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Facial reduction, FR, is a regularization technique for convex programs where the57

strict feasibility constraint qualification, CQ, fails. Though this CQ holds generically,58

failure is pervasive in applications such as semidefinite relaxations of hard discrete59

optimization problems. In this paper we relate FR to the analysis of the convergence60

behaviour of a semi-smooth Newton root finding method for the projection onto a61

spectrahedron, i.e., onto the intersection of a linear manifold and the semidefinite cone.62

In the process, we derive and use an elegant formula for the projection onto a face of63

the semidefinite cone. We show further that the ill-conditioning of the Jacobian of the64

Newton method near optimality characterizes the degeneracy of the nearest point in the65

spectrahedron. We apply the results, both theoretically and empirically, to the problem66

of finding nearest points to the sets of: (i) correlation matrices or the elliptope; and (ii)67

semidefinite relaxations of permutation matrices or the vontope, i.e., the feasible sets68

for the semidefinite relaxations of the max-cut and quadratic assignment problems,69

respectively.70

Key Words: facial reduction, spectrahedra, degeneracy, Jacobian, singularity degree,71

elliptope, vontope.72

AMS Subject Classification: 90C22, 90C25, 90C27, 90C59.73

1 Introduction74

Facial reduction, FR, involves a finite number of steps that regularizes convex programs75

where the strict feasibility constraint qualification, CQ, fails. This CQ holds generically76

for linear conic programs, see e.g., [17]. However, failure is pervasive in applications such77

as semidefinite programming, SDP, relaxations of hard discrete optimization problems,78

e.g., [16]. The minimum number of FR steps is the singularity degree of F , sdpFq, of the79

program with feasible set F , and it has been shown to be related to stability, error analysis,80

and convergence rates, see e.g., [13, 15, 42, 43]. Further generalized notions of singularity81

degree such as the maximum number of FR steps are studied in [26, 29] and shown to also82

relate to stability and convergence rates. In this paper we study sdpFq and relations to the83

projection problem, or best approximation problem (BAP), onto a spectrahedron, the inter-84

section of a linear manifold and the positive semidefinite cone in symmetric matrix space.85

Our main purpose is to examine the effect of failure of strict feasibility on the projection86

problem. In the absence of strict feasibility, we find surprising relationships between the87

eigenpairs of small eigenvalues of the Jacobian in our Newton method for the projection88

problem and finding exposing vectors for FR. We apply the results, both theoretically and89

empirically, to the problem of finding nearest points to the sets of: (i) correlation matrices90

or the elliptope; and (ii) semidefinite relaxations of permutation matrices or the vontope,91

i.e., the feasible sets for the semidefinite relaxations of the max-cut and quadratic assign-92

ment problems, respectively. In the process, we derive and use an elegant formula for the93

projection onto a face of the semidefinite cone.94
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1.1 Projection Problem95

We work with the Euclidean space of n ˆ n real symmetric matrices, Sn, equipped with96

the trace inner product. Let the data, W P Sn, be given. The projection, or basic best97

approximation problem, BAP, is98

X˚ “ argmin 1
2
}X ´ W }2, p˚ “ 1

2
}X˚ ´ W }2,

s.t. X P L X Sn
`,

(1.1)

where Sn
` Ď Sn is the closed convex cone of semidefinite matrices in the vector space of real99

symmetric matrices of order n equipped with the trace inner product. We let X ľ 0 denote100

X P Sn
`. Here L Ď Sn is a linear manifold; and, p˚, X˚ are the optimal value and optimum,101

respectively. The representation of the linear manifold is essential in algorithms and different102

representations can result in different stability properties for the problem, e.g., [46]. We let103

L “ tX P Sn : AX “ bu, where A : Sn Ñ Rm is a given surjective (without loss of104

generality) linear transformation; AX “ ptrAiXq P Rm for given fixed linearly independent105

Ai P Sn, i “ 1 . . . ,m. We let F :“ LX Sn
` ‰ H denote the nonempty feasible set; it is called106

a spectrahedron. Here the data of BAP is W,A, b. (In the linear programming, LP, case,107

Sn Ð Rn,Sn
` Ð Rn

`.)108

Nearest point problems are pervasive in the literature and are often the essential step in109

feasiblity seeking problems, e.g., [5,11,33]. We study these problems and see that they reveal110

hidden structure and information about the stability and conditioning of feasible sets and111

the degeneracy of optimal points. Related convergence analysis and new types of singularity112

degree are given in [15,29]. Recall that a correlation matrix is a positive semidefinite matrix113

with diagonal all one. The set of correlation matrices is often called the elliptope. Finding the114

nearest correlation matrix is one application [6,24,25] that arises in many areas, e.g., finance.115

The nearest Euclidean distance matrix, EDM, problem is another example which translates116

into a nearest SDPand which has many applications [1, 14].117

In addition, we specifically look at the feasible set of the max-cut problem MC, the118

elliptope, and the feasible set of the quadratic assignment problems QAP, which we call the119

vontope. We characterize degeneracy of nearest points and the resulting effects on stability120

of the nearest point algorithm for these two special instances.121

1.1.1 Related Results122

The BAP for the polyhedral case is studied in [10] with application to linear programming.123

Generalized Jacobians play a critical role, though the relation to stability is not studied.124

The SDPcase is studied in e.g., [23, 31].1 They use a quasi-Newton method to solve a125

dual problem similar to our dual problem; though we use a regularized semismooth Newton126

method with a generalized Jacobian and illustrate fast quadratic convergence for well-posed127

problems. Further related results on spectral functions, projections, and Jacobians, appear128

in [32].129

1A MATLAB package is available.
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In [27] it is shown that any conic program that fails strict feasibility has implicit re-130

dundancies and every point is degenerate. Relationships with the Barvinok-Pataki bound131

and strengthened bound [4, 28, 38] for conic programs is discussed. Further discussions on132

degeneracy related to loss of strict complementarity appear in [12].133

The paper [15] provides a sublinear upper bound based on the singularity degree for134

the convergence rate of the method of alternating projections, AP, applied to spectahedra.135

The arXiv preprint [35] (published as we were finishing the preparation of this manuscript)136

furnishes analytic formulas for the sequence generated by AP that reveal that this upper137

bound can fail to be tight. However, the analysis therein developed is limited to the case138

where the feasible set is a singleton. Further results on accuracy and differentiability appear139

in [21, 32].140

1.2 Outline141

We continue in Section 2 with the background on projections, the Jacobians for our optimal-142

ity conditions of our basic nearest point problem BAP, and with notions on facial structure143

and singularity degree. This includes both the minimum and maximum singularity degrees144

and implicit problem singularity. We include the details for regularizations and connections145

to degeneracy.146

The optimality conditions and Newton method for BAP appear in Section 3. We include147

an efficient formulation for the directional derivative in Newton’s method Section 3.2.1.148

The failure of regularity with the connections to degeneracy and with applications to the149

feasible sets of the SDP relaxations of the MC and QAP problems is presented in Section 4.150

We conclude with numerical experiments in Section 5. In particular, we again illustrate151

this on the SDP relaxations of the MC and QAP problems. Our concluding remarks are152

in Section 6.153

2 Background154

We first present some background on projections and related spectral functions, and then155

include the notions of facial reduction, FR, for regularization, singularity, and degeneracy.156

2.1 Spectral Functions and Projection Operators157

A spectral function g : Sn Ñ RY t`8u is one that is invariant under orthogonal conjugation158

(congruence)159

gpXq “ gpUTXUq, @X P Sn, @U P On,

where On is the set of orthogonal matrices of order n.160

We follow the work and notation in [19,30,32,37,48].2 We work with f : Sn Ñ RYt`8u,161

a closed proper extended valued convex function on Sn. We denote PS, projection onto a162

nonempty closed convex set S, i.e.,163

2see also The Proximity Operator Notes, Yaoliang Yu, UofW.
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PSpW q “ argminXPS

1

2
}W ´ X}

2.

And for the convex set S we denote the indicator function, ιS.164

For a proper convex function f and η ą 0 we define165

P η
f pZq “ argminXPSn

1
2η

}X ´ Z}2 ` fpXq, proximity operator of f, (2.1)

with Pf pZq “ P 1
f pZq, i.e., we have, see also [37],166

∆pZq “ min
XPSn

"

1

2
}Z ´ X}

2
` ιSn´pXq

*

, Moreau regularization of ιSn´ , S
n
´ :“ ´Sn

`, (2.2)

167

proxf pZq “ Pf pZq, proximal operator of f,

with proxηf pZq “ P η
f pZq.168

In [32, Lemmas 2.3-4] it is shown that the Moreau regularization of ιSn´ , ∆pXq, is a169

spectral function with gradient170

∇∆pXq “ PSn`pXq.

Therefore, the derivative (Jacobian) of the projection can be found from the Hessian of the171

regularization function172

P 1
Sn`

pXq “ ∇2∆pXq. (2.3)

173

Note that λ is the eigenvalue function, i.e., λ : Sn Ñ Rn is the vector of eigenvalues in174

nonincreasing order.175

Lemma 2.1 ( [32, Lemma 2.3]). The function ∆ in (2.2) is the spectral function ∆ “ δ ˝ λ,176

where177

δpxq “
1

2

n
ÿ

i“1

maxt0, xiu
2.

Proof. We include the proof from [32, Lemma 2.3] for completeness.178

For any X P Sn we have179

∆pXq “ 1
2
}X ´ PSn´pXq}2

“ 1
2
}PSn`pXq}2

“ 1
2

řn
i“1maxt0, λipXqu2

“ δpλpXqq.

