
Revisiting Degeneracy, Strict Feasibility, Stability,

in

Linear Programming

Jiyoung Im* Henry Wolkowicz�

Saturday 8th October, 2022

Abstract

Currently, the simplex method and the interior point method are indisputably the most
popular algorithms for solving linear programs. Unlike general conic programs, linear programs,
LPs, with a finite optimal value do not require strict feasibility in order to establish strong
duality. Hence strict feasibility is seldom a concern, even though strict feasibility is equivalent
to stability and a compact dual optimal set. This lack of concern is also true for other types of
degeneracy of basic feasible solutions in LP. In this note we discuss that the specific degeneracy
that arises from lack of strict feasibility necessarily causes difficulties in both simplex and interior
point methods. In particular, we show that the lack of strict feasibility implies that every
basic feasible solution, BFS, is degenerate; thus conversely, the existence of a nondegenerate
BFS implies that strict feasibility (regularity) holds. We prove the results using facial reduction
and simple linear algebra. In particular, the facially reduced system reveals the implicit non-
surjectivity of the linear map of the equality constraint system. As a consequence, we emphasize
that facial reduction involves two steps where, the first guarantees strict feasibility, and the
second recovers full row rank of the constraint matrix. This illustrates the implicit singularity
of problems where strict feasibility fails, and also helps in obtaining new efficient techniques
for preproccessing. We include an efficient preprocessing method that can be performed as an
extension of phase-I of the two-phase simplex method. We show that this can be used to avoid
the loss of precision for many classical problems in the literature, e.g., those in the NETLIB
problem set.

Keywords: linear programming, facial reduction, preprocessing, degeneracy, implicit problem
singularity

AMS Classification: 90C05, 90C49.

Contents

1 Introduction 3

1.1 Contributions and Outline . 4

*Department of Combinatorics and Optimization Faculty of Mathematics, University of Waterloo, Waterloo,
Ontario, Canada N2L 3G1;

�Department of Combinatorics and Optimization Faculty of Mathematics, University of Waterloo, Waterloo,
Ontario, Canada N2L 3G1; Research supported by The Natural Sciences and Engineering Research Council of
Canada; www.math.uwaterloo.ca/~hwolkowi.

1

http://www.math.uwaterloo.ca/~hwolkowi/
www.math.uwaterloo.ca/~hwolkowi

2 Preliminaries 4

2.1 Background and Notation . 4

2.1.1 Degeneracy in LP . 5

2.2 Facial Reduction . 5

2.2.1 Preprocessing in LP . 8

3 Main Result and Consequences 8

3.1 Lack of Strict Feasibility and Relations to Degeneracy 8

3.1.1 An Algebraic Proof of Theorem 3.1 via the Definition of BFS 9

3.1.2 A Geometric Proof Using Extreme Points . 9

3.1.3 Immediate Consequences of Main Result . 10

3.2 Efficient Preprocessing for Facial Reduction and Strict Feasibility 12

3.2.1 Towards a Strictly Feasible Point from a Nondegenerate BFS 13

3.2.2 Towards an Exposing Vector; Phase I Part B and Strict Feasibility Testing . 14

3.3 Discussions . 18

3.3.1 Distance to Infeasibility . 18

3.3.2 Applications to Known Characterizations for Strict Feasibility 20

3.3.3 Applications to Obtain a Strictly Complementary Primal-Dual Solution . . . 21

3.3.4 Lack of Strict Feasibility in the Dual . 21

3.3.5 Lack of Strict Feasibility and Interior Point Methods 22

4 Numerics 23

4.1 Empirics with Interior Point Methods . 23

4.1.1 Generating LPs without Strict Feasibility . 23

4.1.2 Condition Numbers . 24

4.1.3 Stopping Criteria . 25

4.1.4 Distance to Infeasibility . 26

4.1.5 Empirics on Singular Values and IPS . 27

4.2 Empirics with Simplex Method . 28

4.2.1 Generating Dual LPs without Strict Feasibility 28

4.2.2 Empirics on the Number of Degenerate Iterations 28

4.2.3 NETLIB Problems; Perturbations; Stability 29

5 Conclusion 30

Index 33

References 35

2

List of Tables

4.1 Average of KKT conditions, iterations and time of (non)-facially reduced problems . 25

4.2 # (rel.) small singular values of AD∗AT near optimum; average over 20 instances . 27

4.3 Average of the ratio of degenerate iterations . 29

4.4 Number of successful results out of 100 perturbed instances using simplex method
on the instance brandy and transportation problem 30

List of Figures

4.1 Performance profile on κ
(
ADAT

)
with(out) strict feasibility near optimum; various

solvers . 25

4.2 Changes in the first-order optimality condition as the perturbation of b increases . . 26

List of Algorithms

3.1 Compute a Slater Point . 14
3.2 Preprocessing Phase I Part B; Towards Strict Feasibility 16

1 Introduction

The Slater condition (strict feasibility) is a useful property for optimization models to have. Unlike
general conic programs, linear programs (LPs) do not require strict feasibility as a constraint qual-
ification to guarantee strong duality, and therefore, it is often not discussed. In fact, degeneracy
in general is not considered to be a serious concern in linear programming. The Goldman-Tucker
Theorem [28] is related in that it guarantees a primal-dual optimal solution satisfying strict com-
plementarity x∗ + z∗ > 0 for the standard form LP. However, it does not guarantee the existence
of a strictly feasible primal solution x̂ > 0. The lack of strict feasibility for an LP does not seem to
cause problems at first glance, especially when the simplex method is used. In this manuscript, we
show that the failure of strict feasibility results in degeneracy problems when simplex-type methods
are used. More specifically, the lack of strict feasibility inevitably renders LPs degenerate, i.e., ev-
ery basic feasible solution is degenerate.1 Note that strict feasibility along with full row rank of
the linear constraint is the Mangasarian-Fromovitz constraint qualification [35]. This is equivalent
to a compact dual optimal set and is equivalent to stability with respect to perturbations of the
right-hand side.

The simplex method [16] is one of the most popular and successful algorithms for solving linear
programs. Degeneracy, a zero basic variable, could result in cycling and noncovergence. There are
many anti-cycling rules, see e.g., [7, 17, 26, 47] and the references therein. However, techniques for
the resolution of degeneracy often result in stalling [6,12,36,43], i.e., result in taking a large number
of iterations before leaving a degenerate point. Degeneracies are known to cause numerical issues
when interior point methods are used, e.g., [32]. For example, degeneracy can result in singularity
of the Jacobian of the optimality conditions, and thus also in ill-posedness and loss of accuracy [30].

1Conversely, if we can find one nondegenerate basic feasible solution, then strict feasibility holds.

3

Our main results on the degeneracy arising from loss of strict feasibility are shown using the
process called facial reduction, FR. Facial reduction is an effective preprecessing tool to use in the
absence of strict feasibility. Given a problem with lack of strict feasibility, facial reduction strives
to formulate an equivalent problem so that the reformulation has a Slater point. By examining the
facially reduced system, we obtain two results. First, we show that every basic feasible solution
is degenerate when strict feasibility fails. This leads to an efficient preprocessing for eliminating
variables that are fixed at 0. Second, we understand a source of instability arising in problems
that fail strict feasibility. The facially reduced system reveals that the linear map that defines
the feasible set is implicitly non-surjective. Finally, we use these results to develope an efficient
preprocessing technique to obtain strict feasibility. This technique is illustrated on instances from
the NETLIB data set.

1.1 Contributions and Outline

The contribution of this manuscript is threefold.

1. We provide the complete description of the facially reduced system of a linear program.

2. We show that every basic feasible solution of a standard linear program is degenerate when
strict feasibility fails.

3. We propose and illustrate an efficient preprocessing scheme that can be performed as an
extension of phase-I of the two-phase simplex method. This technique allows for eliminating
variables fixed at 0, and thus regularizing and simplifying the LP.

The manuscript is organized as follows. In Section 2 we present the background and notations.
Included are the notions of degeneracy, facial reduction and three types of singularity degree. We
then describe what facial reduction tries to achieve. In Section 3 we present our main result and
immediate corollaries. We also present the efficient preprocessing method that can be used as
an extension of phase-I of the two-phase simplex method. In addition, we relate our main result
to known results in the literature, such as distance to infeasibility. In Section 4 we illustrate
algorithmic performance of interior point methods and the simplex method under the lack of strict
feasibility. We present our conclusions in Section 5.

2 Preliminaries

2.1 Background and Notation

We let Rn,Rm×n be the standard real vector spaces of n-coordinates and m-by-n matrices, respec-
tively. We use Rn+ (Rn++, resp.) to denote the n-tuple with nonnegative (positive) entries. We
use 〈·, ·〉 to denote the usual inner product. Given a vector x ∈ Rn, we let supp(x) to denote the
index set {i : xi 6= 0}. Given a matrix A ∈ Rm×n, we adopt the MATLAB notation to denote a
submatrix of A. Given a subset I of column indices, A(:, I) ∈ Rm×|I| is the submatrix of A that
contains the columns of A in I. We also use the notation AI to denote A(:, I) when the meaning
is clear. Given a convex set C, relint(C) denotes the relative interior of the set C.

Throughout this manuscript, we work with feasible LPs in standard form with finite optimal
value:

(P) p∗ = min
x

{
cTx : Ax = b, x ≥ 0

}
,

4

https://www.netlib.org/lp/

where p∗ ∈ R, A ∈ Rm×n, b ∈ Rm and c ∈ Rn. We assume that rank(A) = m, i.e., there is no
redundant constraint. We use F to denote the feasible region of (P)

F = {x ∈ Rn : Ax = b, x ≥ 0}. (2.1)

2.1.1 Degeneracy in LP

Given an index set B ⊂ {1, . . . , n}, |B| = m, a point x ∈ F is called a basic feasible solution, BFS
if A(:,B) is nonsingular and xi = 0, ∀i ∈ {1, . . . , n} \ B. It is well-known that the simplex method
iterates from BFS to BFS. A basic feasible solution x ∈ F is nondegenerate if xi > 0, ∀i ∈ B; it
is degenerate if xi = 0, for some i ∈ B. It is clear that every basic feasible solution has at most m
positive entries.2

We partition the index set {1, . . . , n} as

{1, . . . , n} = I+ ∪ I0, where I0 := {i : xi = 0, ∀x ∈ F} and I+ = {1, . . . , n}\I0,

i.e., I0 denotes the variables fixed at 0. Note that fixed variables are identified during preprocessing
in the literature if the upper and lower bounds are equal, e.g., [2,33]. However, the set I0 is not as
easily identified. We let I++ = {i : xi > 0,∀x ∈ F} denote the variables that are positive on the
feasible set; note I++ ⊆ I+.

There are in fact several types of degeneracy. Let x̄ be a given BFS with basis B. (Wlog
B = {1, . . . ,m}.) We can write the equivalent canonical form representation of the feasible set
using the basis at x̄:

F =

{
x =

(
xB
xN

)
: xB = b−A−1

B ANxN ≥ 0, xN ≥ 0

}
. (2.2)

In this form xN ∈ Rn−m+ , we have n inequality constraints, and we see that degeneracy is equivalent
to having an active set with cardinality greater than n−m. This divides into two types correspond-
ing to the sets I0, I+, respectively: (i) inequalities that are active in every BFS and correspond
to variables in I0 above; (ii) those that are not active in at least one BFS. The geometry of (i)
is clear as there is no Slater point and F is a subset of a face of the nonnegative orthant. For
(ii) the geometry is that some of the constraints are redundant in one of two ways, i.e., (i) that
discarding them does not change the feasible set, or (ii) does not change the optimality conditions
if x̄ is optimal.

Remark 2.1. We note that adding redundant constraints is done in e.g., [18,19] to show that the
central path for interior point methods can follow the boundary closely, i.e., behave very poorly.
These redundant constraints correspond to a positive variable in each BFS, i.e., to an inequality
in (2.2) that is never active. Complementary slackness implies that they correspond to variables
fixed at 0 in the dual problem, thus emphasizing that FR on the dual could avoid some of these
difficulties.

2.2 Facial Reduction

In this section we describe the concept of facial reduction and present the properties that are used
to establish the main result. We emphasize that facial reduction for (P) involves two steps: first,

2We mainly consider primal degeneracy here, though everything follows through for dual degeneracy. In fact,
there are clear connections from complementary slackness between variables positive in every BFS and dual variables
fixed at 0.

5

obtain an equivalent problem with strict feasibility; second, recover full row rank of the constraint
matrix. Note that full row rank is always lost during the first step.

