
Strict Feasibility and Degeneracy in Linear Programming

Jiyoung Im* Henry Wolkowicz�

March 5, 2022

Abstract

Currently, the simplex method and the interior point method are indisputably the most
popular algorithms for solving linear programs. Unlike general conic programs, linear programs
with a finite optimal value do not require strict feasibility in order to establish strong duality.
Hence strict feasibility is often less emphasized. In this note we discuss that the lack of strict fea-
sibility necessarily causes difficulties in both simplex and interior point methods. In particular,
the lack of strict feasibility implies that every basic feasible solution is degenerate. We achieve
this using facial reduction and simple means of linear algebra. Furthermore, we emphasize that
facial reduction involves two steps where the first guarantees strict feasibility, and the second
recovers full-row rankness of the constraint matrix.
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1 Introduction

The Slater condition (strict feasibility) is a useful property that a model can possess. Unlike
general conic programs, linear programs (LPs) do not require strict feasibility as a constraint
qualification that guarantees strong duality, and therefore, it is often not discussed. The Goldman-
Tucker theorem [16] is related in that it guarantees a primal-dual optimal solution satisfying strict
complementarity x∗ + z∗ > 0. However, it does not guarantee the existence of a strictly feasible
primal solution x̂ > 0. The lack strict feasibility for an LP does not seem to cause problems
at first glance especially when the simplex method is used. In this manuscript, we show that the
failure of strict feasibility causes degeneracy problems when the simplex-type method is used. More
specifically, the lack of strict feasibility inevitably renders LPs degenerate, i.e., every basic feasible
solution is degenerate.

The simplex method [9] is one of the most popular and successful algorithms for solving linear
programs. Degeneracy that could result in cycling and noncovergence is one of the early difficulties
that arose. There are many anti-cycling rules, e.g., [3, 10, 29], that are developed in order to avoid
these issues. However, techniques for the resolution of degeneracy often result in stalling [2, 6, 26],
i.e., result in a large number of iterations to leave a degenerate point. Degeneracies are known to
cause numerical issues when interior point methods are used, e.g., [20]. For example, degeneracy
can result in singularity of the Jacobian and thus in ill-posedness and loss of accuracy [17].

Our main results on the degeneracy are shown using the process called facial reduction, FR.
Facial reduction is an effective preprecessing tool to use in the absence of strict feasibility. Given
a problem with lack of strict feasibility, facial reduction strives to formulate an equivalent problem
so that the reformulation has a Slater point. By examining the facially reduced system, we obtain
two results. First, we show that every basic feasible solution is degenerate when strict feasibility
fails. Second, we understand a source of instability arising in problems that fail strict feasibility.

The manuscript is organized as follows. In Section 2 we present the background and notations.
We then describe what facial reduction tries to achieve, and present related needed properties. In
Section 3 we present our main result and immediate corollaries. We then relate our main result
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to known results in the literature, such as distance to infeasibility. In section Section 4 we present
various algorithmic performances of the interior point methods and the simplex method under the
lack of strict feasibility. Finally we present our conclusions in Section 5.

2 Preliminaries

2.1 Background and Notation

We let Rn,Rm×n be the standard real vector spaces of n-coordinates and m-by-n matrices, respec-
tively. We use Rn+ (Rn++, resp) to denote the n-tuple with nonnegative (positive) entries. Given a
matrix A ∈ Rm×n, we adopt the MATLAB notation to denote a submatrix of A. Given a subset
I of column indices, A(:, I) ∈ Rm×|I| is the submatrix of A that contains the columns of A in I.
Given a convex set C, relint(C) denotes the relative interior of the set C.

Throughout this manuscript, we work with feasible LPs in standard form with finite optimal
value:

(P) p∗ = min
x

{
cTx : Ax = b, x ≥ 0

}
,

where p∗ ∈ R, A ∈ Rm×n, b ∈ Rm and c ∈ Rn. We assume that rank(A) = m, i.e., there is no
redundant constraint. We use F to denote the feasible region of (P)

F = {x ∈ Rn : Ax = b, x ≥ 0}. (2.1)

Given an index set B ⊂ {1, . . . , n}, |B| = m, a point x ∈ F is called a basic feasible solution if
A(:,B) is nonsingular and xi = 0, ∀i ∈ {1, . . . , n} \ B. It is well-known that the simplex method
iterates from a basic feasible solution to a basic feasible solution. A basic feasible solution x ∈ F
is nondegenerate if xi > 0, ∀i ∈ B. A basic feasible solution x ∈ F is degenerate if xi = 0, for some
i ∈ B. It is clear, from the definition, that every basic feasible solution has at most m positive
entries.1

2.2 Facial Reduction

In this section we describe the concept of facial reduction and present the properties that are
used to establish the main result. We emphasize that facial reduction for (P) involves two steps:
first, obtain an equivalent problem with strict feasibility; second, recover full-row rankness of the
constraint matrix.

Let K ⊂ Rn be a convex set. A convex set F ⊆ K is called a face of K, denoted F �K, if for
all y, z ∈ K with x = 1

2(y+ z) ∈ F , we have y, z ∈ F . Given a convex set C ⊆ K, the minimal face
for C is the intersection of all faces containing the set C.

Proposition 2.1. [12, Theorem 3.1.3](theorem of the alternative) For the feasible system of (2.1),
exactly one of the following statements holds:

1. There exists x ∈ Rn++ with Ax = b, i.e., strict feasibility holds;

2. There exists y ∈ Rm such that

0 6= z := AT y ∈ Rm+ , and 〈b, y〉 = 0. (2.2)

1We only consider primal degeneracy here, though everything follows through for dual degeneracy.
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Proposition 2.1 gives rise to a process called facial reduction. The facial reduction, FR, for
an LP is a process of identifying the minimal face of Rn+ containing the feasible set F = {x ∈
Rn+ : Ax = b}. By finding the minimal face, we can work with a problem that lies in a smaller
dimensional space and that statisfies strict feasibility. The FR process, i.e., finding the minimal
face, is usually done by solving a sequence of auxiliary systems (2.2). More details on FR on general
conic problems can be found in [4, 5, 12,23,27].

