
On the local and global minimizers of the smooth stress function in

Euclidean Distance Matrix problems
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Abstract

We consider the nonconvex minimization problem, with quartic objective function, that arises
in the exact recovery of a configuration matrix P ∈ Rn×d of n points when a Euclidean distance
matrix, EDM, is given with embedding dimension d. It is an open question in the literature
under which conditions such a minimization problem admits a local nonglobal minimizer, lngm.
We prove that all second order stationary points are global minimizers whenever n ≤ d+1. For
n > d + 1, we numerically find a local nonglobal minimum and show analytically that there
indeed exists a nearby lngm for the underlying quartic minimization problem. Thus, we answer
in the affirmative the previously open question about their existence. Our approach to finding
the lngm is novel in that we first exploit the translation and rotation invariance to reduce the
size of the problem from nd variables in P to (n−1)d−d(d−1)/2 = d(2n−d−1)/2 variables. This
allows for finding examples that satisfy the strict second order sufficient optimality conditions.
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1 Introduction

EDM (completion) problems have been widely studied in the scientific literature for the past
decades, see e.g., the surveys, book collections and some recent papers [2–4, 6, 8, 12]. It is well
known that one can obtain the Gram matrix Ḡ from a given EDM D̄. Then, a configuration
matrix P̄ of points p̄i ∈ Rd such that D̄ij = ∥p̄i − p̄j∥2, i, j = 1, . . . , n, can be obtained from a full
rank factorization

Ḡ = P̄ P̄ T , P̄ T =
[
p̄1, . . . , p̄n

]
∈ Rd×n.

In this work, we consider the question of exact recovery from the unconstrained minimization
problem

min
P∈Rn×d

∥K(PP T )− D̄∥2F (1.1)

that arises from application of the Lindenstrauss operator on symmetric matrix space K : Sn → Sn:

K(G) = diag(G)eT + ediag(G)T − 2G.

Here e is the vector of ones and diag(G) is the linear mapping providing the vector of diagonal
elements of the square matrix G. The objective function of (1.1), given by

σ2(P ) = ∥K(PP T )− D̄∥2F =
n∑

i=1

n∑
j=1

(
∥pi − pj∥2 − ∥p̄i − p̄j∥2

)2
, (1.2)

is quartic in P , known in multidimensional scaling (MDS) literature, e.g. [11], as the smooth
stress.1

Since σ2(P ) is nonconvex, and most optimization methods are local, we investigate the possibil-
ity for such a quartic to have all its local minimizers being global ones. This is a prevalent question
in multidimensional scaling literature [9, 11,13] with no definitive answer in previous publications.

The question about the existence of a lngmwas previously considered for another type of stress
function, called the raw stress:

σ1(P ) =
n∑

i=1

n∑
j=1

(∥pi − pj∥ − ∥p̄i − p̄j∥)2 . (1.3)

1For notational convenience, we use f(P ) = 1
2
σ2(P ) as our objective function.
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It was analytically verified that a lngm exists for the raw stress function σ1(P ) [11]. However, the
question about the existence of such a lngm for the smooth stress function σ2(P ) remained open
for a much longer time.

A few years after the result in [11] for the raw stress function, the authors of [9], while studying
the problem in the context of “metric” multi-dimensional scaling, already wondered whether the
same example could work for the smooth function σ2(P ). Unfortunately, the example constructed
in [11] for raw stress (1.3) does not produce a nonglobal minimizer for the smooth stress (1.2) as
discussed in the technical report [10]. In [15], an example of the inexact EDM recovery problem,
i.e.,

min
P∈Rn×d

∥K(PP T )−∆∥2F ,

was presented to have a lngm , where ∆ ∈ Sn is not an EDM in Rd as in (1.1). In a PhD Thesis
focusing on EDMs and published in 2013 [13], the question related to the nonglobal minimizers of
σ2(P ) was mentioned and considered to be open.

