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ABSTRACT

We apply a recent characterization of optimality for the abstract convex program
with a cone constraint to three matrix theory problems: (1) a generalization of Farkas's
lemma; (2) paired duality in linear programming over cones; (3) a constrained matrix
best approximation problem. In particular, these results are not restricted to poly-
hedral or closed cones.

1. INTRODUCTION

In this paper we apply a recent characterization of optimality for the
abstract convex program with a cone constraint to three matrix theory
problems: (1) a generalization of Farkas's lemma; (2) paired duality in linear
programming over cones; (3) a constrained matrix best approximation prob-
lem. In particular, these results are not restricted to polyhedral or closed
cones.

2. PRELIMINARIES

thmm&eawmm

(P) p=inf{p(x): g(x) € -S,x€8), 1)

where p: X+ RU{+ o0}, g: X—=R™ U {+ 0); X is a topological vector space;
RCX is convex and § is a convex cone in R™, i.e. S+SCS and tSCS for all
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t>0; and p is a convex (extended) functional (on ) and g is Sconvex (on §),

ie. .
tg(x)+(1-t)g(v)—g(tx+(1~t)y)ES

for all z,yEQ and 0<t<1. For greater generality, we have attached an

abstract maximal element to R™ (see e.g. [13]). Note that R™ is linearly

ordered by S, Le. x>y if and only if x—y€S. This ordering is transitive and

reflexive. It is antisymmetric exactly when § is pointed, i.e. SN —S=(0).
We will also need the following notation: the cone KCS is a face of S if

x,yES and x+y€EK = x,y€EK.

The feasible set of (P) is
’F= {x€0:g(x)E-S).
The minimal cone of (P) is
§7= (") {faces of S containing —-¢(F)).
The minimal cone has the following property (see [7]):
—g(F)nris’» 2, (22)

where 1i denotes relative interior. For a set T in R™, the polar cone of T is

T*=(¢E€ER™: ¢py>0forallyin T},

wbere¢ydenotestheinnerpmductd¢andyinﬂ'.mathogond
complement of T is ' -

Ti=T*n-T*, (2.3)

We now have the following characterization of optimality for (P) which
holds without any constraint qualification.

TuzoneM 2.1 [7). Suppose that p, the optimal value of (P), is finite.
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Then

p=inf(p(x)+Ag(z): xEF! } | ' (2.9)

for some A in (§/)* end F/=0Ng~}(S/—S’). Moreover, if p=p(a) for
some a in F, then

Ag(a)=0 25)

and (2.4) and (2.5) characterize optimality of a in F.

The above theorem differs from the standard Lagrange multiplier theorem
" (e [12)) in three ways. First, the Lagrange multiplier A is found in the
(possibly) larger cone (S)* rather than S*; second, the variable x is
mtﬂctedtothe(possibly)mdlenetl‘fntherthanﬂ and third, the above
theorem holds irrespective of any constraint qualification. In the presence of

Slater’s qualification,
3x€Q suchthat g(x)E—int$,

where int denotes interior, the above theorem reduced to the standard
theorem.

There are situations where we can strengthen the above theorem in the
sense that we can replace (S/)* by a smaller cone and replace F/ by a larger
set. Thus we get closer to the standard result. We now include several results
of this type. .

ConoLrany 2.1 [7]. Theorem 2.1 holds with S* replacing (S7)* exactly

S*+(s7) =(s7)*, (é.e)-
or equivalently, when S is closed, exactly when
§*+(S7)" is closed. @7

Comu.tmrz.z[ﬂl Suppose that g is affine and Q is a finite dimen-
sional subspace. Then Theorem 2.1 holds with F7 replaced by Q.
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CoroLrany 2.3, Suppose that (P) satisfies the generalized Slater's condi-
tion

32€rQ with g(2)e-ns. (2.8)

Then the standard Lagrange multiplier theorem holds, i.¢., Theorem 2.1 holds
with F/ replaced by @ and (S7)* replaced by s*.