180

181

Lemma 2.2 ( [32, Lemma 2.4]). The function ∆ in (2.2) is convex and differentiable. More-182

over, its gradient at X P Sn is PSn`pXq, i.e.,183

∆pXq
1
pdXq “ x∇∆pXq, dXy “ xPSn`pXq, dXy “ trPSn`pXqdX.
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Remark 2.3. From the theory of spectral functions, the differentiability in Lemma 2.2 follows184

from the differentiability of δ ˝ λ. The formula for the derivative follows from the spectral185

function formula186

∇pδ ˝ λqpXq “ U pDiag∇δpλpXqqqUT . (2.4)

2.2 Facial Structure of Sn` and Degeneracy187

The facial structure of the cones plays an essential role when analyzing the various stability188

concepts. In this section we study various properties that arise from the absence of strict189

feasibility. Section 2.2.1 presents the theorem of the alternative that is used to obtain the190

facially reduced problem of (1.1). In Section 2.2.2 we revisit known notions of singularities191

and make a connection to the dimension of the solution set of our problem. In Section 2.2.3192

we identify a type of degeneracy that inevitably arises in the absence of strict feasibility.193

2.2.1 Regularization for Strong Duality194

Recall that the convex cone f Ă K is a face of a convex cone K Ď Sn, denoted by f �K, if195

x, y P K, z “ x ` y, z P f ùñ x, y P f.

The cone f is a proper face if t0u Ĺ f Ĺ K. Here we denote f∆, conjugate face of K, defined196

as f∆ “ fK X K`, where K` :“ tϕ : xϕ, ky ě 0, @k P Ku is the nonnegative polar cone of197

K. The facial structure of Sn
` is well-studied and has an intuitive characterization. For any198

convex set C Ă Sn
`, the minimal face of Sn

` containing C, i.e., the intersection of all faces of199

Sn
` containing C, is denoted facepCq. For the singleton C “ tXu, we get200

facepXq “ tY P Sn
` : rangepY q Ď rangepXqu.

Facial reduction, FR, for F is a process of identifying the minimal face of Sn
` containing F .201

It is known that a point X̂ P relintpFq provides the following characterization202

facepX̂,Sn
`q “ facepF ,Sn

`q.

Finding facepF ,Sn
`q for an arbitrary F analytically is a challenging task and an alternative203

approach is often used to find the minimal face numerically. Proposition 2.4 below is often204

used for constructing a FR algorithm.205

Proposition 2.4 (theorem of the alternative). For the feasible constraint system L X Sn
`206

defined in (1.1), exactly one of the following statements holds:207

1 there exists X ą 0 such that X P L;208

2 there exists λ P Rm such that the auxiliary system209

0 ‰ Z “ A˚λ ľ 0, xb, λy “ 0. (2.5)
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The vector Z in (2.5) is called an exposing vector as X feasible implies210

0 “ xb, λy “ xAX,λy “ xX,A˚λy “ xX,Zy,

i.e., Z exposes the feasible set and allows for a simplified expression of feasible points. This211

restriction results in an equivalent smaller dimensional problem to which the process can be212

reapplied until the smallest face of Sn
` containing the feasible set is found. A reader may213

refer to Example 2.7 for a brief illustration of how the theorem of the alternative is used for214

the FR process.215

The projection problem (1.1) always admits a solution given that the feasible set F is216

nonempty. If in addition the dual of (1.1) has an optimal solution, one can verify that the217

system218

F pyq “ A
´

PSn`pW ` A˚yq

¯

´ b “ 0 (2.6)

has a root y P Rm. However, when (2.6) does not have a root, then strong duality fails.219

(We elaborate on this pathology further in Section 4.1 below.) One way to avoid having an220

empty dual optimal set is to regularize (1.1) using FR. In Theorem 2.5 below, we list some221

properties induced by FR that lead to strong duality.222

Theorem 2.5. Consider the projection problem (1.1) with data W,A, b. Denote f “ facepFq,223

minimal face of F . Let X̂ P relint f and let V be a full column rank r so-called facial224

range vector, with orthonormal columns, V TV “ I, and with rangeV “ range X̂. Let225

ĎW “ V TWV P Sr. Define the linear transformation226

VpRq :“ V RV T , R P Sr.

Let Ā, b̄ define the affine constraints obtained from pA ˝ Vqp¨q, b after deleting redundant227

constraints. Then the following hold:228

(i) A facially reduced problem of (1.1) in the original space Sn is229

X˚pW q :“ argmin 1
2
}X ´ W }2

s.t. AX “ b, X P f pX ľf 0, f � Sn
`q.

(2.7)

The KKT conditions hold at X˚pW q with optimal dual pair y˚ P Rm, Z˚ P f`.230

(ii) A facially reduced problem of (1.1) in the smaller space Sr with surjective constraint231

Ā : Sr
` Ñ Rm̄ is232

V:pX˚pW qq “ R˚pĎW q :“ argmin
␣

1
2
}R ´ ĎW }2 : ĀR “ b̄, R P Sr

`

(

, (2.8)

where we denote ¨: for the Moore-Penrose generalized inverse. The KKT conditions233

hold at R˚pĎW q with optimal dual pair y˚ P Rm̄, Z˚ P Sr
`.234
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(iii) Strong duality holds for the FR problems (2.7) and (2.8). Moreover:235

X˚
“ VpR˚

pĎW qq solves the original problem (1.1);

and, sR “ R˚pĎW q is a solution to the FR primal problem (2.8) if, and only if,236

sR “ PSr`pĎW ` Ā˚ȳq,

where ȳ is a root of the function237

sF pyq :“ ĀPSr`pĎW ` Ā˚yq ´ b̄. (2.9)

Equivalently, X˚pW q is a solution to the original primal problem (1.1) if, and only if,238

there exists ŷ such that239

0 “ Ff pŷq :“ APf pW ` A˚ŷq ´ b, X˚
pW q “ Pf pW ` A˚ŷq. (2.10)

Proof. The proof for Item (i) and Item (ii): follows from the regularization in [7] with the240

substitution X Ð V RV T . We note that the object function reduces since V has orthonormal241

columns and the norm is orthogonally invariant. The details follow from the proof of Theo-242

rem 3.2 using the Karush-Kuhn-Tucker, KKT conditions after FR. Note that the first-order243

optimality conditions for the facially reduced problem are:244

X ´ W ´ A˚y ´ Z “ 0, Z ľf` 0, (dual feasibility),
AX ´ b “ 0, X ľf 0, (primal feasibility),
xZ,Xy “ 0, (complementary slackness).

(2.11)

Item (iii): We first show the elegant projection formula245

Pf puq “ V
´

PSr`pV T
puqV q

¯

V T
´

“ V
´

PSr`V
˚
puq

¯

, V˚V “ I
¯

. (2.12)

To show that the expression for Pf puq solves the nearest point problem defined as Pf puq “246

argminvPf
1
2
}v ´ u}2, we now verify the optimality conditions247

tr tpPf puq ´ uqpx ´ Pf puqqu ě 0, @x P f,

i.e., for each x P f , there is R P Sr
` such that x “ V RV T and thus,248

tr
!

pV pPSr`pV T puqV qqV T ´ uqpx ´ V pPSr`pV T puqV qqV T q

)

“ tr
!

pV pPSr`pV T puqV qqV T ´ uqpV RV T ´ V pPSr`pV T puqV qqV T q

)

“ tr
!

V pPSr`pV T puqV qqV TV RV T ` uV pPSr`pV T puqV qqV T

´V pPSr`pV T puqV qqV TV pPSr`pV T puqV qqV T ´ uV RV T
)

“ tr
!

pPSr`pV T puqV qqpV TV RV TV q ` pV TuV qpPSr`pV T puqV qq

´pPSr`pV T puqV qqpPSr`pV T puqV qq ´ uV RV T
)

“ tr
!

pPSr`pV T puqV qqpRq ` pV TuV qpPSr`pV T puqV qq

´pPSr`pV T puqV qqpPSr`pV T puqV qq ´ V TuV R
)

“ tr
!

pPSr`pV TuV q ´ pV TuV qqpR ´ PSr`pV TuV qq

)

ě 0,
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where the last inequality comes from the projection. This completes the proof of (2.12).249

We continue to study the case where the CQ, strict feasibility, fails. With P being the250

projection to make the linear transformation onto, The equation (2.9) is equivalent to,251

sF pyq “ ĀPSr`pĎW ` Ā˚yq ´ b̄

“ pPA ˝ VqPSr`pV TWV ` pPA ˝ Vq˚yq ´ Pb, for given data W

“ pPA ˝ VqPSr`pV TWV ` pV˚ ˝ A˚P T qpyqq ´ Pb

“ pPAq

´

V
”

PSr`pV T pW ` A˚P TyqV q

ı

V T
¯

´ Pb

“ pPAq
`

Pf pW ` A˚P Tyq
˘

´ Pb
“ pPAq pPf pW ` pPAq˚yqq ´ Pb,

where we have used the elegant formula (2.12).252

This shows that we can work in the original space if we have done facial reduction.253

Moreover,254

Pf pW ` A˚P Tyq “ V
”

PSr`pV˚
pW ` A˚P Tyqq

ı

.

Recall that V TV “ I. In summary, necessity of (2.9) is clear. Therefore necessity of (2.10)255

follows from256

0 “ ĀPSr`pĎW ` Ā˚yq ´ b̄

“ pPAqVPSr`pV˚pW ` A˚P Tyqq ´ Pb

“ pPAqPf pW ` A˚P Tyq ´ Pb.