We now describe how the set F (see (2.1)) is represented after FR. Suppose that strict feasibility
fails. Then Proposition 2.1 implies that there must exist a nonzero y ∈ Rm satisfying

〈x,AT y〉 = 〈Ax, y〉 = 〈b, y〉 = 0, ∀x ∈ F . (2.3)

Hence, every x ∈ F is perpendicular to the nonnegative vector z = AT y. We call this vector
z = AT y an exposing vector for F , and let the cardinality of its support be sz = |{i : zi > 0}|.

Then z =
sz∑
j=1

ztjetj , where tj is in nondecreasing order. We now have

0 = 〈z, x〉 and x, z ∈ Rn+ =⇒ xizi = 0, ∀i,

i.e., the positive elements in z fix the corresponding elements in x to zero. Then x =
n−sz∑
j=1

xsjesj ,

where sj is in a nondecreasing order. We define the matrix with unit vectors for columns

V =
[
es1 es2 . . . esn−sz

]
∈ Rn×(n−sz).

Then we have

F = {x ∈ Rn+ : Ax = b} = {x = V v ∈ Rn : AV v = b, v ∈ Rn−sz+ }. (2.4)

We call this matrix V ∈ Rn×(n−sz) a facial range vector. The facial range vector confines the range
that every feasible x can have. We use the identification (2.4) throughout this manuscript. This
concludes the first step of FR, i.e., guaranteeing the strict feasibility.

It is known that every facial reduction yields at least one constraint being redundant, see
e.g., [5], [21, Lemma 2.7], and [27, Section 3.5]. For completeness we now include a short proof
tailored to LP, see Lemma 2.2.

Lemma 2.2. Consider the facially reduced feasible set

Fr =
{
v : AV v = b, v ∈ Rn−sz+

}
. (2.5)

Then at least one linear constraint of the LP is redundant.

Proof. Let z = AT y be the exposing vector satisfying the auxiliary system (2.2). And let V be a
facial range vector induced by z. Then

0 = V T z = V TAT y = (AV )T y =

m∑
i=1

yi((AV )T )i.

Since y ∈ Rm is a nonzero vector, the rows of AV are linearly dependent.

We now see the result of the full two step facial reduction process, i.e., we get the constraint
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matrix of the full-row rank:

F = {x ∈ Rn+ : Ax = b} = {x = V v ∈ Rn : Pm̄AV v = Pm̄b, v ∈ Rn−sz+ }, (2.6)

where Pm̄ : Rm → Rm̄, m̄ = rank(AV ), is the simple projection that chooses the linearly inde-
pendent rows of AV . We emphasize the importance of this projection by relating to the so-called
distance to infeasibility in Section 3.2.1 below. This concludes the second step of FR, i.e., guaran-
teeing the full rank.

For a general conic problem, such as semidefinite programs (SDP), the facial reduction iter-
ations do not necessarily end in one iteration; see [8, 27, 28]. And there is a special name for the
minimum length of FR iterations. Given a spectrahehedron S, the singularity degree of S, denoted
by sd(S), is the smallest number of facial reduction iterations for finding face(S). However, for LPs,
it is known that FR can be done in one iteration, i.e., sd(F) ≤ 1; see [12, Theorem 4.4.1]. Unlike
the FR performed on the class of SDPs, the FR performed on the LPs does not alter the sparsity
pattern of the data matrix A. We emphasize that the FR on the set F only involves the discarding
the rows and columns of A; the sparsity pattern of A does not change after these operations.

3 Main Result

In this section we present our main result Theorem 3.1. We provide two proofs: one takes an
algebraic approach by using the definition of the basic feasible solution; and the other takes a
geometric approach by using extreme points. Both proofs rely heavily on Lemma 2.2. In Section 3.2
we include immediate corollaries of the main result and interesting discussions.

3.1 Lack of Strict Feasibility and Relations to Degeneracy

Theorem 3.1. Suppose that strict feasibility of F fails. Then every basic feasible solution to F is
degenerate.

3.1.1 An Algebraic Proof of Theorem 3.1 via the Definition of Basic Feasible Solution

Proof. Since there is no strictly feasible point in F , there exists a facial range vector V , and as in
(2.4) we have

F = {x ∈ Rn : AV v = b, v ∈ Rn−sz+ }.

By Lemma 2.2, AV has at least one redundant row. By permuting the columns of A, we may
assume that the matrix V is of the form

V =

[
Ir
0

]
and r = n− sz.

We partition the index set {1, . . . , n} as

{1, . . . , n} = I+ ∪ I0, where I+ = {1, . . . , r} and I0 = {r + 1, . . . , n}.

Let x̄ ∈ F be a basic feasible solution with basic indices

B ⊂ {1, . . . , n}, |B| = m, det(A(:,B)) 6= 0, and A(:,B)x̄(B) = b.
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Suppose B ⊆ I+. We note, by Lemma 2.2 again, that A(:, I+) = AV has redundant rows, i.e.,
rank(A(:, I+)) < m. Hence x̄ must include a basic variable in I0 and this concludes that every
basic feasible solution is degenerate.

3.1.2 A Geometric Proof Using Extreme Points

We now give the second proof of our main result. We first employ the statement presented in [22].
In Proposition 3.2 below, Sn+ denotes the set of n-by-n positive semidefinite matrices.

