denoted conv(S) is the smallest convex set containing S.
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Solving for ∆y yields

∆y = −
(
(H ′(y))∗(H ′(y))

)−1
(H ′(y))∗H(y) = −H ′(y)−1H(y). (2.8)

Therefore, the directional derivative of f in the direction of ∆y therefore satisfies

∆yT∇f(y) = − ((H ′(y))∗H(y))T ((H ′(y))∗(H ′(y)))−1 (H ′(y))∗H(y)
< 0,

Hence ∆y is a descent direction in this case.163

The Levenberg-Marquardt method is a popular method for handling singularity in (H ′(y))∗(H ′(y))164

by using the substitution/regularization (H ′(y))∗H ′(y) ← ((H ′(y))∗H ′(y)) + λI, λ > 0. We now165

see that we maintain a descent direction with a similar simplified approach.166

Lemma 2.4. Let y ∈ Rm. Suppose that F (y) = 0. Let λ > 0 and let ∆y be the solution of

(F ′(y) + λI)∆y = −F (y).

Then ∆y is the (simplified) Levenberg-Marquardt direction and is always a descent direction.167

Proof. For simplicity, set J = J(y) = F ′(y), and observe that J is positive semidefinite. The
regularization of Levenberg-Marquardt type uses

(J + λI)∆y = −F.

The positive semidefiniteness of J implies that J + λI is investible, hence

∆y = − (J + λI)−1 F.

Therefore, the directional derivative at y in the direction of ∆y is

∆yT∇f(y) = −
(
(J + λI)−1 (JTF )

)T
JTF

= −(JTF )T
(
(J + λI)−1

)
JTF

< 0.

This completes the proof.168

2.1.2 Maximum Rank Generalized Jacobian169

Recall the optimality conditions derived following (2.6). If we denote the orthogonal projection
operator onto the nonnegative orthant by P+(w) = w+, then

Aw+ = A(P+w) = (AP+)w+ = (AP+)(P+w) = (AP+)w+ =
∑
wi≥0

Aiwi.

Here Ai is the i-th column of A. Thus we see that at points where the projection is differentiable,
the columns of A that are chosen correspond to the nonnegative (basic) variables of w. We note
that

v +AT y ≥ 0 =⇒ F ′(∆y) = AIAT∆y = AAT∆y.
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Following [30], we define the following set

U(y) :=

u ∈ Rn , ui ∈


1, if (v +AT y)i > 0,

[0, 1] , if (v +AT y)i = 0,
0, if (v +AT y)i < 0.

 . (2.9)

Then the generalized Jacobian of the nonlinear system at y ∈ Rm is given by the set

∂F (y) = {A Diag(u)AT |u ∈ U(y)}. (2.10)

Let y0 ∈ Rm. The nonsmooth Newton method for solving F (y) = 0 generates the following iterates170

yk+1 = yk − V −1
k F (yk), Vk ∈ ∂F (yk). (2.11)

Let

I+ := I+(y) = {i : sign+(v +AT y) = 1}, I0 := I0(y) = {i : sign+(v +AT y) = 0}.

We note that, defining M = Diag(u),

AMAT := ADiag(u)AT =
∑
i∈I+

AiA
T
i +

∑
i∈I0

αiAiA
T
i , αi ∈ [0, 1],∀i ∈ I0.

Then the maximum (resp. minimum) rank for AMAT is obtained by choosing αi = 1, ∀i ∈ I0
(αi = 0, ∀i ∈ I0, resp.). We use the modified sign function

sign+(w) =

{
1, if w ≥ 0,
0, if w < 0.

Then the maximum rank generalized Jacobian is obtained from

AMAT =
∑
i∈I+

AiA
T
i .

2.1.3 Vertices and Polar Cones171

In our tests we can decide on the characteristics of the optimal solution using the properties of172

(degenerate) vertices.173

Lemma 2.5 (vertex and polar cone). Suppose that x(y) = (v + AT y)+∈ P , where y ∈ Rm. Then174

the following are equivalent:175

1. x(y) is a vertex of P ,176

2. AI+(y) is nonsingular,177

3. the corresponding generalized Jacobian, (2.10), is nonsingular.178
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Moreover, the polar cone of the feasible set P at x = x(y) is

(P − x)+ = {w : w = ATu+ z, u ∈ Rm, z ∈ Rn
+, x

T z = 0}. (2.12)

179

Proof. Without loss of generality we can permute the columns of A using the index sets I+, I0,
and have A = [AI+ AI0 ]. Therefore, the active set of equality constraints is[

AI+ AI0
0 II0

]
x =

(
b
0

)
.

This has the unique solution x(y) if, and only if, AI+ is nonsingular.180

From the optimality conditions we have that the gradient of the objective satisfies

x− v = AT y +
∑
j∈I0

zjej ,

where ej is the j-th unit vector. And we know that x− v is in the polar cone at x if, and only if,181

x is optimal. Therefore at a vertex, this yields the description of the polar cone at x.182

Remark 2.6 (degeneracy of optimal solutions). Let x be a boundary point of P . Then the polar
cone of P at x is given in (2.12). Moreover, x is the optimal solution of (2.1) if, and only if,
x− v ∈ (P − x)+, i.e., we can choose v with

v = x−ATu+ z, z ≥ 0, zTx = 0.

In fact, we can choose z so that x+ z > 0 and have no degeneracy or choose z = 0 and have high
degeneracy. For these choices we still get x optimal. As mentioned above, it is shown in [23] that

x∗(v) is differentiable at v ⇐⇒ (x∗(v)− v) ∈ relint(P − x∗(v))+.

This justifies our use of the Levenberg-Marquardt regularization.183

The pseudocodes for solving (2.1) using the exact and inexact nonsmooth Newton methods are184

presented below in Appendix A in Algorithms A.1 and A.2, respectively.185

3 Cyclic HLWB Projection for Best Approximation186

A notable aspect of this work is the computational comparison of our semismooth algorithm with the187

method of Halpern-Lions-Wittmann-Bauschke, (HLWB). The convergence analysis of the method188

has its roots in the field of fixed point theory. For the readers’ convenience we provide a brief189

description and some relevant references.190

Problem 3.1 (best approximation problem for linear inequalities). Given an m× n matrix A and191

a vector b ∈ Rm such that192

Q := {x ∈ Rn : Ax ≤ b} ≠ ∅, (3.1)

and a point v ∈ Rn, v /∈ Q, called the anchor point, find the orthogonal projection of v onto Q,193

denoted by PQ(v).194
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The set Q is the intersection of m half-spaces. Denote the i-th half-space of (3.1) by195

Hi := {x ∈ Rn : xTai ≤ bi}. (3.2)

The orthogonal projection of a point v ∈ Rn onto Hi, denoted by Pi(v), is196

Pi(v) = v +min

{
0,

bi − yTai

∥ai∥2

}
ai. (3.3)

The HLWB algorithm for this problem is a projection method that employs projections onto197

the individual half-spaces of (3.2) and makes use of a sequence of, so called, steering parameters.198

Definition 3.2 (steering sequence). A real sequence (σk)
∞
k=0 is called a steering sequence if it has199

the following properties:200

σk ∈ [0, 1] for all k ≥ 0, and lim
k→∞

σk = 0,∑∞
k=0 σk =∞ (or, equivalently,

∏∞
k=0(1− σk) = 0) ,∑∞

k=0 |σk+1 − σk| <∞.