Let K ⊂ Rn be a convex set. A convex set F ⊆ K is called a face of K, denoted F �K, if for
all y, z ∈ K with x = 1

2(y+ z) ∈ F , we have y, z ∈ F . Given a convex set C ⊆ K, the minimal face
for C is the intersection of all faces containing the set C.

Proposition 2.2. [22, Theorem 3.1.3](theorem of the alternative) For the feasible system of (2.1),
exactly one of the following statements holds:

1. There exists x ∈ Rn++ with Ax = b, i.e., strict feasibility holds;

2. There exists y ∈ Rm such that

0 6= z := AT y ∈ Rm+ , and 〈b, y〉 = 0. (2.3)

Proposition 2.2 gives rise to a process called facial reduction. The facial reduction, FR, for
an LP is a process of identifying the minimal face of Rn+ containing the feasible set F = {x ∈
Rn+ : Ax = b}. By finding the minimal face, we can work with a problem that lies in a smaller
dimensional space and that statisfies strict feasibility. The FR process, i.e., finding the minimal
face, is usually done by solving a sequence of auxiliary systems (2.3). More details on FR on general
conic problems can be found in [8, 9, 22,39,44].

We now describe how the set F (see (2.1)) is represented after FR. Suppose that strict feasibility
fails. Then Proposition 2.2 implies that there must exist a nonzero y ∈ Rm satisfying

〈x,AT y〉 = 〈Ax, y〉 = 〈b, y〉 = 0, ∀x ∈ F . (2.4)

Hence, every x ∈ F is perpendicular to the nonnegative vector z = AT y. We call this vector
z = AT y an exposing vector for F , and let the cardinality of its support be sz = |{i : zi > 0}|.

Then z =
sz∑
j=1

ztjetj , where tj is in nondecreasing order. We now have

0 = 〈z, x〉 and x, z ∈ Rn+ =⇒ xizi = 0, ∀i,

i.e., the positive elements in z identify the corresponding elements in x that are fixed at 0. Then

x =
n−sz∑
j=1

xsjesj , where sj is in nondecreasing order. We define the matrix with unit vectors for

columns
V =

[
es1 es2 . . . esn−sz

]
∈ Rn×(n−sz).

Then we have

F = {x ∈ Rn+ : Ax = b} = {x = V v ∈ Rn : AV v = b, v ∈ Rn−sz+ }. (2.5)

We call this matrix V ∈ Rn×(n−sz) a facial range vector. The facial range vector restricts the support
of all feasible x. We use the identification (2.5) throughout this manuscript. This concludes the
first step of FR, i.e., guaranteeing the strict feasibility.

It is known that every facial reduction step results in at least one constraint being redundant,
see e.g., [9], [34, Lemma 2.7], and [44, Section 3.5]. For completeness we now include a short proof
tailored to LP, see Lemma 2.3.

Lemma 2.3. Consider the facially reduced feasible set

Fr =
{
v : AV v = b, v ∈ Rn−sz+

}
.

6

Then at least one linear constraint of the LP is redundant.

Proof. Let z = AT y be the exposing vector satisfying the auxiliary system (2.3). And let V be a
facial range vector induced by z. Then

0 = V T z = V TAT y = (AV)T y =

m∑
i=1

yi((AV)T)i. (2.6)

Since y ∈ Rm is a nonzero vector, the rows of AV are linearly dependent.

We now see the result of the full two step facial reduction process, i.e., we get a constraint
matrix of full row rank:

F = {x ∈ Rn+ : Ax = b} = {x = V v ∈ Rn : Pm̄AV v = Pm̄b, v ∈ Rn−sz+ }, (2.7)

where Pm̄ : Rm → Rm̄, m̄ = rank(AV), is the simple projection that chooses the linearly indepen-
dent rows of AV . We emphasize the importance of this projection by relating it to the so-called
distance to infeasibility in Section 3.3.1 below. This concludes the second step of FR, i.e., guaran-
teeing the full rank.

For a general conic problem, such as semidefinite programs (SDP), the facial reduction itera-
tions do not necessarily end in one iteration; see [14, 44, 45]. And there is a special name for the
minimum length of FR iterations.

Definition 2.4 ([46, Sect. 4]). Given a spectrahehedron S, the singularity degree, SD(S) of S is
the smallest number of facial reduction iterations for finding face(S).

However, for LPs, it is known that FR can be done in one iteration, i.e., SD(F) ≤ 1; see [22,
Theorem 4.4.1]. This is due to the fact that the image A(Rn+) is polyhedral, and hence the image
is facially exposed. In contrast to FR performed on conic programs such as the class of SDPs,
FR performed on LPs does not alter the sparsity pattern of the data matrix A other than deleting
certain columns and rows of A. Moreover, for the LP case with a Slater point, |I0| = 0, we have
dim(F) = n − m, i.e., it is the same as the linear manifold determined by Ax = b. In general,
by Lemma 2.3 and SD(F) ≤ 1, we get

dim(F) ≤ n− |I0| − (m− SD(F)).

This gives rise to the following novel modified definition.

Definition 2.5. Let K ⊆ Rn be a closed convex cone with corresponding feasible set S = {x ∈ K :
Ax = b} and facially reduced feasible set {v ∈ PK : (PAV)(v) = Pb, v ∈ Rr}, where PAV is onto
Rmr and PK is the cone defined over the smaller dimensional space. Then the implicit problem
singularity, IPS(S) = m−mr.
Moreover, the max-singularity degree of S, denoted maxSD(S), is the largest number of nontrivial
facial reduction iterations for finding face(S).

The singularity degree is used in [46, Sect. 4] for providing a Hölder regularity constant for
semidefinite programs. This is then used in [21] to derive a convergence rate for alternating projec-
tion methods for SDP. Note that maxSD(S) can be a larger lower bound of IPS(S) than SD(S),
since at least one linear constraint becomes redundant at each FR iteration. The effect on ill-
conditioning of larger values of IPS is seen in Section 4.1.5.3

3Definition 2.5 can be used to strengthen the upper bound on the rank of SDP solutions in [34], i.e., we get
t(r) ≤ m− IPS(S) ≤ m−maxSD(S) ≤ m− SD(S) ≤ m, where t(r) is the triangular number of the rank r.

7

2.2.1 Preprocessing in LP

An essential step for simplex and interior point methods is preprocessing, see e.g., [2, 29, 33] and
the references therein. One specific preprocessing step refers to detecting a fixed variable. These
are generally detected when the upper and lower bounds on a variable are equal. Fixed variables

can also be detected when an invertible block A11 can be isolated A =

[
A11 A12 = 0
A21 A22

]
, b =

(
b1
b2

)
.

With x =

(
x1

x2

)
, we can eliminate x1 = A−1

11 b1 and discard the first block of now redundant rows,

along with the first block of columns. If b1 = 0 then we have trivially identified variables fixed at
zero and removed redundant rows and columns. The remaining block A22 remains full row rank as
happens in Gaussian elimination.

In general, FR for linear programs refers to identifying variables fixed at 0, and removing them
along with corresponding columns and redundant rows. In general, this is not as simple as above,
and the theorem of the alternative is needed. As a consequence of our main result, we see below
that a single step of the simplex method, a phase-I part B approach, yields many of these variables
that are identically zero on the feasible set.

One of the standard assumptions in linear programming is full row rank of A. As we observed
in Lemma 2.3, each FR step results in linear dependence of the constraints. We now summarize
two available methods for extracting a maximal linearly independent subset of rows of AV . The
first method uses a rank-revealing QR decomposition4. Let M = (AV)T . Let MI(:, π) = QR be
a QR factorization where π is a permutation vector, Q is a orthogonal matrix and R is an upper
triangular matrix with a non-increasing diagonal. The matrix I(:, π) permutes the columns of M .
If M has linearly dependent columns, then the matrix R contains zeros on its diagonal. Let r be
the nonzero diagonal entries of R. Then, π(1 : r) returns the subset of columns indices of M that
are linearly independent. Another available method makes use of artificial variables [15, Box 8.2].
It constructs

[
I AV

]
and sets the initial basis matrix to be the first m columns. Then it performs

a variant of the phase-I of the two-phase simplex method to drive the basic variables out of the
basis one by one. When such an operation is not applicable, a linearly dependent row of AV is
detected. Computational improvements of this method are made in [1, 37].

3 Main Result and Consequences

In this section we present our main result, see Theorem 3.1. We provide two proofs: one takes
an algebraic approach by using the definition of the basic feasible solution; and the other takes a
geometric approach by using extreme points. Both proofs rely heavily on Lemma 2.3. In Section 3.2
we present an efficient preprocessing scheme that can be used as an extension of the phase-I of the
two-phase simplex method. In Section 3.3 we include immediate corollaries of the main result and
interesting discussions.

3.1 Lack of Strict Feasibility and Relations to Degeneracy

Theorem 3.1. Suppose that strict feasibility fails for F . Then every basic feasible solution to F
is degenerate.

4https://www.mathworks.com/matlabcentral/fileexchange/77437

8

https://www.mathworks.com/matlabcentral/fileexchange/77437

3.1.1 An Algebraic Proof of Theorem 3.1 via the Definition of BFS

Proof. Since there is no strictly feasible point in F , there exists a facial range vector V , and as in
(2.5) we have

F = {x ∈ Rn : AV v = b, v ∈ Rn−sz+ }.

By Lemma 2.3, AV has at least one redundant row. By permuting the columns of A, we may
assume that the matrix V is of the form

V =

[
Ir
0

]
and r = n− sz.

We partition the index set {1, . . . , n} as

{1, . . . , n} = I+ ∪ I0, where I+ = {1, . . . , r} and I0 = {r + 1, . . . , n}.

Then we have A =
[
A(:, I+) A(:, I0)

]
. Let x̄ ∈ F be a basic feasible solution with basic indices

B ⊂ {1, . . . , n}, |B| = m, det(A(:,B)) 6= 0, and A(:,B)x̄(B) = b.

Suppose B ⊆ I+. We note, by Lemma 2.3 again, that A(:, I+) = AV has redundant rows, i.e.,
rank(A(:, I+)) < m. Hence x̄ must include a basic variable in I0 and this concludes that every
basic feasible solution is degenerate.

3.1.2 A Geometric Proof Using Extreme Points

We now give the second proof of our main result. We first employ the statement presented in [38].
In Proposition 3.2 below, Sn+ denotes the set of n-by-n positive semidefinite matrices.

Proposition 3.2. [38, Theorem 2.1] Suppose that X ∈ F , where F is a face of the set {X ∈ Sn+ :

trace(AiX) = bi,∀i = 1, . . . ,m}. Let d = dimF , r = rank(X). Then r(r+1)
2 ≤ m+ d.

The set in Proposition 3.2 is called a spectrahedron. Feasible sets of standard semidefinite
programs are represented as spectrahedra. A sepectrahedron is a generalization of the polyhedral
set F and the proof from [38, Theorem 2.1] can be altered to work with F . We include the proof
for completeness.

Corollary 3.3. Suppose that x ∈ F , where F is a face of the set F . Let r be the number of
nonzeros in x and d = dimF . Then the number of nonzero entries of x ∈ F is at most m+ d.

Proof. Let x ∈ F and let r be the number positive entries in x. Let x̄ ∈ Rr be the vector
obtained by discarding the 0 entries in x. This is readily given by the following matrix-vector
multiplication x̄ = I(supp(x), :)x, where supp(x) is the support of x, the set of indices {i : xi > 0}.
Let Ā ∈ Rm×r be the matrix after removing the columns of A that are not in the support of x, i.e.,
Ā = A(:, supp(x)). We note that x̄ is a particular solution to the system Āz = b and x̄ > 0.

Suppose to the contrary that r > m + d. Since r −m > d, there exists at least d + 1 linearly
independent vectors, say v1, . . . , vd+1 ∈ Rr, satisfying Āvi = 0, ∀i = 1, . . . , d + 1. For each
i ∈ {1, . . . , d+ 1} and for ε ∈ R, we define

vi,+ := x̄+ εvi, vi,− := x̄− εvi,
xi,+ := I(:, supp(x)) (x̄+ εvi) , xi,− := I(:, supp(x)) (x̄− εvi) .

9

For a sufficiently small ε, we have xi,+, xi,− ∈ F . We note that x = 1
2(xi,+ + xi,−), ∀i. Hence, by

the definition of face, xi,+ ∈ F, ∀i. Therefore, F contains vectors {xi,+}i=1,...,d+1 ∪ {x} that are
affinely independent and hence dim(F) ≥ d+ 1.

