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Abstract

The simplified Wasserstein barycenter problem, also known as the cheapest hub problem,
consists in selecting one point from each of k given sets, each set consisting of n points, with the
aim of minimizing the sum of distances to the barycenter of the k chosen points. This problem
is also known as the cheapest hub problem. This problem is known to be NP-hard. We compute
the Wasserstein barycenter by exploiting the Euclidean distance matrix structure to obtain a
facially reduced doubly nonnegative, DNN, relaxation. The facial reduction provides a natural
splitting for applying the symmetric alternating directions method of multipliers (sADMM )
to the DNN relaxation. The sADMMmethod exploits structure in the subproblems to find
strong upper and lower bounds. In addition, we extend the problem to allow varying nj points
for the j-th set.

The purpose of this paper is twofold. First we want to illustrate the strength of this
DNN relaxation with a splitting approach. Our numerical tests then illustrate the surpris-
ing success on random problems, as we generally, efficiently, find the provable exact solution of
this NP-hard problem. Comparisons with current commercial software illustrate this surprising
efficiency. However, we demonstrate and prove that there is a duality gap for problems with
enough multiple optimal solutions, and that this arises from problems with highly symmetrized
structure.
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1 Introduction

We consider the simplified Wasserstein barycenter problem, WBP, of finding the optimal barycen-
ter of k points, where exactly one point is chosen from k sets of points, each set consisting of n
points. This is a simplification of more general problems of optimal mass transportation and the
problems of summarizing and combining probability measures that occurs in e.g., statistics and
machine learning. In [2, Def. 1.4] this problem is called the cheapest-hub problem, and further
in [2], a reduction to WBP is derived from the k-clique problem thus proving NP-hardness.1 Al-
gorithms for WBPwith exponential dependence in d are discussed in [2, Sect. 1.3.1].2 There
are many important applications in molecular conformation e.g., [5], clustering [16], supervised
and unsupervised learning, etc... For additional details on the theory and applications of optimal
transport theory see e.g., [1, 8, 12], lecture link, and the many references therein.

The purpose of this paper is twofold. First, we provide a successful framework for handling
quadratic hard discrete optimization problems; and second, we illustrate the surprising success
when applied to our specific WBP.

We model our problem as a quadratic objective, quadratic constrained {0, 1} discrete optimiza-
tion problem, i.e., we obtain a binary quadratic model. We then lift, relax, this hard problem
to the doubly nonnegative, DNN, cone, the cone of nonnegative, positive semidefinite symmetric
matrices and obtain a convex relaxation. Strict feasibility fails for the relaxation, so we apply facial
reduction, FR. This results in many constraints becoming redundant and also gives rise to a nat-
ural splitting that can be exploited by the symmetric alternating directions method of multipliers
(sADMM ). We exploit the structure, and include redundant constraints on the subproblems of
the splitting and on the dual variables. The sADMM algorithm allows for efficient upper and
provable lower bounding techniques for the original hard WBPproblem, that in addition helps the
algorithm stop early.

Extensive tests on random problems are surprisingly efficient and successful, i.e., the relaxation
with the upper and lower bounding techniques provide a provable optimal solution to the original
hard WBP for surprisingly many instances, essentially all our randomly generated instances. The
time for our algorithm for a random problem with k = n = 25 in dimension d = 25 was of the order
of 10 seconds. In contrast, cvx Matlab with solver being the well known commercial package
Gurobi on a laptop with Intel(R) Core(TM) i5-10210U CPU, 16GB RAM took approximately
2, 570, 46692 seconds for n = k = 5, 7, 8, respectively, to solve the original hard discrete optimization
problem to optimality. (Detailed numerics for our algorithm are provided below.)

The DNN relaxation can fail to find the exact solution for problems with special structure,
i.e., there is a duality gap in the optimal value of the original hard problem and the lower bound
found from the DNN relaxation. We include a proof that a sufficient number of linearly inde-
pendent optimal solutions results in a duality gap between the original hard problem and the
DNN relaxation. A specific instance is included. Note that we consider that we have an optimal
solution to WBP if the upper and lower bounds are equal to machine precision as any other feasible
solution cannot have a smaller objective value within machine precision.

1Recall that the k-clique problem is the problem of finding k vertices in a graph such that each pair is close in the
sense of being adjacent.

2We discuss this further below as the complexity of our algorithm does not depend on d.
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1.1 Outline

We continue in Section 1.2 with preliminary notation. The main NP-hard Problem 2.1 and con-
nections to Euclidean distance matrices, EDM, are given in Section 2.

A regularized, facially reduced, doubly nonnegative, DNN, relaxation is derived in Section 3.
The FR in the relaxation fits naturally with applying a splitting approach. This is presented
in Section 4. We include special bounding techniques and heuristics on the dual multipliers for
accelerating the splitting algorithm. The algorithm provides provable lower and upper bounds for
the original NP-hard Problem 2.1. Thus a zero gap (called a duality gap) proves optimality. Our
empirics are given in Section 4.4.

In Section 5 we prove that multiple optimal solutions can lead to duality gaps. We include
specific instances. Our concluding remarks are in Section 6.

1.2 Notation

We let S ∈ Sn denote a matrix in the space of n × n symmetric matrices equipped with the trace
inner product ⟨S, T ⟩ = trST ; we use diag(S) ∈ Rn to denote the linear mapping to the diagonal of
S; the adjoint mapping is diag∗(v) = Diag(v) ∈ Sn. We let [k] = 1, 2, . . . , k.

The convex cone of positive semidefinite matrices is denoted Sn+ ⊂ Sn, and we use X ⪰ 0 for
X ∈ Sn+. Similarly, for positive definite matrices we use Sn++, X ≻ 0. We let N n denote n × n
nonnegative symmetric matrices. The cone of doubly nonnegative matrices is DNN = Sn+ ∩N n.

For a set of points pi ∈ Rd, we let P =


pT1
pT2
. . .
pTt

 ∈ Rt×d denote the configuration matrix . Here d

is the embedding dimension. Without loss of generality, we can assume the points span Rd, and we
can translate the points and assume they are centered, i.e.,

P T e = 0, e vector of ones.3

We denote the corresponding Gram matrix, G = PP T . Then the classical result of Schoenberg [15]
relates a Euclidean distance matrix, EDM , with a Gram matrix by applying the Lindenstrauss
operator, K(G)

D = K(G) = diag(G)eT + ediag(G)T − 2G.

Moreover, this mapping is one-one and onto between the centered subspace, SnC and hollow subspace,
SnH

SnC = {X ∈ Sn : Xe = 0}, SnH = {X ∈ Sn : diagX = 0}.

We ignore the dimension n when the meaning is clear. Note that the centered assumption P T e =
0 =⇒ G = PP T ∈ SnC . Further notation is introduced as needed.

Remark 1.1 (spherical EDM). For centered points that are on a sphere, without loss of generality
with radius 1, we then know that diag(G) = e, the vector of all ones of appropriate dimension.

3The translation is given by
PT 7→ PT − veT ,

where v := 1
n
PT e is the barycenter of the points.
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Therefore, we know that trG = n. In the case of points on a sphere that are also centered the
EDM is called regular, i.e., if

Ge = 0, diag(G) = e.