(3.4)

Observe that although σk ∈ [0, 1], the definition rules out the option of choosing all σk equal201

to zero or all equal to one because of contradictions with the other properties. The third property202

in (3.4) was introduced by Wittmann, see, e.g., the review paper of López, Martin-Márquez and203

Xu [33].204

Algorithm 3.1 cyclic HLWB algorithm for linear inequalities

Initialization: Choose an arbitrary initialization point x0 ∈ Rn

Iterative Step: Given the current iterate xk, calculate the next iterate xk+1 by

xk+1 = σkv + (1− σk)Pi(k)(x
k), (3.5)

where v is the given anchor point, i(k) = k mod m+1 and (σk)
∞
k=0 is a steering sequence.

The HLWB algorithm has a much broader formulation that applies to the BAP with respect205

to the common fixed points set of a family of firmly nonexpansive (FNE) operators presented in206

Bauschke [4], also Bauschke and Combettes [6, Chap. 30]. For more on the BAP, see, e.g., Deutsch’s207

book [21]. The family of iterative projection methods for the BAP includes, in addition to the208

HLWB method, also Dykstra’s algorithm [12], [6, Theorem 30.7], Haugazeau’s algorithm [26], [6,209

Corollary 30.15], and Hildreth’s algorithm [28,31]. There are also simultaneous versions of some of210

these algorithms available, see, e.g., [13]. A string-averaging HLWB algorithm, which encompasses211

the sequential, the simultaneous and other variants of the HLWB algorithm, recently appeared212

in [14].213

More on applications of BAP and the HLWB algorithm are given in Appendix C.214

4 Applications215

We consider several applications of the best approximation problem, (2.1). Perhaps the most216

interesting is the following approach to solving a linear program, LP.217
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4.1 Solving Linear Programs218

We consider a maximization primal LP in standard equality form

(PLP)
p∗LP := max cTx

s.t. Ax = b ∈ Rm

x ∈ Rn
+.

(4.1)

The dual LP is

(DLP)
d∗LP := min bT y

s.t. AT y − z = c ∈ Rn

z ∈ Rn
+.

(4.2)

We assume that A is full row rank and that the optimal value is finite. Note that the fundamental219

theorem of linear programming now guarantees that strong duality holds for both the primal and220

dual problems, i.e., equality p∗LP = d∗LP holds and both optimal values are attained.221

We now see in Lemma 4.1 that the solution to (PLP) is the limit of the projection of the vector222

vR = Rc ∈ Rn onto the feasible set as R ↑ ∞.5223

Lemma 4.1 ( [34–36,44]). Let the given LP data be A, b, c with finite optimal value p∗LP . For each
R > 0 define

x∗(R) := argminx
1
2 ∥x−Rc∥2

s.t. Ax = b ∈ Rm

x ∈ Rn
+.

(4.3)

Then x∗ is the minimum norm solution of (PLP) if, and only if, there exists R̄ > 0 such that

R ≥ R̄ =⇒ x∗ = x∗(R) = argmin

{
1

2
∥x−Rc∥2 : Ax = b, x ∈ Rn

+

}
. (4.4)

In our application, as we would like an R that is not too large but large enough so that
Rc > ∥x∗∥. We use the estimate

R = min

{
50,

√
mn ∥b∥
1 + ∥c∥

}
. (4.5)

To avoid numerical complications from large numbers, we consider the following equivalent problem224

that uses the scaling 1
Rb rather than Rc.225

Corollary 4.2. Let A, b, c, R, x∗(R) be defined as in Lemma 4.1. Then

1
Rx

∗(R) = w∗(R) := argminw
1
2 ∥w − c∥2

s.t. Aw = 1
Rb ∈ Rm

w ∈ Rn
+.

(4.6)

Proof. From

∥x−Rc∥2 = R2

∥∥∥∥ 1

R
x− c

∥∥∥∥2 = R2 ∥w − c∥2 , x = Rw,

we substitute for x and obtain: A(Rw) = b ⇐⇒ Aw = 1
Rb. The result follows from the observation226

that argmin does not change after discarding the constant R2.227

5Note that our algorithm identifies infeasibility but we do not consider that aspect in this paper.
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4.1.1 Warm Start; Stepping Stone External Path Following228

We consider the scaling in Corollary 4.2 and recall the relation between the scaling for c with
variable x:

x(R) = Rw(R).

(To simplify notation, we ignore the optimality symbol (·)∗.) The optimality conditions from The-
orem 4.5 for w = w(R) in Corollary 4.2 are:w − c−AT y − z

Aw − 1
Rb

zTw

 =

0
0
0

 , w, z ∈ Rn
+, y ∈ Rm. (4.7)

We conclude that

lim
R→∞

Prange(AT )w(R) = 0, lim
R→∞

Rw(R) = x∗, the optimum of the LP.

The optimality conditions are now

w = c+AT y + z, b = ARw = AR(c+AT y)+, wT z = 0, x, z ≥ 0. (4.8)

This means that ∥w∥ is an estimate for the error in dual feasibility, i.e., an estimate for the accuracy229

of Rw as the optimum of the original LP.230

Given the current R and the approximate optimal triple (w, y, z), we would like to find a good231

new Rn and a corresponding yn to send to the projection algorithm for a warm start process.232

We use sensitivity analysis for the projection problem. In the sequel A† denotes the generalized233

(Moore-Penrose) inverse of a matrix A.234

Theorem 4.3. Suppose that the triple (w, y, z) is optimal for (4.6); i.e., satisfies (4.7). Let

N = N (z) = {i : zi > 0}, B = B(w) = {1 : n}\N ;

bB = AT
B
(
ABA

T
B
)†

b, bN = AT
N
(
ABA

T
B
)†

b;

e =

(
(bB −RwB)
−(bN +RzN )

)
, f =

(
RbB
−RbN

)
.

(4.9)

Then the maximum value for increasing R without changing the basis is

Rn = min{ei/fi : ei > 0}. (4.10)

The corresponding changes ∆w,∆y,∆z that result in w +∆w, y +∆y, z +∆z optimal for Rn are235

given in the proof that follows.236

Moreover, if Rn =∞, then the optimal solution of the LP has been found.237

Proof. We want to find the maximum increase in R that keeps the current basis B optimal for (4.6).
We have

AB(wB +∆w) = 1
Rn

b =⇒ AB∆w =
(

1
Rn
− 1

R

)
b

wB +∆w − cB −AT
B(y +∆y) = 0 =⇒ ∆w = AT

B(∆y) =⇒ ABA
T
B(∆y) =

(
R−Rn
RRn

)
b

−cN −AT
N (y +∆y)− (zN +∆z) = 0 =⇒ ∆z = −AT

N (∆y)
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We now set

∆yp =
(
ABA

T
B
)†

b, ∆y =

(
R−Rn

RRn

)
∆yp.

We have

−wB ≤ ∆w = AT
B

(
R−Rn

RRn

)
∆yp = −

(
Rn −R

RRn

)
AT

B
(
ABA

T
B
)†

b =: −
(
Rn −R

RRn

)
bB.

We get that
(Rn −R)bB ≤ (RRn)wB =⇒ Rn(bB −RwB) ≤ RbB.

