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EXPONENTIAL NONNEGATIVITY ON THE ICE CREAM CONE*
RONALD J. STERNt AND HENRY WOLKOWICZ$

Abstract. Let K, denote the n-dimensional ice cream cone. This paper investigates the structure of those
matrices 4 such that e K, c K, for all f 2 0. The characterizations extend 1o general ellipsoidal cones.
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1. Introduction. A set C = R" is a cone provided that aC < C for all a = 0. We
call a cone C proper provided that it is closed, convex, possesses nonempty interior, and
is pointed (C N {—C} = {0}). Given a proper cone C c R", we denote by p(C) the
set of matrices 4 € R™" which are exponentially nonnegative on C; that is, ¢/C < C for
all 1 2 0, where e“ = T2 (14)//! is the familiar matrix exponential. Hence p(C) is
-the set of matrices A such that for an arbitrary start point x(0) € C, the solution x(¢) =
€“x(0) of the linear differential equation x(7) = Ax(?) remains in C for all future time.

The purpose of this paper is to investigate the structure of the set of matrices
p(K,), where

n-1
K,,=[xeR": > x?sx?, x,,ZO]

i=1

is the n-dimensional ice cream cone. It will be seen that our results can be extended to
general ellipsoidal cones.

In the following section, we review some required technical material on ellipsoidal
cones. Then, in § 3, the main results are presented. A key result which we employ is a
lemma on copositivity for the ice cream cone X, due to Loewy and Schneider [3]. To
a certain extent our results complement some of those in [3], which provided charac-
terizations of those matrices which leave X, invariant.

2. Ellipsoidal cones. Let Q < R™" be a symmetric nonsingular matrix, with a single
negative eigenvalue \,. Therefore Q has inertia (n ~ 1, 0, 1), where by inertia we mean
the triple (P, Z, N), indicating the number of positive, zero, and negative eigenvalues,
respectively. Let u, be a unit eigenvector of Q corresponding to A,. With Q we associate
two ellipsoidal cones; these are

2.1 K=K(Q,us)= {x€R": x'Ox=0, x'u,20}

and —K = K(Q, —u,). In the sequel we will employ the fact that ateach 0 ¥ xe dK =
{xeK: x'Ox = 0}, the vector Ox is an outward pointing normal at x (where d denotes

boundary).
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Clearly, KX, is an ellipsoidal cone with

e | Dl O -
Q"Ql"‘( 0 :-l ) md Uy =y

where I, denotes the (n — 1) X (n — 1) identity matrix. Also, we denote the kth unit
vector by e;. ' . '
We shall require the following lemma from [5], which says that in formula (2.1)
we may replace the eigenvector u, with vectors v satisfying certain requirements (which
are met by u, itself).
LEMMA 2.2. Suppose that K is as above and assume that v € R" satisfies

(2.3) {v}*N{K U{-K}}={0}
and

(24) vVu,=0.

Then

2.5) K={xeR": x'Ox=0, x'vZ0}.

Remark 2.6. In view of the fact that the orthogonal complement {u, }* is a hyper-
plane which supports the proper cones K and — K only at the origin, it follows from the
preceding lemma that if v is a vector whose distance from u, is sufficiently small, then
(2.5) holds.

For Q as above, let the spectrum be {A;, Ay, *-, My} where A, 2 M & -+ &
An—1 > 0 > A,, and let the orthogonal diagonalization of Q be given by U'QU =
diag (A, Az, **  , A,). The following lemma will also prove to be useful. Its proof, which
employs Sylvester’s theorem, may be found in [5].

LEMMA 2.7. K is an ellipsoidal cone as in (2.1) if and only if K = TK, for some
nonsingular T € R™",

In particular, for a given ellipsoidal cone K = K(Q, u,), we have K = TK, for T =
UD, where D is the diagonal matrix with entries d; = |A;|™"%,i=1,2, ---, n, and
then Q = (T ')'Q,T"'. Conversely, for a given nonsingular T € R™", the matrix
(T"")'Q.T ! hasinertia (n — 1,0, 1) and TK, = K((T~")'Q,T, (T ") en).

3. Mainresults. To begin, we require the following lemma, in which (-, - ) denotes
the standard inner product on R".
LEMMA 3.1. Let K be an ellipsoidal cone as in (2.1). Then

(3.2) p(K)={A€R™": ({Ax,0x) =0 for all xedK}.

Proof. Since Qx is the unique outward pointing normal vector (up to scalar mul-
tiples) to K at any nonzero x € 6K, then the condition that {A4x, Qx) = 0, for all such
x, is, in the terminology of Schneider and Vidyasagar [4], cross-positivity of A on K,
which was shown in [4] to be equivalent to exponential nonnegativity. O

We now turn our attention to the problem of characterizing p(K,). We will make
use of the following copositivity result from Loewy and Schneider [3].