2 Simplified Wasserstein barycenters

We now present the main problem and the connections to Euclidean distance matrices, EDM. We
follow the notation in [2, Sect. 1.2] and refer to our main problem as the simplified Wasserstein
barycenter problem, or Wasserstein barycenter for short.

2.1 Main problem and EDMconnection

Our main optimization problem is to find a point in each of k sets to obtain an optimal barycenter.
We can think of this as finding a hub of hubs. That is, suppose that there are k areas with n
airports in each area.4 We want to choose exactly one airport to act as a minor hub in each of
the k areas so that the barycenter for these k minor hubs would serve as a major (best) hub for
the k minor hubs. In the literature this is called the simplified barycenter problem or cheapest-hub
problem.

Problem 2.1 (simplified Wasserstein barycenter, WBP). Suppose that we are given a finite num-
ber of sets S1, ..., Sk, each consisting of n points in Rd. Find the optimal barycenter point y after
choosing exactly one point from each set:

p∗W := min
pi∈Si
i∈[k]

min
y∈Rd

∑
i∈[k]

∥pi − y∥2 =: min
pji

∈Si

i∈[k]

F (pj1 , pj2 , . . . , pjk), (2.1)

with
P T =

[
p1 . . . pn pn+1 . . . pkn

]
∈ Rd×kn, D,G, (2.2)

denoting the corresponding (configuration) matrix of points, EDM, and Gram matrix, respectively.
In this paper we allow the set sizes to vary nj , j ∈ [k] and let N =

∑
j ∈ [k]nj.

By Lemma 2.2 below, the optimal Wasserstein barycenter is the standard barycenter of the k
optimal points. It is known [2, Sect. 1.2] that the problem can be phrased using inter-point squared
distances. We include a proof to emphasize the connection between Gram and Euclidean distance
matrices.5 We start by recording the following minimal property of the standard barycenter with
respect to sum of squared distances.

Lemma 2.2. Suppose that we are given k points qi ∈ Rd, i = 1, . . . k. Let ȳ = 1
k

∑k
i=1 qi denote the

barycenter. Then

ȳ = argminy

k∑
i=1

1

2
∥qi − y∥2.

Proof. The result follows from the stationary point equation
∑k

i=1(qi − ȳ) = 0.

4We extend the prolem to allow for different sizes for the sets.
5As noted earlier, This is called the cheapest-hub problem in [2, Sect. 1.2].
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We now have the following useful lemma.

Lemma 2.3. Let QT = [q1 . . . qk] ∈ Rd×k and let GQ and DQ be, respectively, the Gram and the
EDM matrices corresponding to the columns in QT . Further, let y = 1

kQ
T e be the barycenter. Then

eTDQe = 2k tr(GQ)− 2eTGQe, (2.3)

and
k∑

i=1

||qi − y||2 = 1

2k
eTDQe. (2.4)

Proof. Let J = I − eeT /k be the orthogonal projection onto e⊥. Hence, J2 = JT = J . Moreover,
the i-th row (JQ)i = (Q− 1

kee
TQ)i = (qi − y)T . Now

k∑
i=1

||qi − y||2 = tr(JQQTJ) = tr(JGQ) = tr(GQ)−
1

k
eTGQe.

But DQ = K(GQ) = ediag(GQ)
T + diag(GQ)e

T − 2GQ. Therefore, e
TDQe = 2k tr(GQ)− 2eTGQe.

The following Corollary 2.4 illustrates the connection between the simple Wasserstein barycenter
problem6 of finding the optimal barycenter and the k-clique problem of finding k pairwise adjacent
vertices.

Corollary 2.4. Consider the main problem (2.1) with optimal Wasserstein barycenter y. This
problem is equivalent to finding exactly one point in each set that minimizes the sum of squared
distances:

(WIQP ) 2Np∗W = p∗ := min
pi∈Si
i∈[k]

∑
i,j∈[k]

∥pi − pj∥2, N =
∑
j∈[k]

nj . (2.5)

Proof. Suppose that P T =
[
p1 . . . pk

]
is a matrix of optimal solution vectors to (2.1), and let y

be the barycenter. Without loss of generality, since distances do not change after a translation, we
translation all the points pi, i ∈ [k], by y and obtain y = 0. This implies that the corresponding
Gram matrix Ge = PP T e = 0. This combined with (2.1) and (2.3) and the corresponding distance
matrix D yield ∑

i,j∈[k] ∥pi − pj∥2 = eTDe

= eT (diag(G)eT + ediag(g)T − 2G)e
= 2N diag(G)e
= 2N trG
= 2N

∑
i∈[k] ∥pi∥2

= 2Np∗W ,

(2.6)

where the last equality follows from Lemma 2.2.

6We refer to this as the Wasserstein barycenter problem.
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2.2 A reformulation using a Euclidean distance matrix

In this paper we work with p∗ and and now provide a reformulation of (2.5) using an EDM. Define

x :=

v1
. . .
vk

 ∈ RN , vi ∈ Rni , A := blkdiag[eTn1
, ..., eTnk

].

And A = I ⊗ eT ∈ Rk×kn, if ni = n, ∀i, where ⊗ denotes the Kronecker product. Note that we get
AT e = e. Then, the constraints of picking exactly one point from each set can be recast as:

Ax = e, x binary. (2.7)

Recalling Corollary 2.4 and (2.6) in the proof, we see that (2.1) can be formulated as a binary-
constrained quadratic program (BCQP ) using the Euclidean distance matrix D formed from all
N points P T =

[
p1 . . . pn1 pn1+1 . . . pn1+n2 . . . . . . pN

]
:

(BCQP )
p∗ = min xTDx = ⟨D,xxT ⟩

s.t. Ax = e
x ∈ {0, 1}N .

(2.8)

For simplicity in the sequel we often assume that the cardinality of all sets are equal.

Remark 2.5 (difficulty of the Wasserstein barycenter problem). We first note that A is totally
unimodular, i.e., every square submatrix has det(AI) ∈ {0,±1}. Therefore, the basic feasible solu-
tions, vertices of the feasible set, of Ax = e, x ≥ 0, are {0, 1} variables. Therefore, these discrete
optimization problems with a linear objective yield vertices as optimal solutions and can be solved
with simplex type methods. This is what happens for the quadratic assignment problem where the
unknown variables are permutation matrices and the problem is relaxed to doubly stochastic matri-
ces (using the Birkhoff-Von Neumann Theorem). Thus, if the objective function is linear we get
0, 1 solutions as the extreme points (basic feasible solutions) are 0, 1.

However, our quadratic objective function is concave on the span of the feasible set by the
properties of distance matrices. Therefore, if we have uniqueness in the solutions we expect 0, 1
solutions if we solve the hard concave minimization problem, i.e., the 0, 1 constraints are redundant.
However, in our relaxations we linearize the objective as it is not possible to minimize a constrained
concave function efficiently in general.

In summary, the problem appears to be NP-hard due to the minimization of a quadratic function,
[13], and the binary 0, 1 constraints. This in contrast to the linear programming approaches for
the generalized transportation problems solved in e.g., [8] and the references therein. However,
the unimodularity of the linear constraint matrix suggests that these two constraints both promote
binary valued optimal points.