To find the maximum Rn and check that it is not Rn =∞, we use an LP type ratio test. We set the238

two vectors to be e = (bB − RwB), f = RbB. Note that the inequality holds trivially for Rn = R.239

Therefore, we cannot have ei > 0, fi ≤ 0. We choose Rn to be the maximum that satisfies:240

max
i
{fi/ei, if fi < 0, ei < 0} ≤ Rn = min

i
{fi/ei, if fi > 0, ei > 0},

where the minimum over the empty set is taken to be +∞.241

We now need to similarly do a ratio test for z. We have242

−zN ≤ ∆z = −AT
N

(
R−Rn

RRn

)
∆yp =

(
Rn −R

RRn

)
AT

N
(
ABA

T
B
)†

b =:

(
Rn −R

RRn

)
bN .

We get that
(Rn −R)bN ≥ −(RRn)zN =⇒ Rn(−bN −RzN ) ≤ −RbN .

We again find the maximum Rn and check that we do not have Rn = ∞ using an LP type ratio
test. We set the two vectors to be e = −(bN +RzN ), f = −RbN . Recall that the inequality holds
trivially for Rn = R. Therefore, we cannot have ei > 0, fi ≤ 0. We choose Rn to be the maximum
that satisfies:

max
i
{fi/ei, if fi < 0, ei < 0} ≤ Rn = min

i
{fi/ei, if fi > 0, ei > 0}.

We choose Rn as the minimum of the above two values found.243

Finally, if Rm = ∞, then the basis does not change as R increases to infinity, i.e., the optimal244

basis has been found.245

The above Theorem 4.3 illustrates the external path following algorithm that we are using.246

The theorem finds specific values of R, stepping stones on the path, where the current choice of247

columns of A changes. Once we find that the next stepping stone is at infinity, we know that we248

have found the optimal choice of columns of A. Thus we have an external path following algorithm249

with parameter R but we only choose specific points on this path to step on.250
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4.1.2 Upper and Lower Bounds for the LPProblem251

The optimal solution from the projection problems (4.3) and (4.6) provides a feasible x, and we get252

the corresponding LP lower bound cTx∗(R). The upper bound is not as easy and more important253

in stopping the algorithm.254

Note that in Section 4.1.1 primal feasibility and complementary slackness hold for x(R) = Rw, z
and this is identical for the LP problem. We therefore need to find yLP to satisfy the LP dual
feasibility

zLP = AT yLP − c ≥ 0.

But, from the projection problem optimality conditions we have

AT (−y) = z + c− w, 0 ⪯ z = AT (−y)− c+ w, w ≥ 0.

As seen above, this means that in the limit, w is small and we do get dual feasibility y(R) → yLP.
But at each iteration we actually have

z − w = AT (−y)− c, z, w ≥ 0, zTw = 0, y ∼= yR. (4.11)

We can write the required dual feasibility equations using the indices for wi > 0.

AT
:iy − ci ∈

{
{0}, if wi > 0,
R+, if wi = 0.

Recall the definitions of N ,B in (4.9). Then for a given yR from the optimality conditions from255

the projection problem (4.11), we consider the nearest dual LP feasible system with unknowns256

z ≥ 0, yLP. Note that we are using the projection with free variables, Section 4.2.257

Lemma 4.4. Let w, y = yR, z be approximate optimal solutions from (4.8) and B the support
defined in (4.9). Consider the nearest dual feasibility program(

y∗LP
z∗LP

)
∈ argmin 1

2∥(−yR)− yLP∥2 + 1
2∥0− zB∥2 + 1

2∥(zR)N − zN ∥2
(
= 1

2∥v − x∥2
)

s.t.

[
AT

:B −I 0
AT

:N 0 −I

]yLP

zB
zN

 =

(
cB
cN

)
yLP free, zLP =

(
zB
zN

)
≥ 0.

(4.12)

Then the optimal value of the LP (4.1) satisfies the upper bound

p∗LP ≤ bT y∗LP.

Moreover, suppose that zB = 0. Then equality holds and the LP is solved with primal-dual optimum258

pair (w, yLP).259

Proof. Recall that the optimal value p∗LP is finite. The proof of the bound follows from weak duality260

in linear programming. Equality follows from the optimality conditions since primal feasibility and261

complementary slackness hold with w.262
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4.2 Projection and Free Variables263

For many applications, some of the variables are free and not all the variables are in the objective264

function. We consider these two cases. Note this can arise when the objective is a general least265

squares problem e.g., min ∥Bx− c∥2 and we add the constraint Bx−w = 0 and substitute the free266

variable w into the objective function.267

4.2.1 Projection with Free Variables268

We first consider the problem with some of the variables free:

(P)

x(v) := argminx1,x2

1
2 ∥x− v∥2 , x =

(
x1
x2

)
, v =

(
v1
v2

)
,

s.t. Ax = b ∈ Rm

x1 ∈ Rn1
+ , x2 ∈ Rn2 ,

optimal value: p∗f (v) = 1
2 ∥x(v)− v∥2 ,

(4.13)

269

Theorem 4.5. Consider the generalized simplex best approximation problem with free variables
(4.13). Assume that the feasible set is nonempty. Then the optimum x(v) exists and is unique.
Moreover, let

Ff (y) := A

((
(v +AT y)1

)
+

(v +AT y)2

)
− b, ff (y) =

1

2
∥Ff (y)∥2. (4.14)

Then Ff (y) = 0 ⇐⇒ y ∈ argmin ff (y), and

x(v) =

((
(v +AT y)1

)
+

(v +AT y)2

)
, for any root Ff (y) = 0. (4.15)

Let p∗f (v) =
1
2∥x(v)− v∥2 denote the primal optimal value. Then strong duality holds and the dual

problem of (4.13) is the maximization of the dual functional, ϕf (y, z1):

p∗f (v) = d∗f (v) := max
z1∈Rn1

+ ,y∈Rm
ϕ(y, z1) := −

1

2

∥∥∥∥(z10
)
−AT y

∥∥∥∥2 + yT (Av − b)− zT1 v1.

270

Proof. We modify the proof of Theorem 2.1. The Lagrangian, Lf (x, y, z) for (4.13) is

Lf (x, y, z) =
1

2
∥x− v∥2 + yT (b−Ax)− zT1 x1, ∇xLf (x, y, z) = x− v −AT y −

(
z1
0

)
. (4.16)

Solving for a stationary point means

0 = ∇xLf (x, y, z) =⇒ x = v +AT y + z, z =

(
z1
0

)
.
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Therefore, with this definition of z, we still have at a stationary point that

Lf (x, y, z) = 1
2

∥∥v +AT y + z − v
∥∥2 + yT (b−A(v +AT y + z))− zT (v +AT y + z)

= 1
2

∥∥AT y + z
∥∥2 + yT b− yTAv − (AT y)T (AT y + z)− zT v − zT (AT y + z)

= 1
2

∥∥AT y + z
∥∥2 + yT b− yTAv − (AT y + z)T (AT y + z)− zT v

= −1
2

∥∥z +AT y
∥∥2 + yT (b−Av)− zT v.

As in Theorem 2.1, the problem (4.13) is a projection onto a nonempty polyhedral set, a closed
and convex set. The optimum exists and is unique and strong duality holds, i.e., there is a zero
duality gap p∗f = d∗f , and the dual value is attained. The Lagrangian dual is

d∗ = maxz1∈R
n1
+ ,y minx Lf (x, y, z) =

1
2 ∥x− v∥2 + yT (b−Ax)− zT1 x1

= maxz1∈R
n1
+ ,y,x {Lf (x, y, z1) : ∇xLf (x, y, z1) = 0}

= maxz1∈R
n1
+ ,y,x {Lf (x, y, z) : x = v +AT y + z}

= maxz1∈R
n1
+ ,y −1

2

∥∥z +AT y
∥∥2 + yT (b−Av)− zT v.