LEMMA 3.3 [3, Lemma 2.2]). Let W € R™" be symmetric. Then there exists u & 0
such that W — uQ, is negative semidefinite if and only if

(3.4) xeK,=x'Wx=0.
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Our main characterization of p(KX,) is given next.
THEOREM 3.5. A necessary and sufficient condition for A € p(K,) is that there exists
£ € R such that .

(3~6) QnA+A'Qn_EQn§09

where “<” means negative semidefinite.
Proof. Let us denote

W(Qhn, A):= QA+ A'Q,.

Upon symmetrizing the quadratic form {A4x, Qx), it follows that 4 € p(X,) if and
only if

(3.7) x€dK,= x'W((0,,A)x20.
Since x'Q,x = 0 for all x € K,,, we have that (3.7) is equivalent to
(3.8) x€0K,= xW(Qn, A+vI)x=0

for any given v € R. Since
(3.9) W(Qn, A+vI)=W(Qu, A)+2vQ0,

we may choose v large enough to ensure that W(Q,, 4 + +I) has inertia (n — 1,0, 1).
For such #, consider the ellipsoidal cone

C(y):={x€R": x'W(Q,, A+yI)x=0, x'u,(v)20},

where u,(v) is a unit eigenvector of W(Q,, 4 + vI) corresponding to its only negative
eigenvalue. Since ¥ may be chosen so large that () approximates e, to any prescribed
tolerance, Remark 2.6 tells us that for sufficiently large v we have

(3.10) C(y)={x€R": x'W(Qy,A+7vI)x=0, x'e,20}.
Hence (3.8) implies that 4 € p(K,) if and only if for all v sufficiently large we have
(3.11) 0K, < C(v).

Since C(v) is an ellipsoidal and therefore convex cone for large 7, it follows that for
such v, (3.11) is equivalent to

(3.12) Kac C(v).

Therefore, Lemma 3.3 implies that 4 € p(X,) if and only if for each sufficiently large ¥
there exists u, 2 0 such that

(3.13) W(Qn, 4 +vQ)~ 1, Qn=0.

Since A

(3.14) W(Qn, A+v1)— 1y Qn= W(Qn, A)+ (27— p,) O,
the theorem is proven. O

In what follows, we shall partition 4 as

A= ..‘i‘.i._g-- ,
d' | a,.
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where A, denotes the leading (n — 1) X (n — 1) principal submatrix of 4. Then

(3.15) W(Q,, A) = ( ..... d ---,:--.!---.) )

where
g:=c—d,

and therefore

= -‘_4.‘_"::4_'1.:.'5_1::.‘: ........
(3.16) W(Q,, A)- £Q. = ( S v )

We have the following corollary to Theorem 3.5. It provides sufficient conditions
for membership and nonmembership in p(K,).
COROLLARY 3.17. Let A € R™". Then the following hold:

n-1

n—1
(3.18) max l{2011"’ lgl+ 2 |a.j+aji|]§20nn“ 2 l&il =A4ep(K,),

lsisn- itj=1 i=1

n—1 . n—1
(3.19) max [Za.-.-— l&gl—- 2 Iay+aﬁl]>2am.+ > &l = Aep(K,).
Ilsisn-1 ivj=1 i=]
Proof. Theorem 3.5 implies that 4 € p(K,) if and only if there exists ¢ € R such
that the (symmetric) matrix W (Q,, 4) — £Q, has no positive eigenvalues. A straight-
forward application of Gershgorin’s theorem then yields (3.18) and (3.19). O
A different sufficient condition for 4 € p(K,) is provided in the following result. We
shall denote the euclidean norm by || - ||, and the largest eigenvalue of a symmetric matrix

M by A\ (M).
THEOREM 3.20. A sufficient condition for A € p(K,,) is
(3.21) M(Ay+A47)=2(an—llgl).

Proof. Let us write
W(Qn, A)—-£Q,=U(§)+V,
where

Then, since U(¢) and V are symmetric, we have
(3.22) AMUE)+V)SMNUE)+ M (V).

(See, e.g., Wilkinson [6, p. 101].) Therefore, in view of Theorem 3.5, a sufficient condition
for A € p(K,) is the existence of ¢ € R such that

(3.23) MUEN+N V)=S0,

Since A(V) = | g, the existence of such a £ is readily seen to be guaranteed by
(3.21). O
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It is not difficult to construct examples where the sufficient condition (3.21) holds,
but (3.18) fails. The reverse may occur as well, as is evidenced by the matrix

-2 0 2
A= 0 -1 0].
0 00

The next result provides a general necessary condition for 4 € p(K,).
THEOREM 3.24. Let A € p(K,,). Then

(3.25) A(4,+4Y)=2a,,.