3 Facially reduced DNNrelaxation

We now introduce a regularized convex relaxation to the hard binary quadratic constrained problem
introduced in (2.8).
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3.1 Semidefinite programming (SDP ) facially reduced relaxation

We begin with deriving a SDP relaxation of our formulation in (2.8). We start with a feasible

vector x ∈ Rkn and set

(
x0
x

)
=

(
1
x

)
. We then lift the vector to a rank-1 matrix Yx :=

(
1
x

)(
1
x

)T

.

The convex hull of the lifted vertices of the feasible set of (2.8) yields an equivalent polyhedral set
in Sn+1. To obtain a convex relaxation, we relax the implicit nonconvex rank-1 constraint on Yx
and linearize the objective function. After the lifting, we impose the constraints that we have from
x onto Y , e.g., the 0, 1 constraints x2i − xi = 0 become the arrow(Yx) = e0 constraint

arrow : Sn+1 → Rn+1 :

[
s0 sT

s S̄

]
7→
(

s0
diag(S̄)− s

)
.

Here we denote e0, 0-th unit vector . This implies that the binary constraint on vector x is equivalent
to the arrow constraint on the lifted matrix Yx as long as the rank-one condition holds. For
convenience, we define

arrow0 : Sn+1 → Rn+1 :

[
s0 sT

s S̄

]
7→
(

0
diag(S̄)− s

)
.

The linear constraints AX = e is handled next using FR.

3.1.1 SDP reformulation via facial reduction

Denote the positive semidefinite matrix

K :=

[
−eT
AT

] [
−eT
AT

]T
∈ Skn+1

+ . (3.1)

For the “only-one-element-from-each-set” linear equality constraint (see (2.7)), we observe that

Ax = e ⇐⇒
(
1
x

)T [−eT
AT

]
= 0

⇐⇒ YxK :=

(
1
x

)(
1
x

)T [−eT
AT

] [
−eT
AT

]T
= 0

⇐⇒ ⟨Yx,K⟩ = 0
⇐⇒ KYx = 0, i.e., range(Yx) ⊆ null(K) = null

([
−e A

])
.

(3.2)

The last step follows since both K,Yx ⪰ 0. Moreover, this emphasizes that strict feasibility fails
for feasible Y even if we ignore the rank one constraint.

If we choose V full column rank so that range(V ) = null(K), then we can facially reduce the
problem using the substitution

Y ← V RV T ∈ V Snk+1−k
+ V T � Skn+1

+ , (3.3)

where � denotes face of. This makes the constraint KY = 0 redundant.
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Remark 3.1. Note that we need V to satisfy V TV = I for our application. We can rewrite the
matrix

[
−e A

]
by permuting columns as follows[

−e A
]
P =

[
Ik Ik ⊗ eTn−1 −e

]
=
[
Ik Ē

]
,

thus defining Ē. Therefore, we get a basis of the nullspace up to a permutation of rows of[
−Ē

Ikn−k+1

]
=

[[
−Ik ⊗ eTn−1 e

]
Ikn−k+1

]
We now immediately get k orthogonal columns. For a typical matrix V see Figure 3.1. Alternatively,

0 100 200 300 400 500 600

nz = 8726

0

100

200

300

400

500

600

Figure 3.1: V matrix for k=20, n=20

we can use the Matlab QR algorithm [q,̃ ] = qr(−e A) and use the last part of q for the nullspace.
This results in a relatively sparse orthonormal basis for the nullspace.

We now explicitly find an efficient form for V in Lemma 3.2.

Lemma 3.2. Let k, n be given positive integers and from above let

A =
[
Ik ⊗ eTn

]
, B =

[
−ek A

]
.

Let O ∈ Rn−1×n−1 be the strictly upper triangular matrix of ones of order n− 1. Set

v =
(

1√
j+j2

)
j
∈ Rn−1, v̄ =

(
j√
j+j2

)
j
∈ Rn−1, β = −1/

√
n2 + nk, and α = nβ.

Let Õ = −ODiag(v) + Diag(v̄) and set

Ō =

[
−vT
Õ

]
=



−v1 −v2 −v3 · · · −vn−1

v̄1 −v2 −v3 · · · −vn−1

0 v̄2 −v3 · · · −vn−1

0 0 v̄3 · · · −vn−1
...

...
...

. . .
...

0 0 0 · · · v̄n−1


.
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Then we have

V =

[
0 α

Ik ⊗ Ō βe

]
∈ Rnk+1×(n−1)k+1, V TV = I, BV = 0.

Proof. Denote the j-th column of V by Vj and define Js := {js1, js2, . . . , jsn−1}, where jsr = (n −
1)(s− 1) + r. Notice that Js is the index set of columns of V in s-th block. j ∈ Jk+1 means Vj is
the last column of V .

We first prove that V TV = I, i.e., column vectors of V is orthonormal. Let i, j ∈ {1, . . . , (n−
1)k + 1}. We consider the following cases:
If j ≤ (n− 1)k, then

V T
j Vj = jv2j + v̄2j =

j

j + j2
+

j2

j + j2
= 1.

If j = (n− 1)k + 1, then
V T
j Vj = α2 + nkβ2 = (n2 + nk)β2 = 1.

Now let i < j. If i, j ∈ Js for some s ≤ k. Then,

V T
i Vj = ivivj − v̄ivj

= i · 1√
i+ i2

1√
j + j2

− i√
i+ i2

1√
j + j2

= 0.

If j = (n− 1)k + 1. Then,

V T
i Vj = −iviβ + v̄iβ = (−ivi + ivi)β = 0.

If i ∈ Js, j ∈ Jt with s < t ≤ k. For each row, at least one of the vectors has 0 entry, so trivially
V T
i Vj = 0. This proves that V TV = I.
Secondly, we observe BV = 0, i.e., V ∈ null(B). To this end, we will see that BVj = 0 for each

j = 1, . . . , (n− 1)k + 1. Fix s ∈ {1, . . . , k}. If j = (n− 1)k + 1,(
BVj

)
s
= −α+ nβ = −nβ + nβ = 0,

Now assume that j ≤ (n− 1)k. If j ∈ Js, then(
BVj

)
s
= −jvj + v̄j = −jvj + jvj = 0, for each i = 1, . . . , k.

Otherwise, trivially
(
BVj

)
s
= 0. This justifies BV = 0.

We leave open the question on how to exploit the structure of V to obtain efficient matrix-matrix
multiplications of the form V RV T needed in our algorithm.

We continue and clarify the usefulness of the arrow constraint.

Proposition 3.3. The following holds:

{
Y ∈ Skn+1

+ : rank(Y ) = 1, arrow(Y ) = e0

}
=

{
Y =

(
1
x

)(
1
x

)T

: x ∈ {0, 1}kn
}
.
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Proof. (⊇): This is clear from the definitions.
(⊆): Since Y is symmetric, positive semidefinite and has rank 1, there exists x0 ∈ R and x ∈ Rkn

such that Y =

(
x0
x

)(
x0
x

)T

. Since arrow(Y ) = e0, x
2
0 = 1 and x ◦ x = x0x. If x0 = 1, x ∈ {0, 1}kn;

otherwise x0 = −1 and x ∈ {0,−1}n and it is easy to verify that{(
1
x

)(
1
x

)T

: x ∈ {0, 1}kn
}

=

{(
−1
x

)(
−1
x

)T

: x ∈ {0,−1}n
}
.