A point x in a convex set C is called an extreme point if, for all y, z ∈ C, x = 1
2(y + z) implies

x = y = z. An extreme point is itself a face and the dimension of this face is 0. Hence, we obtain
Corollary 3.4 by writing Corollary 3.3 through the lens of extreme points.

Corollary 3.4. Every extreme point x ∈ F has at most m positive entries.

We now restate the main result of this paper Theorem 3.1 in the language of extreme points
and number of rows of A.

Theorem 3.5. Suppose that strict feasibility of F fails. Then every extreme point x ∈ F has at
most m− 1 positive entries.

Proof. Since strict feasibility fails for F , we have F = {x = V v ∈ Rn : AV v = b, v ∈ Rn−sz+ };
see (2.5). From Lemma 2.3, we note that at least one equality in AV v = b is redundant. Let
Pm̄AV v = Pm̄b be the system obtained after removing redundant rows of AV ; see (2.7). Then,
by Corollary 3.4, every extreme point of the set {v ∈ Rn−sz+ : Pm̄AV v = Pm̄b} has at most m − 1
nonzero entries. Hence, the statement follows.

Remark 3.6. The idea used in the proof of Theorem 3.5 is the same as the one presented in [34]
for a spectrahedron. In [34], the authors use Proposition 3.2 to strengthen the bound called the
Barvinok-Pataki bound. The bound is strengthened by the means of singularity degree that stems
from the facial reduction algorithm [22, 39, 44]. The number of nonzeros in x in Theorem 3.5
plays the role of rank(X) in Proposition 3.2. Facial reduction applied to spectrahedra also yields
redundant constraints and hence a similar result follows for spectrahedra.

3.1.3 Immediate Consequences of Main Result

We first note that Theorem 3.1 and Theorem 3.5 are equivalent owing to the well-known charac-
terization:

x ∈ F is a basic feasible solution ⇐⇒ x ∈ F is an extreme point.

We now highlight that Theorem 3.1 and Theorem 3.5 do not merely imply the existence of a
single degenerate basic feasible solution; but rather that every basic feasible solution is degenerate.
Developing a pivot rule that prevents the simplex method from visiting degenerate points is not
possible as it can never avoid degeneracies when strict feasibility fails, as we now illustrate in the
following.

Example 3.7. Consider F with the data

A =

[
1 1 3 5 2
0 1 2 −2 2

]
and b =

(
1
1

)
.

Consider the vector y =

(
1
−1

)
. Then

AT y =
(
1 0 1 7 0

)T
and bT y = 0.

10

Hence, Proposition 2.2 certifies that F does not contain a strictly feasible point. There are exactly

six feasible bases in F . The BFS associated with B ∈ {{1, 2}, {2, 3}, {2, 4}} is x =
(
0 1 0 0 0

)T
;

and the BFS associated with B ∈ {{1, 5}, {3, 5}, {4, 5}} is x =
(
0 0 0 0 1

2

)T
. Clearly, all basic

feasible solutions are degenerate.

Recall that strict feasibility is equivalent to the Mangasarian-Fromovitz constraint qualifica-
tion, [40]. The latter is equivalent to stability with respect to perturbations of b, and to a compact
dual optimal set. Therefore, the following Corollary 3.8, obtained by writing the contrapositive of
Theorem 3.1, is extremely interesting and important. We provide Example 3.9 below to illustrate
Corollary 3.8.

Corollary 3.8. Suppose that there exists a nondegenerate basic feasible solution. Then there exists
a strictly feasible point 0 < x̂ ∈ F .

Example 3.9. Consider F with the data

A =

[
1 0 −2 3 −4
0 −1 −2 3 1

]
and b =

(
1
1

)
.

The system F has exactly four feasible bases; the BFS associated with B ∈ {{1, 4}, {2, 4}, {4, 5}}
is x =

(
0 0 0 1/3 0

)T
and the BFS associated with B = {1, 5} is x =

(
5 0 0 0 1

)T
. We

note that the BFS associated with B = {1, 5} is nondegenerate. As Corollary 3.8 states, the system

F has a strictly feasible point, and it is verified by the point 1
10

(
4 1 1 4 1

)T
.

Corollary 3.8 provides a useful check for strict feasibility when the simplex method is used,
i.e., if there is any simplex iteration that yields a nondegenerate BFS, then it is useful to record
that occurrence. We emphasize that recording the occurrence of a nondegenerate iteration is
inexpensive and the occurrence gives a certificate of the stability of the LP instance. We revisit
Corollary 3.8 in Section 3.2.1 below and present an efficient algorithm for obtaining a Slater point
from a nongenerate basic feasible solution. But, Example 3.10 below shows that the converse of
Theorem 3.1 and Theorem 3.5 is not true. In other words, strict feasibility holds and every basic
feasible solution is degenerate.

Example 3.10. 1. Consider F with the data

A =

[
1 0 2 0 −2
1 −3 2 1 −2

]
and b =

(
1
1

)
.

F has exactly four feasible bases and all of them are degenerate; the basic feasible solution

associated with B ∈ {{1, 2}, {1, 4}} is x =
(
1 0 0 0 0

)T
and the basic feasible solution

associated with B ∈ {{2, 3}, {3, 4}} is x =
(
0 0 1/2 0 0

)T
. However, F contains a

strictly feasible point 1
10

(
1 1 5.5 3 1

)T
.

2. Note that the linear assignment problem (marriage problem) has a strictly feasible point but
all the BFS are highly degenerate5. Therefore, I0 = ∅; the set of variables fixed at 0 is empty.
Moreover, as an LP, the problem is stable with respect to perturbations in the data.

5Note that this is true for the transportation and the assignment problems. Both are highly degenerate at each
BFSbut satisfy strict feasibility. For example, for the assignment problem order n, the feasible set can be considered
to be the doubly stochastic matrices X. The extreme points are the permutation matrices by the Birkoff-Von
Neumann theorem. Therefore, each extreme point has exactly n positive elements while there are m = 2n−1 linearly
independent constraints.

11

Given a BFS x̄ ∈ F , we let the degree of degeneracy of x̄ denote the number of 0’s among its
basic variables. By exploiting the facially reduced model we can check how degenerate the BFSs
of F are.

Corollary 3.11. Suppose that strict feasibility fails for F , and let F have the facial range vector
representation in (2.5). Recall that the set of indices I0 = {i ∈ {1, . . . , n} : xi = 0, ∀x ∈ F}. Let
x̄ ∈ F be a basic feasible solution with basis B. Then, the following holds.

1. The basis B has an nonempty intersection with I0, i.e., B ∩ I0 6= ∅.

2. If the degree of degeneracy of x̄ is exactly one, with x̄k = 0, k ∈ B, then xk, A:,k can be
discarded from the problem.

3. The degree of degeneracy of x̄ is at least m− rank(AV).

4. At least m− rank(AV) number of basic indices of x̄ are contained in I0.

Proof. 1. Let x̄ ∈ F be a basic feasible solution and let B be a basis for x̄. Item 1 follows from
the proof and the definition of the set I0 of elements xi that are identically zero on the feasible
set.

2. The proof follows from the algebraic proof of Theorem 3.1 given in Section 3.1.1. Since every
BFS is degenerate and the basis has a nonempty intersection with I0, the index k must be
in I0.

3. For Item 3, we note that A(:,B) contains linearly independent columns. Then A(:,B) can
contain at most rank(AV) number of columns from AV . Thus, x̄(B) must contain at least
m− rank(AV) number of zeros.

4. Item 4 is a direct consequence of Item 1 and Item 3.

Items 3 and 4 of Corollary 3.11 are closely related to the implicit problem singularity, IPS, and
the max-singularity degree, maxSD; see Definition 2.5.

We conclude the discussions with the following interesting observation. This again illustrates
the implicit singularity of the constraints when the Slater condition fails.

Corollary 3.12. Suppose that strict feasibility fails for F and that m = 1. Then the trivial x∗ = 0
is an optimal solution.

3.2 Efficient Preprocessing for Facial Reduction and Strict Feasibility

In this section we present an efficient preprocessing method for obtaining a facially reduced system.
In Section 3.2.1 we discuss obtaining a strictly feasible point using a nondegeneate BFS and its
variant. In Section 3.2.2 we consider the general case of finding an exposing vector to obtain the
facially reduced strictly feasible LP.

12

3.2.1 Towards a Strictly Feasible Point from a Nondegenerate BFS

By Corollary 3.8, the existence6 of a nondegenerate BFS guarantees the existence of a strictly
feasible point. We now propose a process for acquiring a Slater point from a nondegenerate BFS,
and include a generalization. The arguments in this section also provide a constructive proof of
Corollary 3.8.

Let x̄ ∈ F be a nondegenerate BFS. Without loss of generality, we assume that the (all positive)
basic variables x̄B of x̄ are located at the last m entries of x̄. We fix a scalar γ̂ ∈ (0, 1) and an index
j ∈ {1, . . . , n−m}. For some α ≥ 0, we consider the simplex method ratio test type inequality

γ̂x̄B − α(AB)−1Aj ≥ 0. (3.1)

Since x̄B > 0, γ̂ > 0, there exists a positive α that maintains the inequality (3.1). Let

α∗ = min
{

1, max{α ∈ R+ : γ̂x̄B − α(AB)−1Aj ≥ 0}
}
, (3.2)

and decompose
γ̂x̄B =

(
γ̂x̄B − α∗(AB)−1Aj

)
+ α∗(AB)−1Aj .

We observe that

b = ABx̄B
= (1− γ̂)ABx̄B + γ̂ABx̄B
= (1− γ̂)ABx̄B +AB

(
γ̂x̄B − α∗(AB)−1Aj + α∗(AB)−1Aj

)
= AB(x̄B − α∗(AB)−1Aj) + α∗Aj .

If we set xj = α∗ > 0 and replace x̄B by x̄B−α∗(AB)−1Aj , then we have increased the cardinality of
the positive entries of a solution. We note that x̄B − α∗(AB)−1Aj only has strictly positive entries
since it it a sum of a positive vector and a nonnegative vector;

x̄B − α∗(AB)−1Aj = (1− γ̂)x̄B︸ ︷︷ ︸
positive

+ γ̂x̄B − α∗(AB)−1Aj︸ ︷︷ ︸
nonnegative

.

We can continue to increase the number of positive entries of a solution one by one for each
j ∈ {1, . . . , n −m}. Moreover, we can achieve this by a compact vectorized operation. The main
idea is that we can choose γ̂ in (3.1) independently for each j ∈ {1, . . . , n−m}. Let γj be a positive
real number such that 0 < γ :=

∑n−m
j=1 γj < 1. Then, we have

x̄B = (1− γ)x̄B + γx̄B = (1− γ)x̄B +
n−m∑
j=1

γj x̄B.

We set an auxiliary matrix

Θ =
[
γ1x̄B · · · γn−mx̄B

]
− (AB)−1A(:, 1 : n−m) ∈ Rm×(n−m)

and perform (3.2) on each column j of Θ to obtain the vector θ∗:

θ∗j :=

{
max(Θ(:, j)) if max(Θ(:, j)) ≤ 1,

1 otherwise.

6Determining the existence of a degenerate basic feasible solution is an NP-complete problem; see [11].

13

Then the point [
θ∗

x̄B − (AB)−1A(:, 1 : n−m)θ∗

]
is a strictly feasible point to F . Hence, this operation provides a constructive proof of Corollary 3.8.

We now extend the aforementioned procedure for obtaining a strictly feasible point using any
feasible solution x̄ ∈ F such that A(:, supp(x̄)) is full row rank. We partition x̄ ∈ F as follows

x̄ =

x̄B1x̄B2
x̄N

 , where supp(x̄) = B1∪B2, rank(A(:,B1)) = m, and N = {1, . . . , n}\supp(x̄). (3.3)

We partition A using the same partition B1 ∪ B2 ∪N :

[
AB1 AB2 AN

]
x̄ = b ⇐⇒

[
AB1 AN

](x̄B1
x̄N

)
= b̄ := b−AB2xB2 .

Then we can apply the aforementioned procedure to the system

[
AB1 AN

](x̄B1
x̄N

)
= b̄

and distribute positive weights to x̄N using x̄B1 . Finally, we find a strictly feasible point to F . This
process is summarized in Algorithm 3.1. Furthermore, Algorithm 3.1 provides a constructive proof
for Proposition 3.13 below.

Proposition 3.13. Let x ∈ F be a solution such that rank (A(:, supp(x))) = m. Then, F has a
strictly feasible point.

