EXPONENTIAL NONNEGATIVITY ON THE ICE CREAM CONE*

RONALD J. STERN† AND HENRY WOLKOWICZI

Abstract. Let K_n denote the *n*-dimensional ice cream cone. This paper investigates the structure of those matrices A such that $e^{tA}K_n \subset K_n$ for all $t \ge 0$. The characterizations extend to general ellipsoidal cones.

Key words. ice cream cone, ellipsoidal cone, matrices, exponential nonnegativity, copositivity, spectrum

AMS(MOS) subject classification. 15A48

1. Introduction. A set $C \subset \mathbb{R}^n$ is a *cone* provided that $\alpha C \subset C$ for all $\alpha \ge 0$. We call a cone C proper provided that it is closed, convex, possesses nonempty interior, and is pointed $(C \cap \{-C\} = \{0\})$. Given a proper cone $C \subset \mathbb{R}^n$, we denote by p(C) the set of matrices $A \in \mathbb{R}^{n,n}$ which are exponentially nonnegative on C; that is, $e^{tA}C \subset C$ for all $t \ge 0$, where $e^{tA} = \sum_{j=0}^{\infty} (tA)^{j}/j!$ is the familiar matrix exponential. Hence p(C) is the set of matrices A such that for an arbitrary start point $x(0) \in C$, the solution $x(t) = e^{tA}x(0)$ of the linear differential equation $\dot{x}(t) = Ax(t)$ remains in C for all future time.

The purpose of this paper is to investigate the structure of the set of matrices $p(K_n)$, where

$$K_n = \left\{ x \in \mathbb{R}^n : \sum_{i=1}^{n-1} x_i^2 \le x_n^2, \ x_n \ge 0 \right\}$$

is the *n-dimensional ice cream cone*. It will be seen that our results can be extended to general ellipsoidal cones.

In the following section, we review some required technical material on ellipsoidal cones. Then, in § 3, the main results are presented. A key result which we employ is a lemma on copositivity for the ice cream cone K_n due to Loewy and Schneider [3]. To a certain extent our results complement some of those in [3], which provided characterizations of those matrices which leave K_n invariant.

2. Ellipsoidal cones. Let $Q \subset R^{n,n}$ be a symmetric nonsingular matrix, with a single negative eigenvalue λ_n . Therefore Q has inertia (n-1,0,1), where by inertia we mean the triple (P, Z, N), indicating the number of positive, zero, and negative eigenvalues, respectively. Let u_n be a unit eigenvector of Q corresponding to λ_n . With Q we associate two ellipsoidal cones; these are

(2.1)
$$K = K(Q, u_n) = \{x \in \mathbb{R}^n : x^i Q x \le 0, x^i u_n \ge 0\}$$

and $-K = K(Q, -u_n)$. In the sequel we will employ the fact that at each $0 \neq x \in \partial K = \{x \in K : x'Qx = 0\}$, the vector Qx is an outward pointing normal at x (where ∂ denotes boundary).

^{*} Received by the editors July 14, 1989; accepted for publication (in revised form) November 26, 1989.

[†] Department of Mathematics and Statistics, Concordia University, Montreal, Quebec, Canada H4B 1R6 (stern@conu2.bitnet). The research of this author was supported by Natural Sciences and Engineering Research Council of Canada grant A4641.

[‡] Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 (hwolkocz@orion.waterloo.edu). The research of this author was supported by Natural Sciences and Engineering Research Council of Canada grant A9161.

Clearly, K_n is an ellipsoidal cone with

$$Q = Q_n := \left(\begin{array}{c|c} I_{n-1} & 0 \\ \hline 0 & -1 \end{array}\right) \quad \text{and} \quad u_n = e_n,$$

where I_{n-1} denotes the $(n-1) \times (n-1)$ identity matrix. Also, we denote the kth unit vector by e_k .

We shall require the following lemma from [5], which says that in formula (2.1) we may replace the eigenvector u_n with vectors v satisfying certain requirements (which are met by u_n itself).