Recall the objective function in (2.8), and the lifted matrix variable Yx. Define

D̂ :=

[
0 0
0 D

]
∈ Skn+1. (3.4)

The objective function of (2.8) now becomes ⟨D,xxT ⟩ = ⟨D̂, Yx⟩. Then the SDP reformulation of
(2.8) becomes

(SDP )

p∗ = min ⟨D̂, Y ⟩
arrow(Y ) = e0
rank(Y ) = 1
KY = 0

Y ∈ Skn+1
+ .

And if we substitute using the facial vector, V , Y ← V RV T , then we can discard the KY = 0
constraint. We assume that the columns of the facial vector V form an orthonormal basis for the
nullspace of K.

3.1.2 Relaxing the rank-1 constraint

Since the NP -hardness of the SDP formulation comes from the rank-1 constraint, we now relax
the problem by deleting this constraint. The SDP relaxation of the above model is

(SDP relax)

p∗ = minY ∈Skn+1 ⟨D̂, Y ⟩
arrow(Y ) = e0
KY = 0
Y ⪰ 0.

(3.5)

However, the improved processing efficiency of this convex relaxation trades off with the accuracy
of solving the original NP-hard problem. The rank of an optimal Y now can be greater than 1. The
idea now is to impose a “correct” amount of redundant constraints in the SDPmodel that reduces
the rank of an optimal solution as much as possible, but does not hurt the processing efficiency of
the model too much.

3.1.3 The gangster constraint

The gangster constraint fixes at 0 (shoots holes at) certain entries in the matrix. The entries are
given in the gangster index, J . By abuse of notation, we allow one entry to be fixed at 1. The
gangster constraint in our case comes from the linear constraint Ax = e combined with the binary
constraint on x. We let S ◦ T denote the Hadamard (elementwise) product.
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Proposition 3.4. Let x be feasible for BCQP. Then

[ATA− I] ◦ xxT = 0,

and ATA− I ≥ 0, xxT ≥ 0. Define the gangster indices

J :=
{
ij :

(
ATA− I

)
ij
> 0
}
.

The gangster constraint on Y in (3.5) is Y00 = 1 and

J (Y ) = YJ = 0 ∈ R|J |.

Proof. Recall that x ∈ Rkn
+ . We now use basic properties of the Kronecker product, e.g., [14], and

see that
A = Ik ⊗ eT , AT = Ik ⊗ e, ATA = Ik ⊗ eeT ,

i.e., ATA = BlkDiag(eeT . . . eeT ), a block diagonal structure. Therefore the columns of A are unit
vectors and Diag(diag(ATA)) = Ikn. The nonnegativity results follow from the definition, as does
Y00 = 1.

Then

Ax = e ⇐⇒ ATAx = AT e = diag(ATA)
⇐⇒ ATAx− Ix = AT e− Ix = diag(ATA)−Diag[diag(ATA)]x
⇐⇒ (ATA− I)x = diag(ATA) ◦ (e− x) = e− x
⇐⇒ (ATA− I)xxT = (e− x)xT = exT − xxT

⇐⇒ tr[(ATA− I)xxT ] = tr[exT − xxT ] =
∑kn

i=1 xi − x2i = 0
⇐⇒ (ATA− I) ◦ xxT = 0.

The final conclusion now follows from the nonnegativities in the Hadamard product.

From Proposition 3.4, we see that the gangster indices, J are the nonzeros of the matrix
ATA − I, i.e., the set of off-diagonal indices of the n-by-n diagonal blocks of the bottom right of
Yx. Our complete gangster index is Ĵ := {(0, 0)} ∪ J . We define the gangster constraint mapping,
GJ :

GJ (Y ) = Y (J ) ∈ R|J |,

i.e., the elements of Y indexed by the index set J .
Now the SDP relaxation model becomes

p∗ = minY ∈Skn+1 ⟨D̂, Y ⟩
Y00 = 1
arrow0(Y ) = 0
GJ (Y ) = 0
KY = 0
Y ⪰ 0.

(3.6)

The following follows from [5, Thm 2.1].

12



Proposition 3.5. Consider the SDP relaxation (3.6) but without the arrow0 constraint. Suppose
that an optimal solution satisfies rank(Y ) = 1. Then the constraint

arrow0(Y ) = 0

holds, i.e., it was a redundant constraint.

Proof. Suppose that the hypothesis holds but the arrow0 does not. Then, without loss of generality,
we can assume that it fails for the 0, 1 element of Y . But then the top left 2× 2 principal minor is
rank 2, a contradiction.

Our empirical tests on random problems without the arrowz constraint confirmed this result.
However, the exctra redundant constraint is useful for the subproblems in the splitting approach.

3.2 Doubly nonnegative (DNN) relaxation

We now split the problem by using two variables {Y,R} and apply a doubly nonnegative relaxation
to (3.6). This natural splitting uses the facial reduction obtained in (3.3) but with orthonormal
columns chosen for the facial vector V .

Recall that the lifting for Yx has the form

(
1
x

)(
1
x

)T

, where x ∈ {0, 1}kn. Hence, we can

impose the redundant element-wise [0, 1]-bound constraint on Y , i.e: 0 ≤ Y ≤ 1. Moreover, the
constraint KY = 0 is redundant once we apply FR, i.e., we get

Y ⪰ 0,KY = 0 ⇐⇒ Y = V RV T , R ∈ Snk+1−k
+ .

We now add a redundant trace constraint on Y and transform it onto R.

Lemma 3.6. Let Y ∈ Skn+1, Y = V RV T , R ∈ Snk+1−k. Then

KY = 0, arrow(Y ) = e0 =⇒ tr(Y ) = tr(R) = k + 1.

Proof. Recall that K :=

[
−eT
AT

] [
−eT
AT

]T
. Since null(K) = null

([
−eT
AT

]T )
, we have

0 = KY ⇐⇒ 0 =

−1 eT ... 0T

... ... ... ...
−1 0T ... eT

 Y0,0 ... Y0,nk
... ... ...

Ynk,0 ... Ynk,nk

 .

By expanding the first column of the product, we get
∑n

i=1 Yjn+i,0 = 1,∀j ∈ {0, ..., k−1}. Since
arrow(Y ) = e0, this implies that tr(Y ) = Y0,0 +

∑k
j=1

∑n
i=1 Yjn+i,0 = 1 + k. Since we choose the

facial vector V to have orthonormal columns, the facial constraint yields

1 + k = tr(Y ) = tr(V RV T ) = tr(RV TV ) = tr(R),

13



Next, we incorporate all these constraints into the SDP relaxation model to form theDNN relaxation
model. Define the two set constraints

Y := {Y ∈ Snk+1 : Y00 = 1,GJ (Y ) = 0, arrow0(Y ) = 0, 0 ≤ Y ≤ 1}, R := {R ∈ Snk+1−k
+ : tr(R) = k+1}.

(3.7)
Our DNN relaxation model is:

(DNN )

p∗DNN := minR,Y ⟨D̂, Y ⟩
s.t. Y = V RV T

Y ∈ Y
R ∈ R.