Therefore, we derive the KKT optimality conditions for the primal dual variables (x, y, z) with

z =

(
z1
0

)
, x1 ≥ 0, z1 ≥ 0, as follows

∇xLf (x, y, z) = x− v −AT y − z = 0, (dual feasibility)
∇yLf (x, y, z) = Ax− b = 0, (primal feasibility)
∇zLf (x, y, z) ∼= x ∈ (Rn

+ − z)+. (complementary slackness zT1 x1 = 0)

The standard KKT optimality conditions for primal-dual variables (x, y, z) can be rewritten as:x− v −AT y − z
Ax− b
zTx

 =

0
0
0

 , x1, z1 ∈ Rn1
+ , y ∈ Rm, z =

(
z1
0

)
.

Note v + AT y = x − z = x + (−z). Therefore this is a Moreau decomposition of v + AT y, with271

xT z = 0, x, z ∈ Rn
+, x = (v + AT y)+. Therefore, we get A(v + AT y)+ = b, where we modify the272

definition of + so that we project only the first part corresponding to x1 onto the nonnegative273

orthant Rn1
+ and then this means z1 = −

(
(v +AT y)1

)
−.274

We get the optimality conditions

A

((
(v +AT y)1

)
+

(v +AT y)2

)
= b, x1 =

(
(v +AT y)1

)
+
, x2 = (v +AT y)2

=⇒ z = −(v +AT y)−, z
Tx = 0, x, z ∈ Rn

+, x− v −AT y − z = 0,

i.e., Ff (y) = 0, for some y ∈ Rm.275

For a vertex, a BFS, we need n active constraints. The equality constraints Ax = b account for
m, leaving n−m to choose among 1, . . . , n1, the constrained variables in x1. This leaves

m1 = n1 − (n−m) = m− (n− n1) = m− n2 =⇒ m1 = m− n2, basic variables.
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4.3 Triangle Inequalities276

We can obtain an efficient projection onto a large set of triangle inequalities that arise as cuts in
graph problems. We let G = (V,E) denote a graph and

T = {(u, v, w) : u < v < w ∈ V }

and define the triangle inequalities

(I)


xvw − xuv − xuw ≤ 0
xuw − xuv − xvw ≤ 0
xuv − xvw − xuw ≤ 0
∀(u, v, w) ∈ T

0 ≤ xuv ≤ 1, ∀(u, v) ∈ E

 (4.17)

We could rewrite this as a standard feasibility seeking problem or best approximation problem,
i.e. given a x̄ we want to find the nearest point to x̄ that satisfies a subset of triangle inequalities
denoted with T :

min
1

2
∥x− x̄∥2 s.t. Tx+ sI = 0, x+ tI = e, x, s, t ≥ 0.

By abuse of notation, we let x =

x
s
t

.

A =

[
T I 0
I 0 I

]
, b =

(
0
e

)
.

Example 4.6 (Max-Cut Graph Problem). This means the graph has weights Wij on the edges
xij. We want to maximize 1

4

∑
ij Wij(1 − zizj), where zi is ±1 depending which set the i-th node

is in. The constraint here is z2i = 1,∀i. The Laplacian L = L(W ) can be used to get the following
equivalent problem

maxz traceZW = (zTLz)
s.t. diag(Z) = e (Z = zzT )

Z ⪰ 0

The relaxation ignores the rank one constraint on Z. If the optimal Z is rank one we can recover the277

optimal solution for the original NP-hard MC problem using the factorization Z = zzT . Otherwise278

you can use the first column of the eigenvector for the largest eigenvalue as an approximate and do279

a rounding. (Goemans-Williamson Theorem guarantees 87.14 approx percent of optimal value)280

The SDP relaxation is
maxz traceZW
s.t. diag(Z) = e

Z ⪰ 0

This relaxation is an excellent relaxation but if it fails we can add violated triangle inequalities to281

improve the solution. In a splitting approach we need an efficient projection onto a set of triangle282

inequalities.283
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Example 4.7 (Binary). For a binary 0, 1 problem with x ∈ Rn we add the constraint x2i −xi = 0,∀i
and then lift to matrix space

Yx =

(
1
x

)(
1
x

)T

.

We now relax the rank constraint and solve an SDP wiht Yx ⪰ 0. For example with the added

constraint that Ax = b. We choose V so that range(V ) = Null

([
−bT
AT

])
and use the facial

reduction
Yx = V RV T , R ⪰ 0.

The original problem is x binary and Ax = b. We replace this by equivalent problem

min 0 s.t. ∥Ax− b∥2 = 0, x ◦ x− x = 0.

We now look at the Lagrangian dual, homogenized with α. We let y =

(
α
x

)
. The Lagrangian is

L(x, λ,w) = 0 + λ∥Ax− αb∥2 +
∑

iwi(x
2
i − αxi) + t(1− α2)

= λ
(
xTATAx− 2αbTAx+ α2∥b∥2

)
+
∑

iwi(x
2
i − αxi) + t− tα2

= yT
[

λ∥b∥2 − t −λbTA− wT /2
−λAT b− w/2 λATA+Diag(w))

]
y + t.

The Lagrangian dual is:

d∗ := maxλ,w,tminx,α L(x, λ,w)

= maxλ,w,t

{
t :

[
λ∥b∥2 − t −λbTA− wT /2

−λAT b− w/2 λATA+Diag(w))

]
⪰ 0

}
=

maxλ,w,t t

s.t. λ

[
∥b∥2 −bTA
−AT b ATA)

]
+

[
0 −wT /2

−w/2 Diag(w))

]
− tE00 ⪰ 0

5 Numerics284

In this section we compare the Regularized Nonsmooth Newton Method, (RNNM), (exact and285

inexact) with the HLWB method [4] described in Section 3, as well as with Matlab’s lsqlin in-286

terior point solver . Recall our BAP, (2.1), and the pseudocode for HLWB in Algorithm A.3 in287

Appendix A. We show that in our experiments RNNM (exact) significantly outperforms the other288

methods. These experiments are done with an i7-4930k @ 3.2GHz, 16 GBs of RAM, and Matlab289

2022b software.290

Before we see the differences in performance of the algorithms, we elaborate on how we imple-291

ment the HLWB method, see also Section 3. HLWB projects onto individual convex sets, and then292

computes the next iterate, xk+1, by taking a specific convex combination dictated by a sequence of293

steering parameters, see Definition 3.2, and the initial point v, commonly called the anchor Prob-294

lem 3.1. Traditionally, each projection is called an iteration, and the collection of these iterations295

is defined as a sweep, e.g., [6]. In the context of our problem (2.1), HLWB is iterating onto one296

of the hyperplanes (sets) defined by A, denoted aik , as well as the nonnegative orthant. We have297
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completed a sweep once the projection onto all the hyperplanes and onto the nonnegative orthant298

have been completed. (See steps 14-16 of Algorithm A.3.) Thus we relate one sweep of HLWB with299

one iteration of RNNM .300

5.1 Time Complexity301

Since RNNM is a second-order method while HLWB is a first-order method, we now discuss302

theoretical time complexity differences. From the RNNM Algorithm, Algorithm A.1, we can303

see that worst-case time complexity is O(m3 + m2n) 6 flops, of which every step but solving the304

linear system is efficiently parallelizable. It is worth mentioning that in Step 6, the linear system305

we are solving is positive definite and sparse. Therefore, it can be solved efficiently using the306