LEMMA 2.2. Suppose that K is as above and assume that $v \in R^n$ satisfies

$$(2.3) \{v\}^{\perp} \cap \{K \cup \{-K\}\} = \{0\}$$

and

$$(2.4) v'u_n \ge 0.$$

Then

(2.5)
$$K = \{x \in R^n : x^i Q x \le 0, x^i v \ge 0\}.$$

Remark 2.6. In view of the fact that the orthogonal complement $\{u_n\}^{\perp}$ is a hyperplane which supports the proper cones K and -K only at the origin, it follows from the preceding lemma that if v is a vector whose distance from u_n is sufficiently small, then (2.5) holds.

For Q as above, let the spectrum be $\{\lambda_1, \lambda_2, \dots, \lambda_n\}$ where $\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_{n-1} > 0 > \lambda_n$, and let the orthogonal diagonalization of Q be given by $U'QU = \text{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$. The following lemma will also prove to be useful. Its proof, which employs Sylvester's theorem, may be found in [5].

LEMMA 2.7. K is an ellipsoidal cone as in (2.1) if and only if $K = TK_n$ for some nonsingular $T \in \mathbb{R}^{n,n}$.

In particular, for a given ellipsoidal cone $K = K(Q, u_n)$, we have $K = TK_n$ for T = UD, where D is the diagonal matrix with entries $d_{ii} = |\lambda_i|^{-1/2}$, $i = 1, 2, \dots, n$, and then $Q = (T^{-1})^i Q_n T^{-1}$. Conversely, for a given nonsingular $T \in \mathbb{R}^{n,n}$, the matrix $(T^{-1})^i Q_n T^{-1}$ has inertia (n-1,0,1) and $TK_n = K((T^{-1})^i Q_n T, (T^{-1})^i e_n)$.

3. Main results. To begin, we require the following lemma, in which $\langle \cdot, \cdot \rangle$ denotes the standard inner product on \mathbb{R}^n .

LEMMA 3.1. Let K be an ellipsoidal cone as in (2.1). Then

$$(3.2) p(K) = \{A \in \mathbb{R}^{n,n} : \langle Ax, Qx \rangle \leq 0 \text{ for all } x \in \partial K\}.$$

Proof. Since Qx is the unique outward pointing normal vector (up to scalar multiples) to K at any nonzero $x \in \partial K$, then the condition that $\langle Ax, Qx \rangle \leq 0$, for all such x, is, in the terminology of Schneider and Vidyasagar [4], cross-positivity of A on K, which was shown in [4] to be equivalent to exponential nonnegativity.

We now turn our attention to the problem of characterizing $p(K_n)$. We will make use of the following copositivity result from Loewy and Schneider [3].

LEMMA 3.3 [3, Lemma 2.2]. Let $W \in \mathbb{R}^{n,n}$ be symmetric. Then there exists $\mu \ge 0$ such that $W - \mu Q_n$ is negative semidefinite if and only if

$$(3.4) x \in K_n \Rightarrow x^t W x \le 0.$$

Our main characterization of $p(K_n)$ is given next.

THEOREM 3.5. A necessary and sufficient condition for $A \in p(K_n)$ is that there exists $\xi \in R$ such that

$$(3.6) Q_n A + A^t Q_n - \xi Q_n \leq 0,$$

where "≤" means negative semidefinite.

Proof. Let us denote

$$W(Q_n, A) := Q_n A + A^t Q_n.$$

Upon symmetrizing the quadratic form $\langle Ax, Qx \rangle$, it follows that $A \in p(K_n)$ if and only if

$$(3.7) x \in \partial K_n \Rightarrow x^t W(Q_n, A) x \leq 0.$$

Since $x^t O_n x = 0$ for all $x \in \partial K_n$, we have that (3.7) is equivalent to

$$(3.8) x \in \partial K_n \Rightarrow xW(Q_n, A + \gamma I)x \le 0$$

for any given $\gamma \in R$. Since

$$(3.9) W(Q_n, A+\gamma I)=W(Q_n, A)+2\gamma Q_n,$$

we may choose γ large enough to ensure that $W(Q_n, A + \gamma I)$ has inertia (n - 1, 0, 1). For such γ , consider the ellipsoidal cone

$$C(\gamma) := \{x \in \mathbb{R}^n : x'W(Q_n, A + \gamma I)x \leq 0, x'u_n(\gamma) \geq 0\},\$$

where $u_n(\gamma)$ is a unit eigenvector of $W(Q_n, A + \gamma I)$ corresponding to its only negative eigenvalue. Since γ may be chosen so large that $u_n(\gamma)$ approximates e_n to any prescribed tolerance, Remark 2.6 tells us that for sufficiently large γ we have