Proposition 3.2. [22, Theorem 2.1] Suppose that X ∈ F , where F is a face of the set {X ∈ Sn+ :

trace(AiX) = bi,∀i = 1, . . . ,m}. Let d = dimF , r = rank(X). Then r(r+1)
2 ≤ m+ d.

The set in Proposition 3.2 is called a spectrahedron. Feasible sets of standard semidefinite
programs are represented as spectrahedra. A sepectrahedron is a generalization of the polyhedral
set F and the proof from [22, Theorem 2.1] can be altered to work with F . We include the proof
for completeness.

Corollary 3.3. Suppose that x ∈ F , where F is a face of the set F . Let r be the number of
nonzeros in x and d = dimF . Then the number of nonzero entries of x ∈ F is at most m+ d.

Proof. Let x ∈ F and let r be the number positive entries in x. Let x̄ ∈ Rr be the vector
obtained by discarding the 0 entries in x. This is readily given by the following matrix-vector
multiplication x̄ = I(supp(x), :)x, where supp(x) is the support of x, the set of indices {i : xi > 0}.
Let Ā ∈ Rm×r be the matrix after removing the columns of A that are not in the support of x, i.e.,
Ā = A(:, supp(x)). We note that x̄ is a particular solution to the system Āz = b and x̄ > 0.

Suppose to the contrary that r > m + d. Since r −m > d, there exists at least d + 1 linearly
independent vectors, say v1, . . . , vd+1 ∈ Rr, satisfying Āvi = 0, ∀i = 1, . . . , d + 1. For each
i ∈ {1, . . . , d+ 1} and for ε ∈ R, we define

vi,+ := x̄+ εvi, vi,− := x̄− εvi,
xi,+ := I(:, supp(x)) (x̄+ εvi) , xi,− := I(:, supp(x)) (x̄− εvi) .

For a sufficiently small ε, we have xi,+, xi,− ∈ F . We note that x = 1
2(xi,+ + xi,−), ∀i. Hence, by

the definition of face, xi,+ ∈ F, ∀i. Therefore, F contains vectors {xi,+}i=1,...,d+1 ∪ {x} that are
affinely independent and hence dim(F ) ≥ d+ 1.

A point x in a convex set C is called an extreme point if, for all y, z ∈ C, x = 1
2(y + z) implies

x = y = z. An extreme point is itself a face and the dimension of this face is 0. Hence, we obtain
Corollary 3.4 by writing Corollary 3.3 through the lens of extreme points.

Corollary 3.4. Every extreme point x ∈ F has at most m positive entries.

We now restate the main result of this paper Theorem 3.1 in the language of extreme points
and number of rows of A.

Theorem 3.5. Suppose that strict feasibility of F fails. Then every extreme point x ∈ F has at
most m− 1 positive entries.

Proof. Since strict feasibility fails for F , we have F = {x = V v ∈ Rn : AV v = b, v ∈ Rn−sz+ };
see (2.4). From Lemma 2.2, we note that at least one equality in AV v = b is redundant. Let
Pm̄AV v = Pm̄b be the system obtained after removing redundant rows of AV ; see (2.6). Then,
by Corollary 3.4, every extreme point of the set {v ∈ Rn−sz+ : Pm̄AV v = Pm̄b} has at most m − 1
nonzero entries. Hence, the statement follows.
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Remark 3.6. The idea used in the proof of Theorem 3.5 is the same as the one presented in [21] for
spectrahedron. In [21], the authors use Proposition 3.2 to strengthen the bound called the Barvinok-
Pataki bound. The bound is strengthened by the means of singularity degree that stems from the
facial reduction algorithm [12, 23, 27]. The number of nonzeros in x in Theorem 3.5 plays the
role of rank(X) in Proposition 3.2. Facial reduction applied to spectrahedra also yields redundant
constraints and hence a similar result follows for spectrahedra.

3.2 Discussions

In this section we discuss the main result in Section 3.1 and make connections to known results in
the literature.

Theorem 3.1 and Theorem 3.5 are equivalent owing to the well-known characterization:

x ∈ F is a basic feasible solution ⇐⇒ x ∈ F is an extreme point.

We highlight that Theorem 3.1 and Theorem 3.5 do not merely state the existence of a single degen-
erate basic feasible solution. It states that every basic feasible solution is degenerate. Developing
a pivot rule that prevents the simplex method from visiting degenerate points is not possible as it
can never stay away from the degeneracies when strict feasibility fails. We provide an example for
an illustration.

Example 3.7. Consider F with the data

A =

[
1 1 3 5 2
0 1 2 −2 2

]
and b =

(
1
1

)
.

Consider the vector y =

(
1
−1

)
. Then

AT y =
(
1 0 1 7 0

)T
and bT y = 0.

Hence, Proposition 2.1 certifies that F does not contain a strictly feasible point. There are exactly
six feasible bases in F ; the basic feasible solution associated with B = {{1, 2}, {2, 3}, {2, 4}} is

x =
(
0 1 0 0 0

)T
and the basic feasible solution associated with B ∈ {{1, 5}, {3, 5}, {4, 5}} is

x =
(
0 0 0 0 1

2

)T
. Clearly, all basic feasible solutions are degenerate.

Below, we obtain an interesting statement by writing the contrapositive of Theorem 3.1. Simi-
larly, we provide Example 3.9 below to illustrate Corollary 3.8.

Corollary 3.8. If there exists a nondegenerate basic feasible solution, then there exists a strictly
feasible point in F .

Example 3.9. Consider F with the data

A =

[
1 0 −2 3 −4
0 −1 −2 3 1

]
and b =

(
1
1

)
.