Algorithm 3.1 Compute a Slater Point

Require: Given: A, x̄ ∈ F partitioned as in (3.3).

1: Choose any γ ∈ R|N |++ such that
∑|N |

j=1 γj < 1.
2: Compute

Θ =
[
x̄B1 · · · x̄B1

]
Diag(γ)−A−1

B1AN .

3: Compute θ∗ ∈ R|N |++, where for each j ∈ {1, . . . , |N |},

θ∗j :=

{
max(Θ(:, j)) if max(Θ(:, j)) ≤ 1,

1 otherwise.

4: Set x◦ =

x̄B1 − (AB1)−1AN θ
∗

x̄B2
θ∗

.

3.2.2 Towards an Exposing Vector; Phase I Part B and Strict Feasibility Testing

We now present an efficient preprocessing procedure for detecting identically 0 variables, obtaining
exposing vectors and the facially reduced LP, i.e., given a BFS x̄, we solve special subproblems
using the simplex method with the initial point x̄. By the end of the process, we obtain either

14

1. a certificate y that produces an exposing vector AT y (Slater condition fails), or

2. a strictly feasible point (Slater condition holds).

The process has two applications. First, since the only requirement of this process is the BFS,
the procedure can be used as an extension of the phase-I of the two-phase simplex method to obtain
the equivalent facially reduced problem that satisfies strict feasibility. Second, the procedure can
be used as a post-optimum diagnosis. By recording a BFS with the smallest degree of degeneracy,
we can improve tests for stability.

We now describe the proposed preprocessing method. Let B be a degenerate initial basis of F
and let x̄ be the BFS associated with B. Without loss of generality, we assume that basic variables
are located at the first m entries of x̄. Let d be the degree of degeneracy of x̄. We further assume
that the degenerate basic variables are located at the first d entries of x̄. We let B0 := {1, . . . , d}.
We consider the following problem:

p∗1 = max{x1 : Ax = b, x ≥ 0}. (3.4)

We solve (3.4) using the simplex method from the initial BFS x̄. That is, we do not need to perform
the typical phase-I of the two-phase simplex method in order to find a feasible BFS. The optimal
value p∗1 of (3.4) is clearly lower bounded by 0. We consider two cases below:

1. Suppose that p∗1 > 0. Then, the the variable x1 is not an identically 0 variable, i.e., 1 /∈ I0.

2. Suppose that p∗1 = 0. Then, the variable x1 is an identically 0 variable, i.e., 1 ∈ I0. Let B∗
be an optimal basis for (3.4). Then we have

y∗ = A(:,B∗)T e1, 〈b, y∗〉 = 0 and AT y∗ ≥ e1. (3.5)

We note that the dual optimal solution y∗ in (3.5) produces a solution to the auxiliary
system (2.3). Therefore, we obtain a nontrivial exposing vector since AT y∗ is not the zero
vector. Clearly, the first variable x1 is exposed by AT y∗ since the first element of AT y∗

is positive. Furthermore, if | supp(AT y∗)| > 1, then we find additional variables that are
identically 0 in the feasible set. We can now delete the identified identically zero variables
along with the corresponding columns of A. We then find and delete redundant rows to obtain
a smaller LP.

Let {yj} be a collection of the certificates that are obtained from solving (3.4) with the index 1
replaced by i ∈ B0. Then y◦ =

∑
j y

j is also a certificate, i.e.,

AT y◦ =
∑
j

AT yj ≥ 0, AT y◦ 6= 0, and 〈b, y◦〉 =
∑
j

〈b, yj〉 = 0,

and we obtain a nontrivial exposing vector AT y◦ for the system F . By summarizing the two cases
above, we obtain an efficient preprocessing method Algorithm 3.2.

The following allows for simplifications in Algorithm 3.2.

Lemma 3.14. Let B be a basis containing an index i. The index i always remains in the basis B
for the problem (3.4).

HAESOL ♥ There is an error in this proof: should only include

15

Algorithm 3.2 Preprocessing Phase I Part B; Towards Strict Feasibility

Require: A BFS x̄ with corresponding basis B; set B0 = {i ∈ B : x̄i = 0}
1: Initialize: x◦ = x̄, y◦ = 0 ∈ Rm, J0 = ∅, B∗ ← B0

2: while B0 6= ∅ and B∗ 6= ∅ do
3: Pick i ∈ B0; starting from the initial BFS x̄, solve for primal-dual optima x∗, y∗

x∗ = argmaxx{xi : Ax = b, x ≥ 0}, p∗ = x∗i = bT y∗

4: S = supp(x∗)
5: B∗ = {i ∈ B∗ : x∗i = 0}
6: if B0 6= ∅ and B∗ 6= ∅ then
7: if p∗ = 0 (strict feasibility fails) then
8: Use dual certificate y∗ to satisfy (2.3)
9: y◦ ← y◦ + y∗

10: J0 ← J0 ∪ (supp(AT y∗) ∩ B)
11: B0 ← B0 \ {S ∪ J0}
12: else
13: B0 ← B0 \ S
14: end if
15: x◦ = 1

2(x◦ + x∗)
16: end if
17: end while
18: if J0 6= ∅ then
19: z◦ = AT y◦ (exposing vector)
20: R ← redundant row indices of A (:, supp(z◦)c)
21: A← A(Rc, supp(z◦)c), b← b(Rc)
22: else
23: Run Algorithm 3.1 with x◦ and det(AB) 6= 0 (use x∗ and B∗, if B∗ = ∅)
24: end if

16

Without loss of generality, we let i = 1. We argue that 1 is not chosen to leave the basis. Let
y∗ = (AT

B)−1cB. Suppose that the reduced cost at the index j is positive. Then

0 < c̄j = cj −AT
j y
∗ = −AT

j y
∗ = −AT

j (AT
B)−1e1 = −Ā1j .

Since Ā1j < 0, the index 1 is not chosen to leave the basis B.

Proof. Without loss of generality, we let i = 1. We argue that 1 is not chosen to leave the basis.
With y∗ = (ATB)−1cB, it is sufficient to show that ATN y

∗ ≥ 0, i.e., that dual feasibility holds. To
obtain a contradiction, suppose that ATj < 0, j ∈ N . We observe the reduced cost at the index j:

0 < c̄j = cj −ATj y∗
= −ATj y∗
= −ATj (ATB)−1e1

= −Ā1j .

Since Ā1j < 0, the index 1 is not chosen to leave the basis B.

The following special case is of interest. Namely, no simplex pivoting steps are required to
determine strict feasibility.

Theorem 3.15. (preprocessing for degree of degeneracy 1) Let x̄ be a BFSwith the degree of
degeneracy exactly one. Let y∗ = (ATB)−1cB. Then strict feasibility fails if, and only if, y∗ satis-
fies ATN y

∗ ≥ 0.

Proof. Suppose that x̄ is a degenerate BFS with basis B. Without loss of generality, we assume
1 ∈ B and 1 is the degenerate index. We consider the problem

p∗1 = max{x1 : Ax = b, x ≥ 0}.

We note that 〈b, y∗〉 = 0 since 〈b, y∗〉 is identical to the current objective value ‘0’. The backward
direction is clear by Proposition 2.2. Now suppose that strict feasibility fails. Suppose to the
contrary that ATN y

∗ ≥ 0 fails. Then there exists j such that ATj y
∗ < 0, j ∈ N . Note that, by

Lemma 3.14, that 1 is not chosen to leave the basis. Thus, there is an index k 6= 1, k ∈ B that
leaves the basis. Since all other basic variables are positive, we obtain a positive step length and
we improve the objective value, which yields a contradiction to p∗1 = 0.

Upon the termination of Algorithm 3.2, we can always determine whether the system F has a
strictly feasible point or not. Algorithm 3.2 terminates in a finite number of iterations since we
remove at least one element from the set B0 in each iteration. We emphasize that we do not need
to solve the auxiliary LPs for all i ∈ {1, . . . , n}. We solve (3.4) only for the degenerate basic indices
of the predetermined basis B. However, upon the termination of Algorithm 3.2, we may not obtain
face(F), the minimal face containing F . Although the complete FR for LP can be performed in
one iteration, one step termination is possible only when we find a solution y of (2.3) that is in the
relative interior of the conjugate face of face(F). In this case, we can rerun Algorithm 3.2 with the
facially reduced system. For finding an initial basis for the second trial, we may use the efficient
basis recovery scheme [49, Chapter 7].

One of the nice features of Algorithm 3.2 is that we do not need to search for a new initial basis
B for each iteration; the initial basis remains the same. Therefore, our approach can be directly
employed after the standard phase-I of the two phase simplex method.

17

We do not need a lot of pivoting steps to determine if p∗i is zero or positive. If p∗i = 0, the
initial B is indeed a basis that gives the optimal value. However the dual feasibility may not be
obtained immediately7. Thus, there may be additional pivots required to obtain the dual feasibility.
However, since the optimal value is obtained at B, we do not expect that the optimal basis search
to be time-consuming. For the case p∗i > 0, the optimal value p∗i does not need to be found. Hence
once a basis that gives a positive support on i is found, we can terminate the maximization problem
in Algorithm 3.2 immediately. We recall from Lemma 3.14 that the index i in (3.4) never leaves
the basis.

We often get an exposing vector that reveals more than one element in the set I0 by solving (3.4).
Without loss of generality, let p∗1 = 0 in (3.4) and let y∗ be a dual feasible solution. Suppose
AT y∗ = e1, i.e., AT y∗ only reveals exactly one exposed variable. Then y∗ ∈ null(A(:, 2 : n)T).
Since the data matrix A has more columns than the rows, y∗ ∈ null(A(:, 2 : n)T) often implies that
y∗ = 0. If y∗ = 0, we cannot obtain AT y∗ = e1.

When an instance is large and have a BFS with a very large degree of degeneracy, one may
adopt parallel computing for Algorithm 3.2 in order to reduce the total computation time. We
note again that the initial basis remains the same throughout the iterations. Hence, solving (3.4)
for individual i ∈ B0 can be performed independently. In fact, parallel computing can be used to
obtain a strictly feasibility solution in Algorithm 3.1 as well; the weight vector γ can be chosen
independently for each j ∈ N .

3.3 Discussions

In this section we discuss the main result in Sections 3.1 and 3.2 and make connections to new
results and known results in the literature.

3.3.1 Distance to Infeasibility

The distance to infeasibility is a measure of the smallest perturbations of the data (A, b) of a
problem that renders the problem infeasible. In our setting, we can use the following simplification
of the distance to infeasibility from [41] by restricting the perturbation to b, i.e., we can force
infeasibility using only perturbation in b;

dist(b,F = ∅) := inf
{
‖b− b̃‖ : {x ∈ Rn : Ax = b̃, x ≥ 0} = ∅

}
.

Many interesting bounds, condition numbers, are shown in [41] under the assumption that the
distance to infeasibility is positive and known. It is known that a positive distance to infeasibility
of F implies that strict feasibility holds for F ; see e.g., [24,25]. The contrapositive of this statement
is that, if strict feasibility fails for F , then the distance to infeasibility is 0. We revisit this statement
with the facially reduced system (2.5). We provide an elementary proof that there is an arbitrarily
small perturbation for the data vector b of F that yields the set F infeasible, i.e., dist(b,F = ∅) = 0.
Furthermore, we provide explicit perturbations that render the set F empty.

Suppose that F fails strict feasibility. Recall the representation (2.5) for F . Let AV = QR be
a QR decomposition of AV , where Q ∈ Rm×m orthogonal, R ∈ Rm×(n−sz) upper triangular. We
write Q =

[
Q1 Q2

]
so that range(Q1) = range(AV). Then, by the orthogonality of Q, we have

Ax = AV v = b ⇐⇒ QTAx = Rv = QT b.

7If we have a nondegenerate initial basis, then the dual feasibility is immediately obtained. However, our initial
basis is degenerate.

18

Since AV is a rank deficient matrix (see Lemma 2.3), the upper triangular matrix R is of the form

R =

[
R̄
0

]
∈ Rm×(n−sz) and R̄ ∈ Rrank(AV)×(n−sz) with nonzero diagonal. (3.6)

Since b ∈ range(AV), the last m− rank(AV) entries of QT b are equal to 0, i.e.,

QT b =

(
QT1 b
QT2 b

)
=

(
QT1 b

0

)
.