We can remove P in the last line and ignore the redundant constraints.257

258

259

Remark 2.6. The proof of Theorem 2.5 above provides the following elegant formula for the260

projection of u P Sn onto the face f “ V Sr
`V

T , V TV “ I,261

Pf puq “ V
´

PSr`pV T puqV q

¯

V T “ V
´

PSr`V
˚puq

¯

, V˚V “ I , (2.13)

i.e., the work of finding the projection onto the face f is transferred to the well know projection262

onto the smaller dimensional proper cone Sr
`.263

We now consider dual feasible sets264

S :“ ty P Rm : F pyq “ 0u and Sf :“ ty P Rm : Ff pyq “ 0u, (2.14)

where Ff is defined in (2.10). We note that S Ă Sf . We now show in Example 2.7 that S265

and Sf can differ.266
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Example 2.7 (S Ĺ Sf ). Consider the following instance F with the data267

A1 “

»

–

1 0 0
0 0 0
0 0 0

fi

fl , A2 “

»

–

0 0 1
0 1 0
1 0 0

fi

fl , A3 “

»

–

0 0 0
0 0 0
0 0 1

fi

fl , and b “

¨

˝

1
0
0

˛

‚.

The singularity degree of F is 2, i.e., sdpFq “ 2. The first FR iteration yields a face that268

strictly contains the minimal face and corresponds to λ1 “

¨

˝

0
0
1

˛

‚with the facial range vector269

V1 “

»

–

1 0
0 1
0 0

fi

fl; and the second FR iteration yields λ2 “

¨

˝

0
1
0

˛

‚ with the facial range vector270

V2 “

ˆ

1
0

˙

. Thus, the minimal facial range vector V for F is V “ V1V2 “

»

–

1
0
0

fi

fl. The facially271

reduced system is tR P S1
` :

“

1
‰

R “ 1u. We note that F is the singleton set containing272
»

–

1 0 0
0 0 0
0 0 0

fi

fl.273

We now consider the BAP (1.1) with W “

»

–

0 0 0
0 ´1 ´1
0 ´1 0

fi

fl. We consider the triple274

pX̄, Z̄, ȳq where275

X̄ “

»

–

1 0 0
0 0 0
0 0 0

fi

fl , Z̄ “

»

–

0 0 0
0 1 1
0 1 2

fi

fl , and ȳ “

¨

˝

1
0

´2

˛

‚.

The triple pX̄, Z̄, ȳq satisfies the first-order optimality conditions.276

We note that ȳ `λ1 and ȳ `λ2 are solutions to (2.10). However, ȳ `λ2 is not a solution277

to (2.6) since278

W ` A˚
pȳ ` λ2

q “

»

–

0 0 0
0 ´1 ´1
0 ´1 0

fi

fl `

»

–

1 0 1
0 1 0
1 0 ´2

fi

fl “

»

–

1 0 1
0 0 ´1
1 ´1 ´2

fi

fl ,

and W ` A˚pȳ ` λ2q has two positive eigenvalues. We note that F contains a unique279

point e1e
T
1 .280

It is of interest that the containment relation S Ĺ Sf in Example 2.7 stems from the281

solutions to (2.5).282
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2.2.2 Three Notions of Singularity Degree283

In this section we exhibit some properties that originate from the length of FR iterations.284

We then show that the dimension of the solution set of the equation285

F pyq “ A
´

PSn`pW ` A˚yq

¯

´ b “ 0 (2.15)

is lower bounded by the number of linearly independent solutions of (2.5).286

Definition 2.8. The singularity degree of F , denoted sdpFq, is the minimum number287

of FR iterations for finding facepF ,Sn
`q. The maximum singularity degree of F , denoted288

maxsdpFq, is the maximum number of nontrivial FR iterations for finding facepF ,Sn
`q.289

The singularity degree is often used to relate error bounds to explain the difficulty of290

solving problems numerically; see [42,43]. It is known that a high singularity degree results291

in a worse forward error bound relative to the backward errors. The maximum singularity292

degree is a relatively new notion and this motivates the idea of implicit problem singularity,293

ipspFq. Every nontrivial step of FR results in redundant linear constraints. More specifically,294

FR reveals a set of equalities xV TAiV,Ry “ bi that are redundant; see [26]. The total number295

of these implicitly redundant constraints is called ipspFq and a short argument shows that296

ipspFq ě maxsdpFq. Proposition 2.9 below shows an interesting property that a FR sequence297

generates.3 Proposition 2.9 uses maxsdpFq to extend the result in [41, Lemma 3.5.2].298

Proposition 2.9. [41, Lemma 3.5.2] Let λi be a solution obtained in A˚pλiq by a nontrivial299

FR iteration. Then the vectors, λ1, λ2, . . . , λmaxsdpFq, are linearly independent.300

Proposition 2.9 leads to the following properties of the set of solutions of (2.10).301

Theorem 2.10. The facially reduced problem (2.10) admits at least maxsdpFq number of302

linearly independent solutions.303

Proof. Let ȳ be a solution to (2.10) and let λ1, λ2, . . . , λmaxsdpFq be vectors generated by304

FR iterations. Then the vectors in the following set305

Sλ :“ ȳ ` tλ1, . . . , λmaxsdpFq
u “ tȳ ` λ1, . . . , ȳ ` λmaxsdpFq

u

are solutions to (2.10) as well. Consequently, by Proposition 2.9, the vectors in Sλ are linearly306

independent.307

308

309

3We note that the concepts of maxsdpFq, ipspFq did not yet exist in [41]. Moreover, it is shown empirically
in [26] that ips is directly related to the forward error for LPs.
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2.2.3 Degeneracy and Relations to Strict Feasibility310

Many discussions of degeneracy are often carried in the context of simplex method for linear311

programs. The stalling phenomenon of the simplex method is a well-known subject and many312

methods are proposed to overcome these difficulties. In this section we use a generalized313

definition of degeneracy proposed by Pataki [47, Chapter 3] to extend the discussion to314

spectrahedra. We then examine a connection between the Slater constraint qualification,315

strict feasibility, and degeneracy of feasible points.316

Definition 2.11. [47, Chapter 3] A point X P F is called nondegenerate if317

linpfacepX, Sn
`q

∆
q X rangepA˚

q “ t0u.

318

Definition 2.11 immediately yields Lemma 2.12.319

Lemma 2.12. [47, Corollary 3.3.2] Let X P F and let320

X “
“

V V̄
‰

„

D 0
0 0

ȷ

“

V V̄
‰T

, D ą 0, (2.16)

be a spectral decomposition of X. Then321

X is a nondegenerate point of F
if, and only if,

"„

V TAiV V TAiV̄
V̄ TAiV 0

ȷ*m

i“1

is a set of linearly independent matrices in Sn.
(2.17)

Remark 2.13. Using the characterization (2.17), the degeneracy of a point X P F can be322

identified by checking the rank of the following matrix L P Rtpnqˆm:323

Lei “

¨

˝

svecV TAiV
vecV TAiV̄

svec 0

˛

‚, @i P t1, . . . ,mu,

where V and V̄ are given in Lemma 2.12, and we denote tpnq “ npn ` 1q{2, triangular324

number. Consider the matrix L̄, with the i-th column L̄ei “

¨

˝

svecV TAiV
vecV TAiV̄
svec V̄ TAiV̄

˛

‚. Note that L̄325

is full-column rank given A is surjective. The matrix L is obtained after zeroing out the326

last tpnullitypXqq rows of L̄. We note that rankpLq ă rankpL̄q (i.e., degeneracy holds) if,327

and only if, the orthogonal complement of the span of the first tpnq ´ tpnullitypXqq rows of328

L̄ has nonzero intersection with the span of the remaining rows that are then changed to 0.329

Therefore, if tpnq ą m ` tpnullitypXqq, then generically nondegeneracy holds.330
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Lemma 2.14. Suppose that F fails strict feasibility and let X “ V DV T P F found us-331

ing (2.16). Then the set tAiV umi“1 contains linearly dependent matrices. In particular, any332

solution λ to (2.5) certifies the linear dependence of the set tAiV umi“1.333

Proof. LetX “ V DV T P F and let λ be a solution to the auxiliary system (2.5). ThenA˚pλq334

is an exposing vector to F , and hence335

0 “ A˚
pλqV “

m
ÿ

i“1

λiAiV. (2.18)

Since λ is a nonzero vector, (2.18) shows the desired result.336

337

338

The linear dependence of the set tAiV umi“1 in Lemma 2.14 allows for verifying total de-339

generacy that occurs in the absence of strict feasibility of F .340

Theorem 2.15. Suppose that F fails strict feasibility. Then every point in F is degenerate.341

Proof. Suppose that F fails strict feasibility. Let X P F with spectral decomposition as342

in (2.16). Let λ be a solution to the auxiliary system (2.5). Then Lemma 2.14 provides343
řm

i“1 λiAiV “ 0. We observe that344

0 “ V T p
řm

i“1 λiAiV q “
řm

i“1 λiV
TAiV,

0 “ V̄ T p
řm

i“1 λiAiV q “
řm

i“1 λiV̄
TAiV.

It immediately implies that the matrices in (2.17) are linearly dependent and hence X is345

degenerate.346

347

348

In Corollary 2.16 we now connect nondegeneracy to strict feasibility.349

Corollary 2.16. Let F be given. Then the following holds.350

1 If F contains a nondegenerate point, then strict feasibility holds.351

2 Every X P F X Sn
`` is nondegenerate.352

Proof. Item 1 is the contrapositive of Theorem 2.15. Item 2 is immediate from the definition353

of nondegeneracy, Definition 2.11, since facepX, Sn
`q∆ “ 0, for all X ą 0.354

355

356
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Propositions 2.17 and 2.18 below allow for classifying nearest points for which the semi-357

smooth Newton method is expected to perform well.358

Proposition 2.17. Let X1, X2 P F and let X1 be a nondegenerate point. Then, γX1 ` p1 ´359

γqX2 is a nondegenerate point of F , for all γ P p0, 1s.360

Proof. Let X1, X2 P F and let X1 be a nondegenerate point. Let γ P p0, 1s and X 1 “361

γX1 ` p1 ´ γqX2. We observe that362

facepX1,Sn
`q Ď facepX 1,Sn

`q

ùñ facepX1,Sn
`q∆ Ě facepX 1,Sn

`q∆

ùñ lin
`

facepX1,Sn
`q∆

˘

Ě lin
`

facepX 1,Sn
`q∆

˘

ùñ lin
`

facepX1,Sn
`q∆

˘

X rangepA˚q Ě lin
`

facepX 1,Sn
`q∆

˘

X rangepA˚q.

