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Abstract. We present two algorithms for large-scale noisy low-rank Euclidean distance matrix
completion problems, based on semidefinite optimization. Our first method works by relating cliques
in the graph of the known distances to faces of the positive semidefinite cone, yielding a combinatorial
procedure that is provably robust and parallelizable. Our second algorithm is a first order method for
maximizing the trace—a popular low-rank inducing regularizer—in the formulation of the problem
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sensor localization problems illustrate the two approaches.
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1 Introduction. A pervasive task in distance geometry is the inverse problem:
given only local pairwise Euclidean distances among a set of points, recover their
locations in space. More precisely, given a weighted undirected graph G = (V,E, d),
on a vertex set V = {1, . . . , n} with edge set E and squared distances d ∈ R

E , and
an integer r, find (if possible) a set of points x1, . . . , xn in R

r satisfying

(1.1) ‖xi − xj‖2 = dij , for all edges ij ∈ E,

where ‖ · ‖ denotes the usual Euclidean norm on R
r. In most applications, the given

squared distances dij are inexact, and one then seeks points x1, . . . , xn satisfying
the distance constraints only approximately. This problem appears under numerous
names in the literature, such as Euclidean Distance Matrix (EDM) completion and
graph realization [3,15,36], and is broadly applicable for example in wireless networks,
statistics, robotics, protein reconstruction, and dimensionality reduction in data anal-
ysis; the recent survey [37] has an extensive list of relevant references. Fixing notation,
we will refer to this problem as EDM completion, throughout.

The EDM completion problem can be modeled as the nonconvex feasibility prob-
lem: find a symmetric n× n matrix X satisfying

(1.2a)





Xii +Xjj − 2Xij = dij , ∀ ij ∈ E
Xe = 0
X � 0,





(1.2b) rankX ≤ r,
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2 NOISY EDM COMPLETION

where e stands for the vector of all ones. Indeed, if X = PPT is a maximal rank
factorization of a matrix X solving (1.2), then the rows of P yield a solution to the
EDM completion problem. The constraint Xe = 0 simply ensures that the rows of
P are centered around the origin. Naturally a convex relaxation is obtained by
simply ignoring the rank constraint (1.2b). The resulting problem (1.2a) is convex (in
fact, a semidefinite program (SDP)) and thus is more tractable. For many instances,
particularly coming from dense wireless networks, this relaxation is exact, that is the
solution of the convex rank-relaxed problem automatically has the desired rank r.
Consequently, SDP techniques have proven to be extremely useful for this problem;
notable references include [7, 8, 10, 11, 32, 38, 41, 44, 54]. For large networks, however,
the SDPs involved can become intractable for off-the-shelf methods. Moreover, this
difficulty is compounded by the inherent ill-conditioning in the SDP relaxation (1.2a)
if the structure is not exploited—a key theme of this paper. For example, one can
show that each clique in G on more than r + 2 vertices certifies that the SDP is not
strictly feasible, provided the true points of the clique were in general position in R

r.

In this current work, we attempt to close the gap between what can be done with
exact data and what can be done in practice with noisy data for large scale problems.
We do this for the EDM completion problem with two approaches: a combinatorial
algorithm and an efficient first-order method. The starting point is the observation
that the cliques in G play a special role in the completion problem. Indeed, from
each sufficiently large clique in the graph G, one can determine a face of the posi-
tive semidefinite cone containing the entire feasible region of (1.2a). This observation
immediately motivated the algorithm of [32]. This primal procedure proceeds by col-
lecting a large number of cliques in the graph and intersecting the corresponding faces
two at a time, each time causing a dimensional decrease in the problem. If the SDP
relaxation is exact and the graph is sufficiently dense, the method often terminates
with a unique solution without having to invoke an SDP solver. An important caveat
of this geometric approach is that near-exactness of the distance measurements is
essential for the algorithm to work, both in theory and in practice, for the simple rea-
son that randomly perturbed faces of the positive semidefinite cone typically intersect
only at the origin. Remarkably, using dual certificates, we are able to design a dual
procedure complementary to [32] for the problem (1.2a) that under reasonable condi-
tions, is provably robust to noise in the distance measurements, in the sense that the
output error is linearly proportional to the noise level. Moreover, in contrast to the
algorithm [32], the new method is conceptually easy to parallelize. This is discussed
briefly in Section 3.2.1 on clique and exposing vector selection.

In the late stages of writing the current paper, we became aware of the related
work [43]. There the author proposes the Locally Rigid Embedding (LRE) method
for the EDM completion problem. The LRE method is in the same spirit as our
algorithm, but is stated in the language of rigidity theory; see also [2, 14, 24, 35].
As a byproduct, our current work yields an interpretation of the LRE algorithm in
terms of SDP facial reduction. Moreover, in contrast to [43], we formally justify the
robustness of our proposed method and perform extensive numerical tests, justifying
its guarantees. We also discuss important implementation issues, not covered in [43].
The LRE method requires the local neighborhood around each node be rigid—any
missing distances in each neighborhood are found by solving an SDP. In our proposed
method, we find a clique around each node, thus avoiding introducing errors from
completing locally missing distances. In addition, we form the final exposing vector
as a simple weighted sum, in contrast to [43] where all weights are equal, and then
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solve a resulting small least squares problem for the final Gram matrix that yields the
final positions of nodes. We observe that the appearance of weights can greatly help
when the noise is unevenly distributed across the distance measurements.

The clique-based algorithm discussed above is most powerful when the graph G
is fairly dense. In contrast, in the second part of the paper, we propose a first-order
method for solving the noisy EDM completion problem that is most powerful when
the graph G is sparse. We consider the following max-trace heuristic—a popular
low-rank inducing regularizer [5, 55]—given in the formulation of the problem:

max trX

s.t.
∑

ij∈E

|Xii +Xjj − 2Xij − dij |2 ≤ σ(1.3)

Xe = 0

X � 0.

Here σ is an a priori chosen tolerance reflecting the total noise level. Notice, that this
formulation directly contrasts the usual min-trace regularizer in compressed sensing;
nonetheless it is very natural. An easy computation shows that in terms of the
factorization X = PPT , the equality tr(X) = 1

2n

∑n
i,j=1 ‖pi − pj‖2 holds, where pi

are the rows of P . Thus trace maximization serves to “flatten” the realization of the
graph. We note in passing that we advocate using (1.3) instead of perhaps the more
usual regularized problem

min
∑

ij∈E

|Xii +Xjj − 2Xij − dij |2 − λ trX

s.t. Xe = 0, X � 0.

The reason is that choosing a reasonable value of the trade-off parameter λ can be dif-
ficult, whereas an estimate of σ is typically available from a priori known information
on the noise level.

As was observed above, for σ = 0 the problem formulation (1.3) notoriously fails
strict feasibility. In particular, for small σ ≥ 0 the feasible region is very thin and
the solution to the problem is unstable. As a result, iterative methods that maintain
feasibility are likely to exhibit difficulties. Keeping this in mind, we propose an
infeasible first-order method, which is not directly affected by the poor conditioning
of the underlying problem.

To this end, consider the following parametric flipped problem, obtained by “flip-
ping” the objective and the quadratic constraint in (1.3):

(1.4)

v(τ) := min
∑

ij∈E

|Xii +Xjj − 2Xij − dij |2

s.t. trX = τ
Xe = 0
X � 0.

Notice that the problem of evaluating v(τ) is readily amenable to first-order methods,
in direct contrast to (1.3). Indeed, the feasible region is geometrically simple. In
particular, linear optimization over the region only requires computing a maximal
eigenvalue. Hence the evaluation of v(τ) is well adapted for the Frank-Wolfe method,
a projection-free first-order algorithm. Indeed, the gradient of the objective function
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is structurally very sparse (as sparse as the edge set E) and therefore optimizing the
induced linear functional over the feasible region then becomes a cheap operation.
Now, solving (1.3) amounts to finding the largest value of τ satisfying v(τ) ≤ σ, a
problem that can be solved by an approximate Newton method. A discussion of this
general strategy can be found in [4], and originates in [6,50–52]. Using this algorithm,
we investigate the apparent superiority of the max-trace regularizer over the min-trace
regularizer with respect to both low-rank recovery and efficient computation.

The outline of the paper is as follows. Section 2 collects some preliminaries on
the facial structure of the positive semidefinite cone and the SDP relaxation of the
EDM completion problem. Section 3 presents the proposed robust facial reduction
algorithm and provides some numerical illustrations. Comparisons are made with
both the primal procedure in [32] and the more recent edge-based approach in [41].
Our results significantly improve on those in both papers. Section 4 describes the
proposed Pareto search technique with Frank-Wolfe iterations, and presents numerical
experiments on sparse graphs.