(3.10)
$$C(\gamma) = \{x \in \mathbb{R}^n : x^t W(Q_n, A + \gamma I) x \le 0, x^t e_n \ge 0\}.$$

Hence (3.8) implies that $A \in p(K_n)$ if and only if for all γ sufficiently large we have

$$\partial K_n \subset C(\gamma).$$

Since $C(\gamma)$ is an ellipsoidal and therefore convex cone for large γ , it follows that for such γ , (3.11) is equivalent to

$$(3.12) K_n \subset C(\gamma).$$

Therefore, Lemma 3.3 implies that $A \in p(K_n)$ if and only if for each sufficiently large γ there exists $\mu_{\gamma} \ge 0$ such that

$$(3.13) W(Q_n, A + \gamma Q) - \mu_{\gamma} Q_n \leq 0.$$

Since

(3.14)
$$W(Q_n, A + \gamma I) - \mu_{\gamma} Q_n = W(Q_n, A) + (2\gamma - \mu_{\gamma}) Q_n,$$

the theorem is proven. \square

In what follows, we shall partition A as

$$A = \left(-\frac{A_1 \mid c}{d^i \mid a_{nn}} \right),$$

where A_1 denotes the leading $(n-1) \times (n-1)$ principal submatrix of A. Then

(3.15)
$$W(Q_n, A) = \begin{pmatrix} -\frac{A_1 + A_1^t}{g^t} & \frac{g}{-2a_m} \end{pmatrix},$$

where

$$g := c - d$$

and therefore

(3.16)
$$W(Q_n, A) - \xi Q_n = \left(\frac{A_1 + A_1^t - \xi I_{n-1}}{g^t} \right) \frac{g}{|\xi - 2a_{nn}|}.$$

We have the following corollary to Theorem 3.5. It provides sufficient conditions for membership and nonmembership in $p(K_n)$.

COROLLARY 3.17. Let $A \in \mathbb{R}^{n,n}$. Then the following hold:

(3.18)
$$\max_{1 \le i \le n-1} \left\{ 2a_{ii} + |g_i| + \sum_{i \ne j-1}^{n-1} |a_{ij} + a_{ji}| \right\} \le 2a_{nn} - \sum_{i=1}^{n-1} |g_i| \Rightarrow A \in p(K_n),$$

(3.19)
$$\max_{1 \le i \le n-1} \left\{ 2a_{ii} - |g_i| - \sum_{i \ne j-1}^{n-1} |a_{ij} + a_{ji}| \right\} > 2a_{nn} + \sum_{i-1}^{n-1} |g_i| \Rightarrow A \notin p(K_n).$$

Proof. Theorem 3.5 implies that $A \in p(K_n)$ if and only if there exists $\xi \in R$ such that the (symmetric) matrix $W(Q_n, A) - \xi Q_n$ has no positive eigenvalues. A straightforward application of Gershgorin's theorem then yields (3.18) and (3.19).

A different sufficient condition for $A \in p(K_n)$ is provided in the following result. We shall denote the euclidean norm by $\|\cdot\|$, and the largest eigenvalue of a symmetric matrix M by $\lambda_1(M)$.