Proof. Theorem 3.5 tells us that if A € p(K,), then there exists a real number £
such that all the spectrum of W (Q,, A) — £Q. is nonpositive, which implies that each
principal submatrix has nonpositive spectrum as well. Applying this fact to the principal
submatrices 4, + A} — £I,_, and £ — 2a,, readily yields (3.25). O

Theorems 3.20 and 3.24 immediately yield the following complete characterization
of p(K,) for matrices satisfying a certain “partial symmetry” condition.

COROLLARY 3.26. Let A € R™" be such that a;, = ay forall 1 Sisn—1(ie,
g = 0). Then (3.25) is necessary and sufficient for A € p(K,).

Another general necessary condition is given next.

THEOREM 3.27. Assume that A € p(K,). Let { w1, p2, ** - , ux } be any set of eigen-
values of A (not necessarily distinct), and let { x,, x3, *+ - , X} be a corresponding set of
eigenvectors. Consider the (possibly empty) index sets .

L={i:x]Qwx;>0} and I.={i:x;Q.xi<0}.
Then
(3.28) inf {Re p;:iel_}2sup {Rey;:iel,}

{where sup (&) = —c0 and inf () = oo, & denoting the empty set).
Proof. Since A € p(K,), there exists £ € R such that

(3.29) H():=0,A+A'Q,—£0,=0.
Then
(3.30) x]HE)x=2x7 @uxi(Re p;— £)S0  foralli=1,2, -+ k.

Hence { 2 Re y;foralliel, and £ S Re y, for all i € I, yielding (3.28). O
Our final result provides a characterization of the set of matrices

p(8K,):={AeR™": e"*(8K,)cdK, forall t20}.

Hence p(3K,) is the set of matrices A such that solutions of the linear differential equation
X(1) = Ax(t) with x(0) € 6K, remain in 3K, forall t & 0.

THEOREM 3.31. A necessary and sufficient condition for A € p(dK,) is that A =
B + al, where a € R and '

with B; being an (n — 1) X (n — 1) skew-symmetric matrix.
Proof. The matrix 4 € p(3K,) if and only if the vector field Ax is tangent to the
locally smooth surface 3K,/ {0} ; that is,

(3.32) {Ax,Qx)=0 forall xedkK,.
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This is equivalent to A € p(K,) and —4 € p(K,). Hence in view of Theorem 3.5, (3.32)
is equivalent to the existence of real numbers £, and §; such that

(3.33) W(Qn, A)— 60,50 and W(Q., —A4)—£:0,=0.

But (3.33) implies that £, = — §,and W(Q,, A) = £,Q,. In view of (3.15), the conclusion
of the theorem follows. O ‘

We conclude with some remarks.

Remark 3.34. (i) The proof of Theorem 3.31 shows that p(dK,) is the max-
imal subspace of the closed convex cone p(K,)€ R™". The theorem implies that
dim (p(8K,)) = (n* — n + 2)/2.

(i) It is interesting to note that if A4 satisfies either of the sufficient conditions
(3.18) or (3.21), or if 4 is of the form specified in Theorem 3.31, then 4 must satisfy
the conditions of Elsner [1] for the existence of a proper cone K such that 4 € p(X);
namely, that the spectral abscissa

A(A):=max {Re \: A is an eigenvalue of 4}

is an eigenvalue of 4 and no eigenvalue A of 4 with Re A = A(A4) can have degree
exceeding that of A(4). (By the degree of an ecigenvalue, we mean its degree in the
minimal polynomial.)

(iii) Our results can be extended to general ellipsoidal cones by applying Lemma
2.7. In particular, let K = K(Q, u,) be a given ellipsoidal cone, and let T be a nonsingular
matrix such that K = TK,. (One such T is provided by Lemma 2.7.) Then 4 € p(X) if
and only if 7' 4T € p(K,), and likewise, 4 € p(8K) if and only if T 'AT € p(8K,).

(iv) In view of (3.7), 4 € p(K,) if and only if x' ¥’ (Q,, A)x = 0 for all x € R" such
that x, = 1 and S7-} x? = 1. Hence a necessary and sufficient condition for 4 €

p(K,)is
(3.35) max {y'(4,+A4))y+2y(c—d): lyl =1} =0.

A numerical method for obtaining the maximum in (3.35) may be found, e.g., in Fletcher
[2]. Thus we can computationally check whether 4 € p( K} in cases where our necessary
conditions are met, but sufficiency is not.

Acknowledgments. We are indebted to the referees and A. Berman for detecting
errors in earlier versions of this work.
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