2 Preliminaries. In this section, we record some preliminaries and formally
state the EDM completion problem.

2.1 Geometry of the positive semidefinite cone. The main tool we use in
the current work, even if indirectly, is semidefinite programming (SDP). To this end,
let Sn denote the Euclidean space of n×n real symmetric matrices endowed with the
trace inner product 〈A,B〉 = trAB and the Frobenius norm ‖A‖F =

√
trA2. The

convex cone of n × n positive semidefinite matrices (PSD) will be denoted by Sn+.
This cone defines a partial ordering: for any A,B ∈ Sn the binary relation A � B
means A − B ∈ Sn+. A convex subset F of Sn+ is a face of Sn+ if F contains any line
segment in Sn+ whose relative interior intersects F , and a face F of Sn+ is proper if it
is neither empty nor all of Sn+. All faces of Sn+ have the (primal) form

(2.1) F =

{
U

[
A 0
0 0

]
UT : A ∈ Sk+

}
,

for some n × n orthogonal matrix U and some integer k ∈ {0, 1, . . . , n}. Any face F
of Sn+ can also be written in dual form as Y ⊥ ∩ Sn+ for some PSD matrix Y ∈ Sn+.
Indeed, suppose that F has the representation (2.1). Then we may equivalently write

F = Y ⊥ ∩ Sn+, with Y := U

[
0 0
0 B

]
UT for any nonsingular matrix B in Sn−k

+ . In

general, if a face has the form F = Y ⊥ ∩ Sn+ for some PSD matrix Y , then we say
that Y exposes F . Finally, for any convex subset Ω ⊂ Sn+, the symbol face(Ω;Sn+)
will denote the minimal face of Sn+ containing Ω. The cone face(Ω;Sn+) coincides with
face(X ;Sn+), where X is any maximal rank matrix in Ω.

2.2 EDM completion problem. Throughout, we fix a positive integer r ≥ 1
and a weighted undirected graph G = (V,E, d) on a node set V = {1, . . . , n}, with
an edge set E ⊆ {ij : 1 ≤ i < j ≤ n} and a vector d ∈ R

E of positive weights.1 The
vertices represent points in an r-dimensional space R

r, while the presence of an edge
ij joining the vertices i and j signifies that the physical distance between the points
i and j is available.

1We assume that the weights are sufficiently positive so they can be numerically distinguished
from zero.
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The EDM completion problem is to find a set of points x1, . . . , xn ∈ R
r satisfying

(1.1). Such a collection of points x1, . . . , xn is said to realize the graph G in R
r. Notice

that without loss of generality, such points x1, . . . , xn can always be translated so that
they are centered around the origin, meaning

∑
i xi = 0. This problem is equivalent

to finding a matrix X ∈ Sn satisfying the nonconvex system (1.2). Given the realizing
points xi and defining P = [x1; . . . ;xn]

T ∈ R
n×r, the matrix X := PPT , called the

Gram matrix , is feasible for (1.2). For more details, see, e.g., [32].
As mentioned above, the EDM completion problem (1.2) is nonconvex and is NP-

hard in general, [42,56]. A convex relaxation is obtained simply by ignoring the rank
constraint in (1.2) yielding the convex SDP feasibility problem (1.2a). For many EDM
completion problems on fairly dense graphs, this convex relaxation is “exact” [44]. For
example, the following is immediate.

Observation 2.1 (Exactness of the relaxation). If the EDM completion prob-
lem (1.2) is feasible, then the following are equivalent:

1. No realization of G in R
l, for l > r, spans the ambient space R

l.
2. Any solution of the relaxation (1.2a) has rank at most r and consequently any

solution of (1.2a) yields a realization of G in R
r.

In theory, the exactness of the relaxation is a great virtue. From a computational
perspective, however, exactness implies that the SDP formulation (1.2a) does not
admit a positive definite solution, i.e., that strict feasibility fails. Moreover, it is
interesting to note that a very minor addition to the assumptions of Observation 2.1
implies that the SDP (1.2a) admits a unique solution [44]. We provide a quick proof
for completeness, though the reader can safely skip it.

Observation 2.2 (Uniqueness of the solution). If the EDM completion prob-
lem (1.2) is feasible, then the following are equivalent:

1. The graph G cannot be realized in R
r−1, and moreover for any l > r no

realization in R
l spans the ambient space R

l.
2. The relaxation (1.2a) has a unique solution.
Proof. The implication 2 ⇒ 1 is immediate. To see the converse implication

1⇒ 2, suppose that the SDP (1.2a) admits two solutions X and Y . Define F now to
be the minimal face of Sn+ containing the feasible region. Note that by Observation 2.1,
any solution of the SDP has rank at most r, and hence every matrix in F has rank at
most r. Consider now the line L := {X + λ(Y −X) : λ ∈ R}. Clearly L is contained
in the linear span of F and the line segment L∩F is contained in the feasible region.
Since F is pointed, the intersection L ∩ F has at least one endpoint Z, necessarily
lying in the relative boundary of F . This matrix Z therefore has rank at most r − 1,
a contradiction since Z yields a realization of G in R

r−1.

In principle, one may now apply any off-the-shelf SDP solver to solve prob-
lem (1.2a). The effectiveness of such methods, however, depends heavily on the
“conditioning” of the SDP system. In particular, if the system admits no feasible
positive definite matrix, as is often the case (Observation 2.1), then no standard
method can be guaranteed to perform very well nor be robust to perturbations in the
distance measurements.

2.3 Constraint mapping and the centering issue. To simplify notation, we
will reserve some symbols for the mappings and sets appearing in the formulation (1.2).
To this end, define the mapping K : Sn → Sn by

K(X)ij := Xii +Xjj − 2Xij.
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The adjoint K∗ : Sn → Sn is given by

K∗(D) = 2(Diag(De)−D).

The Moore-Penrose pseudoinverse of K is easy to describe: for any matrix D ∈ Sn
having all-zeros on the diagonal, we have

K†(D) = −1

2
J ·D · J,

where J := I− 1
nee

T is the projection onto e⊥.2 These and other related constructions
have appeared in a number of publications; see, e.g., [1, 26, 27, 33, 34, 45–48].

Consider now the sets of centered symmetric, centered PSD, and centered PSD
low-rank matrices

Snc := {X ∈ Sn : Xe = 0},
Snc,+ := {X ∈ Sn+ : Xe = 0},
Sn,rc,+ := {X ∈ Snc,+ : rankX ≤ r}.

Define the coordinate projection P : Sn → R
E by setting P(X)ij = Xij , ∀ij ∈ E. In

this notation, the feasible set (1.2) can equivalently be written as

{X ∈ Sn,rc,+ : P ◦ K(X) = d},

while the relaxation (1.2a) is then

{X ∈ Snc,+ : P ◦ K(X) = d}.

It is easy to see that Snc,+ is a face of Sn+, and is linearly isomorphic to Sn−1
+ .

Indeed, the matrix eeT exposes Snc,+. More specifically, for any n × n orthogonal

matrix
[

1√
n
e U

]
, we have the representation

(2.2) Snc,+ = USn−1
+ U.

Consequently, we now make the following important convention: the ambient space
of Snc,+ will always be taken as Snc . The notion of faces of Snc,+ and the corresponding
notion of exposing matrices naturally adapts to this convention by appealing to (2.2)
and the respective standard notions for Sn−1

+ . Namely, we will say that F is a face

of Snc,+ if it has the form F = U F̂UT for some face F̂ of Sn−1
+ , and that a matrix Y

exposes F whenever it has the form UŶ UT for some matrix Ŷ exposing F̂ .
3 Robust facial reduction for EDM completions. In this section, we pro-

pose the use of robust facial reduction for solving the least-squares formulation of the
nonconvex EDM completion problem (1.2):

(3.1)
minimize

∑
ij∈E |Xii +Xjj − 2Xij − dij |2

s.t. X ∈ Sn,rc,+.

2This definition of the Moore-Penrose pseudo-inverse easily extends to general D ∈ Sn by first
orthogonally projectiing D onto the space of symmetric matrices with zero diagonal.
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The main idea is to use the dual certificates arising from cliques in the graph to
construct a positive semidefinite matrix Y of rank at least n− r, and then solve the
convex optimization problem:

minimize
∑

ij∈E |Xii +Xjj − 2Xij − dij |2
s.t. X ∈ Snc,+ ∩ Y ⊥.

Before describing our algorithmic framework for tackling (3.1), it is instructive
to put it into context. The authors of [32] found a way to use the degeneracy of the
system (1.2) explicitly to design a combinatorial algorithm for solving (1.2), under
reasonable conditions. The authors observed that each k-clique in the graph G, with
k > r, certifies that the entire feasible region of the convex relaxation (1.2a) lies in
a certain proper face F of the positive semidefinite cone Sn+. Therefore, the facial
reduction technique of replacing Sn+ by the smaller set F can be applied on (1.2a) to
obtain an equivalent problem involving fewer variables. On a basic level, their method
explores cliques in the graph and intersects pairwise such faces in a computationally
efficient way. The algorithm is surprisingly fast and accurate for huge problems where
the noise is small.

An important computational caveat of the (primal) facial reduction algorithm
of [32] is that the algorithm is highly unstable when the distance measurements are
corrupted by significantly large noise—a ubiquitous feature of the EDM completion
problem in virtually all applications. The reason is simple: randomly perturbed
faces of the semidefinite cone typically intersect only at the origin. Hence small
perturbations in the distance measurements will generally lead to poor guesses of
the face intersection arising from pairs of cliques. Moreover, even if pairs of cliques
can robustly yield some facial information, the error dramatically accumulates as the
algorithm iteratively intersects faces. Remarkably, we show that this difficulty can be
overcome by using “dual” representations of faces to aggregate the noise. Indeed, the
salient feature of the dual representation is that it is much better adapted at handling
noise. We see this in the comparison of the primal facial reduction algorithm and the
dual exposed vector approach in Section 3.3.1, page 10, below. Further details are
provided in Appendix C.

Before proceeding with the details of the proposed algorithmic framework, we
provide some intuition. To this end, an easy computation shows that if Yi exposes a

face Fi of Sn+ (for i = 1, . . . ,m), then the sum
∑

i

Yi exposes the intersection
⋂

i

Fi.