In this work, we finally give a definitive answer to this question. We find examples where the
function σ2(P ) has a local nonglobal minimum, lngm, and we provide an analytic verification.
In our numerical investigation of stationary points of σ2, we have used a trust region approach
for obtaining points satisfying the second order necessary optimality conditions for (1.1). We also
prove that, for n ≤ d+ 1, no stationary point of smooth stress with σ2(P ) > 0 satisfies the second
order necessary optimality conditions. In other words, in this latter case all local minimizers are in
fact global ones.

We continue in Section 2 with a description of our main unconstrained minimization problem.
We include two additional equivalent problems with reduced numbers of variables. The reduction
allows for strict optimality conditions that can be used for the analytic existence proof. In Section 3,
we include various linear transformations, derivatives, and adjoints. Many of these are used in the
paper. It is hoped that these are a useful addition to the literature of EDMs as they emphasize the
use of linear transformations rather than individual elements or points. In Section 4, we consider the
optimality conditions and present a sufficient condition under which σ2(P ) has no local nonglobal
minimizer. In Section 5, we give two examples and use a modified Kantorovich theorem to prove
the existence of lngms.

2 Notation and Main Problem Formulations

Before presenting the problem, we look at some of the required notation and background from
distance geometry. Further notation and background can be found in the book [3].

2.1 Notation

We let S, T ∈ Sn denote matrices in the space of n × n symmetric matrices equipped with the
trace inner product ⟨S, T ⟩ = trST ; we use diag(S) ∈ Rn to denote the diagonal of S; the adjoint
mapping is diag∗(v) = Diag(v) ∈ Sn. We let [k] = {1, 2, . . . , k} and use ⊗ to denote the Kronecker
product. Unless stated otherwise, ∥ · ∥ denotes the Frobenius norm.

The cone of positive semidefinite matrices is denoted Sn+ ⊂ Sn, and we use S ⪰ 0 for S ∈ Sn+.
Similarly, for positive definite matrices, we use Sn++, S ≻ 0.
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For a set of points pi ∈ Rd, we let

P =


pT1
pT2
. . .
pTn

 ∈ Rn×d

denote the configuration matrix. Here we denote by d the embedding dimension. We denote the
corresponding Gram matrix, G = PP T . In addition, we define the quadratic mapping M : Rn×d →
Sn, M(P ) = PP T .

The classical result of Schoenberg [14] relates a Euclidean distance matrix, EDM , with a Gram
matrix by applying the Lindenstrauss operator, K : Sn → Sn, given by

G = PP T , D =
(
∥pi − pj∥2

)
= K(G) = diag(G)eT + e diag(G)T − 2G.

We define D : Rn×d → Sn such that

D(P ) = K(PP T ) = K(M(P )).

Moreover, the mapping K is one-one and onto between the centered subspace, Sn
C and the hollow

subspace, Sn
H , given by

Sn
C = {S ∈ Sn : Se = 0}, Sn

H = {S ∈ Sn : diagS = 0}.

We ignore the dimension n when the meaning is clear. Note that the centered assumption P T e =
0 =⇒ G = PP T ∈ Sn

C .
Further detailed properties and a list of (non)linear transformations and adjoints are given

in Section 3.

2.2 Main Problem Formulations

Suppose that we are given the data P̄ ∈ Rn×d, P̄ T e = 0, of n (centered) points in the embedding
dimension d. This gives rise to the corresponding Gram matrix Ḡ = P̄ P̄ T ∈ Sn

C and EDM,

D̄ = K(Ḡ) = diag(Ḡ)eT + ediag(Ḡ)T − 2Ḡ. (2.1)

We now present the main problem and two reformulations that reduce the size and help with
stability.