Consequently, the unrealized implicit non-surjuectivity produces the system[
R̄
0

]
v =

(
QT1 b

0

)
, v ∈ Rn−sz+ . (3.7)

Any perturbation on the last m−rank(AV) equations in (3.7) that causes the system inconsistency
renders the system (3.7) infeasible while maintaining the dimension of relint(F). For instance,

replacing the right-hand-side vector in (3.7) by

(
QT1 b
ξ

)
with any nonzero vector ξ ∈ Rm−rank(AV)

renders (3.7) infeasible. Replacing the data matrix in (3.7) by

[
R̄
Φ

]
for which Φ contains a positive

row vector also renders (3.7) infeasible.

We now present a class of perturbations of b that maintains the feasibility of the set F as well
as a special perturbation of b that forces F to be infeasible. Such perturbations can be found using
linear combinations of the columns of Q1 or Q2, respectively. We relate this observation to the
solution of the auxiliary system (2.3) in the proof of Proposition 3.16 below.

Proposition 3.16. Suppose that strict feasibility fails for F , and let F have the representa-
tion (2.5). Then the following hold.

1. For all ∆b ∈ range(AV) with sufficiently small norm, the set {x ∈ Rn+ : Ax = b + ∆b} is
feasible.

2. Let ȳ ∈ Rm be a solution to the auxiliary system (2.3). Then perturbing the right-hand-side
vector b of F in the direction ȳ makes the system F infeasible.

Proof. Let ∆b be any perturbation in range(AV). Let QR = AV be a QR decomposition of AV .
In particular, let R have the form (3.6) and Q =

[
Q1 Q2

]
so that range(Q1) = range(AV). Let ε

be a sufficiently small scalar. Then

Ax = AV v = b+ ε∆b ⇐⇒ Rv = QT b+ εQT∆b ⇐⇒ R̄v = QT1 b+ εQT1 ∆b. (3.8)

The last equivalence holds since Ax = b and ∆b ∈ range(AV) = range(Q1). Since the system
R̄v = QT1 b satisfies strict feasibility, the distance to infeasibility of this system is positive. Thus,
the perturbed system R̄v = QT1 b+εQT1 ∆b remains feasible. Therefore, by (3.8), perturbing F along
the direction ∆b ∈ range(AV) maintains the feasibility and this concludes the proof for Item 1.

For Item 2 we show that perturbing b with ∆b = ȳ renders F infeasible, where ȳ is a solution
to the system (2.3). By Proposition 2.2 and (2.6), the nonzero vector ȳ ∈ Rm is in null((AV)T).
Then we have

ȳ ∈ range(AV)⊥ = range(Q2) =⇒ ȳ = Q2ū for some nonzero ū.

19

We recall Farkas’ lemma:

{y ∈ Rm : AT y ≥ 0, 〈b, y〉 < 0} 6= ∅ =⇒ F = ∅.

Now, for any ε > 0, setting ∆bε = −εȳ yields

AT ȳ ≥ 0, 〈b, ȳ〉 = 0 =⇒ AT ȳ ≥ 0, 〈b+ ∆bε, ȳ〉 < 0. (3.9)

Hence, by letting ε→ 0+, we see that the distance to infeasibility, dist(b,F = ∅), is equal to 0.

We emphasize that the result

F fails strictly feasibility =⇒ dist((A, b),F = ∅) = 0

gives rise to the second step (2.7) of FR discussed in Section 2.2. We note that the instability
discussed in this section essentially originates from the observation made in Lemma 2.3, i.e., redun-
dant equalities arise in the facially reduced system. Facially reduced system allows us to exploit the
root of potential instability when the problem data A or b is perturbed. Although the distance to
infeasibility is 0 in the absence of strict feasibility, Proposition 3.16 suggests that a carefully chosen
perturbation of b does not have an impact on the feasibility of F . We provide a related numerical
experiment in Section 4.1.4 below.

The distance to infeasibility directly impacts the measure of well-posedness of the problem,
[24,25,42]. Given the pair d = (A, b) of the data for an instance (P), the condition measure of (P)
is defined by

C(d) :=
‖d‖

inf{‖∆d‖ : d+ ∆d yields (P) infeasible}
.

The value C(d) is a measure of well-posedness of the problem (P). Since dist(b,F = ∅) = 0, we
have C(d) =∞. Namely, when strict feasibility fails for (P), the problem is ill-posed.

3.3.2 Applications to Known Characterizations for Strict Feasibility

There are some known characterizations for strict feasibility of F . Using these characterizations
we can obtain extensions of Theorem 3.1, Theorem 3.5, and Corollary 3.8.

The dual (D) of (P) is

(D) max
y,s

{
bT y : AT y + s = c, s ≥ 0

}
. (3.10)

It is known that strict feasibility fails for F if, and only if, the set of optimal solutions for the dual
(D) is unbounded; see e.g., [49, Theorem 2.3] and [27]. Then Corollary 3.17 follows.

Corollary 3.17. 1. Suppose that the set of optimal solutions for the dual (D) is unbounded.
Then every basic feasible solution to F is degenerate.

2. Suppose that there exists a nondegenerate basic feasible solution to F . Then the set of optimal
solutions for the dual (D) is bounded.

It is known that strict feasibility holds for F if, and only if, b ∈ relint(A(Rn+)), where relint
denote the relative interior; see e.g., [22, Proposition 4.4.1]. Then if one finds a set of indices
I ⊂ {1, . . . , n} such that A(:, I) is nonsingular and A(:, I)z = b has a solution z with positive
entries, then b ∈ relint(A(Rn+)).

20

3.3.3 Applications to Obtain a Strictly Complementary Primal-Dual Solution

In this section we present an application of Algorithm 3.1 for obtaining a strictly complementary
primal-dual optimal solution.

Let (x∗, y∗, s∗) be an optimal triple for the standard primal-dual LP pair. Let B∗ ∪ N ∗ =
{1, . . . , n} be the strict complementary partition of the primal-dual optimal pair. The existence
of such a partition is guaranteed by the Goldman-Tucker theorem [28] and the partition B∗ ∪ N ∗
is unique. For the first application of Algorithm 3.1, we provide a method for obtaining a strict
complementary primal-dual solution when the primal optimal solution x∗ is nondegenerate or the
submatrix A(:, supp(x∗)) of A has rank m. To elaborate, we list the two cases where Algorithm 3.1
can be used to obtain maximal complementary solutions.

1. Let x∗ be a nondegenerate (optimal) basic feasible solution. Then, supp(s∗) = N ∗ and
supp(x∗) can be extended to complete B∗;

2. Let x∗ be an optimal solution such that A(:, supp(x∗)) is full row rank. Then, supp(s∗) = N ∗
and supp(x∗) can be extended to complete B∗.

Suppose that we are given a primal-dual optimal solution (x∗, y∗, s∗) of the form

[
AB AJ AN

]xBxJ
xN

 = b, where rank(AB) = m,

xBxJ
xN

 >
=
=

0
0
0

 and

sBsJ
sN

 =
=
>

0
0
0

 .

(3.11)
We claim that N ∗ = supp(s∗). That is, the support of the current dual optimal solution s∗ is
maximal and hence we obtain the strict complementary partition for free. We rewrite the system
Ax = b of (3.11) as

[
AB1 AB2 AJ

]xB1xB2
xJ

 = b, where AB =
[
AB1 AB2

]
, xB =

(
xB1
xB2

)
and rank(AB1) = m.

Then, by replacingN in Algorithm 3.1 by J , we can endow positive weights to xJ while maintaining
the primal feasibility. Since we maintain the feasibility of the primal-dual solution without violating
the complementarity, we maintain the optimality.

3.3.4 Lack of Strict Feasibility in the Dual

Recall Remark 2.1 that redundant constraints can result in poor behaviour for interior point meth-
ods. Moreover, complementary slackness means we get dual variables fixed at 0. This is one
motivation for considering FR on the dual (D); see (3.10).

We denote the feasible set of the dual (D) by

G := {(y, s) ∈ Rm ⊕ Rn+ : AT y + s = c}. (3.12)

The facial reduction arguments applied to the dual are parallel to the ones given in Section 2.2.
Hence, we provide a short derivation for the facially reduced system for G. We also conclude that
the absence of strict feasibility for G implies dual degeneracy at all basic feasible solutions.

The following lemma is the theorem of the alternative applied to the set G.

21

Lemma 3.18. [13, Theorem 3.3.10](theorem of the alternative in dual form) Let G in (3.12) be
feasible. Then, exactly one of the following statements holds:

1. There exists (y, s) ∈ Rm ⊕ Rn++ with AT y + s = c, i.e., strict feasibility holds for G;

2. There exists w ∈ Rn such that

0 6= w ∈ Rn+, Aw = 0 and 〈c, w〉 = 0. (3.13)

We recall that the vector AT y in (2.4) is an exposing vector to the set F . Let w be a solution
to the auxiliary system (3.13). Similarly, the vector w plays the role of an exposing vector for G:

∀(y, s) ∈ G, it holds 〈w, s〉 = 〈w, c−AT y〉 = 〈c, w〉 − 〈Aw, y〉 = 0− 〈0, y〉 = 0.

We let
Iw = {1, . . . , n} \ supp(w), U = I(:, Iw) and sw = | supp(w)|.

Then, the facially reduced system of G is given by

G =

{
(y, s) ∈ Rm ⊕ Rn+ :

[
AT I

](y
s

)
= c

}
=

{
(y, u) ∈ Rm ⊕ Rn−sw+ :

[
AT U

](y
u

)
= c

}
.

(3.14)

The notion of degeneracy in Section 2.1 naturally extends to an arbitrary polyhedron, e.g.,
see [5, Section 2]. For a general polyhedron P ⊆ Rn, a point p in P is called a basic solution if
there are n linearly independent active constraints at p. In addition, if there are more than n active
constraints at the point p ∈ P , then the point p is called degenerate. Using this definition of the
degeneracy, we now show that the absence of strict feasibility for G implies that every basic solution
of G is degenerate.

We show that the facially reduced system in (3.14) contains a redundant constraint. Let w be
a solution to the system (3.13), i.e., w is an exposing vector for G. Then we have[

A
UT

]
w =

[
Aw
UTw

]
=

[
0m

0n−sw

]
.

In other words, there is a nontrivial row combination of
[
AT U

]
that yields the 0 vector, i.e.,

there exists a redundant row in
[
AT U

]
. Hence, the facially reduced system contains a redundant

constraint. The redundancy immediately implies the dual degeneracy; for any basic solution of G,

there always exists a redundant equality in
[
AT I

](y
s

)
= c.

3.3.5 Lack of Strict Feasibility and Interior Point Methods

Many interior point algorithms are derived from the optimality conditions (KKT conditions) using
the primal (P) and the dual (D). And many practical interior point methods find the search
direction d by solving the so-called normal equation, a square system ADATd = r, where D
is a diagonal matrix with positive diagonal and r is some residual; see e.g., [49, Chapter 11].
The diagonal of D consists of some element-wise product of the primal variable x and the dual
slack variable s. We have shown that the lack of strict feasibility for F makes all vertices of
F degenerate. Thus, all vertices that form the optimal face of (P) are also degenerate. Hence,
primal or dual degeneracy can cause the diagonal of D to have a deficient number of nice positives

22

near the optimum. Thus the normal equation may be ill-conditioned as it gets near the optimum,
i.e., numerical stability could be hard to achieve. We present related numerics in Section 4.1.8

4 Numerics

We now provide empirical evidence that FR is indeed a useful preprocessing tool for reducing the
size of problems as well as for improving the conditioning. We do this first for interior point
methods and then for simplex methods. In particular, this provides empirical evidence that lack
of strict feasibility is equivalent to implicit singularity. All the numerical tests are performed using
MATLAB version 2021a on Dell XPS 8940 with 11th Gen Intel(R) Core(TM) i5-11400 @ 2.60GHz
2.60 GHz with 32 Gigabyte memory. We use three different solvers in our tests: (i) linprog from
MATLAB9; (ii) SDPT3 10; and (iii) MOSEK 11. MATLAB version 2021a is used to access all the
solvers for the tests, and we use their default settings for stopping criteria. Note that MOSEK has
a preprocessing option.12

4.1 Empirics with Interior Point Methods

In this section we compare the behaviour for finding near-optimal points with instances that do
and do not satisfy strict feasibility. More specifically, given a near optimal primal-dual point
(x∗, s∗) ∈ Rn++ ⊕ Rn++ obtained from an interior point solver, we observe the condition number,
i.e., the ratio of largest to smallest eigenvalues of the normal matrix at (x∗, s∗):

κ
(
AD∗AT

)
, where D∗ = Diag(x∗) Diag(s∗)−1. (4.1)

We show that instances that do not have strictly feasible points tend to have significantly larger con-
dition numbers of the normal equation near the optimum. We also present a numerical experiment
on perturbations of the right-hand-side vector b.