Cholesky decomposition. From the HLWB Algorithm, Algorithm A.3, we can see that worst-case307

time complexity per iteration is O(mn) and per sweep is O(m2n), of which every step is efficiently308

parallelizable. 7
309

From the perspective of theoretical time complexity it would be easy to assume that HLWB is310

the preferable algorithm as each of it’s iterations are composed of operations that are completely311

parallelizable and each first-order sweep has an overall lower time-complexity. However, without312

performing numerical tests with varying parameters m and n, we cannot yet conclude how a first-313

order method compares to a second-order method in terms of desired performance, especially as m314

and n get extremely large as observed in practice.315

5.2 Comparison of Algorithms316

When performing our numerical experiments, we refer to the discussion on techniques for compar-317

isons of algorithms given in [8]. In particular, we include performance profiles [22] and tables of318

the performances for RNNM (exact and enexact), HLWB, and lsqlin.319

We compare the HLWB algorithm to RNNM by generating the problem (2.1) such that v320

lies in the relative interior of the normal cone (negative of the polar cone) of a vertex of the321

feasible polyhedron, and therefore the vertex is the closest point to v. More specifically, since322

no convergence results for RNNM solving (2.1) as far as we know have been proven, for these323

experiments we ensure that ∥A∥ = 1, ∥v∥ = 0.1.324

The RNNM Algorithm starts with initializing x0 ← (v + AT y0)+ where either y0 = 0m or we325

are given a y0 for a warm start as discussed in our LP application, then x0 ← (v+AT y0)+ reduces326

to x0 ← max(v, 0) in the initialization stage of RNNM . Therefore, to ensure all algorithms start327

at the same point, we initialize x0 ← max(v, 0) for HLWB, and provide x0 ← max(v, 0) as a warm328

start for Matlab’s lsqlin solver.329

Since RNNM solves a reduced KKT condition for a convex problem, then ∥F (yk)∥
1+∥b∥ is a sufficient330

relative residual and stopping condition for RNNM . Since HLWB is a first order method, it’s331

stopping criterion will be measured at the end of a sweep as opposed to an iteration. Furthermore,332

HLWB does not have any proper stopping criterion but converges in the limit, so we will use primal333

6See Algorithm A.1 lines 4-12, the total time complexity respectively is: m2n+m2 +m3 + n+ 2n+mn+ 2n+
mn+ n+m+ 1 = m2n+m3 +m2 + 2mn+ 5n+m+ 1 = O(m3 +m2n)

7See Algorithm A.3 lines 5-11, the total time complexity respectively per iteration that projects onto a half space is
(2n+2)+1+(n+2)+(mn+m+1) = mn+3n+m+6 = O(mn) flops Similarly, the total time complexity respectvely per
iteration that projects onto the nonnegative orthant is: n+1+ (n+2)+ (mn+m+1) = mn+2n+m+4 = O(mn)
flops of which all flops are efficiently parallelizable. Therefore, in terms of sweeps the HLWB method computes
m(mn+ 3n+m+ 6) +mn+ 2n+m+ 4 = m2n+ 4mn+m2 + 2n+ 7m+ 4 = O(m2n) flops.
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feasibility as the stopping criterion, i.e., ∥Ayk−b∥
1+∥b∥ . Note that we use yk instead of xk in the stopping334

criterion as yk is nonnegative at the end of every sweep. Lastly, the lsqlin solver will be using it’s335

first-order optimality conditions, which we will make relative by dividing by 1 + ∥b∥.336

In Section 5.2.1, we generate problems such that v lies in the relative interior of the normal cone337

of a nondegenerate vertex. We also tested for degenerate vertices but observed very similar results.338

These tests, and the performance of the RNNM Algorithm motivates the theory and potential339

practice of using RNNM for LP applications, as seen in Section 5.3.340

For the performance profiles in Section 5.2.1 we use the following notation from [8]. Let P341

be our set of problems, i.e., problems with changing m, n, and density, and let S be our set of342

solvers, i.e., RNNM (exact and inexact), HLWB, and lsqlin. Then, we define the performance343

measure, tp,s > 0 obtained for each pair (p, s) ∈ P × S with respect to the computational time it344

took for solver S to solve problem P . Then, for each problem p ∈ P and solver s ∈ S, we define345

the performance ratio as346

rp,s =

{
tp,s

min{tp,s : s∈S} if convergence test passed,

∞ if convergence test failed.

Clearly, the solver s that performs the best on problem p will have a performance ratio of 1,347

and any solvers that perform worse than s will satisfy tp,s > 1, i.e., the larger the performance348

ratio, the worse the solver performed on problem p.349

The performance profile of a solver s is then defined as350

ρs(τ) =
1

|P |
size{p ∈ P : rp,s ≤ τ}.

Therefore, ρs(τ) is the relative portion of time the performance ratio rp,s for solver s is within a351

factor τ ∈ R of the best possible performance ratio.352

5.2.1 Numerical Comparisons353

Note that we tested with optimal solutions at nondegenerate, degenerate vertices and non vertices.354

They exhibited similar results. Therefore, we present results restricted to nondegenerate vertices.355

We begin with choosing v for (2.1) such that the optimum is uniquely a nondegenerate vertex of P .356

In the tables below we vary size of m, n, and the problem density to illustrate the changes in each357

solver’s performance. A data point in each table is the arithmetic mean of 5 randomly generated358

problems of the specified parameters that also satisfy ∥A∥ = 1, ∥v∥ = 0.1. For example, the first359

row of Table 5.1 represents a problem with parameters m = 500, n = 2000, and a density of 0.0081,360

and each solver will solve 5 randomly generated problems of the form discussed in (2.1), and the361

average time and relative residual from solving all 5 problems is displayed in the table. The desired362

stopping tolerance for the tables and performance profiles is ε = 10−14 and maximum iterations363

(sweeps) is 2000 for all solvers.364

From Tables 5.1 to 5.3, the empirical evidence demonstrates the superiority of theRNNM (exact)365

approach to the other solvers. Since the RNNM ’s reduced KKT system is m×m and solved using366

the Cholesky Decomposition, it’s performance should be affected most noticeabley as m varies or367

density increases. This theoretical observation can be see in Tables 5.1 to 5.3, as the RNNM (exact368

and inexact) Algorithm is slower to converge for increasing m and density, but is not affected by369

an increase in n.370
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From Figure 5.1 the empirical evidence shows similar results to the tables, but better demon-371

strates the differences in performance betweenRNNM (exact) and the other solvers. The problems372

in Figure 5.1a are similar to that of Table 5.1 except m varies by 100 from 100 to 2000. Similarly,373

the problems in Figure 5.1b has n varying by 100 from 3000 to 5000, and Figure 5.1c has den-374

sity varying by 1% from 1% to 100%. In every performance profile, the RMMN (exact) Algorithm375

clearly outperforms the other solvers, with RMMN (inexact) performing well for an inexact method376

on mid-sized problems. As should be expected, HLWB is relatively slow on these problems, this can377

be attributed to it’s linear convergence rate, as 2000 sweeps can amount to millions of iterations378

on certain problems with large m. Performance profiles can be found in Appendix B.1 with the379

stopping tolerances ε = 10−2, 10−4, to illustrate that RNNM (exact) outperforms the other solvers380

at different tolerances.381

Table 5.1: Varying problem sizes m; comparing computation time and relative residuals