The system F has exactly four feasible bases; the basic feasible solution associated with B ∈
{{1, 4}, {2, 4}, {4, 5}} is x =

(
0 0 0 1/3 0

)T
and the basic feasible solution associated with

B = {1, 5} is x =
(
5 0 0 0 1

)T
. We note that the basic feasible solution associated with

B = {1, 5} is nondegenerate. As Corollary 3.8 states, the system F has a strictly feasible point,

and it is verified by the point 1
10

(
4 1 1 4 1

)T
.
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We exhibit Example 3.10 below to show that the converse of Theorem 3.1 and Theorem 3.5 is
not true.

Example 3.10. Consider F with the data

A =

[
1 0 2 0 −2
1 −3 2 1 −2

]
and b =

(
1
1

)
.

F has exactly four feasible bases and all of them are degenerate; the basic feasible solution associated

with B ∈ {{1, 2}, {1, 4}} is x =
(
1 0 0 0 0

)T
and the the basic feasible solution associated with

B ∈ {{2, 3}, {3, 4}} is x =
(
0 0 1/2 0 0

)T
. However, F contains a strictly feasible point

1
10

(
1 1 5.5 3 1

)T
.

Given a basic feasible solution x̄ ∈ F , the degree of degeneracy of x̄ is the number of 0’s in its
basic variables. By exploiting the facially reduced model we can check how degenerate the basic
feasible solutions of F are.

Corollary 3.11. Suppose that strict feasibility fails for F and let F have the representation (2.4).
Let I0 be the set of indices that holds I0 = {i ∈ {1, . . . , n} : xi = 0, ∀x ∈ F}. Let x̄ ∈ F be a basic
feasible solution. Then, the followings hold.

1. The degree of degeneracy of x̄ is at least m− rank(AV ).

2. At least m− rank(AV ) number of basic indices of x̄ are contained in I0.

Proof. Let x̄ ∈ F be a basic feasible solution and let B be a basis for x̄. We note that A(:,B)
contains linearly independent columns. Then A(:,B) can contain at most rank(AV ) number of
columns from AV . Thus, x̄(B) must contain at least m − rank(AV ) number of zeros. Item 2 is a
direct consequence of Item 1.

3.2.1 Distance to Infeasibility

The distance to infeasibility is a measure of the smallest perturbations of the data of a problem
that renders the problem infeasible. In our setting, we can use the following simplification of the
distance to infeasibility from [24] by restricting the perturbations to b, i.e., we can force infeasibility
using only perturbations in b;

dist(b,F = ∅) := inf
{
‖b− b̃‖ : {x ∈ Rn : Ax = b̃, x ≥ 0} = ∅

}
.

Many interesting bounds, condition numbers, are shown in [24] under the assumption that the
distance to infeasibility is positive and known. It is known that a positive distance to infeasibility
of F implies that strict feasibility holds for F ; see e.g., [13,14]. The contrapositive of this statement
is that, if strict feasibility fails for F , then the distance to infeasibility is 0. We revisit this statement
with the facially reduced system (2.4). We provide an elementary proof that there is an arbitrarily
small perturbation for the data vector b of F that yields the set F infeasible, i.e., dist(b,F = ∅) = 0.
Furthermore, we provide an explicit perturbation that renders the set F empty.

Suppose that F fails strict feasibility. Recall the representation (2.4) for F . Let AV = QR be a
qr decomposition of AV , where Q ∈ Rm×m orthogonal, R ∈ Rm×(n−sz) upper triangular. We write
Q =

[
Q1 Q2

]
so that range(Q1) = range(AV ). Then, by the orthogonality of Q, we have

Ax = AV v = b ⇐⇒ QTAx = Rv = QT b. (3.1)
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Since AV is a rank deficient matrix (see Lemma 2.2), the upper triangular matrix R is of the form

R =

[
R̄
0

]
∈ Rm×(n−sz) and R̄ ∈ Rrank(AV )×(n−sz) with nonzero diagonal. (3.2)

If we perturb the vector b ∈ Rm so that at least one of the last m − rank(AV ) entries of QT b
becomes nonzero, then the system (3.1) becomes infeasible. Such perturbations can be found using
linear combinations of the columns of Q2; see Proposition 3.12 below.

Proposition 3.12. Suppose that strict feasibility fails for F and let F have the representation (2.4).
Then the following hold.

1. For all ∆b ∈ range(AV ) with sufficiently small norm, the set {x ∈ Rn+ : Ax = b + ∆b} is
feasible.

2. The distance to infeasibility of F is 0, i.e., dist(b,F = ∅) = 0.

Proof. Let ∆b be any perturbation in range(AV ). Let QR = AV be a qr decomposition of AV . In
particular, let R have the form (3.2) and Q =

[
Q1 Q2

]
so that range(Q1) = range(AV ). Then

Ax = AV v = b+ ε∆b ⇐⇒ Rv = QT b+ εQT∆b ⇐⇒ R̄v = QT1 b+ εQT1 ∆b. (3.3)

The last equivalence holds since Ax = b and ∆b ∈ range(AV ) = range(Q1). Since the system
R̄v = QT1 b satisfies strict feasibility, the distance to infeasibility of this system is positive. Thus,
the perturbed system R̄v = QT1 b+εQT1 ∆b remains feasible. Therefore, by (3.3), perturbing F along
the direction ∆b ∈ range(AV ) maintains the feasibility and this concludes the proof for Item 1.

For Item 2 we present a perturbation ∆b to b that renders F infeasible. By Proposition 2.1, we
have a nonzero vector ȳ ∈ Rm that satisfies (2.2). Then we have

ȳ ∈ range(AV )⊥ =⇒ ȳ = Q2ū for some nonzero ū.

We recall Farkas’ lemma:

{y ∈ Rm : AT y ≥ 0, 〈b, y〉 < 0} 6= ∅ =⇒ F = ∅.