(3.8)

Observe that every feasible Y is both nonnegative element-wise and PSD , i.e., this is aDNN relaxation.
The splitting allows for the two cones to be handled separately. Combining them into one and ap-
plying e.g., an interior point approach is very costly. Below, we do solve this using the Mosek
solver. However, one cannot get high accuracy and therefore the approximate optimal value we get
is not a provable lower bound for Problem 2.1. Moreover, the expense does not scale well with N ,
and we cannot apply weak duality and use the dual solution as both primal and dual feasibility are
not highly accurate. We overcome this problem for the splitting method in Section 4.1.1 below.

3.2.1 Characterization of optimality for DNNrelaxation

Note that the linear mappingM(Y,R) := Y −V RV T is surjective. Therefore the KKT optimality
conditions hold for (3.8) with the normal cone NY×R(Y,R). In addition, the interior of the closed
convex feasible set int (Y ×R) ̸= ∅ implies that

NY×R(Y,R) = NY(Y )×NR(R).

We can now use the corresponding Lagrangian with dual variable Z:

L(Y,R,Z) = ⟨D̂, Y ⟩+ ⟨Z, Y − V RV T ⟩+ ιY(Y ) + ιR(R),

where ιS(·) is the indicator function for the set S. Therefore the first-order optimality conditions
to the problem in (3.8) are: a primal-dual pair (Y,R,Z) is optimal if, and only if,

Y = V RV T , R ∈ R, Y ∈ Y (primal feasibility) (3.9a)

0 ∈ −V TZV +NR(R) (dual R feasibility) (3.9b)

0 ∈ D̂ + Z +NY(Y ) (dual Y feasibility) (3.9c)

By the definition of the normal cone, we can easily obtain the following Proposition 3.7.

Proposition 3.7 (characterization of optimality for DNN in (3.8)). The primal-dual pair (R, Y, Z)
is optimal for (3.8) if, and only if, (3.9) holds if, and only if,

R = PR(R+ V TZV ) (3.10a)

Y = PY(Y − D̂ − Z) (3.10b)

Y = V RV T . (3.10c)
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4 sADMMalgorithm

The augmented Lagrangian corresponding to the DNN relaxation (3.8) with parameter β > 0 is

Lβ(Y,R,Z) := ⟨D̂, Y ⟩+ ⟨Z, Y − V RV T ⟩+ β

2
∥Y − V RV T ∥2F + ιY(Y ) + ιR(R). (4.1)

To solve the problem in (3.8), we will use the symmetric alternating directions method of multipliers
sADMM that has intermediate updates of dual multipliers Zt. It updates the dual variable
twice: once after the R-update and then again after the Y -update. This approach has been used
successfully in [5, 11]. (We include the details here for the reader.) Hence, both the R-update and
the Y -update take into account newly updated dual variable information. Let Y0 ∈ Snk+1 and let
Z0 ∈ Snk+1. The updates (∀k ∈ N):

Rk+1 = argminR∈Snk+1−k Lβ(Yk, R, Zk)
Zk+ 1

2
= Zk + β(Yk − V Rk+1V

T )

Yk+1 = argminY ∈Snk+1 Lβ(Y,Rk+1, Zk+ 1
2
)

Zk+1 = Zk+ 1
2
+ β(Yk+1 − V Rk+1V

T ).

(4.2)

In our DNNmodel (3.8), the objective function is continuous and the feasible set is compact.
By the extreme value theorem, an optimal primal pair (Y ∗, R∗) always exists. As seen above,
the constraint is linear and surjective and strong duality holds. (See the optimality conditions
in Section 3.2.1). In fact, in our application we modify the dual multiplier update using a projection,
see Lemma 4.1 and Algorithm 4.1.

Explicit Primal updates for R, Y

The success of our splitting method is dependent on efficiently solving the subproblems. We start
with using a spectral decomposition of M , implicitly defined below, to get the:

R− update = argminR∈Snk+1−k Lβ(R, Y k, Zk)
= argminR∈R ∥Yk − V RV T + 1

βZk∥2F , by completing the square

= argminR∈R ∥V TYkV −R+ 1
βV

TZkV ∥2F , since V TV = I

= argminR∈R ∥R− V T (Yk +
1
βZk)V ∥2F

= PR[V T (Yk +
1
βZk)V ] =: PR(M); M = U Diag(d)UT

= U Diag[P∆k+1
(d)]UT ,

where P∆k+1
denotes the projection onto the simplex ∆k+1 := {x ∈ Rn

+ : ⟨e, x⟩ = 1 + k}, see
e.g., [6].

Next for the

Y−update = argminY ∈Snk+1 Lβ(Rk+1, Y, Zk+ 1
2
)

= argminY ∈Y ∥Y − [V Rk+1V
T − 1

β (D̂ + Zk+ 1
2
)]∥2F by completing the square

= PY
(
V Rk+1V

T − 1
β (D̂ + Zk+ 1

2
)
)

= Parrowbox

(
GĴ [V Rk+1V

T − 1
β (D̂ + Zk+ 1

2
)]
)

where GĴ is the gangster constraint and Parrowbox projects onto the polyhedral set {Y ∈ Snk+1 :
Yij ∈ [0, 1], arrow(Y ) = e0}.
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Dual updates

The correct choice of the Lagrange dual multiplier Z is important in the progress of the algorithm
and in obtaining strong lower bounds. In addition, if the set of dual multipliers for all iterations is
compact, then it indicates the stability of the primal problem. If an optimal Z∗ for (3.8) is known
in advance, then there is no need to impose the primal feasibility constraint Y = V RV T . Hence,
following the idea of exploiting redundant constraints, we aim to identify certain properties of an
optimal dual multiplier and impose that property at each iteration of our algorithm.

Lemma 4.1. Let

ZA :=
{
Z ∈ Skn+1 : (Z + D̂)i,i = 0, (Z + D̂)0,i = 0, (Z + D̂)i,0 = 0, i = 1, ..., nk

}
.

Let (Y ∗, R∗, Z∗) be an optimal primal-dual pair for the DNN in (3.8). Then, Z∗ ∈ ZA.

Proof. The proof of this fact uses the dual Y feasibility condition (3.9c) and a reformulation of the
Y -feasible set. The details are in [9, Thm 2.14] and [5].

In view of Lemma 4.1 we propose the following modification of the symmetricADMM algorithm,
e.g., [10]. Our modification is in the way we update the multiplier. At every intial or intermediate
update of the multiplier we project the dual variable onto ZA, i.e:

• Zj+ 1
2
:= Zj + βPZA

(Yj − V Rj+1V
T );

• Zj+1 := Zj+ 1
2
+ βPZA

(Yj+1 − V Rj+1V
T ).

Note that a convergence proof using the modified updates is given in [9, Thm 3.2]. Therefore, in
view of theADMM updates (4.2) we propose the following Algorithm 4.1 with modified Z updates.

Algorithm 4.1 sADMM , modified symmetric ADMM

Initialization: j = 0, Yj = 0 ∈ Snk+1, Zj = PZA
(0), β = max(⌊nk+1

k ⌋, 1), γ = 0.9
while termination criteria are not met do
Rj+1 = U Diag[P∆j+1(d)]U

T where U Diag(d)UT = eig(V T (Yj +
1
βZj)V )

Zj+ 1
2
= Zj + γβPZA

(Yj − V Rj+1V
T )

Yj+1 = Pbox[GĴ(V Rj+1V
T − 1

β (D̂ + Zj+ 1
2
))]

Zj+1 = Zj+ 1
2
+ γβPZA

(Yj+1 − V Rj+1V
T )

j = j + 1
end while

Remark 4.2. In passing, we point out that we could choose any γ ∈ (0, 1) and β > 0. Theoretically
this is all what we need. In our numerical experiments for Algorithm 4.1 we used an adaptive β
based on the discussion in Section 4.3.1.