Thus the faces Fi intersect trivially if and only if the sum
∑

i

Yi is positive definite. If

the true exposing vectors arising from the cliques are corrupted by noise, then one can

round off the small eigenvalues of
∑

i

Yi (due to noise) to guess at the true intersection

of the faces arising from the noiseless data.

3.1 The algorithmic framework. To formalize the outlined algorithm, we
will need the following basic result, which in a primal form was already the basis for
the algorithm in [32]. The dual form, however, is essential for our purposes. For easy
similar alternative proofs, see [20, Theorem 4.9] and [31, Theorem 4.1]. Henceforth,
given a clique α ⊆ V (meaning, a subset of vertices such that every two are adjacent),
we use dα ∈ S|α| to denote the symmetric matrix formed from restricting d to the
edges between the vertices in α.
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Theorem 3.1 (Single clique facial reduction, [20, Theorem 4.13]). Suppose that
the subset of vertices α := {1, . . . , k} ⊂ V is a clique in G. Define the set

Ω̂ := {X ∈ Snc,+ : [K(X)]ij = dij for all 1 ≤ i < j ≤ k}.

Then for any matrix Ŷ exposing face
(
K†dα;Skc,+

)
,

the matrix



Ŷ 0

0 0


 exposes face(Ω̂;Snc,+).

In particular, under the assumptions of the theorem, the entire feasible region

of (1.2a) is contained in the face of Snc,+ exposed by



Ŷ 0

0 0


. The assumption that

the first k vertices formed a clique is of course made without loss of generality. We
state our proposed algorithmic framework in Algorithm 1.

Algorithm 1 Basic strategy for EDM completion

INPUT: A weighted graph G = (V,E, d), and a target rank r ≥ 1;
PREPROCESSING:

1. generate a set of cliques Θ in G;
2. generate a set of positive weights {ωα}α∈Θ ⊂ R++;
3. sort the cliques so the weights are in nondecreasing order;

for each clique α in Θ do

k ← |α|;
Xα ← a nearest matrix in Sk,rc,+ to K†dα;

Wα ← exposing vector of face(Xα,Skc,+) extended to Snc by adding zeros;
end for

W ←∑
α∈Θ ωαWα;

Let U ∈ R
n×r be a matrix satisfying UT e = 0, and whose columns are eigenvectors

of W corresponding to r smallest nonzero eigenvalues;
X ← UZUT , where Z is an optimal solution of

(3.2)
vallss := min ‖P ◦ K(UZUT )− d‖

s.t. Z ∈ Sr+;

return X ;

Finding the eigenvectors in U is equivalent to finding a nearest matrix to Sk,rc,+

or to Sn,n−r
c,+ . This is easy as a result of the classical Eckart-Young Theorem [21]. It

requires finding the r + 1 smallest eigenvalues of W where we know the smallest is
0 with eigenvector e, the ones vector. Therefore, we can shift the eigenvalue 0 to a
sufficiently positive eigenvalue and use eigs in MATLAB to find the eigenvectors U
corresponding to the smallest r eigenvalues; due to the orthogonality of eigenvectors
of distinct eigenvalues of a symmetric matrix, we have UT e = 0, as desired. The
details are worked out in Appendix A on page 24. Solving the small dimensional
least squares problem (3.2) is also standard, though we include the use of a sketch
matrix for this highly overdetermined constrained least squares problem, e.g., [39];
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details are presented in Appendix B on page 26. In fact, very often (under the
assumptions of Theorem C.5 on page 29) the optimal solution of min

X∈V
‖P ◦K(X)− d‖

already happens to be positive definite, where V denotes the linear span of the face
Y ⊥ ∩ Snc,+. Hence this step typically does not require any conic optimization solver
to be invoked. Indeed, this is a direct consequence of the rudimentary robustness
guarantees of the method, outlined in Appendix C. To see intuitively why the outlined
method is robust, observe that when adding up the “rounded” exposing vectors, the
error does not propagate; i.e. the error obtained by guessing at an exposing vector
coming from one clique does not influence the error in the exposing vector arising
from another clique, even if the two overlap.

3.2 Implementing facial reduction for noisy EDM.

In the following, we elaborate on some of the main ingredients of Algorithm 1:
• the choice of the clique set Θ and set of weights {ωα}α∈Θ (in Section 3.2.1);

• the nearest-point mapping to Sk,rc,+ (in Appendix A);
• the solution of the least squares problem (3.2) (in Appendix B).

To improve the solution quality of Algorithm 1, we perform a postprocessing local
refinement step: we use the solution X from Algorithm 1 as an initial point for
existing nonlinear optimization methods to find a local solution of (3.1). While general
nonlinear optimization methods often fail to find a global optimal solution, when
used as a local refinement procedure they can greatly improve the solution quality of
Algorithm 1. This emphasizes that our algorithm provides a good initialization for
nonlinear solvers.

3.2.1 Choosing clique sets and exposing vectors. We first discuss the
choice of the clique set Θ that we use for finding the exposing vector Y . We have
combined our approach with the primal facial reduction algorithm and code in [32].
Each time this code uses a new clique, we add it to the set Θ and find a corresponding
exposing vector and a weight. We emphasize that this step can be parallelized since
the work on the cliques are independent even if the cliques intersect.

Now we discuss the set of positive weights {ωα}α∈Θ. In Algorithm 1, we do not
treat each clique in Θ equally, given that the noise in the distance measurements does
not have to be uniform and it may not be possible to recover all the cliques with
the same level of accuracy. We gauge the amount of noise present in the distance
measurements of cliques as follows: for each clique α ∈ Θ, as before letting dα ∈ Sα
be the restriction of the distance measurements d to the clique, we estimate the noise
present in dα by considering the squared distance of K†dα to the rank r PSD matrices:

(3.3) να(d) :=

∑|α|−r
j=1 λ2

j (K†dα) +
∑|α|

j=|α|−r+1

(
min{0, λj(K†dα)}

)2

0.5|α|(|α| − 1)
.

Here λj(K†dα) refers to the j’th smallest eigenvalue of the matrix K†dα.
In the case where no noise is present in the distance measurements d, we have

να(d) = 0 since the matrix K†dα ∈ S|α|+ is of rank at most r. To each clique α, we
assign the weight

ωα(d) := 1− να(d)∑
β∈Θ νβ(d)

.

This choice of weights reflects the contribution of noise in the clique α to the total
noise of all cliques. If a clique α is relatively noisy compared to other cliques in Θ
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or contains an outlier, the weight ωα(d) would be significantly smaller than ωβ(d) for
most α 6= β ∈ Θ. In addition, we add up the weighted exposing vectors in order from
the smallest weight to the largest weight for improved numerical accuracy.

3.2.2 Postprocessing: local refinement. Following Algorithm 1, we apply a
local refinement method to improve the solution quality. By local refinement, we mean
the use of a nonlinear optimization algorithm for solving the nonconvex problem (3.1)
(which has a lot of local minima) using the output of Algorithm 1 as the initial
point. Local refinement has been commonly used for SDP-based algorithms for SNL
problems and noisy EDM completion problem; see [7, 10].

For local refinement, we use the steepest descent subroutine from the SNL-SDP
package [8]. Suppose that X≈ = P≈(P≈)T is the solution of (3.2) found at the end of
Algorithm 1. We use P≈ as an initial point for the steepest descent method to solve
the nonlinear optimization problem

(3.4) min
P∈Rn×r

‖P ◦ K(PPT )− d‖2.

By itself, the steepest descent method usually fails to find a global optimal solution
of (3.4) and instead gets trapped at one of the many critical points, since the problem
is highly nonconvex. On the other hand, we observe that Algorithm 1 typically
produces excellent initial points for such nonlinear optimization schemes.

3.3 Application on the sensor network localization problem. In this
section, we apply the robust facial reduction in Algorithm 1 on the sensor network
localization, SNL , problem in R

2. The task is to locate n wireless sensors in R
2

given the noisy Euclidean distances between sensors that are within a given radio
range, R, of each other. Often some of the sensors are anchors whose positions are
known. Semidefinite programming techniques have been used extensively for the SNL
problem; see, e.g., [7, 8, 10, 11, 32, 41, 44, 54].

We look at the quality of the approximation of our data d, the resulting approx-
imate EDM, and the error in the found sensor positions P .

3.3.1 Preliminary look at quality of solutions. Suppose that we are given
an anchor-free instance with data d + δd, where δd is the noise. We consider our
algorithm as a black box transformation that takes d+ δd as input and outputs: ap-
proximate distance matrix D≈ ∈ R

n×n, its restriction to the graph d≈ ∈ R
E , and

approximate localized sensors P≈ ∈ R
n×r. We now see empirically that the rela-

tive error and corresponding condition number estimates for this transformation are,
surprisingly, similar for all three outputs and that the exposed vector approach is con-
sistently better. The condition number estimates show empirically that our algorithm
is backwards stable. We provide more details and justification in Appendix B.
1. Quality of Solution in d and D: The best approximation we find is

d≈ := P ◦ K(UBUT ) ≈ (d+ δd).

The relative residual error in d for our found approximate distances is given by

[rel. error]d :=
‖d≈ − d‖
‖d‖ .