Proof. By (22), we get that S7=S. Now choose ¢,, i=1,...,¢, in S+
that

§—-§= h ¢ . (2.9)

=]

By Theorem 2.1, we have
s=inf{p(x)+Ag(x): 1€QNg ~}(S-5))
for some A in §*. This, by (2.9), is equivalent to
p=inf(p(x)+Ag(x):(4,6)(x)<0, i=1,...,1,€0).  (2.10)

Since g is Sconvex and {¢,} CS+ CS*, we conclude that both ¢,g and —¢,g
are convex (on ), which implies that

¢,gisaffine (n 8), ¢=1,....¢.
Thus the program (2.10) is linearly constrained, and moreover, by (2.8),

2€r60, ¢g(2)<0, i=1,...,1. (2.11)

mutbemernlizedSlater’seondiﬁonforanudinuycbnvexpmmm,
since the constraints ¢,g are affine. Therefore (see [14, Theorem 25.2)), there
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exist Kuho-Tucker multipliers o, >0, i=1,...,¢, such'tht
ﬂ-inf{v(t)+h(t)+2¢.¢.¢(x) :w€a). @12)
The results now follows. since
A+ T ae ES*. [ ]

Wenawindudethefoﬂmvlngduahtymﬂt.WedeﬁneL’ the restricted
Lagrangian, by

LAA)=inf{p(z)+Ag(z): sEF7},
and the restricted dual problem \
(DY) d=sp{LA):Ae(57)*}.
Then (D) is & concave optimization problem, and we get:

Treorem 2.2 [7). If p<co, then

p=sup(LAA):A&(5")*}. (2.13)
Moreover, if (2.6) holds, then (S7)* can be replaced by S*.

CoroLLARY 2.4, pr<w.ﬂbaﬁfdwdwmmb¢pax and g is
ajﬁne.M(z.la)holdnmthanaoodbvﬂ(inﬂndeﬁnmmofo(A)).

Proof. Note that for every A in (S/)* and z€Q,
LA )<p(x).

Thus p>d. Nowaoﬂa:yug\mmtestheeﬁstencedAh(Sf)* )
p=L/(A). "

Wenowpmentﬂ:eappﬁetﬂomdthb&m.WemhictmtoX
also finite dimensional.
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3. A GENERALIZATION OF FARKAS'S LEMMA

The original Farkas’s lemma (e.g. {10]) gives the equivalence of the
consistency of the system _

Az=b, 2€K, G.1)

with the statement
AYyEK* = by >0, (32)
where A is an mXn matrix, A’ is its transpose, and K=K * =R",. This has
been extended to K a closed convex cone in [3] under the assumption that
A(K) [or equivalently K+ (A)] is closed, where 9(-) denotes null space.

We now present a generalization of Farkas's lemma without this extra
assumption. We let S/ be the minimal cone for the constraint —A'y€ —§.

Tuzonem 3.1 [9].  The system

(i) Ax=b, x€(87)*,
is consistent if and only if
(if) ' . A'yES = py>0.

Proof. Since S is a convex cone and A is linear, statement (ii) is
equivalent to the fact that ,

=p=inf(by: ~A'y€-S). - = (33)
Corollary 2.2 implies that this is equivalent to
0=p=int{by+A(—A'y)} : (34)

for some A in (S7)*. Since the inf is achieved at y=0, we can differentiate to
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get statement (i), Le. _
0= % [bv-A(ay)]

=b—AA. ' . B

4. PAIRED DUALITY IN LINEAR PROGRAMMING OVER CONES

smints.BothSmdDmMconvexeouu(notnmrﬂypolyhednlw
elosed)whﬂeg(:)=b—A:,whmbhmm-vectornndAismanmtﬂx.
We again denote the feasible set of (P) 4

F={x€0: Ax-beS),
and set the minimal cones
| §7= () {faces of SponmningA(F)—.b'},
8f= (") {faces of @ containing F}.

Note that if we consider the constraint

t=[g 3](2)e~(§)=-tsxa

then
(Sx8) =8 xn’,
v'l'bedualpdris
® {oo
subjectto Ax—bES, x€Q,

©) { sup by

subject to c—A'ye(0/)*, y'E(Sf)"'.
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The Lagrangian of (P) and (D) is
L(z.y)=cx+y(b—Ax)
=by+(c-A'y)s. (4.1)

The point (x°, y°) €0/ X(57)* is a saddle point of L(x,y) with respect to
Q7 x(sN)*

L(x°.y)<L(z°.y°)<L(:.y°) forall ze€0/, yE(S’).*..
(42)

THEORENM 4.1. Cmdderthemmdm(l’)md(m. Then:
(a) Ifmofthepmblamﬁhcommeut,tkmtheothahmmor
unbounded