Problem 2.1 (point recovery). Let D̄ be the above given EDM in (2.1). Consider the nonconvex
minimization problem of recovering a corresponding point matrix P̄ given by

min
P∈Rn×d

f(P ) :=
1

2
∥K(PP T )− D̄∥2F =:

1

2
∥F (P )∥2F , (2.2)

which defines the function F : Rn×d → Sn
H . Does P ∗ ∈ Rn×d exist such that it is a lngm for (2.2)?
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Problem (2.2) is a nonlinear least squares problem. It has nd variables. By taking advantage
of symmetry and the zero diagonal, the objective function can be seen as a sum of squares of a
triangular number, t(n − 1) := n(n − 1)/2 of quadratic functions. Note that P̄ is clearly a global
minimum for Problem (2.2) with optimal value f(P̄ ) = 0. The problem is to determine whether
or not all stationary points where the second-order necessary optimality conditions hold are global
minimizers. If it is true, then the gradient descent method with a small stepsize can find the global
minimizer of problem (2.2) with probability one [7].

Note that a distance matrix is invariant under translations and rotations. Without loss of
generality, we can translate the points and assume they are centered, i.e.,

P T e = 0, e vector of ones.

We let
V ∈ Rn×n−1, V TV = In−1, V

T e = 0. (2.3)

Then, P T e = 0 if, and only if, P = V L for some L ∈ Rn−1×d. We can take advantage of this to get
equivalent smaller dimensional problems.

Problem 2.2 (centered point recovery). Let D̄ be the above given EDM in (2.1). Let V be as
in (2.3). Consider the nonconvex minimization problem of recovering a corresponding centered
point matrix P̄ = V L̄, i.e.,

min
L∈Rn−1×d

fL(L) :=
1

2
∥K(V L(V L)T )− D̄∥2F =:

1

2
∥FL(L)∥2F , (2.4)

which defines the function FL : Rn−1×d → Sn
H . Does L∗ ∈ Rn−1×d exist such that it is a lngm for

(2.4)?

We let O = {Q ∈ Rd×d : QTQ = Id} be the orthogonal group order d. We note that LLT =
LQQTLT holds for all Q ∈ O. If LT = QR is the QR-factorization, then RT = LQ, i.e., fL(L) =
fL(R

TQT ) = fL(R
T ), where R ∈ Rd×n−1 is upper triangular(trapezoidal). We can in fact reduce

the problem further using the rotation invariance, i.e., fL(LQ) = fL(L) for any Q ∈ O.
We define the linear transformation that takes a vector and changes it into a lower triangular

matrix RT . For d < n − 1, RT is a lower triangular matrix of size n − 1 × d, but with t(d − 1)
elements being zero at the top right. For d ≥ n−1, RT is a lower triangular matrix of size n−1×d
with t(n− 1) elements being nonzero at the bottom left. This yields tℓ nonzeros:

tℓ =

{
t(n− 1) if d ≥ n− 1

(n− 1)d− t(d− 1) otherwise.
(2.5)

We now define

LTriag : Rtℓ → Rn−1×d, LTriag(ℓ)(i,j) =
{

ℓnj−n−t(j)+i+1 if j ≤ i

0 otherwise,
(2.6)

and
fℓ : Rtℓ → R, fℓ(ℓ) := fL(LTriag(ℓ)). (2.7)

Notice that the adjoint of LTriag, LTriag∗ : Rn−1×d → Rtℓ , takes the lower triangular part of L ∈
Rn−1×d and maps it to the corresponding vector ℓ in Rtℓ , such that LTriag∗ LTriag(ℓ) = ℓ. Moreover
LTriagLTriag∗(L) is the projection of L onto the subspace of lower triangular(trapezoidal) matrices.
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Problem 2.3 (centered and triangular point recovery). Let D̄ be the above given EDM in (2.1).
Let V, tℓ, fℓ(ℓ), be as in (2.3), (2.5) and (2.7), respectively. Consider the nonconvex minimization
problem of recovering a corresponding centered point matrix P̄ = V L̄ = V LTriag(ℓ̄)Q̄T , with
Q̄ ∈ O, i.e.,

min
ℓ∈Rtℓ

fℓ(ℓ) :=
1

2
∥K(V LTriag(ℓ)(V LTriag(ℓ))T )− D̄∥2F =:

1

2
∥Fℓ(LTriag(ℓ))∥2F , (2.8)

which defines the function Fℓ : Rn−1×d → Sn
H . Does ℓ∗ ∈ Rtℓ exist such that it is a lngm for (2.8)?