4.1.1 Generating LPs without Strict Feasibility

Given m,n, r ∈ N, we construct the data A ∈ Rm×n and b ∈ Rm to satisfy (2.3) with r as the
dimension of the relative interior of F , relint(F).

1. Pick any 0 6= y ∈ Rm. Let

{y}⊥ = span{ai}m−1
i=1 (= null(yT)).

We let R ∈ R(m−1)×r be a random matrix, and get

A1 :=
[
a1 . . . am−1

]
R ∈ Rm×r, AT1 y = 0 ∈ Rr.

2. Pick any v̂ ∈ Rr++ and set b = A1v̂. We note that yTA1 = 0 and 〈b, y〉 = 0.

8The survey [32] addresses the effect of degeneracy on the performance of interior point methods.
9https://www.mathworks.com/. Version 9.10.0.1669831 (R2021a) Update 2.

10https://www.math.cmu.edu/~reha/sdpt3.html, version SDPT3 4.0.
11https://www.mosek.com/. Version 8.0.0.60.
12MOSEK has a presolve with five steps that includes eliminating fixed variables. However, it is clear from the

empirical evidence that the variables fixed at 0 are not found.

23

https://www.mathworks.com/
https://www.math.cmu.edu/~reha/sdpt3.html
https://www.mosek.com/
https://docs.mosek.com/latest/toolbox/presolver.html

3. Pick any matrix A2 ∈ Rm×(n−r) satisfying (yTA2)i 6= 0, ∀i. If there exists i such that
(yTA2)i < 0, then change the sign of the i-th column of A2 so that we conclude

(AT2 y) ∈ Rn−r++ .

4. We define the matrix A =
[
A1 A2

]
∈ Rm×n. Then {x ∈ Rn+ : Ax = b} is a polyhedron with

a feasible point x̂ = [v̂; 0] having r number of positives. The vector y is a solution for the
system (2.3):

0 � z = AT y =

(
AT1 y = 0
AT2 y > 0

)
, bT y = 0.

We then randomly permute the columns of A to avoid the zeros always being at the bottom
of the feasible variables x.

For the empirics, we construct the objective function cTx of (P) as follows. We choose any
s̄ ∈ Rn++, ȳ ∈ Rm and set c = AT ȳ+ s̄. Then we have the data for the primal-dual pair of LPs and
the primal fails strict feasibility:

(P(A,b,c)) min{ cTx : Ax = b, x ≥ 0 } and (D(A,b,c)) max{ bT y : AT y + s = c, s ≥ 0 }.

We note that by choosing s̄ ∈ Rn++, the dual problem (D(A,b,c)) has a strictly feasible point. In
order to generate instances with strictly feasible points, we maintain the same data A, c used for
the pair (P(A,b,c)) and (D(A,b,c)). We only redefine the right-hand-side vector by b̄ = Ax◦, where
x◦ ∈ Rn++:

(P̄(A,b̄,c)) min{ cTx : Ax = b̄, x ≥ 0 } and (D̄(A,b̄,c)) max{ b̄T y : AT y + s = c, s ≥ 0 }.

The facially reduced instances of (P(A,b,c)) are denoted by (P(AFR,bFR,cFR)). They are obtained by
discarding the variables that are identically 0 in the feasible set F and the redundant constraints.
In other words, the affine constraints of (P(AFR,bFR,cFR)) are of the form (2.7).

4.1.2 Condition Numbers

In order to illustrate the differences in condition numbers of the normal matrices, we solve the three
families of instances:
(i) (P(A,b,c)), strictly feasible fails; (ii) (P̄(A,b̄,c)), strictly feasible holds; (iii) (P(AFR,bFR,cFR)), facially
reduced instances of (P(A,b,c)).

In Figure 4.1 we use a performance profile [20,31] to observe the overall behaviour on different
families of instances using the three solvers. The performance profile provides a useful graphical
comparison for solver performances. Figure 4.1 displays the performance profile on the condition
numbers of the normal matrix AD∗AT near optimal points from different solvers. We generate 100
instances for each family that have dim(relint(F)) ∈ [300, 1350]. The instance sizes are fixed with
(m,n) = (500, 1500). The vertical axis in Figure 4.1 represents the statistics of the performance
ratio on κ

(
AD∗AT

)
, the condition number of normal matrix near optimum (x∗, s∗); see (4.1). The

solid lines in Figure 4.1 represent the performance of the instances (P(A,b,c)) that fail strict feasibility.
They show that the condition numbers of the normal matrices near optima are significantly higher
when strict feasibility fails. That is, when strict feasibility fails for F , the matrix AD∗AT is more
ill-conditioned and it is difficult to obtain search directions of high accuracy. We also observe that
facially reduced instances yield smaller condition numbers near optima. We note that the instances
(P(A,b,c)) and (P(AFR,bFR,cFR)) are equivalent.

24

10
0

10
2

10
4

10
6

10
8

10
10

0

0.2

0.4

0.6

0.8

1

Figure 4.1: Performance profile on κ
(
ADAT

)
with(out) strict feasibility near optimum; various

solvers

4.1.3 Stopping Criteria

We now use the three solvers to observe the accuracy of the first-order optimality conditions (KKT
conditions) and the running times, for the instances (P(A,b,c)) and (P(AFR,bFR,cFR)), see Table 4.1.
We test the average performance of 10 instances of the size (n,m, r) = (3000, 500, 2000). The
headers used in Table 4.1 provide the following. Given solver outputs (x∗, y∗, s∗), the header
‘KKT’ exhibits the average of the triple consisting of the primal feasibility, dual feasibility and
complementarity;

KKT =

(
‖Ax∗ − b‖

1 + ‖b‖
,
‖AT y∗ + s∗ − c‖

1 + ‖c‖
,
〈x∗, s∗〉
n

)
.

The headers ‘iter’ and ‘time’ in Table 4.1 refer to the average of the number of iterations and the
running time in seconds, respectively.

Non-Facially Reduced System Facially Reduced System

linprog
KKT (2.44e-15, 2.05e-12, 3.18e-09) (5.85e-16, 4.74e-16, 9.22e-09)
iter 22.30 17.90
time 2.34 0.81

SDPT3
KKT (8.11e-10, 7.55e-12, 5.65e-02) (1.43e-11, 3.67e-16, 4.38e-06)
iter 25.50 19.30
time 1.73 0.70

mosek
KKT (7.52e-09, 1.80e-15, 3.27e-06) (3.85e-09, 3.69e-16, 1.19e-06)
iter 40.30 10.20
time 1.40 0.35

Table 4.1: Average of KKT conditions, iterations and time of (non)-facially reduced problems

From Table 4.1 we observe that facially reduced instances provide significant improvement in
first-order optimality conditions, the number of iterations and the running times for all solvers
in general. We note that the instances (P(A,b,c)) and (P(AFR,bFR,cFR)) are equivalent. Hence, our
empirics show that performing facial reduction as a preprocessing step not only improves the solver
running time but also the quality of solutions.

25

4.1.4 Distance to Infeasibility

In this section we present empirics that illustrate the impact of perturbations of the right-hand-
side b when strict feasibility fails. We recall, from Proposition 3.16, that there exists an arbitrarily
small perturbation of the right-hand-side vector b of F that renders the set F infeasible, i.e.,
dist(b,F = ∅) = 0. Moreover, the vector ∆b = y that satisfies the auxiliary system (2.3) is a
perturbation that makes the set F empty; see (3.9).

We follow the steps in Section 4.1.1 to generate instances of the order (n,m) = (1000, 200) and
r = relint(F) = 900. The objective function cTx is chosen as presented in Section 4.1.1. For the
fixed (n,m, r), we generate 10 instances and observe the average performance of these instances as
we gradually increase the magnitude of the perturbation. We recall the matrix AV from (2.5). We
use two types of perturbations for b;

∆b, where ∆b ∈ range(AV)⊥, ∆b̄, where ∆b̄ ∈ range(AV).

We choose ∆b to be the vector y that satisfies (2.3). For ∆b̄, we choose AV d, where d ∈ Rr is a
randomly chosen vector. As we increase ε > 0, we observe the performance of the two families of
the systems

Ax = bε := b− ε∆b and Ax = b̄ε := b− ε∆b̄.

We use the interior point method from MATLAB’s linprog for the test. Figure 4.2 contains the
average of the first-order optimality conditions evaluated at the solver outputs (x∗, y∗, s∗) of these
instances; primal feasibility, dual feasibility and the complementarity.

10
-14

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

Figure 4.2: Changes in the first-order optimality condition as the perturbation of b increases

The horizontal axis of Figure 4.2 indicates the degree of the perturbation imposed on the right-
hand-side vector b, ε‖∆b‖ and ε‖∆b̄‖. The vertical axis indicates the individual component of the
first-order optimality. From Figure 4.2, we observe that the KKT conditions with the perturbation
∆b̄ display a steady performance regardless of the perturbation degree; see the markers ◦,�,4
with the dotted lines. In contrast, the markers •,�,N in Figure 4.2 exhibit the performance of the
instances that are perturbed with ∆b and they display a different performance. In particular, we
see that the relative primal feasibility ‖Ax∗ − bε‖/(1 + ‖bε‖), marked with •, consistently increases
as the perturbation magnitude ε‖∆b‖ increases when strict feasibility fails for F .

26

4.1.5 Empirics on Singular Values and IPS

We partition the matrix A =

[
Pm̄AV AI0
RAV RI0

]
, where AI0 corresponds to the submatrix of A associ-

ated with the index set I0. The submatrix
[
RAV RI0

]
refers to the rows of A that are implicitly

redundant due the lack of strict feasibility. Let Dc = Diag(xc) Diag(sc)
−1, where xc and sc are

the current primal-dual iterates. The ill-conditioning of the matrix ADcA
T under the degeneracy

is discussed in [32] in terms of the lack of nice positives of the diagonal Dc. The lack of strict
feasibility also gives rise to this phenomenon in the sense that all the BFSs are degenerate and the
relative interior of the optimal face may fail to produce nice positives on the diagonal Dc near the
optima. In this section we argue that, under the lack of strict feasibility, the ill-conditioning of the
matrix ADcA

T not only originates form Dc but also originates from the rows of A. We relate this
argument with IPS (see Definition 2.5) and present our numerical experiment. That is, a large IPS
is a good indicator for ill-conditioning in the sense that it provides a lower bound to the number
of implicit redundant constraints.

Let x∗ be an optimal solution and let D∗ be diagonal matrix defined in (4.1). As xc → x∗,
i.e., as the iterates get closer to the feasible set F when an infeasible start interior point method is
used, we observe the behaviour ADcA

T → AD∗AT below:

ADcA
T =

[
Pm̄AV AI0
RAV RI0

]
Diag(xc) Diag(sc)

−1

[
Pm̄AV AI0
RAV RI0

]T
→ AD∗AT =

[
Pm̄AV AI0
RAV RI0

] [
D∗AV 0

0 0

] [
Pm̄AV AI0
RAV RI0

]T
=

[
(Pm̄AV)D∗AV (Pm̄AV)T (Pm̄AV)D∗AVR

T
AV

RAVD
∗
AV (Pm̄AV)T RAVD

∗
AVR

T
AV

]
.

We recall from Lemma 2.3 that the rows of RAV are linear combination of the rows of Pm̄AV .
Therefore, AD∗AT is ill-conditioned if strict feasibility fails. If RAV contains many rows, AD∗AT

has many ‘0’ singular values.

We generated instances with different settings for IPS = 1, 5 and 10. We recall the generation
for the vector y and A2 in Section 4.1.1. For generating and instance with IPS > 1, we generated
Yc = blkdiag(y1, . . . , yIPS) ∈ Rm×IPS and A2 = blkdiag(A1

2, . . . , A
IPS
2) of appropriate dimension in

order to produce the exposing vector AT2
∑IPS

j=1 Yc(:, j) ≥ 0. Each column of Yc serves as a vector
satisfying (2.3).

HAESOL ♥ perhaps better to use maxSD than IPS

Let σmax(AD∗AT) be the maximum singular value of AD∗AT . We count the number of singular
values of AD∗AT that are smaller than 10−8 · σmax(AD∗AT). In Table 4.2 below, we report the
cardinality of

Σ0 := {i : σi(AD
∗AT) < σmax(AD∗AT)}.