Since X1 is a nondegenerate point, we have lin
`

facepX1,Sn
`q∆

˘

X rangepA˚q “ t0u. Thus, X 1
363

is a nondegenerate point.364

365

366

Proposition 2.18. Let f be a face of F containing a nondegenerate point. Then every point367

in relintpfq is nondegenerate.368

Proof. Let X1 P f be a nondegenerate point. For any X P relintpfq there exists X2 such369

that X belongs to the segment pX1, X2q. The nondegeneracy of X then follows from Propo-370

sition 2.17.371

372

373

3 Optimality Conditions and Newton Method374

We consider the basic BAP problem (1.1). We present optimality conditions and difficulties375

that arise if strict feasibility fails and if strong duality fails.376

We first recall the extension of Fermat’s theorem for characterizing a minimum point.377

Lemma 3.1. Let Ω Ď En be a convex set and g a finite valued convex function on Ω. Then378

x̄ P argminxPΩ gpxq ðñ
␣

x̄ P Ω and Bgpx̄q X pΩ ´ x̄q
`

‰ H
(

.

Moreover, if Ω is a cone, then379

ϕ̄ P pΩ ´ x̄q
`

ðñ ϕ̄ P Ω` and xx̄, ϕ̄y “ 0.
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3.1 Basic Characterization of Optimality380

We now present the optimality conditions with several properties, including an equation for381

the application of Newton’s method. We note that for our problem we are solving F pyq “ 0382

in (3.2), or equivalently we solve miny
1
2
}F pyq}2. This follows the approach in [8, 10,34] and383

the references therein. Rather than applying an optimization algorithm to solve the dual384

as in [31], we emphasize solving the optimality conditions for the dual using the equation385

F pyq “ 0 as is done in the previous mentioned references.386

Theorem 3.2. Consider the projection problem (1.1). Then the following hold:387

(i) p˚ is finite and the optimum X˚ exists and is unique.388

(ii) There is a zero duality gap between the primal and the dual problem of (1.1), where the389

Lagrangian dual is the maximization of the dual functional, ϕpy, Zq, i.e.,390

p˚
“ d˚ :“ max

ZPSn,̀yPRm
ϕpy, Zq :“ ´

1

2
}Z ` A˚y}

2
` xy, b ´ AW y ´ xZ,W y. (3.1)

(iii) Strong duality (zero duality gap and dual attainment) holds in (1.1) if, and only if,391

there exists a root ȳ, F pȳq “ 0, of the function392

F pyq :“ APSn`pW ` A˚yq ´ b. (3.2)

Moreover, in this case the solution to the primal problem is given by393

X˚
“ PSn`pW ` A˚ȳq.

Proof. Item (i): The primal problem (1.1) is the minimization of a strongly convex function394

over a nonempty closed convex set. This yields that the optimal value is finite and is attained395

at a unique point.396

Item (ii): Since the primal objective function is coercive, there is a zero duality gap, see397

e.g., [3, Theorem 5.4.1].398

Let Z P Sn
`. The Lagrangian function of problem (1.1), and its gradient, are given by399

LpX, y, Zq “
1

2
}X ´ W }

2
` xy, b ´ AXy ´ xZ,Xy, ∇XLpX, y, Zq “ X ´ W ´ A˚y ´ Z.

It follows that X is a stationary point of the Lagrangian if400

X “ W ` A˚y ` Z.

By means of this equality, we can express the Lagrangian dual as

d˚
“ max

Zľ0,y
min
X

LpX, y, Zq “
1

2
}X ´ W }

2
` xy, b ´ AXy ´ xZ,Xy

“ max
∇XLpX,y,Zq“0

Zľ0,y

1

2
}X ´ W }

2
` xy, b ´ AXy ´ xZ,Xy

“ max
ZPSn`,y

´
1

2
}Z ` A˚y}

2
` xy, b ´ AW y ´ xZ,W y “: ϕpy, Zq.
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Item (iii): Let X̄ be the unique optimal solution, as found by the above. Then strong duality401

holds if, and only if there exists pȳ, Z̄q such that the following KKT conditions hold:402

X̄ ´ W ´ A˚ȳ ´ Z̄ “ 0, Z̄ ľ 0, (dual feasibility),
AX̄ ´ b “ 0, X̄ ľ 0, (primal feasibility),
xZ̄, X̄y “ 0, (complementary slackness).

(3.3)

Note that the complementary slackness condition and the fact that X̄, Z̄ P Sn
` yield403

PSn`pW ` A˚ȳq “ X̄ and PSn´pW ` A˚ȳq “ ´Z̄, (3.4)

due to X̄ ` p´Z̄q “ W ` A˚ȳ being the Moreau decomposition. Finally, substituting X̄ “404

PSn`pW ` A˚ȳq in the primal feasibility condition, we conclude that the KKT conditions405

imply F pȳq “ APSn`pW ` A˚ȳq ´ b “ 0.406

Conversely, it easily follows by the Moreau decomposition theorem, that given some ȳ P Y407

satisfying F pȳq “ 0, then the tuple pX̄, ȳ, Z̄q, with X̄ and Z̄ defined as in (3.4), satisfies the408

above KKT conditions.409

410

411

Remark 3.3. (Dual solution from a root of F ) In Theorem 3.2 (iii) we showed how to obtain412

a solution to the primal problem (1.1) from a root of F . In addition, the pair pȳ, Z̄q, with413

Z̄ “ ´PSn´pW ` A˚ȳq,

constitutes a dual solution of the dual problem 3.1. This fact immediately follows from the414

proof Theorem 3.2 (iii), where we showed that the tuple pX̄, ȳ, Z̄q satisfies the KKT conditions415

of problem (1.1).416

3.2 A Basic Newton Method417

In the following, we design a Newton-like method that solves for a root ȳ, F pȳq “ 0, where418

F pyq “ APSn`pW ` A˚yq ´ b.

The optimum is then X̄ “ PSn`pW ` A˚ȳq. Then the directional derivative of F at y in the419

direction ∆y is420

F 1
py; ∆yq “ AP 1

Sn`
pW ` A˚yqA˚

p∆yq. (3.5)

We note that PSn` is found using the Eckart-Young Theorem [18], i.e., we use a spectral421

decomposition and set the negative eigenvalues to 0. Primal feasibility is immediate from422

the definitions and the projection. An application of the Moreau theorem yields the dual423

feasibility and complementarity.424

We now present the pseudo-code of our Semi-Smooth Newton Method for the BAP (1.1)425

in Algorithm 3.1426
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Algorithm 3.1 Semi-Smooth Newton Method for Best Approximation Problem for Spec-
trahedra
Require: W P Sn, y0 P Rm, A : Sn Ñ Rm, ε ą 0, maxiter P N
1: Output: Primal-dual optimum: Xk, pyk, Zkq

2: Initialization: k Ð 0, X0 Ð PSn`pW `A˚y0q, Z0 Ð pX0 ´W ´A˚y0q, F0 Ð ApX0q ´ b,
stopcrit Ð }F0}{p1 ` }b}q

3: while (stopcrit ą ε) & (k ď maxiter) do
4: evaluate Jacobian Jk using directional derivatives Jkpeiq in (3.9)
5: choose a regularization parameter λ ě 0 for J̄ “ pJk ` λImq

6: solve pos. def. system J̄d “ ´Fk for Newton direction d
7: update:
8: yk`1 Ð yk ` d
9: Xk`1 Ð PSn`pW ` A˚yk`1q

10: Zk`1 Ð Xk`1 ´ pW ` A˚yk`1q

11: Fk`1 Ð ApXk`1q ´ b
12: stopcrit Ð }Fk`1}{p1 ` }b}q

13: k Ð k ` 1
14: end while

3.2.1 Alternate Directional Derivative Formulation427

In this section we outline the steps for computing the Jacobian Jk at line 4 in Algorithm 3.1.428

We recall, from (3.5), that computing the Jacobian of F requires evaluating P 1
Sn`
. In principle,429

the implementation of our semi-smooth Newton method would require the computation of430

an element in the Clarke generalized Jacobian of PSn` . Every element in the generalized431

Jacobian is a 4-tensor on Rn, whose complete formulation can be found in [32]. In matrix432

form this would be expressed as a square matrix of order n4. The memory requirements for433

storing a matrix of such dimension can be too demanding even for reasonable values of n.434

In particular, Matlab software would have problems with size n ě 150.435

In order to overcome the memory deficiency, we make use of an elegant characterization436

of the directional derivative of PSn` in Sun–Sun [44]. This provides an efficient formula for437

computing the directional derivative of F in (2.15), F 1py; ∆yq at y for a given direction ∆y P438

Rm. In particular, the Clarke generalized Jacobian of F can be obtained after evaluating439

the directional derivatives for unit vectors ei P Rm.440

We now consider the approach given in [44, Theorem 4.7] to derive the directional deriva-441

tive of PSn` . Let S “ UΛUT P Sn,Λ “ Diagpλq denote the spectral decomposition with vector442

of eigenvalues λ. And, let443

α “ ti : λi ą 0u, β “ ti : λi “ 0u, γ “ ti : λi ă 0u,
444

Λ “ blkdiagpΛα, 0,Λγq, U “ rUα Uβ Uγs.