THEOREM 3.20. A sufficient condition for $A \in p(K_n)$ is

(3.21)
$$\lambda_1(A_1 + A_1') \leq 2(a_{nn} - ||g||).$$

Proof. Let us write

$$W(Q_n, A) - \xi O_n = U(\xi) + V$$

where

$$U(\xi) = \begin{pmatrix} -A_1 + A_1^t - \xi I_{n-1} & 0 \\ 0 & \xi - 2a_{mn} \end{pmatrix} \text{ and } V = \begin{pmatrix} 0 & g \\ g^t & 0 \end{pmatrix}.$$

Then, since $U(\xi)$ and V are symmetric, we have

(3.22)
$$\lambda_1(U(\xi)+V) \leq \lambda_1(U(\xi)) + \lambda_1(V).$$

(See, e.g., Wilkinson [6, p. 101].) Therefore, in view of Theorem 3.5, a sufficient condition for $A \in p(K_n)$ is the existence of $\xi \in R$ such that

$$(3.23) \lambda_1(U(\xi)) + \lambda_1(V) \leq 0.$$

Since $\lambda_1(V) = ||g||$, the existence of such a ξ is readily seen to be guaranteed by (3.21). \square

It is not difficult to construct examples where the sufficient condition (3.21) holds, but (3.18) fails. The reverse may occur as well, as is evidenced by the matrix

$$A = \begin{pmatrix} -2 & 0 & 2 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

The next result provides a general necessary condition for $A \in p(K_n)$. THEOREM 3.24. Let $A \in p(K_n)$. Then

$$(3.25) \lambda_1(A_1 + A_1^t) \leq 2a_{nn}.$$

Proof. Theorem 3.5 tells us that if $A \in p(K_n)$, then there exists a real number ξ such that all the spectrum of $W(Q_n, A) - \xi Q_n$ is nonpositive, which implies that each principal submatrix has nonpositive spectrum as well. Applying this fact to the principal submatrices $A_1 + A_1' - \xi I_{n-1}$ and $\xi - 2a_{nn}$ readily yields (3.25).

Theorems 3.20 and 3.24 immediately yield the following complete characterization of $p(K_n)$ for matrices satisfying a certain "partial symmetry" condition.

COROLLARY 3.26. Let $A \in \mathbb{R}^{n,n}$ be such that $a_{in} = a_{ni}$ for all $1 \le i \le n-1$ (i.e., g = 0). Then (3.25) is necessary and sufficient for $A \in p(K_n)$.

Another general necessary condition is given next.

THEOREM 3.27. Assume that $A \in p(K_n)$. Let $\{\mu_1, \mu_2, \dots, \mu_k\}$ be any set of eigenvalues of A (not necessarily distinct), and let $\{x_1, x_2, \dots, x_k\}$ be a corresponding set of eigenvectors. Consider the (possibly empty) index sets

$$I_{+} = \{i: x_{i}^{*} O_{n} x_{i} > 0\}$$
 and $I_{-} = \{i: x_{i}^{*} O_{n} x_{i} < 0\}.$

Then

$$(3.28) \qquad \inf \left\{ \operatorname{Re} \mu_i : i \in I_- \right\} \ge \sup \left\{ \operatorname{Re} \mu_i : i \in I_+ \right\}$$

(where $\sup (\emptyset) = -\infty$ and $\inf (\emptyset) = \infty$, \emptyset denoting the empty set). Proof. Since $A \in p(K_n)$, there exists $\xi \in R$ such that

(3.29)
$$H(\xi) := Q_n A + A^t Q_n - \xi Q_n \le 0.$$

Then

(3.30)
$$x_i^* H(\xi) x_i = 2x_i^* Q_n x_i (\text{Re } \mu_i - \xi) \le 0$$
 for all $i = 1, 2, \dots, k$.

Hence $\xi \ge \text{Re } \mu_i$ for all $i \in I_+$ and $\xi \le \text{Re } \mu_i$ for all $i \in I_-$, yielding (3.28). \square Our final result provides a characterization of the set of matrices

$$p(\partial K_n) := \{ A \in \mathbb{R}^{n,n} : e^{tA}(\partial K_n) \subset \partial K_n \text{ for all } t \ge 0 \}.$$

Hence $p(\partial K_n)$ is the set of matrices A such that solutions of the linear differential equation $\dot{x}(t) = Ax(t)$ with $x(0) \in \partial K_n$ remain in ∂K_n for all $t \ge 0$.

THEOREM 3.31. A necessary and sufficient condition for $A \in p(\partial K_n)$ is that $A = B + \alpha I$, where $\alpha \in R$ and

$$B = \left(\begin{array}{c|c} -B_1 & b \\ \hline b^t & 0 \end{array}\right)$$

with B_i being an $(n-1) \times (n-1)$ skew-symmetric matrix.