The derivative type condition number for d of the algorithm can then be estimated
from below by using the ratios of the relative errors

[condition number]d ≈
(‖d≈ − d‖

‖d‖

)/(‖δd‖
‖d‖

)
=
‖d≈ − d‖
‖δd‖ ,
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see, e.g., [23, Sect. 2.5].
The (nonlinear) equation we next look at is the solution of the distance matrix
D found from the given data d with noise δd. The corresponding relative residual
error in D is

D≈ := D + δD = Alg(d+ δd), [rel. error]D :=
‖δD‖
‖D‖ .

We note that the distances (D+ δD)ij , ij /∈ E have no direct constraints on them,
just implicit constraints from nearby cliques.
As discussed above, the condition number of the algorithm for finding D≈ can then
be estimated from below by using the ratios of the relative errors

[condition number]D ≈
(‖δD‖
‖D‖

)/(‖δd‖
‖d‖

)
.

Figure 1 presents the relative error and condition number estimates for 40 random
anchor-free instances with increasing noise factors; these instances use the primal
facial reduction algorithm in [32], the exposed vector algorithm (Algorithm 1),
and the amalgam that takes the output of primal facial reduction algorithm X
and projects it onto W⊥ ∩ Sk,rc,+, where W is the aggregate exposing vector in
Algorithm 1.3 The consistent improvement for Algorithm 1 is clear. The exposed
vector approach advantage is further emphasized by noting the improvement over
the amalgam strategy. The condition numbers lower estimates for the exposed
vector approach are surprisingly low for both finding d and the complete EDM D.

2. Quality of Solution with RMSD estimates: Though the objective function
involves only an approximation of d, the end objective of the algorithm is a good
localization for the matrix of points P . We measure the error using the root-mean-
square deviation, RMSD values. Suppose that the true centered locations of the
sensors are stored in the rows of the matrix P ∈ R

n×2, and X ∈ Sn,rc,+ is the

output of Algorithm 1 on page 8. Then we may factor X = P̃ P̃T for some matrix
P̃ ∈ R

n×2, whose rows store the estimated centered locations. Before comparing
P̃ and P , however, we must allow isometries to act on the points. As a result, the
RMSD of the estimated P̃ relative to the true centered locations P is defined as:

(3.5) RMSD := min

{
1√
n
‖P̃U − P‖F : UTU = I, U ∈ R

r×r

}
.

Computing RMSD is an instance of the orthogonal procrustes problem, which can
be solved using the Algorithm in [23]. The condition number for finding X≈ can
then be estimated from below by using the ratios of the relative errors

[condition number]RMSD ≈ (RMSD)

/(‖δd‖
‖d‖

)
.

The results for the same 40 instances as above are given in Figure 2.
Remark 3.2. Though the exposed vector approach is clearly significantly better

than the primal approach in [32], we see above that the latter still has consistently
better results than those reported in [32]. This is because the RMSD values found
in [32] used only the anchor positions in the Procrustes problem whereas here we have
anchor-free problems and use all the known original sensor positions.

3Details on how the instances are generated is given below in Algorithm 2, page 13.
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Fig. 1: Primal facial reduction [32], dual exposed vector (Algorithm 1), and the
amalgam approach that takes the output of primal facial reduction algorithm X and
projects it onto W⊥∩Sk,rc,+, where W is the aggregate exposing vector in Algorithm 1;
40 equally spaced instances with nf ∈ [10−6, 1]
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Fig. 2: Primal facial reduction [32], dual exposed vector (Algorithm 1), and the
amalgam approach that takes the output of primal facial reduction algorithm X and
projects it onto W⊥∩Sk,rc,+, where W is the aggregate exposing vector in Algorithm 1;
40 equally spaced instances with nf ∈ [10−6, 1]; R = .3; n = 1000 nodes

3.3.2 Numerics. We now provide comprehensive numerical tests. We gener-
ate random instances of the SNL problem based on a modified multiplicative noise
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model from, e.g., [7,8,41]. This multiplicative noise model is the one most commonly
considered in sensor network localization, e.g., [9, 12, 29, 30, 40, 49, 53]. The perturba-
tions ǫij are from the standard normal distribution ǫij ∈ N (0, 1), ∀ij. We truncate the
tails of the distribution to ensure that the multiplicative perturbation is nonnegative
0 ≤ 1 + σǫij . We outline the details in Algorithm 2.

Algorithm 2 Multiplicative noise model

INPUT: # sensors .9n, # anchors .1n, noise factor σ, radio range R, machine ǫ;
Generate n centered nodes:

1. pick n uniformly i.i.d. nodes, pi ∈ [−0.5, 0.5]2 ⊂ R
2;

2. center nodes around the origin: p̄ = 1
n

∑n
i=1 pi and pi ← pi − p̄, ∀i

3. ensure that the final distances are significantly positive:

pi ← (1 + max{2σ, 100ǫ})pi;

and center the nodes around the origin again;
Perturb the known sensor-sensor distances:

1. pick i.i.d. ǫij ∈ N (0, 1), ∀ij (standard normal distribution);
2. randomly truncate the tails to ensure nonnegativity of the distances and

error mean 0;
3. compute D ∈ Sn by

Dij =

{
(1 + σǫij)

2‖pi − pj‖2, if min{i, j} ≤ .9n

‖pi − pj‖2, otherwise

Construct the graph:
1. graph G← (V,E, d), with

V = {1, . . . , n}, E = {ij : ‖pi − pj‖ < R or min{i, j} > .9n}.

2. vector d← (Dij)ij∈E, i<j ∈ R
E .

OUTPUT: noisy distance measurements d ∈ R
E and graph G.

We gauge the performance of the robust facial reduction on random instances from
the multiplicative noise model using first the relative residual values for the perturbed
given data and second the root-mean-square deviation, RMSD , values defined in (3.5).
As would be expected, the RMSD values can be very large when R is small and we
may have nonunique solutions. However, we see that the much more revealing residual
values still stay small.

Above, Section 3.3.1 shows that the quality of the solutions from the algorithm
using the exposed vectors significantly and consistently improves on the primal clique
approach in [32] for anchorless problems with n = 1000 and increasing noise factor.
Table 1 on page 14 further shows the details with times, residuals, and RMSD values
before and after refinement. We can see that when we have the small R = .10
and resulting low density for the graph, then the residual value does not increase
substantially but the RMSD value indicates that the location of the points found
are not reasonable. Table 2 on page 15 presents similar results but in addition with
increasing numbers of nodes. For comparison, Table 3 on page 15 presents results
using the code from [41]. We see the dramatic improvement both in time and also
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Table 1: Robust facial reduction; small instances generated using multiplicative noise
model on a [−0.5, 0.5]2 grid; n number of sensors/vertices; m = 0 anchors; R radio
range. CPU seconds, percent residuals, and percent RMSD for: 1. the exposed facial
algorithm and 2. the refinement.

Specifications Time (s) Residual (%R) RMSD (%R)

n % noise R % dens. initial refine initial refine initial refine

1000 0 0.25 15.7 0.7 0.0 0.0 0.0 0.0 0.0

1000 10 0.25 15.7 0.6 1.5 4.5 2.8 17.5 1.2

1000 20 0.25 15.7 0.6 1.7 8.7 5.6 38.2 2.4

1000 30 0.25 15.7 0.6 2.6 12.4 8.5 56.5 3.6

1000 40 0.25 15.7 0.6 2.9 15.3 11.1 67.6 17.1

1000 5 0.30 21.6 0.8 1.1 2.2 1.6 4.1 0.5

1000 5 0.25 15.7 0.6 1.4 2.1 1.4 6.4 0.6

1000 5 0.20 10.6 0.4 0.7 1.9 1.1 9.5 0.7

1000 5 0.15 6.2 0.3 1.0 2.9 0.8 39.8 1.4

1000 5 0.10 2.9 1.0 0.6 5.2 2.1 311.7 286.3

in the RMSD values. Table 4 on page 16 presents numerical results using instances
with n = 1000 to 15, 000 nodes and with varying radio range and noise factor. We
include 10% anchors so as to be able to compare to the results in [41]. As mentioned
above our results are significantly better than those in [41]. We solve larger problems
in a fraction of the time and to low RMSD. The tests were run on MATLAB version
R2016a, on a Dell Optiplex 9020, with Windows 7, Intel(R) Core(TM) i7-4770 CPU
@ 3.40GHz and 16 GB RAM. We show the RMSD (as a percentage of the radio range)
of the solutions provided by Algorithm 1 and also the RMSD of the solution after the
local refinement using the steepest descent subroutine from SNL-SDP. We see that
using Algorithm 1 together with local refinement gives excellent results. The time
used by Algorithm 1 includes the selection of cliques and computation of the exposing
vectors.

4 The Pareto frontier of the unfolding heuristic. The facial reduction
algorithm presented in the previous section is effective when G is fairly dense (so
that many cliques are available) and the SDP relaxation of the EDM completion
problem without noise is exact. In this section, we consider problems at the opposite
end of the spectrum. We will suppose that G is sparse and we will seek a low rank
solution approximately solving the SDP (1.2a). To this end, we rewrite the flipped
problem in (1.4).

max trX

s.t. ‖P ◦ K(X)− d‖ ≤ σ(4.1)

Xe = 0

X � 0.

Here, an estimate of the tolerance σ > 0 on the misfit is typically available based on
the physical source of the noise. Trace maximization encourages the solution X to
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Table 2: Robust facial reduction (Algorithm 1); large instances generated using mul-
tiplicative noise model on a [−0.5, 0.5]2 grid; n number of sensors/vertices; m = 0
anchors; R radio range. CPU seconds, percent residuals, and percent RMSD for: a.
the exposed facial algorithm and b. the refinement.