Specifications Time (s) Rel. Resids.
m n % density Exact Inexact HLWB LSQlin Exact Inexact HLWB LSQlin
100 3000 8.1e-01 1.13e-02 2.71e-02 2.07e+01 4.89e+00 1.11e-16 1.30e-15 2.47e-04 1.07e-15
600 3000 8.1e-01 8.49e-02 2.48e-01 2.28e+02 6.42e+00 2.46e-17 2.90e-16 2.26e-04 1.25e-15
1100 3000 8.1e-01 6.89e-01 1.36e+00 4.83e+02 9.40e+00 8.44e-16 1.12e-15 2.11e-04 7.95e-16
1600 3000 8.1e-01 1.80e+00 4.65e+00 7.79e+02 1.23e+01 7.53e-18 3.66e-16 2.29e-04 5.59e-16

Table 5.2: Varying problem sizes n; comparing computation time and relative residuals

Specifications Time (s) Rel. Resids.
m n % density Exact Inexact HLWB LSQlin Exact Inexact HLWB LSQlin
200 3000 8.1e-01 1.02e-02 6.36e-02 5.25e+01 5.35e+00 5.08e-16 2.32e-18 2.59e-04 1.81e-15
200 3500 8.1e-01 4.18e-03 3.74e-02 6.10e+01 7.39e+00 9.30e-16 6.08e-17 2.69e-04 2.25e-15
200 4000 8.1e-01 3.68e-03 3.53e-02 6.97e+01 1.07e+01 1.64e-16 2.64e-16 2.85e-04 1.21e-15
200 4500 8.1e-01 6.08e-03 3.92e-02 7.84e+01 1.47e+01 7.17e-16 1.19e-17 3.22e-04 1.83e-15
200 5000 8.1e-01 5.11e-03 3.67e-02 8.66e+01 1.89e+01 5.87e-18 1.43e-16 3.03e-04 2.60e-15

Table 5.3: Varying problem density; comparing computation time and relative residual

Specifications Time (s) Rel. Resids.
m n % density Exact Inexact HLWB LSQlin Exact Inexact HLWB LSQlin
300 1000 1.0e+00 1.43e-02 6.69e-02 1.83e+01 5.21e-01 2.45e-15 9.21e-16 1.51e-04 1.25e-15
300 1000 2.6e+01 4.51e-02 2.57e-01 5.18e+01 4.69e-01 6.26e-16 1.45e-17 1.55e-04 3.98e-16
300 1000 5.1e+01 6.77e-02 3.00e-01 6.19e+01 4.51e-01 1.65e-16 1.56e-17 1.58e-04 1.70e-16
300 1000 7.6e+01 9.55e-02 3.15e-01 6.26e+01 5.06e-01 4.03e-17 3.27e-16 1.66e-04 8.81e-17
300 1000 9.6e+01 1.08e-01 3.33e-01 5.64e+01 4.63e-01 1.35e-16 1.48e-15 1.56e-04 1.14e-17
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(a) Varying m (b) Varying n

(c) Varying density

Figure 5.1: Performance Profiles for problems with varying m, n, and densities for nondegenerate
vertex solutions

5.3 Solving Large Sparse Linear Programs382

We now apply (4.3) along with Theorem 4.3 to solve large-scale LPs. We note that we use the383

estimate for a starting R given in (4.5). The stepping stones are found using Rn in (4.10). We add384

a decreasing small scalar to Rn to ensure that we do not stay at the same set of columns of A. For385

simplicity for these early experiments, we restrict ourselves to nondegenerate LPs.386

We compare with the MATLAB linprog code, using both the dual simplex and the interior-point387

algorithm. We use randomly generated problems scaled so that ∥A∥ = 1, x0 > 0, ∥x0∥ = 1, b = Ax.388

A data point in Table 5.4 is the arithmetic mean of 5 randomly generated problems of the specified389

parameters. We exclude lines8 where a failure occurred. The smallest stopping tolerance linprog390

will allow is ε = 10−10, so the performance profile in Figure 5.2 has been adjusted accordingly.391

The maximum number of iterations for linprog is the default number. The relative residual shown392

Table 5.4 is the sum of relative primal feasibility, dual feasibility, and complementary slackness. In393

other words, let (x∗, y∗, z∗) be the optimal solution that the stepping stone algorithm or linprog394

return, then the relative residual as shown in the table is395

8This only happened for the interior point code.
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∥Ax∗ − b∥
1 + ∥b∥

+

∥∥z∗ −AT y∗ + c
∥∥

1 + ∥c∥
+

(x∗)T z∗

1 + max(∥x∗∥ , ∥z∗∥)
From Table 5.4, the empirical evidence demonstrates the stepping stone approach performs396

better than MATLAB’s dual simplex and interior point method on most problems. This becomes397

more evident as the size of the problems grow and the problems become sparser, i.e., we see that our398

code fully exploits sparsity in LP. For example, notice that in rows 5-9, the interior point method399

failed to converge to a solution in the default maximum number of iterations.400

In Section 5.2.1, the performance profiles were constructed by looking at smaller intervals of401

varying m,n and density. For example Table 5.1 shows results where m varies by 500, but in402

Figure 5.1a m varies by 100. Since the interior point method struggled with obtaining reasonable403

primal feasibility Table 5.4, Figure 5.2 shows the performance of each solver with respect to all 50404

problems instead of examining the average performance.405

It is important to note that the performance profile exhibits more failed solutions from the dual406

simplex and interior point methods from Matlab. We have tried taking the maximum of the primal407

feasibility, dual feasibility, and complementary slackness returned by Matlab’s linprog function408

instead of the sum, and both revealed equivalent results. In other words, we are not sure why there409

are more problems failing at this tolerance than reported by Matlab, but it further distinguishes410

our stepping stone approach from Matlab’s linprog algorithms.411

Specifications Time (s) Rel. Resids.
m n % density Semismooth Dual Simplex Int. Point Semismooth Dual Simplex Int. Point

2e+03 5e+03 1.0e-01 8.84e-02 6.76e-02 4.97e-02 3.38e-17 2.63e-16 4.88e-09
2e+03 1e+04 1.0e-01 9.54e-02 4.92e-02 7.58e-02 2.82e-17 6.00e-16 1.60e-04
2e+03 1e+05 1.0e-01 1.65e-01 3.92e-01 7.45e-01 1.48e-17 7.45e-17 1.72e-05
5e+03 1e+04 1.0e-01 9.68e+01 2.07e-01 1.38e+01 5.55e-17 4.16e-16 5.02e-07
5e+03 1e+05 1.0e-01 7.69e+01 7.27e-01 1.41e+02 2.36e-17 9.31e-11 6.38e-05
5e+03 5e+05 1.0e-01 2.31e+02 7.05e+00 - 1.52e-17 1.87e-10 -
2e+04 1e+05 1.0e-02 5.90e-01 9.51e-01 - 1.36e-17 3.55e-06 -
2e+04 5e+05 1.0e-02 6.58e-01 4.48e+00 - 8.48e-18 3.37e-06 -
2e+04 1e+06 1.0e-02 1.51e+00 9.39e+00 - 7.08e-18 4.34e-06 -
1e+05 1e+07 1.0e-03 5.55e+00 1.06e+01 6.10e+00 1.39e-18 1.39e-18 1.39e-18