4.1 Bounding and duality gaps

Strong upper and lower bounds allow for early stopping conditions as well as proving optimality.
We now provide provable upper and lower bounds to machine precision.
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4.1.1 Provable lower bound to NP-hard problem

The Lagrangian dual function to the DNNmodel g : Snk+1 → R is

g(Z) = minR∈R,Y ∈Y⟨D̂, Y ⟩+ ⟨Z, Y − V RV T ⟩
= minY ∈Y,R∈R⟨D̂ + Z, Y ⟩ − ⟨Z, V RV T ⟩
= minY ∈Y⟨D̂ + Z, Y ⟩+minR∈R(−⟨V TZV,R⟩)
= minY ∈Y⟨D̂ + Z, Y ⟩ −maxR∈R⟨V TZV,R⟩
= minY ∈Y⟨D̂ + Z, Y ⟩ −max∥v∥2=(k+1) v

TV TZV v

= minY ∈Y⟨D̂ + Z, Y ⟩ − (k + 1)λmax(V
TZV ).

Hence, at iteration j, and applying weak duality, a lower bound to the optimal value of the
DNNmodel (3.8) is

p∗DNN ≥ maxZ g(Z)

≥ minY ∈Y⟨D̂ + Zj , Y ⟩ − (k + 1)λmax(V
TZjV ).

(4.3)

Note that from the definition of Y in (3.7), this bound is found from solving: an LPwith a simplex
type feasible set; and an eigenvalue problem. Thus both values can be found accurately and
efficiently. Moreover, since DNN is a relaxation, weak duality implies that this lower bound is a
provable lower bound for the original NP-hard Problem 2.1.

4.1.2 Upper bounds

As for the upper bound, we consider two strategies for finding feasible solutions to the BCQP in
(2.8). The 0-column approach is to take the first column Y (1 : end, 0) and compute its nearest
feasible solution to BCQP. It is equivalent to the greedy approach of using only the maximum
weight index for each consecutive block of length n. The proof is in [5, Section 3.2.2].

Alternatively, we use the eigenvector of Y corresponding to the largest eigenvalue. The Perron-
Frobenius Theorem implies this eigenvector is nonnegative, as Y is nonnegative. We then compute
the nearest feasible solution to BCQP. It is again equivalent to the greedy approach.

Then, we compare the objective values for both approaches and select the upper bound with
smaller magnitude. The relative duality gap at the current iterate j is defined to be

UBj−LBj

|UBj |+|LBj |+1

where UBj , LBj denotes the best upper, lower, respectively, bound found up to the current iterate.

4.2 Stopping criterion

By Proposition 3.7, we can define the primal and dual residuals of the sADMM algorithm at
iterate j as follows:

• Primal residual rj := ∥Yj − V RjV
T ∥;

• Dual-R residual sRj := ∥Rj − PR
(
Rj + V TZjV

)
∥;

• Dual-Y residual sYj :=
∥∥∥Yj − PY (Yj − D̂ − Zj+ 1

2

)∥∥∥.
We terminate the algorithm once one of the following conditions is satisfied:

• The maximum number of iterations (maxiter) := 104 + k(nk + 1) is reached;

17



• The relative duality gap is less or equal to ϵ, a given tolerance;

• KKTres := max{rj , sRj , sYj } < η, a given tolerance.

• Both the least upper bound and the greatest lower bound have not changed for boundCoun-
terMax:=200 times (stalling).

4.3 Heuristics for algorithm acceleration

4.3.1 Adaptive step size

We apply the heuristic idea presented in [4], namely we bound the gap between the primal and
dual residual norms within a factor of µ := 2 as they converge to 0. This guarantees that they
converge to 0 at about the same rate and one residual does not overshoot the other residual by too
much. Since a large penalty β prioritizes primal feasibility over dual feasibility and a small penalty
β prioritizes dual feasibility over primal feasibility, we scale β by a factor of τinc := 2 if the primal
residual overshoots the dual residual by a factor of µ and scale β down by a factor of τdec := 2 if
the dual residual overshoots the primal residual by a factor of µ. Otherwise, we keep β unchanged.
Specifically,

βj+1 :=


τ incrβj , ∥rj∥2 > µ∥sj∥2;
βj

τdecr
, ∥sj∥2 > µ∥rj∥2;

βj , otherwise.

4.3.2 Transformation and scaling

In this section, we consider translating and scaling the objective function i.e., D̂. Define the
orthogonal projection map PV := V V T . Then,

⟨D̂, Y ⟩ := ⟨D̂ + αI, Y ⟩ − (n+ 1)α

= ⟨D̂ + αI, PV Y PV ⟩ − (n+ 1)α

= ⟨(PV D̂PV + αI), Y ⟩ − (n+ 1)α.

(4.4)

Hence,

⟨D̂, Y ⟩ is minimized ⇐⇒ δ⟨D̂, Y ⟩ = ⟨δ(PV D̂PV + αI), Y ⟩ − (n+ 1)δα is minimized

⇐⇒ ⟨δ(PV D̂PV + αI), Y ⟩ is minimized.

This lets us transform D̂ into δ(PV D̂PV + αI) without changing the optimal solutions. Numerical
experiments show that once we scale D̂ by some δ < 0, the convergence becomes faster for the
aforementioned input data distributions. There seems to be an optimal δ that minimizes the
number of iterations for convergence.

4.4 Numerical tests

We now illustrate the efficiency of our algorithm on medium and large scale randomly generated
problems. We used Matlab version 2022a on two linux servers: (i) fastlinux: greyling22 Dell R840
4 Intel Xeon Gold 6254, with 3.10 GHz, 72 core and 384 GB; and (ii) biglinux: Dell PowerEdge
R6625, two AMD EPYC 9754 128-core 2.25 GHz, 1.5 TB.
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Depending on fixed size or varying sizes for the sets, the size of the problem is N = kn, or
N =

∑
i ni, vectors respectively, in embedding dimension d. For the varying sizes ni, we chose

them randomly in the interval of width 5 about the given n value. Thus they increase in expected
value with n. However, our quadratic model hides the dimension d as we only use the distances
between the N points. This can be seen in the times in the tables. The size of the DNNmodel
is N + 1 irrespective of d. The hardness of the problem is often hiding in the rank of the optimal
solution Y of the DNN relaxation, i.e., if the rank is one, then we have solved the original NP-hard
problem. However, if the rank is large, then the heuristics for the upper and lower bounds may not
be enough to find an optimal solution for Problem 2.1.

The results below illustrate the efficiency and surprising success of our algorithm in finding the
exact solution of the original NP-hard problem.