Specifications Time (s) Residual (%R) RMSD (%R)

n % noise R % dens. initial refine initial refine initial refine

2000 0 0.20 10.5 2.4 0.1 0.0 0.0 0.0 0.0

2000 10 0.20 10.5 2.0 4.8 3.5 2.2 13.3 1.0

2000 20 0.20 10.5 1.7 5.2 7.1 4.5 34.1 2.0

2000 30 0.20 10.5 1.7 5.3 10.1 6.8 55.8 3.1

3000 0 0.18 8.7 4.2 0.2 0.0 0.0 0.0 0.0

3000 10 0.18 8.7 3.6 13.2 3.5 2.0 16.6 0.9

3000 20 0.18 8.7 3.1 14.2 7.0 4.1 50.3 1.8

3000 30 0.18 8.7 2.9 19.7 9.7 6.2 77.9 2.7

4000 0 0.16 7.0 6.0 0.3 0.0 0.0 0.0 0.0

4000 10 0.16 7.0 5.5 22.5 3.3 1.8 19.0 0.9

4000 20 0.16 7.0 4.4 25.0 6.2 3.6 45.9 1.8

4000 30 0.16 7.0 4.2 26.9 8.5 5.5 74.9 2.6

6000 5 0.14 5.4 11.0 58.2 1.5 0.8 11.0 0.4

8000 5 0.12 4.1 15.6 100.2 1.6 0.7 16.5 0.4

10000 5 0.10 2.9 21.7 145.0 1.5 0.6 22.3 0.4

15000 5 0.10 2.9 36.0 161.2 1.5 0.6 21.8 0.4

20000 5 0.10 2.9 53.9 546.7 1.4 0.6 19.6 0.3

Table 3: Edge based method from [41]; moderate instances generated using multi-
plicative noise model on a [−0.5, 0.5]2 grid; n number of sensors/vertices; m = .1n
anchors; R radio range. CPU seconds, and percent RMSD for: a. the edge based
method from [41] and b. the refinement.

Specifications Time (s) RMSD (%R)

n % noise R % dens. initial refine initial refine

2000 0 0.20 11.4 31.0 0.0 0.0 0.0

2000 10 0.20 11.4 146.6 0.3 8.7 1.3

2000 20 0.20 11.4 305.7 0.3 17.9 2.7

2000 30 0.20 11.4 351.8 0.3 26.7 4.0

have a lower rank. This is in contrast to the usual min-trace strategy in compressed
sensing; see [6, 51, 52] for a discussion. Indeed, as was mentioned in the introduction
in terms of the factorization X = PPT , the equality tr(X) = 1

2n

∑n
i,j=1 ‖pi − pj‖2

holds, where pi are the rows of P . Thus trace maximization serves to “flatten” the
realization of the graph. We focus on the max-trace regularizer, though an entirely
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Table 4: Robust facial reduction (Algorithm 1); large instances with anchors generated
using multiplicative noise model on a [−0.5, 0.5]2 grid; n number of sensors/vertices;
m = .1n number of anchors; R radio range. CPU seconds, percent residuals, and
percent RMSD for: a. the exposed facial algorithm and b. the refinement.

Specifications Time (s) Residual (%R) RMSD (%R)

n % noise R % dens. initial refine initial refine initial refine

2000 0 0.20 11.4 1.3 0.1 0.0 0.0 0.0 0.0

2000 10 0.20 11.4 1.3 1.8 2.3 2.1 3.9 1.0

2000 20 0.20 11.4 1.3 1.9 4.7 4.3 8.1 2.0

2000 30 0.20 11.4 1.3 1.8 7.2 6.5 12.5 3.0

3000 0 0.18 9.6 2.4 0.2 0.0 0.0 0.0 0.0

3000 10 0.18 9.6 2.4 3.4 2.1 1.9 3.7 0.9

3000 20 0.18 9.6 2.4 3.6 4.2 3.9 7.6 1.8

3000 30 0.18 9.6 2.4 3.8 6.4 5.9 11.6 2.7

4000 0 0.16 7.9 3.7 0.3 0.0 0.0 0.0 0.0

4000 10 0.16 7.9 3.7 5.9 1.8 1.7 3.6 0.9

4000 20 0.16 7.9 3.7 5.8 3.7 3.4 7.3 1.7

4000 30 0.16 7.9 3.7 6.1 5.6 5.2 11.2 2.6

6000 5 0.14 6.4 7.1 9.7 0.8 0.7 1.7 0.4

8000 5 0.12 5.0 10.4 12.5 0.6 0.6 1.7 0.4

10000 5 0.10 3.9 12.9 13.7 0.5 0.5 1.8 0.4

15000 5 0.10 3.8 31.7 20.1 0.5 0.5 1.6 0.3

20000 5 0.10 3.8 59.6 44.2 0.5 0.5 1.5 0.3

analogous analysis holds for min-trace. At the end of the section we compare the two.
We propose a first-order method for this problem using a Pareto search strategy

originating in portfolio optimization. This technique has recently garnered much
attention in wider generality; see e.g., [50–52] or the survey [4]. The idea is simple:
exchange the objective and the difficult constraint, and then use the easier flipped
problem to solve the original. Thus we are led to consider the parametric optimization
problem

ϕ(τ) := min ‖P ◦ K(X)− d‖
s.t. trX = τ(4.2)

Xe = 0

X � 0.

See Figure 3 below for an illustration.
Observe that the evaluation of ϕ(τ) is well adapted to first-order methods, since

the feasible region is so simple. It is well-known that ϕ is a convex function, and
therefore to solve the original problem (4.1), we simply need to find the largest τ
satisfying ϕ(τ) ≤ σ. We note that the smallest value of τ satisfying ϕ(τ) ≤ σ
corresponds instead to minimizing the trace. We propose to evaluate ϕ(τ) by the
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Fig. 3: Graph of ϕ with noise tolerance σ = 0 and σ = 0.24

Frank-Wolfe algorithm and then solve for the needed value of τ by an inexact Newton
method. We will see that this leads to an infeasible method that is unaffected by the
inherent ill-conditioning of the underlying EDM completion problem discussed in the
previous sections.

4.1 An inexact Newton method. We now describe an inexact Newton
method for finding the largest value τ satisfying ϕ(τ) ≤ σ. To this end, we introduce
the following definition.

Definition 4.1 (Affine minorant oracle). Given a function v : I → R on an
interval I ⊂ R, an affine minorant oracle is a mapping Ov that assigns to each pair
(t, α) ∈ I × [1,∞) real numbers (l, u, s) such that 0 ≤ l ≤ v(t) ≤ u, u

l ≤ α, and the
affine function t′ 7→ l + s(t′ − x) minorizes v.

For the EDM completion problem, the function v is given by v(τ) = ϕ(τ)−σ. The
inexact Newton method based on an affine minorant oracle is described in Algorithm 3.

Algorithm 3 Inexact Newton method

Input: Convex function v : I → R on an interval I ⊂ R via an affine minorant
oracle Ov, target accuracy β > 0, initial point t0 ∈ I with v(t0) > 0, and a constant
α ∈ (1, 2).

(l0, u0, s0) := Ov(t0, α);
k ← 0;
l0 ← 0;
u0 ← +∞;
while uk

lk
> α and uk > β do

tk+1 ← tk − lk
sk
;

(lk+1, uk+1, sk+1) := Ov(tk+1, α);
k ← k + 1;

end while

return tk;
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It can be shown that the iterates tk generated by the inexact Newton method
(Algorithm 3), when applied to a convex function v : I → R having a root on the
interval I, converge to the root t̄ of v closest to t0. Moreover, the convergence is
linear in function value: the algorithm is guaranteed to terminate after at most

K ≤ max
{
1 + log2/α

(
2R/β

)
, 2
}

iterations, where we set R = max{|s0|(t̄ − t0), l0}. For a proof and a discussion,
see [4, Theorem 2.4].

Thus to implement this method, for the problem (4.1), we must describe an affine
minorant oracle for v(t) = ϕ(t)−σ. Then, after the number of iterations given above,
we can obtain a centered PSD matrix X satisfying

‖P ◦ K(X)− d‖ ≤ σ + β and tr(X) ≥ OPT,

where OPT denotes the optimal value of (4.1). A key observation is that the derivative
of v at the root does not appear in the iteration bound. This is important because
for the function v(t) = ϕ(t)− σ, the inherent ill-conditioning of (4.1) can lead to the
derivative of v at the root being close to zero.

4.2 Solving the inner subproblem with Frank-Wolfe algorithm. In this
subsection, we describe an affine minorant oracle for ϕ(τ) based on the Frank-Wolfe
algorithm [22], which has recently found many applications in machine learning (see,
e.g., [25,28]). Throughout, we fix a value τ satisfying ϕ(τ) > σ. To apply the Frank-
Wolfe algorithm, we must first square the objective in (4.1) to make it smooth. To
simplify notation, define

A := P ◦ K, f(X) :=
1

2
‖A(X)− d‖2 and D := {X � 0 : trX = 1, Xe = 0}.

Thus we seek a solution to

min {f(X) : X ∈ τD}.

The Frank-Wolfe scheme is described in Algorithm 4.
The computational burden of the method is the minimization problem (4.3) in

Algorithm 4. To elaborate on this, observe first that

∇f(X) = K∗ ◦ P∗(P ◦ K(X)− d
)
.