Table 5.4: LP application results averaged on 5 randomly generated problems per row

24



Figure 5.2: Performance Profiles for LP application wrt all problems

6 Conclusion412

In this paper we consider the theory and applications of the projection onto a polyhedral set. We413

studied an elegant optimality condition, derived using the Moreau decomposition, that allowed for414

a, possibly both nonsmooth and singular, Newton type method. However, this needed a pertur-415

bation of a max-rank choice of a generalized Jacobian, i.e., application of nonsmooth analysis and416

regularization. The regularization guaranteed a decent direction but the method was not necessar-417

ily monotonic decreasing. We presented extensive comparisons with the HLWB approach, e.g., [4]418

and found that we far outperformed HLWB in both speed and accuracy.419

We presented several applications including solving large, sparse, linear programs. These early420

tests were very efficient and outperformed the MATLAB linprog code we used for comparison421

again in both speed and accuracy. The approach can be considered as a stepping stone external422

path following as we follow an external path with parameter R in the objective function; but we423

only consider a discrete number of points on the path that are found using sensitivity analysis. In424

general, very few stepping stones are needed, often just one.425
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A Pseudocodes for Generalized Simplex428

The pseudocodes described in Algorithms A.1 to A.3 solves (2.1) using the exact and inexact429

nonsmooth Newton methods, respectively.430
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Algorithm A.1 Best Approx. of v for constraints Ax = b, x ≥ 0; exact Newton direction

Require: v ∈ Rn, y0 ∈ Rm, (A ∈ Rm×n, rank(A) = m), ε > 0, maxiter ∈ N.
1: Output. Primal-dual opt.: xk+1, (yk+1, zk+1)
2: Initialization. k ← 0, x0 ← (v +AT y0)+, z0 ← (x0 − (v +AT y0))+,

F0 = Ax0 − b, stopcrit ← ∥F0∥ /(1 + ∥b∥)
3: while ((stopcrit > ε)& (k ≤ maxiter)) do
4: Vk =

∑
i∈I+ A:iA

T
:i

5: λ = min(1e−3, stopcrit)
6: V̄ = (Vk + λIm)
7: solve pos. def. system V̄ d = −Fk for Newton direction d
8: updates
9: yk+1 ← yk + d

10: xk+1 ← (v +AT yk+1)+
11: zk+1 ← (xk+1 − (v +AT yk))+
12: Fk+1 ← Axk+1 − b (residual)
13: stopcrit ← ∥Fk+1∥ /(1 + ∥b∥)
14: k ← k + 1
15: end while

Algorithm A.2 Best Approx. of v for constraints Ax = b, x ≥ 0, Inexact Newton Direction

Require: v ∈ Rn, y0 ∈ Rm, (A ∈ Rm×n, rank(A) = m), ε > 0, maxiter ∈ N.
1: Output. Primal-dual: xk+1, (yk+1, zk+1)
2: Initialization. k ← 0, x0 ← (v +AT y0)+, z0 ← (x0 − (v +AT y0))+,

δ ∈ (0, 1], ν ∈ [1 + δ
2 , 2], and a sequence θ such that θk ≥ 0 and supk∈N θk < 1

F0 = Ax0 − b, stopcrit ← ∥F0∥ /(1 + ∥b∥)
3: while ((stopcrit > ε)& (k ≤ maxiter)) do
4: Vk =

∑
i∈I+ A:iA

T
:i

5: λ = (stopcrit)δ

6: V̄ = (Vk + λIm)
7: solve V̄ d = −Fk for Newton direction d such that residual ∥rk∥ ≤ θk ∥Fk∥ν
8: updates
9: yk+1 ← yk + d

10: xk+1 ← (v +AT yk+1)+
11: zk+1 ← (xk+1 − (v +AT yk))+
12: Fk+1 ← Axk+1 − b (residual)
13: stopcrit ← ∥Fk+1∥ /(1 + ∥b∥)
14: k ← k + 1
15: end while
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Algorithm A.3 Extended HLWB algorithm

Require: v ∈ Rn, (A ∈ Rm×n, rank(A) = m), ε > 0, maxiter ∈ N.
1: Output. xk+1

2: Initialization. k ← 0, msweeps← 0 x0 ← max(v, 0), y0 ← x0, i0 = 1
stopcrit ← ∥Ay0 − b∥ /(1 + ∥b∥) (= ∥F0∥ /(1 + ∥b∥))

3: while ((stopcrit > ε)& (k ≤ maxiter)) do
4: if 1 ≤ i(k) ≤ m then

5: yk = xk +
bik−⟨aik ,x

k⟩
∥aik∥

2 aik
6: else
7: yk = max(0, xk)
8: end if
9: updates

10: σk = 1
k+1 ( change to σk = 1

msweeps+1??)

11: xk+1 ← σkv + (1− σk)y
k

12: stopcrit ← ∥Ayk − b∥ /(1 + ∥b∥)
13: k ← k + 1
14: if k mod (m+ 1) == 0 then
15: msweeps = msweeps+ 1
16: end if
17: ik = k(mod m) + 1
18: end while
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B Additional Performance Profiles431

B.1 Nondegenerate432

(a) tol = 10−2 (b) tol = 10−4

(c) tol = 10−14

Figure B.1: Performance Profiles for varying m for nondegenerate vertex solutions
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(a) tol = 10−2 (b) tol = 10−4

(c) tol = 10−14

Figure B.2: Performance Profiles for varying n for nondegenerate vertex solutions

(a) tol = 10−2 (b) tol = 10−4

(c) tol = 10−14

Figure B.3: Performance Profiles for varying density for nondegenerate vertex solutions
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B.2 Degenerate433

Table B.1: Varying problem sizes m and comparing computation time with relative residual for
degenerate vertex solutions

Specifications Time (s) Rel. Resids.
m n % density Exact Inexact HLWB LSQlin Exact Inexact HLWB LSQlin
100 3000 8.1e-01 1.85e-02 2.83e-02 2.10e+01 5.33e+00 8.29e-16 1.14e-17 2.53e-04 8.96e-16
600 3000 8.1e-01 8.61e-02 3.40e-01 2.30e+02 6.19e+00 1.79e-15 4.96e-17 2.17e-04 1.17e-15
1100 3000 8.1e-01 1.10e+00 2.28e+00 4.87e+02 1.05e+01 1.99e-15 2.45e-15 2.09e-04 3.35e-16
1600 3000 8.1e-01 3.62e+00 1.47e+01 7.75e+02 1.31e+01 3.17e-17 2.61e-15 2.23e-04 2.23e-16

Table B.2: Varying problem sizes n and comparing computation time with relative residual for
degenerate vertex solutions

Specifications Time (s) Rel. Resids.
m n % density Exact Inexact HLWB LSQlin Exact Inexact HLWB LSQlin
200 3000 8.1e-01 1.26e-02 4.62e-02 5.04e+01 5.16e+00 1.94e-17 4.80e-16 2.48e-04 2.35e-15
200 3500 8.1e-01 3.73e-03 3.55e-02 6.04e+01 1.74e+02 4.18e-16 1.94e-16 2.80e-04 5.85e-17
200 4000 8.1e-01 4.57e-03 4.06e-02 6.77e+01 1.22e+01 1.13e-15 7.38e-16 2.89e-04 1.21e-15
200 4500 8.1e-01 7.94e-03 5.06e-02 7.42e+01 1.77e+01 6.39e-17 1.48e-15 3.17e-04 1.44e-16
200 5000 8.1e-01 6.54e-03 4.33e-02 7.91e+01 5.52e+01 5.75e-17 1.45e-15 3.23e-04 2.20e-15