Now, for any ε > 0, setting ∆bε = −εȳ yields

AT ȳ ≥ 0, 〈b, ȳ〉 = 0 =⇒ AT ȳ ≥ 0, 〈b+ ∆bε, ȳ〉 < 0. (3.4)

Hence, by letting ε→ 0+, we see that the distance to infeasibility, dist(b,F = ∅), is equal to 0.

We emphasize that the result

F fails strictly feasibility =⇒ dist(b,F = ∅) = 0

gives rise to the second step (2.6) of FR discussed in Section 2.2. We note that the instability
discussed in this section essentially originates from the observation made in Lemma 2.2, i.e., redun-
dant equalities arise in the facially reduced system. Facially reduced system allows us to exploit the
root of potential instability when the right-hand-side vector b is perturbed. Although the distance
to infeasibility is 0 in the absence of strict feasibility, Proposition 3.12 suggests that a carefully
chosen perturbation of b does not have an impact on the feasibility of F . We provide a related
numerical experiment in Section 4.1.4 below.
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The distance to infeasibility directly impacts the measure of well-posedness of the problem,
[13,14,25]. Given the pair d = (A, b) of the data for an instance (P), the condition measure of (P)
is defined by

C(d) :=
‖d‖

inf{‖∆d‖ : d+ ∆d yields (P) infeasible}
.

The value C(d) is a measure of well-posedness of the problem (P). Since dist(b,F = ∅) = 0, we
have C(d) =∞. Namely, when strict feasibility fails for (P), the problem is ill-posed.

3.2.2 Applications to Known Characterizations for Strict Feasibility

There are some known characterizations for strict feasibility of F . Using these characterizations
we can obtain extensions of Theorem 3.1, Theorem 3.5, and Corollary 3.8.

The dual (D) of (P) is

(D) max
y,s

{
bT y : AT y + s = c, s ≥ 0

}
. (3.5)

It is known that strict feasibility fails for F if, and only if, the set of optimal solutions for the dual
(D) is unbounded; see e.g., [30, Theorem 2.3] and [15]. Then Corollary 3.13 follows.

Corollary 3.13. 1. Suppose that the set of optimal solutions for the dual (D) is unbounded.
Then every basic feasible solution to F is degenerate.

2. Suppose that there exists a nondegenerate basic feasible solution to F . Then the set of optimal
solutions for the dual (D) is bounded.

It is known that strict feasibility holds for F if, and only if, b ∈ relint(A(Rn+)), where relint
denote the relative interior; see e.g., [12, Proposition 4.4.1]. Then if one finds a set of indices
I ⊂ {1, . . . , n} such that A(:, I) is nonsingular and A(:, I)z = b has a solution z with positive
entries, then b ∈ relint(A(Rn+)).

3.2.3 Lack of Strict Feasibility in the Dual

In this section we consider the facial reduction for the dual (D); see (3.5). We denote the feasible
set of the dual (D) by

G := {(y, s) ∈ Rm ⊕ Rn+ : AT y + s = c}. (3.6)

The facial reduction arguments applied to the dual are parallel to the ones given in Section 2.2.
Hence, we provide a short derivation for the facially reduced system for G. We also conclude that
the absence of strict feasibility for G implies the dual degeneracy at all basic feasible solutions.

The following lemma is the theorem of the alternative applied to the set G.

Lemma 3.14. [7, Theorem 3.3.10](theorem of the alternative in dual form) Let G in (3.6) be
feasible. Then, exactly one of the following statements holds:

1. There exists (y, s) ∈ Rm ⊕ Rn++ with AT y + s = c, i.e., strict feasibility holds for G;

2. There exists w ∈ Rn such that

0 6= w ∈ Rn+, Aw = 0 and 〈c, w〉 = 0. (3.7)
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We recall that the vector AT y in (2.3) is an exposing vector to the set F . Let w be a solution
to the auxiliary system (3.7). Similarly, the vector w plays the role of an exposing vector for G:

∀(y, s) ∈ G, it holds 〈w, s〉 = 〈w, c−AT y〉 = 〈c, w〉 − 〈Aw, y〉 = 0− 〈0, y〉 = 0. (3.8)

We let
Iw = {1, . . . , n} \ supp(w), U = I(:, Iw) and sw = | supp(w)|.

Then, the facially reduced system of G appears

G =

{
(y, s) ∈ Rm ⊕ Rn+ :

[
AT I

](y
s

)
= c

}
=

{
(y, u) ∈ Rm ⊕ Rn−sw+ :

[
AT U

](y
u

)
= c

}
.

(3.9)

The notion of degeneracy in Section 2.1 naturally extends to an arbitrary polyhedron, e.g.,
see [1, Section 2]. For a general polyhedron P ⊆ Rn, a point p in P is called a basic solution if
there are n linearly independent active constraints at p. In addition, if there are more than n active
constraints at the point p ∈ P , then the point p is called degenerate. Using this definition of the
degeneracy, we now show that the absence of strict feasibility for G implies that every basic solution
of G is degenerate.

We show that the facially reduced system in (3.9) contains a redundant constraint. Let w be a
solution to the system (3.7), i.e., w is an exposing vector for G. Then we have[

A
UT

]
w =

[
Aw
UTw

]
=

[
0m

0n−sw

]
.

In other words, there is a nontrivial row combination of
[
AT U

]
that yields the 0 vector, i.e.,

there exists a redundant row in
[
AT U

]
. Hence, the facially reduced system contains a redundant

constraint. The redundancy immediately implies the dual degeneracy; for any basic solution of G,

there always exists a redundant equality in
[
AT I

](y
s

)
= c.