Notice that the matrix K∗ ◦ P∗(P ◦ K(X) − d
)
has the same sparsity pattern, mod-

ulo the diagonal, as the adjacency matrix of the graph. As a result, when the
graph G is sparse, we claim that the linear optimization problem (4.3) is easy to
solve. Indeed, observe ∇f(X)e = 0 and consequently an easy computation shows
that minS∈τD 〈∇f(X), S〉 equals τ times the minimal eigenvalue of the restriction of
∇f(X) to e⊥; this minimum in turn is attained at the matrix τvvT where v is the
corresponding unit-length eigenvector. Thus to solve (4.3) we must find only the min-
imal eigenvalue-eigenvector pair of ∇f(X) on e⊥, which can be done fairly quickly
by a Lanczos method, and in particular, by orders of magnitude faster than the full
eigenvalue decomposition. Thus, the Frank-Wolfe method is perfectly adapted to our
problem instance.

Theorem 4.1 (Affine minorant oracle). Algorithm 4 is an affine minorant oracle
for the function v(τ) := ϕ(τ) − σ.
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Algorithm 4 Affine minorant oracle based on the Frank-Wolfe algorithm

Input: τ ≥ 0, relative tolerance α > 1, and β > 0.
Let k ← 0, l0 ← 1

2σ
2, and u0 ← +∞. Pick any point X0 in τD.

while
√
2uk − σ > α(

√
2lk − σ) and

√
2uk − σ > β do

Choose a direction

(4.3) Sk ∈ argminS∈τD〈∇f(Xk), S〉;

Set the stepsize: γk ∈ argminγ∈[0,1] f(Xk + γ(Sk −Xk));
Update the iterate: Xk+1 ← Xk + γk(Sk −Xk);
Update the upper bound: uk+1 ← f(Xk+1);
Update the lower bound:

lk+1 ← max {lk, f(Xk) + 〈∇f(Xk), Sk −Xk〉} ;

Increment the iterate: k ← k + 1;
if lk+1 > lk then

y ← d− P ◦ K(Xk);
X ← Xk

S ← Sk

end if

end while

l← lk+
1
2‖y‖

2
2

‖y‖2
− σ;

u← √2uk − σ;
s = 1

τ‖y‖〈∇f(X), S〉;
return (l, u, s);

Proof. We first claim that upon termination of Algorithm 4, the line t′ 7→ l +
s(τ − τ ′) is a lower minorant of v(τ ′) − σ. To see this, observe that the dual of the
problem

ϕ(τ) = min
X∈τD

‖A(X)− d‖

is given by

max
z∈RE : ‖z‖≤1

hτ (z) := 〈d, z〉 − τδ∗D(A∗z),

where δ∗D denotes the support function of D. Then by weak duality for any vector z
with ‖z‖ ≤ 1 and any τ ′, we have the inequality

(4.4) ϕ(τ ′) ≥ hτ ′(z) = 〈d, z〉 − τ ′δ∗D(A∗z) = hτ (z)− (τ ′ − τ)δ∗D(A∗z).

Hence the affine function τ ′ 7→ hτ (z)− (τ ′ − τ)δ∗D(A∗z) minorizes the value function
ϕ(τ ′). Now a quick computation shows that upon termination of Algorithm 4, we
have

(4.5) lk +
1

2
‖y‖2 = hτ (y).
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Setting z = y
‖y‖2

in inequality (4.4) and using the identity (4.5), we obtain for all

τ ′ ∈ R the inequality

ϕ(τ ′) ≥ lk +
1
2‖y‖2
‖y‖ − (τ ′ − τ)

δ∗D(A∗y)

‖y‖
= l + σ + s(τ ′ − τ).

Hence the line t′ 7→ l + s(τ − τ ′) is a lower minorant of v(τ ′) − σ, as claimed. Next,
we show that upon termination, the inequality u

l ≤ α holds. To see this, observe that

u

l
=

2‖y‖u
2lk + ‖y‖2 − 2σ‖y‖ ≤

2‖y‖u
(
u+ασ

α

)2
+ ‖y‖2 − 2σ‖y‖

= α

(
2‖αy‖u

(u+ ασ)
2
+ ‖αy‖2 − 2ασ‖αy‖

)
.

Now, observe that the numerator of the rightmost expression is always less than the
denominator:
(
(u+ ασ)

2
+ ‖αy‖2 − 2ασ‖αy‖

)
− 2‖αy‖u = (u+ ασ)

2
+‖αy‖2 − 2‖αy‖(u+ ασ)

= (u+ ασ − ‖αy‖)2 ≥ 0.

We conclude that u
l ≤ α, as claimed. This completes the proof.

Thus Algorithm 4 is an affine minorant oracle for ϕ − σ, and linear convergence
guarantees of the inexact Newton method (Algorithm 3) apply.

Finally let us examine the iteration complexity of the Frank-Wolfe algorithm

itself. Suppose that that for some iterate k, we have
√
2uk−σ√
2lk−σ

> α and
√
2uk − σ > β.

Dropping the subscripts k for clarity, observe that
√
2u−

√
2l

β > (
√
2u−σ)−(

√
2l−σ)√

2u−σ
>

1− 1
α . Consequently in terms of the duality gap ǫ := u− l, we have

2ǫ ≥ (
√
2u−

√
2l)2 > β2

(
1− 1

α

)2

.

Hence Algorithm 4 terminates provided ǫ ≤ 1
2β

2
(
1− 1

α

)2
. Standard convergence

guarantees of the Frank-Wolfe method (e.g., [19, 22, 28]), therefore imply that the

method terminates after O
(

τkL
2

β2

)
iterations, where L is the Lipschitz constant of the

gradient ∇f .
Summarizing, consider an instance of the problem (4.1) with optimal value OPT .

Then given a target accuracy β > 0 on the misfit ‖P ◦K(·)− d‖, we can find a matrix
X � 0 with Xe = 0 that is super-optimal and nearly feasible, meaning

tr(X) ≥ OPT and ‖P ◦ K(X)− d‖ ≤ σ + β

using at most max
{
1 + log2/α

(
2R/β

)
, 2
}
inexact Newton iterations4, with each in-

ner Frank-Wolfe algorithm terminating in at most O
(

τ0L
2

β2

)
many iterations. Finally,

we mention that in the implementation of the method, it is essential to warm start
the Frank-Wolfe algorithm using iterates from previous Newton iterations.

4As before |s0| is the slope of the value function v at τ0 and R = τ0 −OPT.
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4.3 Comparison of minimal and maximal trace problems. It is interest-
ing to compare the properties of the minimal trace solution

min trX

s.t. ‖P ◦ K(X)− d‖ ≤ σ, Xe = 0, X � 0,

and the maximal trace solution

max trX

s.t. ‖P ◦ K(X)− d‖ ≤ σ, Xe = 0, X � 0.

In this section, we illustrate the difference using the proposed algorithm. Consider the
following EDM completion problem coming from wireless sensor networks (Figure 4).
The iterates generated by the inexact Newton method are plotted in Figure 5.

Fig. 4: An instance of the sensor network localization problem on n = 50 nodes with
radio range R = 0.35 and noise factor nf = 0.1.
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Let us consider first the maximal trace solution X . In Figure 6, the asterisks
∗ indicate the true locations of points in both pictures. In the picture on the left,
the pluses + indicate the points corresponding to the maximal trace solution X after
projecting X onto rank 2 PSD matrices, while in the picture on the right they denote
the locations of these points after local refinement. The edges indicate the deviations.

In contrast, we now examine the minimal trace solution, Figure 7. Notice that
even after a local refinement stage, the realization is very far from the true realization
that we seek, an indication that a local search algorithm has converged to an extrane-
ous critical point of the least squares objective. We have found this type of behavior
to be very typical in our numerical experiments.

Finally we mention an interesting difference between the maximal trace and the
minimal trace solutions as far the as the value function ϕ is concerned. When σ = 0,
the typical picture of the graph of ϕ is illustrated in Figure 8. The different shapes of
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Fig. 5: Graph of ϕ and inexact Newton iterates for solving the minimal trace and the
maximal trace problems. Here σ = 0.2341 (the dark horizontal line) and the tolerance
on the misfit in the l2-norm (the dashed horizontal line) is σ + β = 0.3341.
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Fig. 6: Maximal trace solution.
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the curve on the left and on the right sides are striking. To elucidate this phenomenon,
consider the primal problem

minimize trX

s.t. P ◦ K(X) = d, Xe = 0, X � 0,
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Fig. 7: Minimal trace solution.
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Fig. 8: Graph of ϕ with σ = 0.

and its dual

maximize yTd

s.t. K∗ ◦ P∗(y) + βeeT � I,

In particular, the dual is strictly feasible and hence there is no duality gap. On the
other hand, suppose that the dual optimal value is attained by some pair (y, β) and
suppose without loss of generality that K∗ ◦ P∗(y) has an eigenvalue equal to one
corresponding to an eigenvector orthogonal to e. Then letting τ be the optimal value
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(the minimal trace), and appealing to equation (4.4) we deduce

ϕ(τ ′) ≥ 1

‖y‖
(
dT y − τδ∗D(K∗ ◦ P∗(y))− (τ ′ − τ)δ∗D(K∗ ◦ P∗(y))

)

≥ − (τ ′ − τ)

‖y‖ for all τ ′.