Table B.3: Varying problem density and comparing computation time with relative residual for
degenerate vertex solutions

Specifications Time (s) Rel. Resids.
m n % density Exact Inexact HLWB LSQlin Exact Inexact HLWB LSQlin
300 1000 1.0e+00 1.42e-02 8.28e-02 1.72e+01 5.91e-01 1.89e-16 6.67e-18 1.47e-04 1.35e-16
300 1000 2.6e+01 5.68e-02 4.93e-01 5.17e+01 4.50e-01 2.31e-16 4.05e-17 1.51e-04 6.81e-16
300 1000 5.1e+01 8.82e-02 4.39e-01 6.18e+01 4.71e-01 1.81e-15 1.13e-15 1.45e-04 3.88e-16
300 1000 7.6e+01 1.24e-01 3.96e-01 6.00e+01 5.40e-01 2.13e-15 1.49e-15 1.51e-04 1.47e-16
300 1000 9.6e+01 1.46e-01 4.14e-01 5.49e+01 5.51e-01 4.43e-17 1.32e-15 1.58e-04 3.55e-17
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(a) tol = 10−2 (b) tol = 10−4

(c) tol = 10−14

Figure B.4: Performance Profiles for varying m for degenerate vertex solutions
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(a) tol = 10−2 (b) tol = 10−4

(c) tol = 10−14

Figure B.5: Performance Profiles for varying n for degenerate vertex solutions

(a) tol = 10−2 (b) tol = 10−4

(c) tol = 10−14

Figure B.6: Performance Profiles for varying density for degenerate vertex solutions
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C Applications of the BAP and the HLWB algorithm434

The BAP and the HLWB algorithm play important roles in mathematical and technological prob-435

lems. We give two examples.436

Example C.1 (Finding best approximation pairs for two intersections of closed convex sets). The437

problem of finding a best approximation pair of two sets, which in turn generalizes the well-known438

convex feasibility problem [5], has a long history that dates back to work by Cheney and Goldstein439

in 1959 [16]. This problem was recently revisited in [1] where an alternating HLWB (A-HLWB)440

algorithm was proposed and studied that can be used when the two sets are finite intersections441

of half-spaces. Motivated by that [7] presented alternative algorithms that utilize projection and442

proximity operators. Their modeling framework is able to accommodate even convex sets and their443

numerical experiments indicate that these methods are competitive and in some cases superior to444

the A-HLWB algorithm. The practical importance of the problem of finding a best approximation445

pair of two sets stems from its relevance to real-world situations wherein the feasibility-seeking446

modeling is used and there are two disjoint constraints sets. One set represents “hard” constraints,447

i.e., constraints the must be met, while the other set represents “soft” constraints which should be448

observed as much as possible, see, e.g., [20]. Under such circumstances, the desire to find a point449

in the hard constraints set that will be closest to the set of soft constraints leads to the problem of450

finding a best approximation pair of the two sets.451

Least intensity modulated treatment plan in radiotherapy. The intensity-modulated ra-452

diation therapy (IMRT) treatment planning problem in its fully-discretized modeling is represented453

by a system of linear inequalities as in (3.2) with nonnegativity constraints. The unknown vector454

x represents radiation intensities and if it is a solution of the linear feasibility problem then it ful-455

fills all the planning prescriptions dictated by the oncologist. In such a feasibility-seeking approach456

several solutions are acceptable but a solution that is closest to the origin will use the least possible457

intensities that still fulfill the constraints. delivering an acceptable treatment plan with less radiation458

intensities is preferable and so one replaces the feasibility-seeking problem by a BAP of approximat-459

ing the origin by a point from the feasible sets, i.e., by seeking the projection of the origin onto the460

feasible set. Such an approach was used, e.g., in [46] where a simultaneous version of Hildreth’s461

sequential algorithm for norm minimization over linear inequalities, [28,31], [15, Algorithm 6.5.2]462

was combined with a norm-minimizing image reconstruction algorithm of Herman and Lent [27],463

called ART4 (Algebraic Reconstruction Technique 4), which handles in a special effective manner464

interval inequalities.465

33



Index

(P − x)+, polar cone of P at x, 10466

F (y) := A(v +AT y)+ − b, 5467

L(x, y, z), Lagrangian, 5468

Lf (x, y, z), Lagrangian, 16469

P , feasible set, 10470

P ⊂ Rn, polyhedral set, 3471

S+, polar cone, 6472

ϕ(y, z), dual functional, 5, 16473

sign+(w), 9474

bB = AT
B
(
ABA

T
B
)†

b, 13475

bN = AT
N
(
ABA

T
B
)†

b, 13476

d∗(v), 5477

d∗f (v), 16478

f(y), squared residual function, 5479

ff (y), squared residual function, 16480

m1 = m− n2, 17481

p∗(v), optimal value, 5482

p∗f (v), 16483

p∗f (v), optimal value, 16484

x(y) = (v +AT y)+, 9485

B = B(w) = {1 : n}\N , 13486

I+ := I+(y) = {i : sign+(v +AT y) = 1}, 9487

I0 := I0(y) = {i : sign+(v +AT y) = 0}, 9488

N = N (z) = {i : zi > 0}, 13489

U(y), 9490

P+(w) = w+, 8491

RNNM , regularized nonsmooth Newton method,492

5, 19493

LP lower bound, 15494

anchor point, 10495

BAP, best approximation problem, 11496

best approximation problem for linear inequali-497

ties, 10498

best approximation problem, BAP, 3, 4, 11499

dual functional, ϕ(y, z), 5500

dual functional, ϕf (y, z1), 16501

dual functional, ϕ(y, z), 5, 16502

dual problem, 5, 16503

feasible set, P , 10504

generalized Jacobian, 7505

generalized Jacobian of G at y, ∂H(y), 7506

generalized simplex, 4507

generalized simplex best approximation problem,508

5509

generalized simplex best approximation problem510

with free variables, 16511

Halpern-Lions-Wittmann-Bauschke, HLWB, 10512

HLWB, Halpern-Lions-Wittmann-Bauschke, 10513

iteration, 19514

KKT optimality conditions, 6, 17515

Lagrangian L(x, y, z), 5516

Lagrangian, Lf (x, y, z), 16517

Levenberg-Marquardt, 8518

Lipschitz continuous, 7519

locally Lipschitz continuous, 7520

maximum rank generalized Jacobian, 9521

minimum norm solution, 12522

Moreau decomposition, 7523

optimal value, p∗(v), 5524

optimal value, p∗f (v), 16525

polar cone, 6, 9526

polar cone of P at x, (P − x)+, 10527

polar cone, S+, 6528

polyhedral set, P ⊂ Rn, 3529

primal optimal value, 5, 16530

projection onto a polyhedral set, 4531

regularized nonsmooth Newton method,RNNM ,532

5, 19533

squared residual function, f(y), 5534

squared residual function, ff (y), 16535

standard form, 4536

steering sequence, 11537

stepping stone, 14538

stepping stone external path following, 13, 25539

sweep, 19540

vertex, 9541
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