3.2.4 Lack of Strict Feasibility and Interior Point Methods

Many algorithm constructions for interior point methods stem from the optimality condition (KKT
conditions) of the primal (P) and the dual (D). And many practical interior point methods find the
search direction d by solving the so-called normal equation, a square system ADATd = r, where
D is a diagonal matrix with positive diagonal and r is some residual; see e.g., [30, Chapter 11].
The diagonal of D consists of some element-wise product of the primal variable x and the dual
slack variable s. We have shown that the lack of strict feasibility for F makes all vertices of F
degenerate. Thus, all vertices that form the optimal face of (P) are also degenerate. Hence, the
primal degeneracy can cause the diagonal of D to have a deficient number of nice positives near
the optimum. Thus the normal equation may be ill-conditioned sooner as it get near the optimum,
i.e., numerical stability could be hard to achieve. We present related numerics in Section 4.1.

There is a comprehensive survey [20] that concerns problems caused by degeneracies when an
interior point method is chosen for LPs. The survey [20] addresses the effect of degeneracy on the
convergence of interior point methods and numerical performance, etc.
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4 Numerics

We now provide empirical evidence that FR indeed is a useful preprocessing tool in reducing the
size of the problem, and in particular improving the condition number of the problem. We do this
first for interior point methods and then for simplex methods.

4.1 Numerical Experiments with Interior Point Methods

In this section we compare the behaviour for finding near-optimal points with instances that have
strictly feasible points and instances that do not. More specifically, given a near optimal primal-
dual point (x∗, s∗) ∈ Rn++ ⊕ Rn++ from interior point method solvers, we observe the condition
number, i.e., the ratio of largest to smallest eigenvalues of the normal matrix at (x∗, s∗):

κ
(
AD∗AT

)
, where D∗ = Diag(x∗) Diag(s∗)−1. (4.1)

We show that instances that do not have strictly feasible points tend to have significantly larger con-
dition numbers of the normal equation near the optimum. We also present a numerical experiment
on the perturbation imposed on the right-hand-side vector b.

4.1.1 Generating LPs without Strict Feasibility

We first show how to generate an instance for F that fails strict feasibility. More specifically, given
m,n, r ∈ N, we construct the data A ∈ Rm×n and b ∈ Rm to satisfy (2.2) with r as the dimension
of the relative interior of F , relint(F).

1. Pick any 0 6= y ∈ Rm. Let

{y}⊥ = span{ai}m−1
i=1 (= null(yT )).

We let R ∈ R(m−1)×r be a random matrix, and get

A1 :=
[
a1 . . . am−1

]
R ∈ Rm×r, AT1 y = 0 ∈ Rr.

2. Pick any v̂ ∈ Rr++ and set b = A1v̂. We note that yTA1 = 0 and 〈b, y〉 = 0.

3. Pick any matrix A2 ∈ Rm×(n−r) satisfying (yTA2)i 6= 0, ∀i. If there exists i such that
(yTA2)i < 0, then change the sign of i-th column of A2 so that we conclude

(AT2 y) ∈ Rn−r++ .

4. We define the matrix A = [A1, A2] ∈ Rm×n. Then {x ∈ Rn+ : Ax = b} is a polyhedron with
a feasible point x̂ = [v̂; 0] having r number of positives. The vector y is a solution for the
system (2.2):

0 � z = AT y =

(
AT1 y = 0
AT2 y > 0

)
, bT y = 0.

We then randomly permute the columns of A to avoid the zeros always being at the bottom
of the feasible variables x.

For the empirics, we construct the objective function cTx of (P) as follows. We choose any
s̄ ∈ Rn++, ȳ ∈ Rm and set c = AT ȳ+ s̄. Then we have the data for the primal-dual pair of LPs and

12



the primal fails strict feasibility:

(P(A,b,c)) min{ cTx : Ax = b, x ≥ 0 } and (D(A,b,c)) min{ bT y : AT y + s = c, s ≥ 0 }.

We note that by choosing s̄ ∈ Rn++, the dual problem (D(A,b,c)) has a strictly feasible point. In
order to generate instances with strictly feasible points, we maintain the same data A, c used for
the pair (P(A,b,c)) and (D(A,b,c)). We only redefine the right-hand-side vector by b̄ = Ax◦, where
x◦ ∈ Rn++:

(P̄(A,b̄,c)) min{ cTx : Ax = b̄, x ≥ 0 } and (D̄(A,b̄,c)) min{ b̄T y : AT y + s = c, s ≥ 0 }.

The facially reduced instances of (P(A,b,c)) are denoted by (P(AFR,bFR,cFR)). They are obtained by
discarding the variables that are identically 0 in the feasible set F and the redundant constraints.
In other words, the affine constraints of (P(AFR,bFR,cFR)) are of the form (2.6).

4.1.2 Empirics for Condition Numbers

We use three different solvers in our test; linprog from MATLAB2, SDPT33 and MOSEK4. MAT-
LAB version 2021a is used to access the solvers for the test, and we use the default settings for
stopping criteria for all solvers. In order to illustrate the differences in condition numbers of the
normal matrices, we solve the three families of instances listed below:

1. (P(A,b,c)) : a family of instances that do not have strictly feasible points;

2. (P̄(A,b̄,c)) : a family of instances that have strictly feasible points;

3. (P(AFR,bFR,cFR)) : a family of facially reduced instances of (P(A,b,c)).
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Figure 4.1: Performance profile on κ
(
ADAT

)
with(out) strict feasibility near optimum; various

solvers

We use the performance profile [11,18] to observe the overall behaviours on different families of
instances using the three solvers. The performance profile provides a useful graphical comparison
for solver performances. Figure 4.1 displays the performance profile on the condition numbers of

2https://www.mathworks.com/. Version 9.10.0.1669831 (R2021a) Update 2.
3https://www.math.cmu.edu/~reha/sdpt3.html. Version SDPT3 4.0.
4https://www.mosek.com/. Version 8.0.0.60.
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the normal matrix AD∗AT near optimal points from different solvers. We generate 100 instances
for each family that have dim(relint(F)) ∈ [300, 1350]. The instance sizes are fixed with (m,n) =
(500, 1500). The vertical axis in Figure 4.1 represents the statistics of the performance ratio on
κ
(
AD∗AT

)
, the condition number of normal matrix near optimum (x∗, s∗); see (4.1). The solid

lines in Figure 4.1 represent the performance of the instances (P(A,b,c)) that fail strict feasibility.
They show that the condition numbers of the normal matrices near optima are significantly higher
when strict feasibility fails. That is, when strict feasibility fails for F , the matrix AD∗AT is more
ill-conditioned and it is difficult to obtain search directions of high accuracy. We also observe that
facially reduced instances yield smaller condition numbers near optima. We note that the instances
(P(A,b,c)) and (P(AFR,bFR,cFR)) are equivalent.