We define Ω P Sn by445

Ωij “
maxpλi, 0q ` maxpλj, 0q

|λi| ` |λj|
, @i, j, (3.6)
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where 1 “: 0{0. Let H̃ “ UTHU , where we obtain the directional derivative of PSn` in (3.5)446

at S in the direction H from447

P 1
Sn`

pS;Hq “ U

»

–

H̃αα H̃αβ Ωαγ ˝ H̃αγ

H̃T
αβ PSn`pH̃ββq 0

H̃T
αγ ˝ ΩT

αγ 0 0

fi

flUT . (3.7)

In Lemma 3.4 below, we use (3.5) and (3.7) to derive the directional derivative under448

the nonsingularity assumption. We note that the matrices in Sn are almost everywhere449

nonsingular; [44].450

Lemma 3.4. Let y P Rm such that Y :“ W `A˚y P Sn is nonsingular and let ∆y P Rm. Let451

Y :“ UΛUT be a spectral decomposition of Y such that the eigenvalues λ1 ě λ2 ě . . . ě λn452

are sorted in nonincreasing order, and denote with α and γ the sets of indices associated with453

positive and negative eigenvalues, respectively, i.e. α :“ ti : λi ą 0u and γ “ ti : λi ă 0u.454

Then the directional derivative of F at y along the direction ∆y P Rm is given by455

F 1
py; ∆yq “ A

ˆ

U

„

H̃αα Ωαγ ˝ H̃αγ

H̃T
αγ ˝ ΩT

αγ 0

ȷ

UT

˙

, (3.8)

where H̃ :“ UT pA˚∆yqU .456

Proof. We first evaluate P 1
Sn`

pW `A˚yqA˚p∆yq in (3.5) by engaging (3.7). Let Y “ W `A˚y457

and let Y “ U DiagpλpY qqUT be the spectral decomposition of Y , where λpY q is sorted in458

nonincreasing order. Since W ` A˚y is nonsingular, (3.7) reduces to459

U

„

H̃αα Ωαγ ˝ H̃αγ

H̃T
αγ ˝ ΩT

αγ 0

ȷ

UT ,

where H̃ “ UT pA˚∆yqU and Ω defined in (3.6) with λpY q. Thus, this concludes the com-460

putation of P 1
Sn`

pW ` A˚yqA˚p∆yq. Hence, by (3.5), the equality (3.8) follows immediately.461

462

463

We now outline the steps for computing the Jacobian Jk at line 4 in Algorithm 3.1.464

This is done by evaluating the Jacobian in unit directions ∆y “ ej using Lemma 3.4. The465

directional derivative of F at y in the unit direction ej is466

F 1
py; ejq “ A

´

P 1
Sn`

pW ` A˚y;A˚
pejqq

¯

“ A
´

P 1
Sn`

pW ` A˚y;Ajq

¯

. (3.9)

We introduce the following mapping first.467
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Definition 3.5 ( [32, Definition 2.6]). The map B takes a vector x P Rn with non-ascending468

and nonzeros entries and defines the matrix Bpxq P Sn in the following way. Let p be the469

number of positive entries of x, and q the number of negative entries:470

Bij
pxq “

$

’

’

&

’

’

%

1, if i ď p, j ď p,
0, if i ą p, j ą p,

xi{pxi ´ xjq, if i ď p, j ą p,
xj{pxj ´ xiq, if i ą p, j ď p.

Note that Bijpxq denotes the pi, jq-entry of the matrix Bpxq.471

We continue with the elaboration of the computation of the Jacobian. Let Y “ W`A˚y P472

Sn be a nonsingular matrix. We use BupλpY qq to denote the upper right submatrix of BpλpY qq473

defined in Definition 3.5, i.e.,474

BpλpY qq “

„

E BupλpY qq

BupλpY qqT 0

ȷ

.

Then, following Lemma 3.4, the Jacobian evaluated at y P Rm, Jpyq, is computed following475

the steps below.476

1 Let477

Y “
“

V V̄
‰

DiagpλpY qq
“

V V̄
‰T

be the spectral decomposition of Y , where V (respectively V̄ ) is the matrix of eigen-478

vectors associated to the positive (respectively negative) eigenvalues of Y .479

2 Define the rotation RY : Sn Ñ Sn by480

RY pρq :“
“

V V̄
‰

ρ
“

V V̄
‰T

;

3 For each j “ 1, . . . ,m, compute481

Tj :“

„

V TAjV BupλpY qq ˝ V TAjV̄
`

BupλpY qq ˝ V TAjV̄
˘T

0

ȷ

P Sn; (3.10)

4 The j-th column of the Jacobian at y, Jpyq, is482

ApRY pTjqq “: A svec pRY pTjqq . (3.11)

4 Failure of Regularity and Degeneracy483

This section examines various aspects of Algorithm 3.1 caused by the absence of strict484

feasibility. The absence of regularity is known to result in pathologies in conic programs485
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both in the theoretical and practical sides. We show that Algorithm 3.1 is not an exception486

to this phenomenon.487

This section is organized in two parts. In Section 4.1 we discuss two types of pathologies.488

One well-known pathology is the possibility of failure of strong duality. Since the primal and489

dual optimal values agree (Theorem 3.2 (ii)), the only difficulty left is that the dual optimal490

value may not be attained by any dual feasible point. We identify a condition where this491

occurs and show how to construct an instance where strong duality fails. Another well-known492

consequence of the absence of strict feasibility is that the dual optimal set is unbounded [20].493

We explain why Algorithm 3.1 experiences difficulties in this case in Section 4.1.2.494

The second part in Section 4.2 is devoted to understanding the properties of the Jacobian495

of F computed near the optimal point as seen through the lens of degeneracy. We connect the496

discussions from Section 2.2.3 to help explain the behaviour of Algorithm 3.1. In particular,497

we rely on the fact that every point in F is degenerate in the absence of strict feasibility. We498

conclude the section with the application of degeneracy identification to our two real-world499

examples: the elliptope and the vontope.500

4.1 Pathologies in the Absence of Strict Feasibility501

In this section we discuss pathologies that arise as a result of the absence of strict feasibility.502

We provide a method of constructing an instance for which the dual optimal value is not503

attained. In addition, assuming that the dual optimal value is attained, we provide members504

that certify the unbounded dual optimal set; and we examine the behaviour of Algorithm 3.1.505

4.1.1 Unattained Dual Optimal Value506

Theorem 3.2 states that there is always a zero duality gap, p˚ “ d˚ and the solution value507

of the primal problem, p˚, is attained. However, in the absence of strict feasibility, the dual508

attainment does not necessarily hold. Example 4.1 below illustrates that strong duality can509

fail for (1.1) when strict feasibility fails.510

Example 4.1 (Failure of strong duality). Consider the following instance of the best ap-511

proximation problem (1.1) given by512

min
X

$

&

%

1

2

›

›

›

›

›

X ´

„

0 ´1
´1 0

ȷ

›

›

›

›

›

2

: X11 “ 0, X ľS2` 0

,

.

-

. (4.1)

The set of feasible solutions of (4.1) is tX P S2 : X11 “ X12 “ X21 “ 0, X22 ě 0u. Therefore,
the optimal value of the problem is

1 “ min
X22ě0

1

2

›

›

›

›

›

„

0 1
1 X22

ȷ

›

›

›

›

›

2

“
1

2

`

2 ` X2
22

˘

,

which is attained when X22 “ 0. In other words, the optimal solution of the best approxima-513

tion problem is attained at X̄ “ 0.514
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Now, note that the primal constraint in (4.1) is given by tr pE11Xq “ AX “ 0, and
therefore A˚y “ yE11 for all y P R. Thus, dual feasibility of the optimality conditions
(see (3.3)) implies

´

„

0 ´1
´1 0

ȷ

´ ȳE11 “

„

´ȳ 1
1 0

ȷ

P S2
`, for some ȳ P R.

However this does not hold for any ȳ P R. Thus attainment fails for the dual.515

Example 4.1 above illustrates that strong duality may fail in the absence of strict feasi-516

bility; the linear manifold defined by X11 “ 0 entirely consists of singular matrices. We note517

that strong duality can hold even in the absence of strict feasibility. Remark 4.3 presents518

a constructive approach for generating instances that fail strong duality. We first recall the519

following.520

Lemma 4.2 ([40, Lemma 2.2]). Suppose that 0 ‰ K � Sn
`, is a proper face of Sn

`. Then521

Sn
` ` KK

“ Sn
` ` spanK∆.

Furthermore,522

Sn
` ` spanK is not closed. (4.2)

Remark 4.3 (Constructing examples of failure of strong duality). The dual feasibility of the523

first-order optimality conditions (3.3) states:524

X̄ ´ W P rangepA˚
q ` Sn

`.