We test the average performance on the 20 instances of the fixed size (n,m, r) = (3000, 500, 2000).
We display the average number of |Σ0|. We see from Table 4.2 a larger IPS value produces a greater
number of small singular values. When there is a significant number of redundant constraints, it is
more difficult to obtain a good search direction due to a large number of relatively small singular
values.

27

ips = 1 ips = 5 ips = 10
linprog |Σ0| 4.10 8.65 13.10
SDPT3 |Σ0| 4.75 8.00 34.65
MOSEK |Σ0| 6.45 12.35 14.50

Table 4.2: # (rel.) small singular values of AD∗AT near optimum; average over 20 instances

4.2 Empirics with Simplex Method

In this section we compare the behaviour of the dual simplex method with instances that have
strictly feasible points and instances that do not. We also observe the degeneracy issues that arise
in the instances from NETLIB.

4.2.1 Generating Dual LPs without Strict Feasibility

We first show how to generate an instance for the dual feasible set G that fails strict feasibility. The
construction is similar to the one in Section 4.1.1. We generate a degenerate problem by finding a
feasible auxiliary system (3.13). Given m,n, r ∈ N, we construct A ∈ Rm×n and c ∈ Rn that satisfy
(3.13) with dim(relint(G)) = m+ r.

1. Pick any 0 6= w ∈ Rn+ with | supp(w)| = n− r. Let

{w}⊥ = span{ai}n−1
i=1

(
= null(wT)

)
.

We let the rows of the matrix A ∈ Rm×n consist of a random linear combination of the row
vectors in the set {aTi }

n−1
i=1 . We note that Aw = 0.

2. Pick s ∈ Rn+ so that

si =

{
0 if i ∈ supp(w)
positive if i /∈ supp(w).

We note that 〈w, s〉 = 0 holds.

3. Pick y ∈ Rm and set c = AT y + s. We note that 〈c, w〉 = 0 holds.

For the empirics, we construct the objective function bT y of (D) by choosing a vector x̂ ∈ Rn++ and
setting b = Ax̂.

4.2.2 Empirics on the Number of Degenerate Iterations

In this section we test how the lack of strict feasibility affects the performance of the dual simplex
method. We choose MOSEK for our tests since MOSEK reports the percentage of degenerate
iterations as a part of the solver report. MOSEK reports the quantity ‘DEGITER(%)’, the ratio
of degenerate iterations.

Given a set G and a point (y, s) ∈ relint(G) ⊆ Rm ⊕Rn+, let r be the number of positive entries
of s, i.e., r = | supp(s)|. In our tests, we gradually increase r for fixed n,m and generate instances
for G as described in Section 4.2.1. We then observe the behaviour of the dual simplex method.
Table 4.3 contains the results. In Table 4.3, a smaller value for the header (r/n)% means that
there are more entries of s that are identically 0 in the set G; and the value 0% means that strict

28

https://www.netlib.org/lp/

100%− (r/n)%
40 30 20 10 0

(n,m)

(1000, 250) 36.62 10.18 0.01 0.02 0.00
(2000, 500) 39.72 18.28 0.07 0.15 0.01
(3000, 750) 25.99 10.66 0.32 0.75 0.02
(4000, 1000) 29.78 18.25 0.25 0.53 0.02

Table 4.3: Average of the ratio of degenerate iterations

feasibility holds. For each triple (n,m, r), we generated 10 instances and we report the average of
‘DEGITER(%)’ of these instances.

We recall Theorem 3.1: lack of strict feasibility implies that all basic feasible solutions are
degenerate. However, we observe more, i.e., from Table 4.3, the frequency of degenerate iterations
increases as r decreases. In other words, higher degeneracy of the set G yields more degenerate
iterations when the dual simplex method is used.

4.2.3 NETLIB Problems; Perturbations; Stability

We now illustrate the lack of strict feasibility on instances in the NETLIB data set. We used the
following first 20 instances that are in standard form at this link:

25fv47 adlittle afiro agg agg2 agg3 bandm beaconfd blend bnl1
bnl2 brandy d2q06c degen2 degen3 e226 fffff800 israel lotfi maros r7

We removed redundant rows to guarantee full row rank of A.

Surprisingly, the Slater condition fails for 14 out of these 20 instances.13 This has interesting
implications for both the interior point and simplex methods. The standard interior point method
stopping criteria becomes complicated by the unbounded dual optimal set. For the primal simplex
method, every iteration will always visit degenerate BFSs. Therefore preprocessing to eliminate
the variables fixed at 0 is important. In addition, in order to motivate robust optimization, it is
shown in e.g., [3,4] that optimal solutions of many of the NETLIB instances are extremely sensitive
to perturbations in the data. We now see this to be the case, and we show that FR regularizes the
problem and avoids this instability.

We first use the instance degen3 in order to illustrate the consequence of lack of strict feasibility.
The data matrix A after removing two redundant rows is 1501-by-2604. After FR, we obtain the
constraint matrix Pm̄AV of size 1226-by-1648. This implies that 2604 − 1648 = 956 number of
variables are identically 0 on the feasible set. Furthermore, IPS(F) = 275 equality constraints are
implicitly redundant. By Item 3 of Corollary 3.11, without FR, the degree of degeneracy of every
BFS is at least 275. Namely, the length of the basis is 1501 and every basis contains at least 275
degenerate indices.

We now illustrate that FR gives a more robust model with respect to data perturbations using
the instance brandy. Let (A, b) be the data after removing the redundant equalities constraints.
Let (Pm̄AV,Pm̄b) be the data for the facially reduced system. The data matrices A and Pm̄AV
have the sizes 193-by-303 and 155-by-260, respectively14. Set the perturbation scalars εA = εb =

13The instances 25fv47, afiro, blend, israel, lotfi and maros r7 have strictly feasible points.
14This also means that, without FR, every BFShas at least 38 degenerate basic variables. At least 19.69 percent

of basic variables are always degenerate.

29

https://www.netlib.org/lp/
http://users.clas.ufl.edu/hager/coap/format.html

10−9. We construct a random perturbation matrix Φ, ‖Φ‖F = ‖A‖F + 1, and random perturbation
vector φ, ‖φ‖2 = ‖b‖2 + 1. We then solve the problem

p̃∗ = max{〈c, x〉 : (A+ εAΦ)x = b+ εbφ, x ≥ 0}.

For the facially reduced system, we used the identical perturbation data Φ, φ and discard the
rows and columns of (A, b) found from FR. That is, we use the perturbations Pm̄ΦV and Pm̄φ to
the facially reduced system after the scaling ‖Pm̄ΦV ‖F = ‖Pm̄AV ‖F +1 and ‖Pm̄φ‖2 = ‖Pm̄b‖2 +1.
We then solve

max{〈V T c, v〉 : (Pm̄AV + εAPm̄ΦV)v = Pm̄b+ εbPm̄φ, v ≥ 0}.

In this way, we maintain the identical perturbation structure for the original system and the facially
reduced system. We also generate a transportation problem and use the aforementioned pertur-
bations. We note that the transportation problems have Slater points but are known to be highly
degenerate. The size of the data generated is 49-by-600.

In the experiment, we tested the instances using 100 different perturbation settings. We ran-
domly generated perturbations Φ, φ with the density set at 0.1. We used MOSEK simplex with
the setting ‘MSK OPTIMIZER FREE SIMPLEX’. In Table 4.4, the headers εA and εb refer to
the scalars used for perturbations as described above. The headers (A, b), (Pm̄AV,Pm̄b) and
(Atrans, btrans) refer to the non-facially reduced system, the facially reduced system and the trans-
portation problems, with the perturbations. The integral values in the table indicate the number of
times that the solver outputs PRIMAL AND DUAL FEASIBLE. Let p∗ be the optimal value for
the unperturbed instance brandy, and let p̃∗ be the optimal value of a perturbed instance of brandy.
The non-integral values in the table indicate the average relative difference in the optimal values
between p∗ and p̃∗. The relative difference is computed using the formula |p∗−p̃∗|

2|p∗+p̃∗| . For example,
the first entry 11 in Table 4.4 means that 100−11 out of 100 perturbed instances yield infeasibility
or unknown status, i.e., only 11 solved successfully. The entry 4.938e-02 next to 11 indicates the
average of |p

∗−p̃∗|
2|p∗+p̃∗| on those 11 instances. We see in column (A, b) and the column (Pm̄AV,Pm̄b) in

εA εb (A, b) (Pm̄AV,Pm̄b) (Atrans, btrans)

1.0e-09 0 (11 , 4.938e-02) (97 , 6.705e-03) 100
0 1.0e-09 (27 , 2.470e-10) (100 , 2.208e-10) 100

1.0e-09 1.0e-09 (11 , 1.339e-01) (96 , 8.719e-03) 100

Table 4.4: Number of successful results out of 100 perturbed instances using simplex method on
the instance brandy and transportation problem

Table 4.4, that the facially reduced problems are more immune to data perturbations; the number
of successfully solved perturbed instances are significantly larger and the optimal values under the
perturbations are less influenced. The last column indicates that although the instance may have
many degenerate BFSs, having a strictly feasible point is important in terms of perturbations in
data, i.e., this emphasizes the difference between the two types of degeneracy.

5 Conclusion

We have addressed the impact, for both theoretical and computational reasons, of loss of strict
feasibility in LP, one type of degeneracy at a BFS. For our numerics we illustrated this using the
accuracy of optimality conditions as well as the effect of perturbations, for the two most popular

30

classes of algorithms, i.e., simplex and interior point methods. For the theory, we proved, using
the two-step facial reduction, that if strict feasibility fails for a linear program, then every BFS is
degenerate. In addition, we showed that facial reduction can be implemented efficiently to obtain a
smaller simpler problem with strict feasibility, and that this improves stability. This was illustrated
on random problems, as well as instances from the NETLIB data set.

An essential step for almost all algorithms for linear programming is preprocessing. One part
of preprocessing is identifying fixed variables. However, identifying variables fixed at 0, facial
reduction, has not been done due to expense and accuracy problems. In this paper we have
shown that not eliminating these variables, i.e., lack of strict feasibility, is equivalent to implicit
singularity and this helps explain the numerical difficulties that arise. We have further provided an
efficient preprocessing step for facial reduction, i.e., we continue on phase I of the simplex method
that eliminates all the artificial variables, and eliminate the variables fixed at 0. We observed
that a variable that is basic (positive) in every BFS corresponds to a redundant constraints and,
by complementary slackness, corresponds to a variable fixed at 0 in the dual. And redundant
constraints have been shown in the literature to poorly affect algorithms [18]. Moreover, identifying
redundant constraints is a nontrivial operation e.g., [10]. This motivates doing FR on both the
primal and the dual problems. (It is still unclear whether or not we have to repeat FR on the
primal again.)

We have presented various numerical experiments that convey the importance of preprocessing
for strict feasibility for linear programs, Section 4. For interior point methods, we illustrated
the importance of strict feasibility using condition numbers and relationships with nearness to
infeasibility. We also shed light on the main difficulties that arose with the implicit redundant
constraints and used the QR decomposition to show how these difficulties come into play. This
also relates to the implicit problem singularity, IPS. A larger IPS means that there is a higher
chance of inducing an infeasible problem under perturbations. A large number of degenerate BFSs
is believed to cause difficulties for the simplex method. We have shown that the settings for having
many identically 0 variables in the dual program yield many degenerate iterations. We also have
shown that many NETLIB instances fail strict feasibility and used selected instances to show the
effect of this degeneracy. Moreover, the facially reduced problems are seen to be more robust with
respect to data perturbations. This further emphasizes that ensuring strict feasibility should be
part of preprocessing for linear programming.

Our results can easily extend to other forms of LPs and to more general problems where
degeneracies arise, such as the active set method for quadratic programs [23,48]. We are currently
extending the efficient FR technique to semidefinite programs.

Acknowledgements

This research is supported by the National Sciences and Engineering Research Council (NSERC)
of Canada, Grant # No. 50503-10827.