(b)w}iwmmmbem.muzmamnmouof

(P)andy°beaf¢a:iblcaohmonof(D).Thm
cx®>hy. (4.3)
() Ifboth(P)md(D)mwmmu.thmthcyhauopﬁvmlwhﬁom
optimal values are equal,
() Let:°andy°befaadbkcohﬁomof(!’)md(D)Woely. Then
z°andv°m°?ﬁmal‘f¢ld°ﬂlv‘f

v°(Ax°=b)+(c~aA'y® )x°=o0,

or equivalently, if and only if
v (Ar°—b)=(c—A"y°)s® =0,

(¢) If 57 is closed (which holds if S i closed), then the vectors x° €R"
mdv°eﬂ'mopﬁnulwhmomof(P)mnd(D)mpacnwlyifmdonlyif
ﬂlegﬁolmnt(xﬂf) 4 a saddle point of L(s,y) for all (z,y) in R/ x(s)*,
and .

L(=°v°)=cx"=by". | “4)

.
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Proof. (.):Hmsm;mw[s,wu].mm.
vector ¢ such that

A'El*, —¢ES*, be>0. (45)

Since nfcnmdsfcs.wegathnn"cmf)*nndS*C(sf)*. Thus (D)
is unbounded.
Conmtely.mppooetbat(?)keundstentmdhamded.Naw(P)h

equivalent to '

p=inf{cx: Ax—bES’, x€0Q’). (4.8)

Moreover, if we rewrite the constraints as

s=[g Z4](t)e-(§)=-sxa).

we see that (§X02)/=S7 X0, and thus by (2.2), there exists
2€1 0/ with At-berS’,

Therefore, from (4.6) and Corollary 2.3, we get
p=inf(cx+y(b—Ax):zEﬂ’}

for some y in (57)*. Since 0/ is a cone, this implies that
cx—yAz>»0 foral xE€Q/,

ie., we have c—A'yE(R/)* and yE€(S7)". Thus y is a feasible solution of

D).

(b):
ex®>cx® +y°(b—Az°), since b—Az° € — S/ while y° €(5)*

=(c—A'y®)x° +y°b>yb, since c— A"y’ €(Q )" while z° eFC Q.
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(c):&n@bdhmmemﬂnwhput(b)lmpkuﬂ:ﬂp.&e
optimal value of (P), is not —oo.'l'l:u:'l'hm!l:ppliedto((ﬁ)impﬁes

k= sup inf {cx+y(b—Ax)). (4.7)
vE(s)* s€n’

Smoeﬂ’kucone,theln!fonﬁxedyisdﬂwrybor—eo.Slncewemtben
uldngthemp.weanmmedmtbeinfbvb.u.wemaddﬂn
constraint :

cx—yAr=(c—A'y)z>0 forall zEQ,
ie. |
c—A'ye(0’)*.
Moreover, this inf is achieved with x=0. Thus‘(4.‘7) becomes

B= sup {yb:c-A'yE(O’)"’}.
vE(SH*

(d): First suppose that 1° and y° are both optimal. Thus
v°b=p=cx">cz® +y°(b—Ax°), since b—Ax® €—S'whenz€eF
=yb+(c—A'Y° )1y,

Le. (c—A'y%)x"=y°(b—Ax%)=0, Conversely, suppose x° and y° are feasi-
ble and (c—A'y%)x® =y°(b—A1°)=0. Then by (b)

v°b=y"b+(c—~A'y°)s®
=cx®+y%(b-Ax%)
=cx%>by°. (4.8)

Tbena°=bv°.nndby(b)md(c).botb:°nndy°mopﬁmal
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(¢): Let (2%, y°) be a saddle point of L(z, y), with respoct to 8 X(5)".
Then, for €0, . o
L(x,4°)=by° +(c-A'y°)x
>L(z°y°)

=by®+(c—A'y®)s®.

Thus (c—A'y°Xx—2°)>0 for all s/, Setting x=0 and r=2x° implies
that (c—~A'y®)x>0. Thus c—A'y® €(07)*, L., y° is a feasible point of (D).
Similarly, for any y€(S”)*,

L(2% y)=cz® +y(b-Ax°)
<L(x%¢°).

Thus (y—y°Xb—Ax°)<0 for all y€(S')*. Again, setting y=0 and v=2y,
shows that yo(b—Ax°)=0 and thus Ax® — b€ (S’)* * =$7, since S’ is closed.
This implies that x° is also feasible. Substituting x=y=0 in the definition of
the saddle point implies that cx® €L(x°, y°)<by®, which, by (b) and (c),
proves the optimality of x° and ¢°.