Proof. The matrix $A \in p(\partial K_n)$ if and only if the vector field Ax is tangent to the locally smooth surface $\partial K_n/\{0\}$; that is,

$$(3.32) \langle Ax, Qx \rangle = 0 \text{for all } x \in \partial K_n.$$

This is equivalent to $A \in p(K_n)$ and $-A \in p(K_n)$. Hence in view of Theorem 3.5, (3.32) is equivalent to the existence of real numbers ξ_1 and ξ_2 such that

(3.33)
$$W(Q_n, A) - \xi_1 Q_n \le 0$$
 and $W(Q_n, -A) - \xi_2 Q_n \le 0$.

But (3.33) implies that $\xi_1 = -\xi_2$ and $W(Q_n, A) = \xi_1 Q_n$. In view of (3.15), the conclusion of the theorem follows.

We conclude with some remarks.

Remark 3.34. (i) The proof of Theorem 3.31 shows that $p(\partial K_n)$ is the maximal subspace of the closed convex cone $p(K_n) \in \mathbb{R}^{n,n}$. The theorem implies that $\dim (p(\partial K_n)) = (n^2 - n + 2)/2$.

(ii) It is interesting to note that if A satisfies either of the sufficient conditions (3.18) or (3.21), or if A is of the form specified in Theorem 3.31, then A must satisfy the conditions of Elsner [1] for the existence of a proper cone K such that $A \in p(K)$; namely, that the spectral abscissa

$$\lambda(A) := \max \{ \text{Re } \lambda : \lambda \text{ is an eigenvalue of } A \}$$

is an eigenvalue of A and no eigenvalue λ of A with Re $\lambda = \lambda(A)$ can have degree exceeding that of $\lambda(A)$. (By the degree of an eigenvalue, we mean its degree in the minimal polynomial.)

- (iii) Our results can be extended to general ellipsoidal cones by applying Lemma 2.7. In particular, let $K = K(Q, u_n)$ be a given ellipsoidal cone, and let T be a nonsingular matrix such that $K = TK_n$. (One such T is provided by Lemma 2.7.) Then $A \in p(K)$ if and only if $T^{-1}AT \in p(K_n)$, and likewise, $A \in p(\partial K)$ if and only if $T^{-1}AT \in p(\partial K_n)$.
- (iv) In view of (3.7), $A \in p(K_n)$ if and only if $x'W'(Q_n, A)x \le 0$ for all $x \in R^n$ such that $x_n = 1$ and $\sum_{i=1}^{n-1} x_i^2 = 1$. Hence a necessary and sufficient condition for $A \in p(K_n)$ is

(3.35)
$$\max \{y'(A_1 + A_1')y + 2y'(c - d) : ||y|| = 1\} \le 0.$$

A numerical method for obtaining the maximum in (3.35) may be found, e.g., in Fletcher [2]. Thus we can computationally check whether $A \in p(K_n)$ in cases where our necessary conditions are met, but sufficiency is not.

Acknowledgments. We are indebted to the referees and A. Berman for detecting errors in earlier versions of this work.

REFERENCES

- [1] L. ELSNER, Monotonie und Randspektrum bei Vollstetigen Operatoren, Arch. Rational Mech. Anal., 36 (1970), pp. 356-365.
- [2] R. FLETCHER, Practical Methods of Optimization, Second Edition, John Wiley, New York, 1987.
- [3] R. LOEWY AND H. SCHNEIDER, Positive operators on the n-dimensional ice-cream cone, J. Math. Anal. Appl., 49 (1975), pp. 375-392.
- [4] H. SCHNEIDER AND M. VIDYASAGAR, Cross-positive matrices, SIAM J. Numer. Anal., 7 (1970), pp. 508-519.
- [5] R. STERN AND H. WOLKOWICZ, Invariant ellipsoidal cones, Res. Report CORR 88-53, University of Waterloo, Waterloo, Ontario, Canada, 1988.
- [6] J. H. WILKINSON, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.