Hence the fact that slope ϕ′(τ) is close to zero in Figure 8 indicates that the dual
problem is either unattained (not surprising since the primal fails the Slater condition)
or that the dual is attained only by vectors y of very large magnitude. The reason why
such phenomenon does not occur for the max-trace problem is an intriguing subject
for further investigation.

4.4 Numerical illustration. In this section, we illustrate the proposed method
on sensor network localization instances. The data was generated in the same man-
ner as the numerical experiments in Section 3.3. The following tables illustrate the
outcome of the method by varying the noise. Throughout we have fixed the tolerance
on the misfit ‖P ◦ K(X) − d‖ ≤ σ + 0.1. As above, the tests were run on MATLAB
version R2016a, on a Dell Optiplex 9020, with Windows 7, Intel(R) Core(TM) i7-4770
CPU @ 3.40GHz and 16 GB RAM.

5 Conclusion and work in progress. In this paper, we described two algo-
rithms (robust facial reduction and a search along the Pareto frontier) to solve the
EDM completion problem with possibly inaccurate distance measurements, which
has important applications and is numerically challenging. The two algorithms are
intended for EDM completion problems of different densities: the Pareto frontier al-
gorithm discussed in Section 4 is designed for sparse graphs whereas the robust facial
reduction outlined in Algorithm 1 in Section 3 tends to work better for denser graphs.
Though not studied in this work, it is possible to develop a distributed implementation
of the robust facial reduction technique in order to solve even larger scale completion
problems. Moreover, instead of identifying cliques, which is computationally heavy,
one can try to use other universally rigid (UR) components in the graph, which are
easier to identify (e.g. [57]). The difficulty, however, is that this strategy would require
an SDP solve for every such component due to noise in the data. The Pareto frontier
estimation technique is promising for handling large scale EDM completion problems,
since first-order methods become immediately applicable and sparsity of the underly-
ing graph can be exploited when searching for a maximum eigenvalue-eigenvector pair
via a Lanczos procedure. Numerical experiments have illustrated the effectiveness of
both strategies.

Appendix A. Nearest-point mapping to Sk,rc,+.

We now describe how to evaluate the nearest-point-mapping to the set Sk,rc,+—an
easy and standard operation due to the Eckart-Young Theorem [21]. To describe this
operation, consider any matrix X ∈ Sn and a set Q ⊂ Sn. The projection mapping,
proj(·) is

proj(X ;Q) := argminY ∈Q ‖X − Y ‖F .
It is well known that proj(X ;Q) is a singleton for every nonempty closed convex set

Q. Let
[

1√
k
e U

]
be any k × k orthogonal matrix. First dealing with the centering

constraint, one can verify

proj
(
X ;Sk,rc,+

)
= U

[
proj

(
UTXU ;Sk−1,r

+

)]
UT .
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Table 5: Numerical results for the Pareto search strategy

Specifications Time (s) Residual (%R) RMSD (%R)

n % noise R % dens. initial refine initial refine initial refine

1000 0 0.10 2.9 5.2 0.5 0.9 0.0 35.2 0.4

1000 10 0.10 2.9 4.5 0.6 1.9 1.1 64.6 3.8

1000 20 0.10 2.9 4.3 0.6 3.1 2.1 93.3 7.9

1000 30 0.10 2.9 4.1 0.5 4.3 3.2 120.3 12.4

1000 10 0.30 21.6 28.2 1.0 3.4 3.3 5.2 1.0

1000 10 0.25 15.7 14.1 1.2 2.9 2.8 7.5 1.2

1000 10 0.20 10.6 6.6 0.7 2.5 2.2 12.2 1.5

1000 10 0.15 6.2 4.1 0.6 2.1 1.6 23.8 2.1

1000 20 0.10 2.9 4.4 0.6 3.1 2.1 93.3 7.9

2000 20 0.10 2.9 12.3 2.1 2.7 2.2 67.1 4.5

3000 20 0.10 2.9 26.5 3.5 2.6 2.2 56.2 3.5

4000 20 0.08 1.9 63.8 13.3 2.2 1.8 82.2 3.8

5000 20 0.08 1.9 103.7 12.9 2.1 1.8 74.1 3.4

6000 20 0.08 1.9 181.7 29.5 2.1 1.8 68.6 3.0

7000 20 0.06 1.1 247.7 27.2 1.7 1.3 119.8 4.5

8000 20 0.06 1.1 324.0 27.1 1.7 1.4 113.5 3.7

9000 20 0.06 1.1 402.5 38.4 1.6 1.4 108.1 3.4

10000 20 0.06 1.1 482.4 57.2 1.6 1.4 103.9 3.1

11000 20 0.05 0.8 814.5 45.6 1.4 1.1 145.9 3.8

12000 20 0.05 0.8 811.8 55.6 1.4 1.1 142.5 3.6

13000 20 0.05 0.8 957.9 66.5 1.4 1.1 136.1 4.2

14000 20 0.05 0.8 1353.4 83.6 1.4 1.1 134.0 4.4

15000 20 0.05 0.8 1565.2 98.1 1.4 1.1 128.9 4.8

On the other hand, we have

proj
(
Z;Sk−1,r

+

)
= U Diag

(
0, . . . , 0, λ+

k−r(Z), . . . , λ+
k−1(Z)

)
UT ,

where λ1(Z) ≤ . . . ≤ λk−1(Z) are the eigenvalues of Z and the superscript λ+
i (Z)

refers to their positive part, and U is an orthogonal matrix of eigenvectors in the
orthogonal spectral decomposition Z = U Diag(λ(Z))UT .

Thus computing the matrix proj(X ;Sk,rc,+) requires no more than an eigenvalue
decomposition. Moreover, if the embedding dimension r is small, then we can take
advantage of special routines that find a few (r) eigenpairs. In MATLAB we first shift
away from 0 and find the Cholesky factorization of Y = W + I: [Ry,˜, S] = chol(W +
speye(n))]; the smallest eigenvalue 0 is shifted to 1, Y e = e and Y −1e = e. Moreover,
tr(W ) + 1 is now a valid upper bound for the r + 1-st smallest eigenvalue. We can
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deflate the eigenvalue for the normalized e by shifting with

σ =
tr(W ) + 1

n
, Y + σeeT .

This deflation means that we now need to find only the smallest r eigenpairs of
Y + σeeT rather than r + 1 for W . The MATLAB eigs routine requires repeated
evaluations of

(Y + σeeT )−1y = (Y + σeeT )\y.

We can apply the Sherman-Morrison-Woodbury formula with the rank one perturba-
tion of Y and take advantage of the fact that Y −1e = e. With α = σ

1+σne we get that
the matrix division is equivalent to

(Y + σeeT )−1y = S(Ry\(RyT\(STy)))− αeT y.

In addition, we can take advantage of the structure of K in the SNL application.
In each step we find B = K†(D) for some nonnegative D ∈ Skh . Since D is a noisy
EDM, we do not necessarily have B � 0. However, B ∈ Sc. Therefore we deflate the
eigenvector of ones. This is equivalent to using the matrix U above. We now find the
k− r smallest eigenpairs of B + αeeT for an α < min{−1, λ1(B)}, where we zero out

any negative eigenvalues to get the nearest matrix in Sk,rc,+.

Appendix B. Solving the small least squares problem. We now describe
how to easily solve the least squares system (3.2) We are interested in solving an
optimization problem of the form

min
Z
‖A(Z)− d‖22

s.t. Z ∈ Sr+,

where the linear operator A : Sn → R
E is defined by [A(Z)]ij = [K(UZUT )]ij for all

ij ∈ E. Let svec (Z) be the vectorization of Z and let A be a |E| × r(r+1)
2 matrix

representation of the operatorA. Thus we are interested in solving the overdetermined
system

min
Z
‖A(svecZ)− d‖22(B.1)

s.t. Z ∈ Sr+.

One approach now is simply to expand the objective

‖A(svecZ)− d‖22 = 〈(ATA)(svecZ), svecZ〉 − 2〈AT d, svecZ〉+ ‖d‖2,

and then apply any standard iterative method to solve the problem (B.1). Alter-
natively, one may first form an economic QR factorization A = QR (where Q ∈
R

|E|× 1
2 r(r+1) has orthonormal columns and R ∈ R

1
2 r(r+1)× 1

2 r(r+1) is upper triangu-
lar) and then write the objective as ‖A(svecZ)− d‖22 = ‖R(svecZ)−QTd‖2. We can
then pose the problem (B.1) as a small linear optimization problem over the product

of the semidefinite cone Sr+ and a small second-order cone of dimension R
r(r+1)

2 , and
quickly solve it by an off-the-shelf Interior Point Method.

In practice, we have found that the cone constraint is often inactive. The reason
is that under reasonable conditions (see Theorem 2.2), in a noiseless situation, there



D. DRUSVYATSKIY, N. KRISLOCK, Y.-L. VORONIN, AND H. WOLKOWICZ 27

is a unique solution to the equation A(Z) = d. This solution then is positive definite.
Hence by the robustness guarantees (Theorem C.5), a small amount of noise in d
will lead to a matrix solving minZ ‖A(svecZ) − d‖22 that is automatically positive
definite. Heuristically, we can simply drop the cone constraint in (3.2) and consider
the unconstrained least squares problem

(B.2) min
Z
‖A(svecZ)− d‖22,

which can be solved very efficiently by classical methods. With this observation, we
often can solve (3.2) without using any optimization software.