Remark 2.4. Analogously to the main Problem 2.1, this reduced problem (2.8) is a nonlinear least
squares problem but with a further reduced number of variables tℓ ≤ (n − 1)d < nd in ℓ, and still
t(n − 1) = n(n − 1)/2 quadratic functions

(
K(V LTriag(ℓ)(V LTriag(ℓ))T )− D̄

)
ij
, i < j. When

d < n − 1, the underlying system of equations is overdetermined, and it is square otherwise (for
d ≥ n− 1, from (2.5) we observe that the number of variables is t(n− 1), the same as the number
of quadratic equations).

In the following, we shall present conditions for determining whether a lngm exists. But first,
the next section provides useful formulae for linear transformations and derivatives.

3 Properties and auxiliary results

We now provide appropriate notation and formulae for transformations, adjoints and derivatives
involved in EDM, and then give the equivalence relationships among local minimizers of the three
reformulations.

3.1 Transformations, Derivatives, Adjoints, Range and Null Spaces

We now provide Lemma 3.1 with a list of results including proofs that follow immediately after the
result is presented.

Lemma 3.1. Let

P ∈ Rn×d, p = vecP ∈ Rnd,∆P ∈ Rn×d, ∆p = vec∆P ∈ Rnd,

L ∈ Rn−1×d, ℓ ∈ Rtℓ , S, T ∈ Sn.

We use the previously defined functions:

M : Rn×d → Sn, K : Sn → Sn, F : Rn×d → Sn, f : Rn×d → R,

LTriag : Rtℓ → Rn−1×d, FL : Rn−1×d → Sn, fL : Rn−1×d → R,

Fℓ : Rtℓ → Sn, fℓ : Rtℓ → R.

Then, the following and their proofs hold:

1. M′(P )(∆P ) = P∆P T + ∆PP T , M′′(P )(∆P,∆P ) = 2∆P∆P T : follow directly from the
expansion

M(P +∆P ) = (P +∆P )(P +∆P )T

= PP T +∆PP T + P∆P T +∆P∆P T

= M(P ) +M′(P )(∆P ) + 1
2M

′′(P )(∆P,∆P ).
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2. M′(P )∗(S) = 2SP :

⟨M′(P )(∆P ), S⟩ = ⟨P∆P T +∆PP T , S⟩
= tr(P∆P TS +∆PP TS)
= tr(SP∆P T + SP∆P T )
= ⟨M′(P )∗(S),∆P ⟩.

3. Se : Rn → Sn, Se(v) = veT + evT : is a definition.

4. S∗
e (S) = 2Se:

⟨Se(v), S⟩ = tr(evTS + veTS) = tr(vTSe) + tr(SevT ) = ⟨2Se, v⟩.

5. K(G) = Se(diag(G))− 2G, range(K) = Sn
H ,null(K) = range(Se): see [1, Prop. 2.2].

6. Diag = diag∗: clear from the definitions.

7. K∗(S) = 2(Diag(Se)− S), range(K∗) = Sn
C ; null(K∗) = Diag(Rn): see [1, Prop. 2.2].

Moreover, S ≥ (≤)0 =⇒ K∗(S) ⪰ (⪯)0.
K∗(S) = 2(Diag(Se)− S):
This follows from

⟨K(T ), S⟩ = ⟨diag(T )eT + e diag(T )T − 2T, S⟩
= 2 tr(eTS diag(T ))− 2 tr(TS)
= 2⟨Se,diag(T )⟩ − 2⟨T, S⟩
= 2⟨Diag(Se)− S, T ⟩.

The last equality is due to Diag = diag∗.
Moreover, for S ∈ Sn, we have by diagonal dominance that S ≥ (≤)0 =⇒ K∗(S) ⪰ (⪯)0.