From (4.2), we can choose any proper face K � Sn
` and construct a linear map A to satisfy525

rangepA˚q “ spanK. Therefore,526

X̄ ´ W P rangepA˚q ` Sn
`z

`

rangepA˚
q ` Sn

`

˘

, X̄ P Sn
`,

results in the failure of (3.3). Example 4.1 indeed falls into this category. Note that we can527

always choose b “ AX̄ so that we still have a zero duality gap.528

4.1.2 Unbounded Dual Optimal Set and Singular Jacobian529

We now discuss a property of the dual optimal set that, if it exists, results in a poor behaviour530

of Algorithm 3.1. Recall that the absence of strict feasibility of F implies the existence of531

a solution λ of the auxiliary system (2.5). We use the solution λ of (2.5) to derive two532

properties of the dual solution set S “ ty P Rm : F pyq “ 0u defined in (2.14):533

1 the solution set S is unbounded;534

2 the Jacobian at a solution ȳ P S is singular.535
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Theorem 4.4 below clarifies the conditions that result in the unbounded dual solution set in536

Item 1; it then explains why we get an ill-conditioned Jacobian and thus provides a rationale537

for regularization of the search direction at line 4 in Algorithm 3.1.538

Theorem 4.4. Suppose that strict feasibility fails for the (primal) spectrahedron (1.1) but539

strong duality holds. Let λ be any solution to (2.5). Then the following holds.540

(i) The solution set S in (2.14) is unbounded. Moreover, λ provides a recession direction,541

F py ` tλq “ 0, @t P R.542

(ii) Let ȳ P S. The directional derivative of F at ȳ along λ exists and is equal to zero.543

(iii) In addition suppose that F is differentiable at ȳ P S. Then the Jacobian F 1pȳq is544

singular. Moreover, λ P nullF 1pȳq.545

Proof. Item (i) Let ȳ P S. Let ȳ be a root of F and let pX̄, ȳ, Z̄q be a triple that satisfies546

the optimality conditions in (3.3). We now let λ be a solution to the auxiliary system (2.5)547

and Z :“ A˚λ ľ 0. We aim to show that, for any t ą 0, the triple pX̄, ȳ ´ tλ, Z̄ ` tZq also548

satisfies the optimality conditions. Indeed, for all t ą 0, we have Z̄ ` tZ ľ 0 and549

0 “ X̄ ´ W ´ A˚ȳ ´ Z̄
“ X̄ ´ W ´ A˚pȳ ´ tλq ´ pZ̄ ` tZq.

The verification of primal feasibility is trivial. Finally complementarity follows:550

xZ̄ ` tZ, X̄y “ txZ, X̄y “ txλ,AX̄y “ txλ, by “ 0, @t ą 0,

where the last equality follows from (2.5). Finally, by Theorem 3.2 (iii) we conclude that551

ȳ ´ tλ is a root of F for all t ą 0, or equivalently,552

tȳ ´ tλ : t P R`u Ď S.

Item (ii) This directly follows from the fact that F pȳq “ F pȳ ´ tλq for all y P S and553

t P R`.554

Item (iii) Suppose F is differentiable at a point ȳ P S. Then the partial derivative of F555

at ȳ in the direction of λ is given by556

F 1
pȳqλ “ 0,

where F 1pȳq denotes the Jacobian of F at ȳ.557

558

559
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We note that the system (2.5) may contain multiple linearly independent solutions. Let560

tλ1, . . . , λku be a set of linearly independent solutions to (2.5). Hence by Theorem 4.4561

we deduce that the solution set S contains a k-dimensional recession cone. Moreover, If562

the differentiability of F at ȳ is further assumed, nullF 1pȳq contains at least k number563

of 0 singular values. Another interesting consequence of Theorem 4.4 is that if F 1pȳq is564

nonsingular, then strict feasibility holds for F .565

The unboundedness of the set S immediately translates into the unboundedness of the566

set of optimal solutions of the dual problem (3.1). In the proof of Theorem 4.4 Item (i)567

shows that the triple pX̄, ȳ ´ tλ, Z̄ ` tA˚λq satisfies the optimality conditions (3.3) for all568

t P R`. Therefore, the unbounded set569

tpȳ, Z̄q ` tp´λ,A˚λq : t P R`u

constitutes recession directions of the set of dual solutions.570

Having an unbounded set of dual solutions is a main reason why Algorithm 3.1 undergoes571

difficulties when strict feasibility fails. We typically observe that the magnitude of iterates572

yk and Zk diverges. We explain why. Let ȳ P S. Suppose that we are at a point ŷ such that573

F pŷq “ ϵ, say ŷ “ ȳ ` ϕ. We note that574

ϵ “ F pȳ ` ϕq ´ F pȳq « F 1
pȳqϕ.

When ||ϵ|| is small, ϕ is close to being a member of nullpF 1pȳqq. We have shown in Theo-575

rem 4.4 that a solution λ to (2.5) always satisfies576

F pȳ ` λq “ 0 and F 1
pȳqλ “ 0.

A typical behaviour of Algorithm 3.1 in the absence of strict feasibility is illustrated in Fig-577

ure 4.1, i.e., we see the growth of norm of the dual variables.

0 50 100 150 200 250
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10000

12000

Figure 4.1: tpXk, yk, Zkqu from Algorithm 3.1 typical behaviour; NO strict feasibility.

578
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4.2 Jacobian Behaviour Near-Optimum and Degeneracy579

In this section we study properties of the Jacobian of F computed near an optimal point and580

relate its behaviour to the degeneracy status of the optimal point. In Section 4.2.1 we show581

that the degeneracy status of the optimal point characterizes the singularity of the Jacobian582

matrix. In Section 4.3 we study degeneracies of two classes of sets; the elliptope (the set of583

correlation matrices), and the vontope (feasible region of the SDP relaxation of the quadratic584

assignment problem, QAP). We exhibit the result from [39, Thm 3.4.2] that the elliptope585

has only nondegenerate points; however all vertices of the vontope are degenerate before586

FR, and some vertices of the vontope are degenerate even after FR.587

4.2.1 Invertibility of Jacobian and Degeneracy588

We extend the discussion of computing the Jacobian presented in Lemma 3.4 and elaborate589

the computational steps. Let pX̄, ȳ, Z̄q be an optimal triple that solves (3.3). We further as-590

sume that X̄ and Z̄ satisfy strict complementarity. Since X̄ and Z̄ are mutually orthogonally591

diagonalizable, we obtain592

X̄ ´ Z̄ “ W ` A˚
pȳq “

“

V V̄
‰

„

R 0
0 ´S

ȷ

“

V V̄
‰T

, R ą 0, S ą 0,

where X̄ “ V RV T and Z̄ “ V̄ SV̄ T .593

Recall the steps for computing the Jacobian in Section 3.2.1. We now closely observe594

how the pi, jq-th element of the Jacobian in (3.11) is evaluated. Let Tj be the matrix defined595

in (3.10). Then596

trpAiRX̄pTjqq

“

A

Ai,
“

V V̄
‰

Tj

“

V V̄
‰T
E

“

A

“

V V̄
‰T

Ai

“

V V̄
‰

, Tj

E

“

B„

V TAiV V TAiV̄
V̄ TAiV V̄ TAiV̄

ȷ

,

„

V TAjV BupλpX̄qq ˝ V TAjV̄
`

BupλpX̄qq ˝ V TAjV̄
˘T

0

ȷF

“

B„

V TAiV V TAiV̄
V̄ TAiV 0

ȷ

,

„

V TAjV BupλpX̄qq ˝ V TAjV̄
`

BupλpX̄qq ˝ V TAjV̄
˘T

0

ȷF

.

(4.3)

Note that the two arguments in the last trace inner product from (4.3) are identical up to597

the element-wise scaling. Lemma 4.5 below links the degeneracy of the optimal point X̄ to598

the invertibility of the Jacobian at X̄.599

Lemma 4.5. Let D P Sn
`` be a diagonal matrix, and let tx1, . . . , xmu Ă Rn be given.600

Let U “
“

x1 x2 ¨ ¨ ¨ xm

‰

. Then rankpUq “ rankpUTUq “ rankpUTDUq.601

Now we use (4.3), Lemma 4.5, and Lemma 2.12, to characterize the singularity of the602

Jacobian of F evaluated at an optimal solution.603
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Theorem 4.6. Let X̄ be the optimal solution of the BAP (1.1). Then X̄ is degenerate if,604

and only if, the Jacobian of F at X̄ is singular.605

Proof. Let X̄ be the optimal point of (1.1). Let606

D “ Diag

˜

svec

˜«

M 1?
2
BupX̄q

1?
2
BupX̄qT M

ff¸¸

P Stpnq

`` ,

where M “ 1?
2
E `

´

1 ´ 1?
2

¯

I. Let Xi :“

„

V TAiV V TAiV̄
V̄ TAiV 0

ȷ

, and let xi :“ svec pXiq. We607

recall the definition of Tj in (3.10) and note that608

svec pTjq “ Dxj.

We then observe the last inner product in (4.3):609

xXi, Tjy “ xsvecpXiq, svecpTjqy “ xxi, Dxjy.

Now we form U :“
“

x1 x2 ¨ ¨ ¨ xm

‰

P Rtpnqˆm. Then, @i, j, we have610

pUTDUqi,j “

¨

˚

˝

»

—

–

xT
1
...
xT
m

fi

ffi

fl

“

Dx1 ¨ ¨ ¨Dxm

‰

˛

‹

‚

i,j

“ xT
i Dxj “ trpAiRX̄pTjqq.

Therefore we conclude611

X̄ is degenerate ðñ rankpUq ă m by (2.17)
ðñ UTDU is singular by Lemma 4.5
ðñ Jacobian of F at X̄ is singular.

612

613

Recall the sufficient conditions for producing a nondegenerate solution given in Propo-614

sitions 2.17 and 2.18. Therefore, any projection point X̄ that satisfies the conditions in615

Propositions 2.17 and 2.18 yields a nonsingular Jacobian.616

4.3 Nondegeneracy of the Elliptope and Degeneracy of the Von-617

tope618

We now lead the discussion of degeneracy to the two classes of spectrahedra: the elliptope619

(the set of correlation matrices); and the vontope (the feasible set of the SDP relaxation of620

the quadratic assignment problem). For these two classes of problems, we illustrate how621

degeneracy interacts with the performance of Algorithm 3.1 in Section 5.2.622
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Example 4.7 (Elliptope, [47, Thm 3.4.2]). We consider the problem of finding the nearest623

correlation matrix:624

min

"

1

2
}X ´ W }

2
F : diagpXq “ e, X ľ 0

*

.