4.1.3 Empirics on Stopping Criteria

We now use the three solvers to observe the accuracy of the first-order optimality conditions (KKT
conditions), and the running time for the instances (P(A,b,c)) and (P(AFR,bFR,cFR)). Table 4.1 ex-
hibits the numerics on these instances. We test the average performance of 10 instances of the size
(n,m, r) = (3000, 500, 2000). The headers used in Table 4.1 provide the following. Given solver
outputs (x∗, y∗, s∗), the header ‘KKT’ exhibits the average of the triple consisting of the primal
feasibility, dual feasibility and complementarity;

KKT =

(
‖Ax∗ − b‖

1 + ‖b‖
,
‖AT y∗ + s∗ − c‖

1 + ‖c‖
,
〈x∗, s∗〉
n

)
.

The headers ‘iter’ and ‘time’ in Table 4.1 refer to the average of the number of iterations and the
running time in seconds, respectively.

Non-Facially Reduced System Facially Reduced System

linprog
KKT (9.58e-16, 1.80e-12, 5.17e-09) (5.78e-16, 1.51e-15, 5.57e-08)
iter 23.30 17.60
time 1.10 0.76

SDPT3
KKT (1.51e-10, 1.49e-12, 4.67e-03) (8.54e-12, 3.75e-16, 4.19e-06)
iter 25.40 19.80
time 0.82 0.53

MOSEK
KKT (8.40e-09, 7.54e-16, -5.16e-06) (5.16e-09, 3.81e-16, -2.03e-08)
iter 35.90 10.10
time 0.58 0.31

Table 4.1: Average of KKT conditions, iterations and time of (non)-facially reduced problems

From Table 4.1 we observe that facially reduced instances provide significant improvement in
first order optimality conditions, the number of iterations and the running times for all solvers. We
note that the instances (P(A,b,c)) and (P(AFR,bFR,cFR)) are equivalent. Hence, our empirics show
that performing facial reduction as a preprocessing step not only improves the solver running time
but also the quality of solutions.

4.1.4 Empirics on Distance to Infeasibility

In this section we present a numerical experiment that illustrates the affect of the perturbation
imposed on the right-hand-side vector of the system F when strict feasibility fails. We recall, from
Proposition 3.12, that there exists an arbitrarily small perturbation of the right-hand-side vector
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b of F that renders the set F infeasible, i.e., dist(b,F = ∅) = 0. Moreover, the vector ∆b = y that
satisfies the auxiliary system (2.2) is a perturbation that makes the set F empty; see (3.4).

We follow the steps in Section 4.1.1 to generate instances of the order (n,m) = (1000, 200) and
r = relint(F) = 900. The objective function cTx is chosen as presented in Section 4.1.1. For the
fixed (n,m, r), we generate 10 instances and observe the average performance of these instances as
we gradually increase the magnitude of the perturbation. We recall the matrix AV from (2.4). We
use two types of perturbations for b;

∆b, where ∆b ∈ range(AV )⊥, ∆b̄, where ∆b̄ ∈ range(AV ).

We choose ∆b to be the vector y that satisfies (2.2). For ∆b̄, we choose AV d, where d ∈ Rr is a
randomly chosen vector. As we increase ε > 0, we observe the performance of the two families of
the systems

Ax = bε := b− ε∆b and Ax = b̄ε := b− ε∆b̄.

We use the interior point method from MATLAB’s linprog for the test. Figure 4.2 contains the
average of the first-order optimality conditions evaluated at the solver outputs (x∗, y∗, s∗) of these
instances; primal feasibility, dual feasibility and the complementarity.
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Figure 4.2: Changes in the first-order optimality condition as the perturbation of b increases

The horizontal axis of Figure 4.2 indicates the degree of the perturbation imposed on the right-
hand-side vector b, ε‖∆b‖ and ε‖∆b̄‖. The vertical axis indicates the individual component of the
first-order optimality. From Figure 4.2, we observe that the KKT conditions with the perturbation
∆b̄ display a steady performance regardless of the perturbation degree; see the markers ◦,�,4
with the dotted lines. In contrast, the markers •,�,N in Figure 4.2 exhibit the performance of the
instances that are perturbed with ∆b and they display a different performance. In particular, we
see that the relative primal feasibility ‖Ax∗ − bε‖/(1 + ‖bε‖), marked with •, consistently increases
as the perturbation magnitude ε‖∆b‖ increases when strict feasibility fails for F .

4.2 Numerical Experiments with Simplex Method

In this section we compare the behaviour of the dual simplex method with instances that have
strictly feasible points and instances that do not.
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4.2.1 Generating Dual LPs without Strict Feasibility

We first show how to generate an instance for the dual feasible set G that fails strict feasibility. The
construction is similar to the one in Section 4.1.1. We generate a degenerate problem by finding a
feasible auxiliary system (3.7). Given m,n, r ∈ N, we construct A ∈ Rm×n and c ∈ Rn that satisfy
(3.7) with dim(relint(G)) = m+ r.