1. In Figure 4.1, page 19, we see the slow (linear) growth, other than outliers, for the computation
time versus the size N = kn. This was for sets of equal size with d = (3 : 3 : 27), k = (36 : 2 :
50), n = (47 : 1 : 60) with the averages taken of two problems for each data instance.7
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Figure 4.1: size N = kn versus cpu time; illustrating linear time

2. In Table 4.1, page 20, we see a comparison between using the sADMM approach and CVX
with the Sedumi solver. We are using varying sizes for the sets and posting the total number
of points under N . We can see the times for the cvxsolver increase dramatically. The relative
duality gap from cvx is not a provable gap as the lower bound is obtained using the dual
optimal value minus the posted accuracy of the solve. We do not have accurate primal or
dual solutions from cvx. Thus the relative gap is essentially the posted accuracy from cvx.
We do find a nearest feasible point to find the upper bound. In summary, we see that the
dramatic difference in time and the improved accuracy with the guaranteed lower bound that
verifies optimality.

7Done using Matlab version 2024a on fastlinux, cpu157.math.private, Dell PowerEdge R660, Two Intel Xeon
Gold 6434, 8-core 3.7 GHz (Sapphire Rapids),256 GB
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dim/sets/size Time (s) rel. duality gap

d k N ADMM CVXsolver ADMM CVXsolver

2 8 56 0.14 10.47 1.5e-14 1.3e-10

2 8 72 0.28 46.09 2.0e-14 9.1e-10

2 8 88 0.34 75.33 3.3e-15 5.2e-10

2 8 104 0.45 275.38 2.8e-14 6.1e-10

2 9 63 0.26 24.55 2.9e-15 3.2e-10

2 9 81 0.31 75.90 -1.5e-16 3.5e-10

2 9 99 0.30 373.53 1.6e-14 3.8e-10

2 9 117 0.67 809.28 -4.2e-14 5.9e-09

2 10 70 0.22 43.13 3.1e-14 1.2e-10

2 10 90 0.30 250.04 5.9e-16 3.0e-10

2 10 110 0.42 553.62 2.5e-14 4.4e-10

2 10 130 0.62 1555.54 3.4e-15 2.8e-09

3 8 56 0.10 9.55 4.6e-14 1.5e-10

3 8 72 0.38 46.60 2.6e-15 5.8e-10

3 8 88 0.21 77.41 -3.1e-15 6.6e-10

3 8 104 0.38 280.12 1.7e-14 7.6e-10

3 9 63 0.15 19.97 3.4e-15 1.6e-10

3 9 81 0.13 81.98 7.7e-15 3.3e-10

3 9 99 0.24 360.76 -2.8e-15 4.5e-10

3 9 117 0.62 803.72 4.7e-14 5.2e-09

3 10 70 0.21 39.18 5.2e-15 1.7e-10

3 10 90 0.23 236.75 9.1e-17 1.4e-10

3 10 110 0.29 562.02 3.0e-15 3.5e-10

3 10 130 0.76 1473.45 3.3e-14 4.7e-09

Table 4.1: Comparing ADMM with CVX Solver Sedumi

3. We include large problems in Table 4.2, page 21. Other than outliers, the times are very
reasonable.

5 Multiple optimal solutions and duality gaps

We now show that multiple optimal solutions for the original hard problem can lead to a duality
gap between the optimal value of the original NP-hard problem and the lower bound found from
the DNN relaxation.

5.1 Criteria for duality gaps

To find duality gaps for SDP relaxations, we want to find optimal points for the relaxation that are
outside of the convex hull of the lifted vertices. The following Lemma 5.1 and Corollary 5.2 provides
a gap between a general hard problem with multiple optimal solutions and its DNN relaxation.

20



dim/sets/size Time (s) rel.duality gap

d k N ADMM ADMM

8 30 1200 104.81 -1.9e-15

8 30 1230 67.08 -3.2e-14

8 31 1240 94.90 -1.3e-14

8 31 1271 81.93 2.5e-14

8 32 1280 75.29 3.1e-14

8 32 1312 2025.42 1.8e-13

9 30 1200 4586.51 1.2e-13

9 30 1230 63.91 2.6e-14

9 31 1240 93.96 3.3e-14

9 31 1271 71.31 3.2e-14

9 32 1280 92.89 3.6e-14

9 32 1312 86.67 -2.2e-13

Table 4.2: Large problems with sADMMon biglinux server

Lemma 5.1. Let {xi}ni=1 ⊂ Rn
+ be a linearly independent set with

∑
i xi > 0. Define the lifted

vertices and barycenter, respectively,

{
Xi = xix

T
i

}n
i=1
⊂ Sn, X̂ :=

1

n

n∑
i=1

Xi.

Then
X̂ ∈ Sn++ ∩ Rn

++ (= intDNN ).

Proof. That X̂ ∈ Rn
++ is clear from the hypothesis. Now note that Xi ⪰ 0,∀i, and so X̂ ⪰ 0 as

well. To obtain a contradiction, suppose that 0 = X̂v, for some 0 ̸= v ∈ Rn. Then

0 = vT X̂v = vT
∑
i

Xiv =⇒ 0 = vTXiv,∀i =⇒ (vTxi)
2 = 0, ∀i =⇒ v = 0,

by the linear independence assumption; thus contradicting v ̸= 0.

Corollary 5.2. Suppose that the hypotheses of Lemma 5.1 hold. Moreover, suppose that the points
xi, i = 1, . . . , n, are (multiple) optima for a given hard minimization problem

(P ) p∗ = min
{
xTQx : x ∈ {0, 1}n

}
= xTi Qxi, ∀i.

Moreover, suppose that there exists a feasible y with y ̸= xi,∀i, and y not optimal,

y ∈ {0, 1}n, yTQy > p∗.

Then the DNN relaxation has feasible points Y = yyT , Z such that

trY Q > p∗ > trZQ,

i.e., Z yields a duality gap.
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Proof. From Lemma 5.1 we have that the barycenter satisfies both X̂ ≻ 0, X̂ > 0. Note that
trY Q = yTQy > p∗ = tr X̂Q. Therefore, tr(X̂ − Y )Q < 0, and for ϵ > 0,

tr(X̂ + ϵ(X̂ − Y )Q = p∗ + ϵ tr(X − Y )Q < p∗.

Moreover, the line segment [Y, X̂ + ϵ(X̂ − Y )] is feasible for the SDP relaxation for small enough
ϵ > 0 by X̂ ∈ intDNN. Therefore, we set Zϵ = X̂ + ϵ(X̂ − Y ), 0 < ϵ << 1 and obtain a duality
gap.

We can extend this theory to problems with general linear constraints Ax = b by using FR. We
now specifically extend it to our BCQP in (2.8). We need nk+1− k linearly independent optimal
points. This can be obtained when we choose k >> n. Recall the matrix K in (3.1) used for facial
reduction and the facially reduced DNN relaxation in (3.8).

Corollary 5.3. We consider the BCQP in (2.8) with optimal value p∗, and the DNN relaxation
in (3.8). Let {

yi =

(
1
xi

)}nk+1−k

i=1

⊂ Rnk+1
+

be a linearly independent set that are optimal for BCQP and with
∑

i yi > 0. Define the lifted
vertices and barycenter, respectively,{

Yi = yiy
T
i

}
i
, ∀i, Ŷ :=

1

n

n∑
i=1

Yi.

Moreover, suppose that there exists a feasible x̄ for BCQP that is not optimal. Then

Ŷ = V R̂V T ⪰ 0, Ŷ > 0, R̂ ≻ 0.