8. D : Rn×d → Sn, D(P ) = K(M(P )) = Se(diag(M(P )))− 2M(P ).

9. D′(P )(∆P ) = Se(diag(M′(P )(∆P )) − 2M′(P )(∆P ): this follows from the linearity of diag
and Se.

10. F : Rn×d → Sn, F (P ) = K(M(P ))− D̄: follows from the definitions.

11. F ′(P )(∆P ) = K (M′(P )(∆P )) and F ′′(P )(∆P,∆P ) = K (M′′(P )(∆P,∆P )) : both follow
from the definitions and linearity of K.

12. F ′(P )∗(S) = M′(P )∗(K∗(S)) = 4(Diag(Se)− S)P :

⟨F ′(P )(∆P ), S⟩ = ⟨K(M′(P )(∆P )), S⟩
= ⟨M′(P )(∆P ),K∗(S)⟩
= ⟨∆P,M′(P )∗(K∗(S))⟩.

Then, the proof is complete by bringing M′(P )∗ and K∗(S) into the formula.
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13. Denote the symmetrization linear transformation S : Rn×n → Sn,S(K) = (K +KT )/2, and
T for the transpose operation whose adjoint is transpose again. Then,

f ′(P ) = F ′(P )∗(F (P )) = 4[Diag(F (P )e)− F (P )]P (3.1)

and
f ′′(P )(∆P,∆P ) = ⟨K(P∆P T +∆PP T ),K(P∆P T +∆PP T )⟩

+2⟨F (P ),K(∆P∆P T )⟩. (3.2)

From the expansion of f(P +∆P ),

f(P +∆P )
= 1

2⟨F (P +∆P ), F (P +∆P )⟩
= 1

2∥F (P ) + F ′(P )(∆P ) + 1
2F

′′(P )(∆P,∆P ) + o(∥∆P∥2)∥2,
= 1

2⟨F (P ), F (P )⟩+ ⟨F (P ), F ′(P )(∆P )⟩
+1

2⟨F
′(P )(∆P ), F ′(P )(∆P )⟩+ 1

2⟨F (P ), F ′′(P )(∆P,∆P )⟩+ o(∥∆P∥2),

we get (3.1), and with Item 11, we obtain

f ′′(P )(∆P,∆P )
= ⟨F ′(P )(∆P ), F ′(P )(∆P )⟩+ ⟨F (P ), F ′′(P )(∆P,∆P )⟩
= ⟨K(M′(P )(∆P )),K(M′(P )(∆P ))⟩+ ⟨F (P ),K(M′′(P )(∆P,∆P ))⟩
= ⟨K(P∆P T +∆PP T ),K(P∆P T +∆PP T )⟩+ 2⟨F (P ),K(∆P∆P T )⟩.

(3.3)

Note that we can isolate the matrix representation with

f ′′(P )(∆P,∆P ) = ⟨f ′′(P )(Mat vec(∆P )),Mat vec(∆P )⟩
= ⟨[vec f ′′(P )Mat] (∆p) , (∆p)⟩. (3.4)

The first term in (3.3) is

4⟨K(S(P (Mat vec∆P )T )),K(S(P (Mat vec∆P )T ))⟩
= 4⟨(P TS∗K∗KSP )((Mat vec∆P )T ), (Mat vec∆P )T ⟩
= 4⟨(P TS∗K∗KSP )(T Mat vec∆P ), (T Mat vec∆P )⟩
= 4

〈[
vec T ∗P TS∗K∗KSPT Mat

]
∆p,∆p

〉
.

(3.5)

The second term in (3.3) is

2⟨F (P ),K
(
∆P∆P T

)
⟩

= 2
〈
K∗ (F (P )) ,∆P∆P T

〉
= 2 ⟨∆P,K∗(F (P ))∆P ⟩
= 2 ⟨[vecK∗F (P )Mat]∆p,∆p⟩ .