1. Pick any 0 6= w ∈ Rn+ with | supp(w)| = n− r. Let

{w}⊥ = span{ai}n−1
i=1

(
= null(wT )

)
.

We let the rows of the matrix A ∈ Rm×n consist of a random linear combination of the row
vectors in the set {aTi }

n−1
i=1 . We note that Aw = 0.

2. Pick s ∈ Rn+ so that

si =

{
0 if i ∈ supp(w)
positive if i /∈ supp(w).

We note that 〈w, s〉 = 0 holds.

3. Pick y ∈ Rm and set c = AT y + s. We note that 〈c, w〉 = 0 holds.

For the empirics, we construct the objective function bT y of (D) by choosing a vector x̂ ∈ Rn++ and
setting b = Ax̂.

4.2.2 Empirics on the Number of Degenerate Iterations

In this section we test how the lack of strict feasibility affects the performance of the dual simplex
method. We choose MOSEK for our tests since MOSEK reports the percentage of degenerate
iterations as a part of the solver report. MOSEK reports the quantity ‘DEGITER(%)’, the ratio
of degenerate iterations.

Given a set G and a point (y, s) ∈ relint(G) ⊆ Rm ⊕Rn+, let r be the number of positive entries
of s, i.e., r = | supp(s)|. In our tests, we gradually increase r for fixed n,m and generate instances
for G as described in Section 4.2.1. We then observe the behaviour of the dual simplex method.
Table 4.2 contains the results. In Table 4.2, a smaller value for the header (r/n)% means that
there are more entries of s that are identically 0 in the set G; and the value 100% means that strict
feasibility holds. For each triple (n,m, r), we generated 10 instances and we report the average of
‘DEGITER(%)’ of these instances.

(r/n)%
60 70 80 90 100

(n,m)

(1000, 250) 36.62 10.18 0.01 0.02 0.00
(2000, 500) 39.72 18.28 0.07 0.15 0.01
(3000, 750) 25.99 10.66 0.32 0.75 0.02
(4000, 1000) 29.78 18.25 0.25 0.53 0.02

Table 4.2: Average of the ratio of degenerate iterations

We recall Theorem 3.1: lack of strict feasibility implies that all basic feasible solutions are
degenerate. However, we observe more, i.e., from Table 4.2, the frequency of degenerate iterations
increases as r decreases. In other words, higher degeneracy of the set G yields more degenerate
iterations when the dual simplex method is used.
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5 Conclusion

In this manuscript we addressed the importance of the strict feasibility constraint qualification
for linear programming for both theoretical and numerical computations. For our numerics we
illustrated this using the two most popular classes of algorithms, simplex and interior point methods.
For the theory, we proved, using the two-step facial reduction, that if strict feasibility fails for a
linear program, then every basic feasible solution is degenerate.

Strict feasibility is assumed for many algorithms for both the theory and implementation, in
particular for interior point methods that claim polynomial time convergence. Strict feasibility is
a good measure of the quality of a model. For example, for SDP, the absence of strict feasibility
may lead to stability problems even for instances of small dimension, see e.g., [28]. Hence designing
a model that has strict feasibility is important. However in cases where the absence of strict
feasibility is inevitable (e.g., SDP relaxations of discrete optimization problems), facial reduction
can be performed to regularize the model, e.g., see [19]. Typically, strict feasibility for LPs is less
emphasized and many algorithms show strong numerical performances without this assumption.
In this paper we showed that even for LPs, strict feasibility is a valuable property to guarantee.

An essential step for almost all algorithms for linear programming is preprocessing. This often
transforms the right-hand-side vector b and we lose control over round-off errors introduced by
finite-precision computing. As we have shown in Section 4.1.4, carefully chosen perturbations do
not necessarily aggravate the primal feasibility; see Figure 4.2. However, it is difficult to confine
the round-off errors accumulated to b to the range of AV ; see Proposition 3.12. As illustrated
in Figure 4.2 and the nearness to infeasibility relationships to condition numbers Section 3.2.1,
the primal feasibility worsens as the perturbations become larger. This further emphasizes that
ensuring strict feasibility should be part of preprocessing for linear programming.
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(P), 3
A(:, I), submatrix of A with columns in I, 3
I, the identity matrix, 4
Pm̄ : Rm → Rm̄, 5
m̄ = rank(AV ), 5
dist(b,F = ∅), distance to infeasibility, 8
Rm×n, real vector space of m-by-n matrices, 3
Rn+, nonnegative orthant, 3
Rn++, positive orthant, 3
relint, relative interior, 3, 10
supp, support, 6
p∗, 3
sw, support of exposing vector for G, 11
sz, support of exposing vector for F , 4
C(·), condition measure, 9
F , feasible region, 3
G, dual feasible set, 10
(D), dual of (P), 10
FR, facial reduction, 2
LP, linear program, 2

basic feasible solution, 3
basic solution, 11

condition measure, C(·), 9

degenerate, 3, 11
degree of degeneracy, 8
distance to infeasibility, 5, 8
distance to infeasibility, dist(b,F = ∅), 8
dual feasible set, G, 10
dual of (P), (D), 10

exposing vector, 4
extreme point, 6

face, 3, 6
facial range vector, 4
facial reduction, FR, 2, 4
feasible region, F , 3

linear program, LP, 2

minimal face, 3

nondegenerate, 3
nonnegative orthant, Rn+, 3

performance profile, 13
positive orthant, Rn++, 3

real vector space of m-by-n matrices, Rm×n, 3
relative interior, relint, 3, 10

singularity degree, 5
Slater condition, 2
stalling, 2
support of exposing vector for F , sz, 4
support of exposing vector for G, sw, 11
support, supp, 6
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