31

https://link.springer.com/chapter/10.1007/978-1-4615-6103-3_13

Index

(P), 4
A(:, I), submatrix of A with columns in I, 4
I, the identity matrix, 7
Pm̄ : Rm → Rm̄, 7
Pm̄AV , 7, 10, 27, 29
Pm̄b, 7, 10, 27, 29
Σ0 := {i : σi(AD

∗AT) < σmax(AD∗AT)}, 27
m̄ = rank(AV), 7
dist(b,F = ∅), distance to infeasibility, 18
IPS, 12
IPS(S) = m −mr, implicit problem singularity,

7
〈·, ·〉, inner product, 4
Rm×n, real vector space of m-by-n matrices, 4
Rn+, nonnegative orthant, 4
Rn++, positive orthant, 4
maxSD, 12
maxSD(S), largest number nontrivial facial re-

duction steps, 7
relint, relative interior, 4, 20
SD(S), singularity degree, 7
supp, 4
supp, support, 9
{1, . . . , n}, 5
p∗, 4
sw, support of exposing vector for G, 22
sz, support of exposing vector for F , 6
B0, 15
C(·), condition measure, 20
F , feasible region, 4
G, dual feasible set, 21
I+ = {1, . . . , n}\I0, 5
I0 := {i : xi = 0, ∀x ∈ F}, 5
I0, 12, 15
I++ = {i : xi > 0,∀x ∈ F}, 5
(D), dual of (P), 20, 21
BFS , basic feasible solution, 5
FR, facial reduction, 3
LP, linear program, 3

basic feasible solution, BFS , 5
basic solution, 22

condition measure, C(·), 20

degenerate, 22
degenerate BFS , 5
degree of degeneracy, 12, 18, 29

distance to infeasibility, 7, 18
distance to infeasibility, dist(b,F = ∅), 18
dual feasible set, G, 21
dual of (P), (D), 20, 21

exposing vector, 6
extreme point, 10

face, 6, 10
facial range vector, 6
facial reduction, FR, 4, 6
feasible region, F , 4
fixed at 0, 5, 6

implicit problem singularity, IPS(S) = m −mr,
7

largest number nontrivial facial reduction steps,
maxSD(S), 7

linear program, LP, 3
linprog, 23

Mangasarian-Fromovitz, 3
max-singularity degree, 7
minimal face, 6
MOSEK, 23

nondegenerate BFS , 5
nonnegative orthant, Rn+, 4

performance profile, 24
positive orthant, Rn++, 4

real vector space of m-by-n matrices, Rm×n, 4
relative interior, relint, 4, 20

SDPT3, 23
singularity degree, SD(S), 7
Slater condition, 3
stalling, 3
support of exposing vector for F , sz, 6
support of exposing vector for G, sw, 22
support, supp, 9

32

References

[1] E.D. Andersen. Finding all linearly dependent rows in large-scale linear programming. Opti-
mization methods & software, 6(3):219–227, 1995. 8

[2] E.D. Andersen and K.D. Andersen. Presolving in linear programming. Math. Program.,
71(2):221–245, 1995. 5, 8

[3] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust optimization. Princeton Series in Applied
Mathematics. Princeton University Press, Princeton, NJ, 2009. 29

[4] A. Ben-Tal and A. Nemirovski. Robust solutions of uncertain linear programs. Oper. Res.
Lett., 25(1):1–13, 1999. 29

[5] D. Bertsimas and J. Tsitsiklis. Introduction to Linear Optimization. Athena Scientific, Bel-
mont, MA, 1997. 22

[6] R.E. Bixby. Solving real-world linear programs: a decade and more of progress. Oper. Res.,
50(1):3–15, 2002. 50th anniversary issue of Operations Research. 3

[7] R.G. Bland. New finite pivoting rules for the simplex method. Math. Oper. Res., 2(2):103–107,
1977. 3

[8] J.M. Borwein and H. Wolkowicz. Facial reduction for a cone-convex programming problem.
J. Austral. Math. Soc. Ser. A, 30(3):369–380, 1980/81. 6

[9] J.M. Borwein and H. Wolkowicz. Regularizing the abstract convex program. J. Math. Anal.
Appl., 83(2):495–530, 1981. 6

[10] R.J. Caron, A. Boneh, and S. Boneh. Redundancy. In Advances in sensitivity analysis and
parametric programming, volume 6 of Internat. Ser. Oper. Res. Management Sci., pages 13.1–
13.41. Kluwer Acad. Publ., Boston, MA, 1997. 31

[11] R. Chandrasekaran, Santosh N. Kabadi, and Katta G. Murty. Some NP-complete problems in
linear programming. Oper. Res. Lett., 1(3):101–104, 1981/82. 13

[12] A. Charnes. Optimality and degeneracy in linear programming. Econometrica, 20:160–170,
1952. 3

[13] Y.-L. Cheung. Preprocessing and Reduction for Semidefinite Programming via Facial Reduc-
tion: Theory and Practice. PhD thesis, University of Waterloo, 2013. 22

[14] Y-L. Cheung, S. Schurr, and H. Wolkowicz. Preprocessing and regularization for degenerate
semidefinite programs. In D.H. Bailey, H.H. Bauschke, P. Borwein, F. Garvan, M. Thera,
J. Vanderwerff, and H. Wolkowicz, editors, Computational and Analytical Mathematics, In
Honor of Jonathan Borwein’s 60th Birthday, volume 50 of Springer Proceedings in Mathematics
& Statistics, pages 225–276. Springer, 2013. 7

[15] V. Chvátal. Linear programming. A Series of Books in the Mathematical Sciences. W. H.
Freeman and Company, New York, 1983. 8

[16] G.B. Dantzig. Linear Programming and Extensions. Princeton University Press, Princeton,
New Jersey, 1963. 3

[17] G.B. Dantzig, A. Orden, and P. Wolfe. The generalized simplex method for minimizing a
linear form under linear inequality restraints. Pacific J. Math., 5:183–195, 1955. 3

33

[18] A. Deza, E. Nematollahi, R. Peyghami, and T. Terlaky. The central path visits all the vertices
of the Klee-Minty cube. Optim. Methods Softw., 21(5):851–865, 2006. 5, 31

[19] A. Deza, E. Nematollahi, and T. Terlaky. How good are interior point methods? Klee-Minty
cubes tighten iteration-complexity bounds. Math. Program., 113(1, Ser. A):1–14, 2008. 5

[20] E.D. Dolan and J.J. Moré. Benchmarking optimization software with performance profiles.
Math. Program., 91(2, Ser. A):201–213, 2002. 24

[21] D. Drusvyatskiy, G. Li, and H. Wolkowicz. A note on alternating projections for ill-posed
semidefinite feasibility problems. Math. Program., 162(1-2, Ser. A):537–548, 2017. 7

[22] D. Drusvyatskiy and H. Wolkowicz. The many faces of degeneracy in conic optimization.
Foundations and Trends® in Optimization, 3(2):77–170, 2017. 6, 7, 10, 20

[23] A. Forsgren, P.E. Gill, and E. Wong. Primal and dual active-set methods for convex quadratic
programming. Mathematical programming, 159(1-2):469–508, 2015. 31

[24] R.M. Freund and F. Ordonez. On an extension of condition number theory to nonconic convex
optimization. Mathematics of operations research, 30(1):173–194, 2005. 18, 20

[25] R.M. Freund and J.R. Vera. Some characterizations and properties of the “distance to ill-
posedness” and the condition measure of a conic linear system. Technical report, MIT, Cam-
bridge, MA, 1997. 18, 20

[26] T. Gal, editor. Degeneracy in optimization problems. Baltzer Science Publishers BV, Bussum,
1993. Ann. Oper. Res. 46/47 (1993), no. 1-4. 3

[27] J. Gauvin. A necessary and sufficient regularity condition to have bounded multipliers in
nonconvex programming. Mathematical programming, 12(1):136–138, 1977. 20

[28] A.J. Goldman and A.W. Tucker. Theory of linear programming. In Linear inequalities and
related systems, pages 53–97. Princeton University Press, Princeton, N.J., 1956. Annals of
Mathematics Studies, no. 38. 3, 21

[29] J. Gondzio. Presolve analysis of linear programs prior to applying an interior point method.
INFORMS J. Comput., 9(1):73–91, 1997. 8

[30] M. Gonzalez-Lima, H. Wei, and H. Wolkowicz. A stable primal-dual approach for linear
programming under nondegeneracy assumptions. Comput. Optim. Appl., 44(2):213–247, 2009.
3

[31] N. Gould and J. Scott. A note on performance profiles for benchmarking software. ACM
transactions on mathematical software, 43(2):1–5, 2016. 24

[32] O. Güler, D. Den Hertog, C. Roos, T. Terlaky, and T. Tsuchiya. Degeneracy in interior
point methods for linear programming: a survey. Ann. Oper. Res., 46/47(1-4):107–138, 1993.
Degeneracy in optimization problems. 3, 23, 27

[33] X. Huang. Preprocessing and postprocessing in linear optimization. Master’s thesis, McMaster
University, 2004. 5, 8

[34] J. Im and H. Wolkowicz. A strengthened Barvinok-Pataki bound on SDP rank. Oper. Res.
Lett., 49(6):837–841, 2021. 11 pages, accepted Aug. 2021. 6, 7, 10

[35] O. L. Mangasarian and S. Fromovitz. The Fritz John necessary optimality conditions in the
presence of equality and inequality constraints. J. Math. Anal. Appl., 17:37–47, 1967. 3

34

[36] N. Megiddo. A note on degeneracy in linear programming. Math. Programming, 35(3):365–367,
1986. 3

[37] C. Mészáros and U.H. Suhl. Advanced preprocessing techniques for linear and quadratic
programming. OR Spectrum, 25:575–595, 2003. 10.1007/s00291-003-0130-x. 8

[38] G. Pataki. On the rank of extreme matrices in semidefinite programs and the multiplicity of
optimal eigenvalues. Math. Oper. Res., 23(2):339–358, 1998. 9

[39] F.N. Permenter. Reduction methods in semidefinite and conic optimization. PhD thesis, Mas-
sachusetts Institute of Technology, 2017. 6, 10

[40] D.W. Peterson. A review of constraint qualifications in finite-dimensional spaces. SIAM Rev.,
15:639–654, 1973. 11

[41] J. Renegar. Some perturbation theory for linear programming. Math. Programming, 65(1, Ser.
A):73–91, 1994. 18

[42] J. Renegar. Incorporating condition measures into the complexity theory of linear program-
ming. SIAM J. Optim., 5(3):506–524, 1995. 20

[43] D. M. Ryan and M. R. Osborne. On the solution of highly degenerate linear programmes.
Math. Program., 41:385–392, 1988. 3

[44] S. Sremac. Error bounds and singularity degree in semidefinite programming. PhD thesis,
University of Waterloo, 2019. 6, 7, 10

[45] S. Sremac, H.J. Woerdeman, and H. Wolkowicz. Error bounds and singularity degree in
semidefinite programming. SIAM J. Optim., 31(1):812–836, 2021. 7

[46] J.F. Sturm. Error bounds for linear matrix inequalities. SIAM J. Optim., 10(4):1228–1248
(electronic), 2000. 7

[47] T. Terlaky and S.Z. Zhang. Pivot rules for linear programming: a survey on recent theoret-
ical developments. Ann. Oper. Res., 46/47(1-4):203–233, 1993. Degeneracy in optimization
problems. 3

[48] P. Wolfe. The simplex method for quadratic programming. Econometrica, 27(3):382–398,
1959. 31

[49] S. Wright. Primal-Dual Interior-Point Methods. Society for Industrial and Applied Mathe-
matics (SIAM), Philadelphia, Pa, 1996. 17, 20, 22

35

	Introduction
	Contributions and Outline

	Preliminaries
	Background and Notation
	Degeneracy in LP

	Facial Reduction
	Preprocessing in LP

	Main Result and Consequences
	Lack of Strict Feasibility and Relations to Degeneracy
	An Algebraic Proof of thm:LPdegen via the Definition of BFS
	A Geometric Proof Using Extreme Points
	Immediate Consequences of Main Result

	Efficient Preprocessing for Facial Reduction and Strict Feasibility
	Towards a Strictly Feasible Point from a Nondegenerate BFS
	Towards an Exposing Vector; Phase I Part B and Strict Feasibility Testing

	Discussions
	Distance to Infeasibility
	Applications to Known Characterizations for Strict Feasibility
	Applications to Obtain a Strictly Complementary Primal-Dual Solution
	Lack of Strict Feasibility in the Dual
	Lack of Strict Feasibility and Interior Point Methods

	Numerics
	Empirics with Interior Point Methods
	Generating LPs without Strict Feasibility
	Condition Numbers
	Stopping Criteria
	Distance to Infeasibility
	Empirics on Singular Values and `39`42`"613A``45`47`"603AIPS

	Empirics with Simplex Method
	Generating Dual LPs without Strict Feasibility
	Empirics on the Number of Degenerate Iterations
	NETLIB Problems; Perturbations; Stability

	Conclusion
	Index
	References