In the case that Z is not positive definite we have generated a random sketch
matrix S, e.g., [39]. This changes the highly overdetermined cone constrained least
squares problem to one with a reasonable number of constraints after replacing the
data A, d with SA, Sd, respectively.

Appendix C. Robustness of facial reduction. In this section, we provide
rudimentary robustness guarantees on Algorithm 1. To this end, consider two n × r
matrices U and V , each with orthonormal columns. Then the principal angles between
rangeU and rangeV are the arccosines of the singular values of UTV . We will denote
the vector of principal angles between these subspaces, arranged in nondecreasing
order, by Γ. The symbols sink(Γ) and cosk(Γ) will have obvious meanings. Thus the
vector of singular values σ(UTV ), arranged in nondecreasing order, coincides with
cos(Γ). Consequently in terms of the matrix

∆ = I − (V TU)(V TU)T ,

the eigenvalue vector λ(∆) coincides with sin2(Γ). An important property is that
the principal angles between rangeU and rangeV and the principal angles between
(rangeU)⊥ and (rangeV )⊥, coincide modulo extra π

2 angles that appear for dimen-
sional reasons. The following is a deep result that is fundamental to our analy-
sis [16–18]. It estimates the deviation in range spaces of matrices that are nearby in
norm.

Theorem C.1 (Distances and principal angles). Consider two matrices X,Y ∈
Sn+ of rank r and let Γ be the vector of principal angles between rangeX and rangeY .
Then the inequality

‖ sin(Γ)‖ ≤ ‖X − Y ‖
δ(X,Y )

holds,

where δ(X,Y ) := min{λr(X), λr(Y )}.
The following is immediate now.

Corollary C.2 (Deviation in exposing vectors). Consider two rank r matrices
X,Y ∈ Sn+ and let U and V be n × r matrices with orthonormal columns that span
kerX and kerY respectively. Then we have

‖UUT − V V T ‖ =
√
2

(‖X − Y ‖
δ(X,Y )

)
.

Proof. Observe ‖UUT − V V T ‖2 = 2 tr(I − (V TU)(V TU)T ) = 2‖ sin(Θ)‖2. Ap-
plying Theorem C.1, the result follows.
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Next, we will need the following lemma.

Lemma C.3 (Projections onto subsets of symmetric matrices). For any n × r-
matrix U with orthonormal columns, and a matrix X ∈ Sn, we have

(C.1) proj(X ;USrUT ) = UUTXUUT ,

and for any subset Q ∈ Sr, we have

(C.2) proj(X ;UQUT ) = U proj(UTXU ;Q)UT .

Proof. Optimality conditions for the optimization problem

min
Y ∈Sr

‖X − UY UT ‖2

immediately imply proj(X ;USrUT ) = UUTXUUT . Since UQUT is contained in the
linear space USrUT , the projection proj(X ;UQUT ) factors into a composition

proj(X ;UQUT ) = proj
(
proj(X ;USrUT );UQUT

)
,

Combining this with equation (C.1) we deduce

proj(X ;UQUT ) = proj
(
UUTXUUT ;UQUT

)
.

On the other hand, since the columns of U are orthonormal, for any Y ∈ Sr we clearly
have

‖UUTXUUT − UY UT ‖ = ‖UTXU − Y ‖,

and equation (C.2) follows immediately.

Corollary C.4 (Distances between faces). Consider two n× r matrices U and
V , each with orthonormal columns and let Γ be the vector of principal angles between
rangeU and rangeV . Then for any Z ∈ Sr+ the estimate holds:

dist(V ZV T ;USr+UT ) ≤
√
2 · ‖Z‖ · ‖ sin(Γ)‖.

Proof. Appealing to Lemma C.3, we obtain the equation proj(V ZV T ;USr+UT ) =
UUT (V ZV T )UUT . Define now the matrix ∆ = I − (V TU)(V TU)T . We successively
deduce

dist2(V ZV T ;USr+UT ) = ‖V ZV T − UUT (V ZV T )UUT ‖2

= ‖V ZV T ‖2 − 2 tr(V ZV TUUTV ZV TUUT ) + tr(UTV ZV TUUTV ZV TU)

= ‖Z‖2 − 2 tr
((

Z(V TU)(V TU)T
)2)

+ tr
((

Z(V TU)(V TU)T
)2)

= tr
(
Z2 −

(
Z(V TU)(V TU)T

)2)

= tr
(
Z2 −

(
Z − Z∆

)2)
= tr

(
2Z2∆− Z∆Z∆

)
= 2‖∆ 1

2Z‖2 − ‖∆ 1
2Z∆

1
2 ‖2.



D. DRUSVYATSKIY, N. KRISLOCK, Y.-L. VORONIN, AND H. WOLKOWICZ 29

Hence we deduce

dist2(V ZV T ;USrUT ) = 2 tr(Z2∆)− ‖Z 1
2∆Z

1
2 ‖2 ≤ 2 tr(Z2∆) ≤ 2 · ‖Z‖2 · ‖Λ‖

= 2 · ‖Z‖2 · ‖ sin2(Θ)‖ = 2 · ‖Z‖2 · ‖ sin(Θ)‖2.

The result follows.

We are now ready to formally prove robustness guarantees on the method. For
simplicity, we will assume that the exposing matrices Wα are of the form UUT where
U have orthonormal columns, and that ωα(d) = 1 for all cliques α and all d ∈ R

E . The
arguments can be easily adapted to a more general setting. For any subgraph H of
G, we let d[H ] denote the restriction of d to H . Following [44], the EDM completion
problem is said to be uniquely r-localizable if either of the equivalent conditions in
Observation 2.2 holds. In what follows, let Alg(d) be the output of Algorithm 1 on
the EDM completion problem.

Theorem C.5 (Robustness). Suppose the following:
• for any clique α ∈ Θ, the subgraph on α has embedding dimension r;
• the EDM completion problem is uniquely r-localizable and Alg(d) is the real-
ization of G.
• the matrix Y obtained during the run on the noiseless problem has rank n−r;

Then there exist constants ε > 0 and κ > 0 so that

‖P ◦ K(Alg(d̂))− d̂‖ ≤ κ‖d̂− d‖ whenever ‖d̂− d‖ < ε.

Proof. Throughout the proof, we will use the hat superscript to denote the objects
(e.g. X̂α, Ŵα) generated by Algorithm 1 when it is run with the distance measure-

ments d̂ ∈ R
E . Clearly for any d̂ ∈ R

E , we have ‖K†d̂α−K†dα‖ = O(‖dα−d̂α‖) for any
clique α ∈ Θ. Fix any such clique α, and notice by our assumptions K†dα has rank r.
Consequently ‖X̂α−Xα‖ = O(‖dα−d̂α‖) whenever d̂ is sufficiently close to d. Appeal-

ing then to Corollary C.2, we deduce ‖Ŵα −Wα‖ = O(‖X̂α −Xα‖) = O(‖dα − d̂α‖).
Hence ‖Ŵ −W‖ = O(‖d − d̂‖) for all d̂ sufficiently close to d. Since W has rank

n− r, we deduce ‖Ŷ − Y ‖ = O(‖d− d̂‖). Appealing to Theorem C.1, we then deduce

‖ sin(Γ)‖ = O(‖d− d̂‖), where Γ is the principle angle vector between the null spaces

of Ŷ and Y . By Corollary C.4, then

dist
(
X ; face(X̂,Sn+)

)
= O(‖d̂− d‖).

The result follows.

Acknowledgments. We thank Sasha Aravkin for pointing out a part of the
proof of Theorem 4.1.



Appendix D.

D≈, 11
G = (V,E, d), weighted undirected graph,

1
R, radio range, 10
Alg(·), output of Algorithm 1, 29
K, Lindenstrauss mapping, 5
Sn, real symmetric matrices, 4
Sn+, positive semidefinite matrices, 4
Snc , centered symmetric matrices, 6
Snc,+, centered PSD matrices, 6
Sn,rc,+, centered PSD matrices of rank

≤ r, 6
Snh , hollow subspace, 6
proj(·), projection mapping, 24
�, Löwner cone ordering, 4
d≈ := P ◦ K(UBUT ), 10
dα, 7
e, vector of all ones, 2
n× n real symmetric matrices, Sn, 4
vallss, 8
EDM, Euclidean distance matrix, 8
SDP, semidefinite programming, 4

anchors, 10

backwards stable, 10

centered sets, 6
condition number for d, 10

dual procedure, 2

EDM completion, 1, 5
Euclidean distance matrix, EDM, 8

facial reduction, 7
flipped problem, 3, 14

Gram matrix, 5

Löwner cone ordering, �, 4
Lindenstrauss mapping, K, 5
local refinement, 10

max-trace heuristic, 3
multiplicative noise model, 13

positive semidefinite matrices (PSD), 4
positive semidefinite matrices, Sn+, 4
primal procedure, 2, 4

projection mapping, proj(·), 24
PSD, positive semidefinite matrices, 4

radio range, R, 10
realize the graph, 5
relative residual error in D, 11
relative residual error in d, 10
RMSD, 11
RMSD, root mean standard deviation,

11
RMSD, root-mean-square deviation, 11,

13
root mean standard deviation, RMSD,

11
root-mean-square deviation, RMSD, 11,

13

semidefinite programming (SDP), 4
sensor network localization, SNL

anchorless, 10
noiseless, 5

trace inner product, 4

uniquely r-localizable, 29

vector of all ones, e, 2
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