The feasible region of the above problem is called the elliptope.4 Every point in the elliptope625

is nondegenerate.626

Example 4.8 (Vontope, [49]). Let Πn be the set of n-by-n permutation matrices. For X P627

Πn, let628

YX “ yXy
T
X , where yX “

ˆ

1
vecX

˙

P Sn2`1

be the lifted matrix. Here we index the rows and columns of a matrix starting from 0. The629

lifting process gives rise to the following feasible region for the SDP relaxation:630

FQAP :“

"

Y P Sn2`1
` :

GJpY q “ E00, b
0 diagpY q “ In, o

0 diagpY q “ In,
Y0,j “ Yj,j, @j “ 1, . . . , n2 ` 1

*

. (4.4)

Here, GJ is a linear map that chooses the elements in the index set J that correspond to the631

off-diagonal elements of the n-by-n diagonal blocks and the diagonal elements of the n-by-n632

off-diagonal blocks; b0 diag : Sn2`1 Ñ Sn and o0 diag : Sn2`1 Ñ Sn are linear maps that633

sum the n-by-n diagonal blocks and the n-by-n off-diagonal blocks, respectively; see [49] for634

details on the construction of GJ , b
0 diag and o0 diag. We remark that the expression in (4.4)635

contains redundant linear constraints.636

It is well-known that the SDP relaxation of the QAP fails strict feasibility [49] and so we637

employ FR and work in a smaller space. Let638

H “

„

eT b In
In b eT

ȷ

P R2nˆn2

, K “
“

´e H
‰

P R2nˆpn2`1q,

and let V̂ P Rpn2`1qˆppn´1q2`1q be the matrix with orthonormal columns that spans nullpKq.5639

FR leads to the following constraints:640

FFR
QAP :“ tR P Spn´1q2`1 : GĴpV̂ RV̂ T

q “ E00, R ľ 0u, (4.5)

where GĴ a newly defined surjective linear map that chooses indices in Ĵ such that Ĵ Ĺ J .641

This aligns with the fact that FR reveals implicit redundant constraints. It is known that the642

number of equality constraints reduces to n3 ´ 2n2 ` 1 after FR; see [49].6643

We now discuss the degeneracy of each lifted matrix YX “ yXy
T
X “ V̂ RX V̂

T , X P Πn.644

Owing to the orthonormality of V̂ , we get645

RX “ V̂ TYX V̂ P Spn´1q2`1.

4Note that the elliptope is the feasible region of the SDP relaxation of the max-cut problem.
5Note that the last row of K is linearly dependent and is best ignored when finding the nullspace for

efficiency and accuracy.
6The last column of off-diagonal blocks and the pn ´ 2, n ´ 1q off-diagonal block are linearly dependent,

see [22,49].
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We note that rankpRXq “ 1. We let tAiu
n3´2n2`1
i“1 Ă Spn´1q2`1 be the set of matrices that646

realizes the affine constraints as the usual trace inner product. Hence the linear dependence647

of the matrices of the set (2.17) can be argued by their first columns; we observe that the648

vectors649

"ˆ

V T
XAiVX

V̄ T
XAiVX

˙*n3´2n2`1

i“1

Ď Rpn´1q2`1, n3
´ 2n2

` 1 ą pn ´ 1q
2

` 1, n ě 3,

are linearly dependent, i.e., for n ě 3. This proves that the rank-one vertices that arise from650

Πn are degenerate.651

Remark 4.9. If we replace Sn
` with Rn

`, the set F reduces to a polyhedron and the discussion652

on the degeneracy simplifies. The degeneracy status of a point x in a polyhedron can be653

confirmed by evaluating the rank of Ap:, supppxqq, where supppxq denotes the support of x;654

see [47, Chapter 3]. The performance of the proposed algorithm in [10] is also affected by the655

degeneracy of the optimal point. Moreover every point of F as a polyhedron is degenerate in656

the absence of strict feasibility.657

5 Numerical Experiments658

To illustrate the effects on convergence and degeneracy, we now present multiple experiments659

using diverse spectahedra F with various ranges of values for the singularity degree, sdpFq,660

and for the implicit problem singularity, ipspFq. In our algorithm, dual feasibility and661

complementary slackness are satisfied exactly. Therefore, we use the following εk P R` to662

denote the relative residual of the optimality conditions at iteration k:663

εk :“ min

"

1,
}F pykq}

1 ` }b}

*

“: αk10
´tk , 1 ď αk ă 10.

We denote the condition number of the Jacobian of F at yk as condpJkq, and let664

condpJkq “ βk10
sk , 1 ď βk ă 10.

We stop Algorithm (3.1) once665

piq εk ď 10´13 or piiq sk ` tk ą 16 or piiiq k ą 2000.

If condition (i) holds, then the we consider the BAP problem is solved. If condition (ii)666

holds, then we consider the optimal solution of the BAP problem as being degenerate. In667

our algorithm, if (ii) or (iii) hold, then we conclude that a small eigenvalue for the Jacobian668

exists and we assume that strict feasibility fails.7 And, by looking at the nonzero elements669

of an eigenvector associated to the smallest eigenvalue we get information on an exposing670

vector; and we identify constraints that give rise to the failure of strict feasibility. This671

7Note that by Remark 2.13, nondegeneracy holds for our problem generically.
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solves an auxiliary system for a FR step, see Proposition 2.4. Using the information on the672

exposing vector, we then solve a reduced auxiliary system, using a Gauss–Newton approach8.673

This results in a FR step. Following this, we remove the redundant constraints that arise674

from the FR step. We repeat until strict feasibility holds.675

Numerical experiments are conducted with MatlabR2023b on a Windows 11 PC with676

Intel(R) Core(TM) i5-10210U CPU @ 1.60GHz, RAM 16.0GB.677

5.1 Comparison With(out) Strict Feasibility678

As expected, our tests in Table 5.1, show that Algorithm 3.1 performs exceptionally well679

for instances with strict feasibility but struggles when strict feasibility fails. In fact, we680

observe that Algorithm 3.1 achieves the relative precision of 10´7 in under 7 iterations when681

strict feasibility holds. In contrast, when strict feasibility fails and Algorithm 3.1 converges,682

hundreds of iterations are needed to reach the desired precision. In Table 5.2, we repeat the683

same experiment setting a relative precision tolerance of 10´13 and allowing 2000 iteration684

limit. Observe that, in this case, Algorithm 3.1 never reached the desired relative precision685

in under the maximum number of iterations when strict feasibility failed.

n 10 20 50 100
Slater 100% 100% 100% 100%
No Slater 55% 50% 50% 25%

Table 5.1: 20 randomly generated problems (1.1); % converged εk ď 10´8, k ď 1000.

686

n 10 20 50 100
Slater 100% 100% 100% 100%
No Slater 0% 0% 0% 0%

Table 5.2: 20 randomly generated problems (1.1); % converged εk ď 10´13, k ď 2000.

We now look at the case where the singularity degree sdpFq “ 1, while the implicit687

singularity ipspFq varies.688

5.1.1 ipspFq “ 1689

We use a spectrahedra with singularity degree 1 and n “ 15,m “ 7. The singularity degree690

is obtained by constructing an exposing vector as a linear combination of 5 out of the 7691

constraints of the problem. Algorithm 3.1 is used to monitor the eigenvalues of the Jaco-692

bian of F at every iteration k, see Figure 5.1. We observe that only one of the eigenvalues693

tends to 0. After 452 iterations the method reaches a relative residual of 9.9567 ˆ 10´8,694

8https://github.com/j5im/FacialReductionSpectrahedron
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while the condition number of the Jacobian is 7.0236 ˆ 1012. Therefore the algorithm stops695

and indicates which of the constraints are causing strict feasibility to fail. After applying696

FR and removing the single (implicit) redundant constraint found, the algorithm now suc-697

ceeds and converges to a point with a relative residual of 1.0231ˆ 10´15 in only 8 iterations,698

see Table 5.3.699

50 100 150 200 250 300 350 400 450

k

10-10

10-5

100

i(F
'(y

k))

Figure 5.1: Changes in eigenvalues of Jacobian of F for spectahedron in Section 5.1.1.

n m εk(rel. res.) condpF 1pykqq λnpykq k

Before FR 15 7 9.9567e-08 7.0236e+12 -1.7238e-16 452

After FR 15 6 1.0231e-15 198.08 2.5515e-17 8

Table 5.3: spectahedron in Section 5.1.1; at final iteration k; before and after FR iters

5.1.2 ipspFq ą 1700

In our second experiment, see Table 5.4, we work with data obtained from a SDP relaxation701

of the protein side-chain positioning problems, e.g., [9]. The spectahedra we are considering702

has singularity degree 1, but the implicit problem singularity is greater than 1, i.e., there703

are more than 1 redundant constraints after applying FR . In particular, the dimension of704

the space is n “ 35 and the number of constraints is m “ 75. By running our algorithm,705

we observe that a large number of eigenvalues of the Jacobian tend to 0 along the iterations706

(see Figure 5.2). After applying FR , we reduced the dimension of the problem to n “ 10 and707

the number of constraints to m “ 22. In the next run of the algorithm, only one eigenvalue708

of the Jacobian tends to 0, but we detect that a second iteration of FR is needed. This time,709

we reduce n to 9 and we remove 6 more redundant constraints, resulting in m “ 16. The710
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next time we apply our algorithm, the method converges to the solution in 18 iterations,711

see Table 5.4.712
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Figure 5.2: iterations k vs eigenvalues; spectahedron in Section 5.1.2; before and after one
FR iteration

n m εk(rel. res.) condpF 1pykqq λnpykq k

Before FR 35 76 8.5351e-08 1.0060e+12 -1.6941e-15 534

After FR 1 10 22 7.6363e-04 1.8739e+16 -5.2097e-16 19

After FR 2 9 16 8.7202e-14 16103.37 -5.6900e-16 18

Table 5.4: spectahedron in Section 5.1.2; at final iteration k; before and after FR iters