And there exists Z = V RZV
T , RZ ≻ 0 with optimal value trDZ < p∗, yielding a duality gap.

Proof. First note that incident vectors are feasible for the linear constraints and this guarantees
that we have enough feasible points to guarantee that the barycenter satisfies Ŷ > 0. All lifted
feasible points of the relaxation are in the minimal face and have a corresponding matrix R for
the facial reduction Y = V RV T . Since R ≻ 0 after the FR, we can apply the same proof as
in Corollary 5.2. In addition, note that the linear constraints, the arrow constraint and gangster
constraints, remain satisfied in the line formed from two feasible points.

5.2 Examples with a duality gap

We illustrate the above theory with some specific problems with special structure that have multiple
optimal solutions for the original NP -hard problem. We see that a duality gap can exist between
the optimal value of the original NP-hard problem and the optimal alue of the DNN relaxation.

Example 5.4 (Odd wheels). We next present another input data distribution for which the duality
gap between the optimal value of the BCQP formulation and the Lagrangian dual value is non-
trivial. The issue is again the non-uniqueness of the optimal solutions and the sADMM algorithm
fails to break ties among them.

The data distributions compose of a wheel of wheels, i.e., a wheel with an odd number of sets
each of which is a wheel. Hence we call it an odd wheel. Given problem size parameters (k, n, d),
define
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• θk := 2π
k .

• a set of k centroids encoded by .a matrix C ∈ Rk×2 such that

C(i, :) =
[
cos(i− 1)θk sin(i− 1)θk

]
, i = 1, ..., k.

• the radius of each cluster rk :=

√
cos(θk−1)2+sin θ2k

4 .

• the set of input points encoded by a matrix P := (C ⊗ e) + rk(e⊗ C) ∈ Rk2,2.

When k is odd, there exists more than one optimal solution. A simple example with k = 3 = n
follows in Figure 5.1, page 24. We use the corresponding nine points in the configuration matrix
ordered 1− 9 counter-clockwise in the triangles ordered counter-clockwise.

P =



1.7536 0.0137
0.6195 0.6362
0.6239 −0.6643
0.2590 0.8609
−0.8839 1.5449
−0.8692 0.2201
0.2629 −0.8740
−0.8937 −0.2100
−0.8721 −1.5275


The distances are ordered by choosing the points in lexicographic order: (1, 1, 1), (1, 1, 2), . . . (3, 1, 1), . . . , (3, 3, 3).
The unique minimum distance is 11.1607 obtained from the points (2, 3, 2) and with the primal op-

timal x∗ =
(
0 1 0 0 0 1 0 1 0

)T
. The optimal value from cvx to 9 decimals precision is

10.8246, thus verifying an empirical duality gap of .3 to 9 decimals precision. The motivation for
this counter-example is to have near optimal solutions. One could shrink triangle two to make point
4 equidistant to points 7, 8 and move point 2 closer to point 3 and thus have a tie optimal solution.8

Note that the maximum distance is 56.0227 obtained from points (1, 2, 3).
search. The optimal value of the relaxation if found accurately to ???? add reference to

Miguel????
However, when k is even, only one optimal solution clearly exists and the duality gap becomes

trivial. An example with k = 6 = n follows in Figure 5.2, page 25.

6 Conclusion

In this paper we presented a strategy for solving a class of NP-hard binary quadratic problems.
This involves formulating a DNN relaxation, applying FR that gives rise to a natural splitting for
a symmetric alternating directions method of multipliers sADMMwith intermediate update of
multipliers and strong upper and lower bounding techniques. In particular, the structure of both
the primal and dual solutions is exploited in the updating steps of the sADMM. We applied this
to the NP -hard computational problem called the Simplified Wasserstein Barycenter problem.

8The wheel graph was used successfully to obtain duality gaps for the second lifting of the max-cut problem,
see [3].
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Figure 5.1: Duality gap for wheel of wheels: k=3=n

Surprisingly, for the random problems we generated the gap between bounds was zero to ma-
chine precision and we were able to provably solve the original NP-hard optimization problem, i.e., if
there were another optimal solution, then it would yield the same optimal value to machine preci-
sion. This coincided with rank(Y ∗) = 1 for the optimal solution found for the DNN relaxation. We
observed that the embedding dimension d is hidden in the DNN relaxation. However, for specially
constructed input data that has near multiple optimal solutions, the algorithm had difficulty break-
ing ties and the result was gaps between lower and upper bounds conciding with rank(Y ∗) > 1,
i.e., the original Wasserstein problem was not solved to optimality. To continue a process to opti-
mality, the size of d would be involved in any branch and bound process.

As for future research, we want to better understand the theoretical reasons for the positive
duality gaps and find more classes of problems where this occurs. Does the lack of gaps correspond
to large volumes for the normal cones at points on the boundary of the feasible set? In addition,
we want to understand what happens under small perturbations to problems with duality gaps,
i.e., if the gaps can be closed with perturbations.

Finally, we are gathering data about airports in North America by state and province ourair-
ports.com/continents/NA/. We plan on solving the problem of finding the best hub in each state
(or province) in order to find the location for the best hub for the country.
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Figure 5.2: No duality gap for wheel of wheels: k=6=n
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Index

0-th unit vector, e0, 8
F (pj1 , pj2 , . . . , pjk), 5
S ◦ T , Hadamard (elementwise) product, 12
S ∈ Sn, 4
V , facial vector, 11
[k] = 1, 2, . . . , k, 4
K(G), Lindenstrauss operator, 5
SnC , centered, 4
SnH , hollow, 4
arrow, 8
arrow0, 8
GJ , gangster constraint mapping, 12
J , gangster indices, 12
diag(S) ∈ Rn, 4
diag∗(v) = Diag(v) ∈ Sn, 4
Ĵ := {(0, 0)} ∪ J , 12
D̂ scaled, 18
ιS(·), indicator function, 14
R, 14
⊗, Kronecker product, 7, 12
�, face of, 9
e0, 0-th unit vector, 8
k-clique problem, 3
nj , j ∈ [k], 5
p∗, 7, 11, 12
p∗ = 2kp∗W , 6
p∗W , 5
J , 12
Parrowbox, 15
Y, 14
DNN, doubly nonnegative, 4
EDM, Euclidean distance matrix, 5
DNN relaxation, 14

centered subspace, SnC , 4
cheapest-hub problem, 3, 5
configuration matrix, 4

doubly nonnegative, DNN, 4

embedding dimension, 4
Euclidean distance matrix, EDM, 4

face of, �, 9

facial reduction, FR, 3
facial vector, V , 11

gangster constraint, 12
gangster constraint mapping, GJ , 12
gangster index, J , 12
gangster index, J , 12
gangster indices, J , 12
Gram matrix, G = PP T , 4

Hadamard (elementwise) product, S ◦ T , 12
hollow subspace, SnH , 4
hub of hubs, 5

indicator function, ιS(·), 14

Kronecker product, ⊗, 7, 12

Lindenstrauss operator, K(G), 4

optimal mass transportation, 3

regular, 5

simplex, 15
simplified barycenter problem, 5
simplified Wasserstein barycenter, WBP, 5

totally unimodular, 7
trace inner product, 4

vertices of the feasible set, 7
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