(3.6)

Recall that F ′(P )(∆P ) = K(M′(P )(∆P )). We combine (3.5) and (3.6) and obtain the matrix
representation of the Hessian (not necessarily positive semidefinite) :

[vec f ′′(P )Mat] = 4
[
vec T ∗P TS∗K∗KSPT Mat

]
+2 [vecK∗F (P )Mat]

= 4 [J∗J ] + 2 [vecK∗F (P )Mat] ,
(3.7)

where
J(∆p) := KSPT Mat∆p. (3.8)
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Theorem 3.2. The second order necessary optimality conditions for Problem 2.1, (2.2), are

0 = f ′(P ) = F ′(P )∗(F (P )) = 4K∗(F (P ))P (3.9)

and
0 ⪯ [vec f ′′(P )Mat] = 4 [J∗J ] + 2 [vecK∗(F (P ))Mat] . (3.10)

Proof. This follows from (3.7) and Lemma 3.1, Item 13.

Throughout the paper, we denote the images of the following two mappings as two matrices in
Snd:

H1 = [J∗J ], H2 = [vec (K∗ (F (P ))Mat]. (3.11)

We call P a stationary point if (3.9) holds.

3.2 Optimality conditions of three problem formulations

According to the chain rule, the derivatives and optimality conditions of fL defined in problem
(2.4) and fℓ defined in problem (2.8) can be easily obtained from that of f .

Proposition 3.3. The derivatives of fL(L) are

f ′
L(L) = V T f ′(V L) (3.12)

and
f ′′
L(L) = V T f ′′(V L)V. (3.13)

Proposition 3.4. The derivatives of fℓ(ℓ) are

f ′
ℓ(ℓ) = LTriag∗ f ′

L(LTriag(ℓ)) (3.14)

and
f ′′
ℓ (ℓ) = LTriag∗ f ′′

L(LTriag(ℓ))LTriag . (3.15)

Before and after the two reduction processes, problems are equivalent in regards to the objective
functions and global minimizers. In the following, we show that the optimality conditions of the
three problem reformulations (2.2), (2.4), and (2.8) are equivalent to some extent.

Firstly, we find that any local minimizer of (2.2) or (2.4) corresponds to a family of local
minimizers which are obtained from translations or rotations.

Theorem 3.5. The configuration P ∗ ∈ Rn×d is a local minimizer of (2.2) if, and only if, any
configuration in {P ∗

v = P ∗ + vT ⊗ e : v ∈ Rd} is a local minimizer of (2.2).

Proof. By the definition of the local minimizer, if P ∗ is a local minimizer, then there exists δ > 0
such that

f(P ∗) ≤ f(P ), ∀P : ∥P − P ∗∥ ≤ δ. (3.16)

Since f(·) is invariant under any translation, (3.16) is equivalent to

f(P ∗
v ) = f(P ∗) ≤ f(P ) = f(P̃ ), ∀P̃ : ∥P̃ − P ∗

v ∥ = ∥P − P ∗∥ ≤ δ,

where P = P̃ − vT ⊗ e.
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Theorem 3.6. The configuration L∗ ∈ Rn−1×d is a local minimizer of (2.4) if, and only if, {L̃∗ =
L∗QT : Q ∈ O} is a local minimizer set of (2.4).

Proof. By the definition of the local minimizer, L∗ is a local minimizer, if, and only if, there exists
δ > 0 such that

fL(L
∗) ≤ fL(L), ∀L : ∥L− L∗∥ ≤ δ. (3.17)

Since fL(·) is invariant under any rotation, (3.17) is equivalent to

fL(L̃
∗) = fL(L

∗) ≤ fL(L) = fL(L̃), ∀L̃ : ∥L̃− L̃∗∥ = ∥L− L∗∥ ≤ δ,

where L̃ = LQT .

Local minimizers of (2.2) and (2.4) have the following relationships.

Theorem 3.7. Let P ∗ ∈ Rn×d and V be as defined in (2.3). Denote

v∗ =
1

n
P ∗T e ∈ Rd, P ∗

v = P ∗ − (v∗T ⊗ e), L∗ = V TP ∗
v .

Then, L∗ is a local minimizer of (2.4) if, and only if, P ∗
v and P ∗ are local minimizers of (2.2).