5.2 Experiments with Elliptope and Vontope713

In this section we address the importance of strict feasibility and degeneracy on the per-714

formance of Algorithm 3.1. We consider the elliptope and vontope cases. Furthermore we715

compare the performance of Algorithm 3.1 with the interior point solver SDPT39.716

From Section 4.3 we recall that the MCproblem satisfies strict feasibility and every point717

of the elliptope, the feasible set, is nondegenerate; see Example 4.7. The results from the718

MC problem are displayed in the line labelled ‘Elliptope’ in Table 5.5. As for the QAP,719

without FR, the SDP relaxation of QAP fails strict feasibility and all the feasible points720

are degenerate. Hence in our tests, we consider two models of the same set of instances:721

FQAP obtained directly by the lifting of the variables (see (4.4)); and FFR
QAP obtained after722

FR is applied to FQAP (see (4.5)). In Table 5.5, QAP (QAPFR, resp.) indicates the results723

obtained from FQAP (FFR
QAP, resp.).724

9https://www.math.cmu.edu/~reha/sdpt3.html, version SDPT3 4.0 [45].
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We used two settings for the choice of W in the objective function. The first setting for725

W forces the optimal solution X̄ to be rank 1. Recall that rank-one optimal solutions for726

QAP are degenerate and thus lead to ill-conditioned Jacobians as can be seen by the huge727

condition numbers in Table 5.5. The second setting chooses a random W .728

For SDPT3 we provided the following second-order cone formulation of (1.1):729

min
X,y,t

t t : svecpXq ` y “ svecpW q, ||y||2 ď t, X P F u .

The default settings for SDPT3 were used for the tests.730

Each line of Table 5.5 reports on the average of 10 instances, problem order n “ 10. The731

meaning of the header names used in Table 5.5 is as follows:732

1 The headers pf, df and cs under Semi-Smooth Newton refer to the average of the primal733

feasibility, dual feasibility and complementarity, respectively, introduced in (2.11). The734

df includes both the linear dual feasibility and the violation of semidefiniteness. Both735

are essentially zero up to roundoff error of the arithmetic. Note that the values e ´ 15736

and smaller for pf and df are essentially zero (machine precision). The headers pf, df737

and cs under SPDT3 refer to the solver outputs, pinfeas, dinfeas and gap, respectively.738

2 k is the average number of iterations.739

3 time is the average run time in cpu-seconds.740

4 condpF 1pykqq is the average condition number of the Jacobian pF 1pykqq; we only have741

this metric for the semi-smooth Newton method.742

W Generation Problem
Semi-Smooth Newton SDPT3

pf df cs k time condpF 1pykqq pf df cs k time

Elliptope 9e-13 9e-16 2e-16 6.8 4e-02 3e+00 4e-12 6e-12 2e-07 15.5 2e-01
W , rankpX̄q “ 1 QAPFR 4e-07 2e-15 1e-16 7.5 7e+00 4e+15 5e-10 1e-09 9e-06 17.9 7e+01

QAP 8e-09 3e-15 1e-16 8.6 2e+01 4e+14 5e-10 5e-09 1e-05 18.9 6e+01

Elliptope 3e-12 1e-15 6e-17 6.3 1e-02 2e+00 1e-11 6e-12 3e-08 11.5 9e-02
random W QAPFR 2e-12 3e-15 7e-17 20.6 2e+01 3e+05 5e-10 5e-10 7e-07 13.9 5e+01

QAP 1e-07 5e-13 3e-16 537.9 1e+03 6e+11 1e-08 2e-09 1e-06 17.3 7e+01

Table 5.5: Algorithm 3.1 and SDPT3 on: Elliptope and Vontope; n “ 10;

We now discuss the results in Table 5.5. We Start with the Semi-Smooth Newton,743

Algorithm 3.1. The pf column clearly shows that the degeneracy of the optimal point744

X̄ plays an important role. Other than for random W with QAPFR, the pf values for745

the QAP problems are poor. This correlates with the condition number values; see also746

the discussion in Section 4. The condition numbers of the Jacobian near optimal points,747

condpF 1pykqq, are ill-conditioned when strict feasibility fails and the optimal solution is de-748

generate. The good measures for df and cs of Semi-Smooth Newton method follow from the749

details of the construction of Algorithm 3.1.750

SDPT3 displays an overall good performance on all instances, and this is typical for751

interior point methods. We note that the df and cs values under SDPT3 are weaker than for752
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Semi-Smooth Newton due to the nature of interior point methods. The number of iterations753

is higher when the optimal solutions are set to be degenerate. The reason for the extremely754

high number of iterations for the case without FR is that a high accuracy is set but difficult755

to attain.756

Algorithm 3.1 has a superior performance for MC problems as all components of the757

optimality conditions are satisfied with near machine accuracy. This confirms that the758

status of the optimal solution plays an important role when it comes to the performance of759

Algorithm 3.1. In addition, preprocessing the instances so that they satisfy strict feasibility760

is important as seen by problems failing strict feasibility only contain degenerate points;761

see Theorem 2.15.762

6 Conclusions763

We presented and analyzed a semi-smooth Newton method for the best approximation prob-764

lem, the projection problem, for spectrahedra. We showed that nondegeneracy is needed for765

the semi-smooth Newton method to perform well. We used the unbounded dual optimal set766

in the absence of a regularity condition to explain the lack of good performance. Moreover,767

we showed that the absence of strict feasibility results in degeneracy and ill-conditioning of768

the Jacobian at optimality. Our empirics illustrate the importance of strict feasibility. In769

particular, we studied the degeneracy for the elliptope and vontope.770

Though we concentrated on SDP, many current relaxations for hard problems involve the771

doubly nonnegative, DNN, cone, i.e., DNN “ Sn
` XRnˆn

` . In particular, splitting methods772

efficiently exploit this intersection of two cones and facial reduction often provides a natural773

efficient splitting, e.g., [2, 22, 36]. It seems that the results we obtained from the Newton774

method for the BAPwould extend to applying splitting methods to feasible sets of the type775

L X DNN .776
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Index

px, yq, open interval, 21784

C˚, nonnegative polar cone of C, 7785

CK, orthogonal complement of C, 7786

F pyq :“ APSn`pW ` A˚yq ´ b, 16787

F pyq “ A
´

PSn`pW ` A˚yq

¯

´ b “ 0, 8788

Ff pŷq :“ APf pW ` A˚ŷq ´ b, 9789

GJ , 27790

K � C, face, 7791

PS, projection onto a nonempty closed convex792

set S, 5793

Pf pZq “ P 1
f pZq, 6794

W P Sn, data, 4795

X ľ 0, 4796

X˚ “ VpR˚pĎW qq, 9797

X˚, 4798

X˚, optimum, 4799

∆pXq, Moreau regularization of ιSn´ , 6800

Πn, 27801

εk, relative residual vector, 28802

F “ L X K, feasible set, 4803

On, orthogonal matrices, 5804

¨:, Moore-Penrose generalized inverse, 8805

facepXq, 7806

ips, implicit problem singularity, 12, 28807

ιS, indicator function, 6808

B, 20809

RY , 20810

maxsdpFq, max-singularity degree of F , 12811

A, null space of A, 21812

ϕpy, Zq, dual functional, 16813

sdpFq, singularity degree of F , 3, 12814

sF pyq :“ ĀPSr`pĎW ` Ā˚yq ´ b̄, 9815

ĎW “ V TWV P Sr, 8816

f “ facepFq, minimal face of F , 8817

f∆, conjugate face of K, 7818

p˚ “ d˚, zero duality gap, 21819

p˚, optimal value, 4820

tpnq “ npn ` 1q{2, triangular number, 13821

BupλpY qq, 20822

FFR
QAP , 27, 31823

FQAP , 27, 31824

S “ ty P Rm : F pyq “ 0u, 22825

Sλ, 12826

VpRq :“ V RV T , 8827

AP , method of alternating projections, 5828

BAP, best approximation problem, 4829

FR, facial reduction, 7, 12830

KKT, Karush-Kuhn-Tucker, 9831

QAP, quadratic assignment problem, 21832

auxiliary system, 7, 14833

best approximation problem, BAP, 4834

conjugate face of K, K∆, 7835

correlation matrix, 4836

data, W P Sn, 4837

degenerate point, 13838

dual functional, ϕpy, Zq, 16839

elliptope, 4, 26, 27840

exposing vector, 8841

face, K � C, 7842

facial range vector, 8843

facial reduction, FR, 7844

feasible set, F “ L X K, 4845

Gauss–Newton, 29846

implicit problem singularity, ips, 12, 28847

indicator function, ιS, 6848

Karush-Kuhn-Tucker, KKT, 9849

max-singularity degree of F , maxsdpFq, 12850

minimal face of F , f “ facepFq, 8851

Moore-Penrose generalized inverse, ¨:, 8852

Moreau regularization of ιSn´ , 6853

Moreau regularization of ιSn´ , ∆pXq, 6854

nondegenerate, 13855
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open interval, px, yq, 21856

optimal value, p˚, 4857

optimum, X˚, 4858

orthogonal matrices, On, 5859

projection onto closed convex set S, PS, 5860

proper face, 7861

proximal operator of f , 6862

proximity operator of f , 6863

quadratic assignment problem, QAP, 21864

recession direction, 23865

reduced auxiliary system, 29866

relative residual vector, εk, 28867

singularity degree of F , sdpFq, 3, 12868

Slater constraint qualification, 13869

spectrahedron, 3, 4870

spectral function, 5, 6871

triangular number, tpnq “ npn ` 1q{2, 13872

vontope, 4, 26873

zero duality gap, p˚ “ d˚, 21874
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