Conversely, let ° and y° be optimal solutions of (P) and (D) respectively.
Then cx®=by° by (c), and (4.4) follows from (d). Moreover, for any x€0/,

L(x,4°)=by° +(c~A'y°)x
>by°, since c-AY°€(R7)*

=L(s°¢°), by (d).

Similarly, for any y €(57)*, we have L(2°, y)<L(z® y°), and thus (z°, y°)
is a saddle point of L(x, y) with respect to 8 X (S/)*. ]

Theabovetheomnlsnnutendondﬂwm:ltsﬁmfor-pdyhedxﬂ
cones in [1] (see also [5]). .
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5. A BEST APPROXIMATION PROBLEM

ProaLmn. Givandseudlymmemcuxlumuixlmddletbm
ﬂlbtpucuLl.L,.lnd'L,dR".ﬁndﬂle(mﬂque)ndtymmemchnmhix
AwhiebkdocestwmnFmbenhnm(Hﬂben-Schmidtm)mdwhieh
hnepﬁnnmideﬂnne(md)onL,.podﬁvonuﬂdeﬂnm(pd)onL,,mdo

- onl,

Solution. Fim,ltkeleudntAmbeOonL,nL,.Mnan
rewrite the problem so that A must be: 0 on Ly +L, NL,; nsd on L}, any
complementary subspace of LiNLy+L,NL, in Ly; and ped on L}, any
complemenmymblpncedL,nL,+L,nL,inL,. Now set Ly=L,+L, N
Ly, and let: P,betheptojecﬁononL;llongmycomplemenhrymbspwad
R'whicbcontainsL;+L;;P,bethepmjectiononL;don¢nnycomplemen-
_mymbspuceWhcheonhinsL;+L§;mdP,bed|epmjecuononL§dong
any complementary subspace which contains L] +L;. We now define the
unitary diagonalizations

PBR!=U DY}
=UD*U'+UD U}, i=1,2,3,
where the U,mtbemlurymwicuddmmb,mthew
mduioesofeigenvduu,andq*mdb,‘mﬂuwvmmdpodﬂve
mdnepﬂvedgenvdus.WeletSbetbeconeoanupcdmﬁcs,hﬂu
space Y=R("+%)/2 of 3¢ real Symmetric matrices represented by their

disﬁnctuimmmrptm.l‘henammrkﬁmbytbewidunm
i - .

9.2[.—}..&'
WhexeP.kthe(orthogoml)plojeeﬁononLi+L;+L5.htmmlbawﬂm
the solution is :

A=UDU/+4D Ul +9B. (5.1)
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Choose the matrices E,, E,, and E; s0 that
L;=%(E),

where & ( ) denotes range space. The matrix X in Y is nsd (ped) on L (L3) if
and only if E}XE, (E{XE,) is nsd (psd) on all of R", since

(EIXEy,v)=(X(Ey).(Ey)) for yinR"
Now we can rewrite the problem as the abstract convex program

minimize p(X)=}IX—Blt=jtr(X—B)"

subjectto g,(X)=E}XE,€-S,
gs(X)=—ELXE, €-S,
8:(X)=E3XE, €{0)}.

The generalized Lagrange multiplier theorem states that if A satisfies the
constraints and

(P)

0=vp(A)+ V(AL E(A)) + V(A 85(A)) + V(A5 85(A)),
' (52)
“0=(A,,8(A)), i=1,2,3,
for some matrices A}, A, in S*, A3 in {0)* =Y, where V denotes gradient,
then A solves (P).
| Let A be as in (5.1) and set

A, =EJU,D; UEL",
A, =E{U,Dy U{E!,

A3 =EJU,DJLES',
where E/! denotes the generalized inverse of E, (see e.g. [4]) which satisfies

E,E!=P,
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6:(A)=E}AE,
=E}(U,D;"U} + U, D;* U} +9B)E,
=E{P{(U,D{ U} +BjU,D; YR, )P, E,
=E{U,D;U/E,, since BP =0
€-S, since D, isnsd.
Similarly
ls(A)= ~EUD"GE, € -5
and |

83(A)=EJAE;=0. .

Moreover, both A, and A, are in S*=S§ (see e.g, [6]), since both D;* and
—D,‘mpsd,whﬂeA,E{O)'*=)'. We have left to show that (5.2) holds, or

equivalently, after differentiating, that
B=A+E\E{~ E,\E{+E,\E},
tr\EAE,=0, {=1,2,3.
Now
A+EME|~E\,E} +E\yE{ =A+U, DU} + U,D; USP, B,
=U,D,U; +U,Dyj{ +P,BF, + 9B
.=P,BP, +P,BP, +P,BP, +(I-P,)B(I~P,)

=B;
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while |
tr A, E{AE, =tr E\\, E{A

=t U,D;* UA
=0, .

since the projections are mutually complementary and D;* D;” =0. Similarly

trAE/AE;=0, =23
Uniquenessfoﬂmﬁomﬂ:emictconveﬂtydtheobjecﬁvehmﬁonp(x.)‘
Rms;l. We were able to use the standard Lagrange multiplier
theorem in the above, even though Slater’s condition fails for (P). The cone §
:eisdmmcaisverywenbehnvedm‘mrd.lnhct.ikaahceds.
S*+K* is closed. | (53)
For (see [2]) there exists a projection P in S such that PS=K, and moreover

S*+KL=S+R(P),

(where % denotes null space) is closed if and only if PS is closed (see [11)).
Becaﬂthatﬂ:econdiﬁon(SS)kﬂ:eone!nCuoﬂnry!.lwbichnﬂmoneto
leplace(S’)"byS"inTheonmz.l

Remarx 5.2, ltbwellknm(seeé.; [12, p. 222)) that the Lagrange
multipliers are sensitivity coefficients, i.e., if a solves the original program (P)
in Section £ with Lagrange multipler A, while a, solves the perturbed
program (F,) with the perturbed constraint g(x) Ez~ S, then

p(a)-p(a,)<Az. : (5.4)

For the above matrix problem, suppose that we allow the following perturba-
tion:

A must be “almost” nsd on L,,
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{.e., we are given the scalar ¢ and we require
(Ax, :)<'¢(:,x) forall zinL,.
Then this is equivalent to the perturbation
| (E{AE,p,y)<e(E{Ew,v) forally,
or equivalently
E{AE, —¢ELE, € -S.

UA,hd:ecoluﬁmolthepeﬂu:bedpmblem.ﬂxen.udngd:evﬂmdh,
found in our solution, we get .

p(A)—p(A,)<\ (eELE,)=¢etr A, E}E,;

expanding both sides yields
jt((B-A)—(B-A,)")={t(4* - A*—2B(A-A,))
<etr E{U,D; U{E}'E}E,
=etr U, DUy,

Asmyhavebo'encxpected,ﬂiemﬁﬁvitydependsonthemm
eigenvalues of P, BP,. Note also that if e<0, then the feasible set F= 2.
Shnﬂarly,ifA,aolvesthepmblemwiththethn_eepahubedeonm!nts

(Az,5)<t(s,x) foral xinl,,
(—Az.5)<e(s.s) forall ziny,
(As.x)=es(x,x)  forall zinLs,
where ¢,, e, and ¢ are three scalars, then |

p(A)—p(A,)Se,trU,D;* U} +e5tr Up Dy Uyl +e3tr Uy Dol
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In addition, i we had Lagrange multipliers correspanding to A,, we would
lbqgetalowerbo\mdﬁorp(A)—p(A,). .

6. CONCLUDING REMARKS

In [9] we have presented various strengthened versions of Theorem 2.1
which, under certain hypotheses, use smaller cones than (S/)*, though not
necessarily S*. This has led to various cones replacing (S7)* in the generali-
zation of Farkas’s lemma, i.e. various equivalent statements.

These strengthenings can also be applied to the paired duals in Section 4.
For example, mduwﬁndammdiﬂm.wewmldptnhmﬂyd
paired duals
(Px.0) pindcx

k.L subjectto Ax—b€EK, zEL,
(D) sup by

M.N subjectto c—A'yEM*, yEN*,
where K, L, M, and N are convex cones which satisfy certain closure
hypotheses as well as the inclusions S CKCS, 8/CLC®, S*CM*C
(8/)*, and G*CN* C(5/)*. These closure conditions bold in the event
that both Q and § are polyhedral cones, in which case we can choose M=0

and N=S. Theorem 4.1 then reduces to a result given in [1] (see also [5]).
These strengthenings of Theorem 4.1 will be presented in a future study.
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