Proof. Firstly, notice that V V T is the orthogonal projection onto e⊥ and that the columns of P ∗
v

are centered, thus, we have V L∗ = V V TP ∗
v = P ∗

v . Sufficiency: Let P ∗
v be a local minimizer of (2.2),

Then, there exists δ > 0 such that

f(P ∗
v ) ≤ f(P ), ∀P : ∥P − P ∗

v ∥ ≤ δ. (3.18)

For any L ∈ Rn−1×p such that ∥L− L∗∥ ≤ δ, let P̂ = V L. Then, we have

fL(L
∗) = f(V L∗) = f(P ∗

v ) ≤ f(P̂ ) = f(V L) = fL(L),

where the inequality is due to ∥P̂ − P ∗
v ∥ = ∥V L − V L∗∥ = ∥L − L∗∥ ≤ δ and (3.18), and the

equalities are due to the definition of fL.
Necessity: Suppose that L∗ is a local minimizer of fL(L), i.e., there exists δ > 0 such that

fL(L
∗) ≤ fL(L), ∀L : ∥L− L∗∥ ≤ δ. (3.19)

For all P such that ∥P − P ∗
v ∥ ≤ δ, let v = P T e/n. Then, there exists L ∈ Rn−1,d such that

P = V L+ vT ⊗ e, which implies that P − P ∗
v = V (L−L∗) + vT ⊗ e. As V (L−L∗) and vT ⊗ e are

orthogonal,
∥L− L∗∥2 = ∥V (L− L∗)∥2 = ∥P − P ∗

v ∥2 − ∥vT ⊗ e∥2 ≤ δ2. (3.20)

Now, from (3.19) and (3.20), we have

f(P ) = f(V L+ vT ⊗ e) = f(V L) ≥ f(V L∗) = f(P ∗
v ),

implying that P ∗
v is a local minimizer of f(P ); and, by Theorem 3.5 we also have P ∗ is a local

minimizer of f(P ).
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From the above analysis, we know that for the case of d ≥ 2, if L is a local minimizer of fL(L),
then any configuration in {LQ : Q ∈ O} is also a local minimizer of fL(L). When d ≥ 2, any
local minimizer of fL(L) is nonisolate, thus the Hessian matrix at any local minimizer of fL(L) is
singular.

Next, we consider the correspondence between the local minimizers of (2.4) and its rotation-
reduction formulation (2.8).

Theorem 3.8. The following assertions hold.

1. If L∗ is a local minimizer of fL, then any ℓ∗ satisfying

L∗ = LTriag(ℓ∗)QT (3.21)

with Q ∈ O, is a local minimizer of fℓ.

2. If ℓ∗ is a local minimizer of fℓ, and the first d rows of LTriag(ℓ∗) are linearly independent,
then L∗ = LTriag(ℓ∗) is a local minimizer of fL.

Proof. 1. Suppose that L∗ is a local minimizer of fL, i.e., there exists r > 0 such that

fL(L) ≥ fL(L
∗), for all L satisfying ∥L− L∗∥F ≤ r. (3.22)

For any ℓ ∈ Rtℓ satisfying
∥ℓ− ℓ∗∥ ≤ r,

by taking L = LTriag(ℓ)QT we obtain

∥L− L∗∥ = ∥LTriag(ℓ)− LTriag(ℓ∗)∥F = ∥ℓ− ℓ∗∥ ≤ r.

Then, from (3.21) and (3.22) we have

fℓ(ℓ) = fL(LTriag(ℓ)) = fL(L) ≥ fL(L
∗) = fL(LTriag(ℓ∗)) = fℓ(ℓ

∗).

Thereore, ℓ∗ is a local minimizer of fℓ.

2. We prove Item 2 by contradiction. Suppose that L∗ = LTriag(ℓ∗) is not a local minimizer of
fL, i.e., there exists a sequence Lk, k = 1, 2, · · · such that

lim
k→+∞

Lk = L∗, fL(Lk) < fL(L
∗). (3.23)

Considering the QR decomposition of LT
k , k = 1, 2, · · · , there exist orthogonal matrices

Qk, k = 1, 2, · · · , and upper triangular matrices Rk, k = 1, 2, · · · , such that

LT
k = QkRk, k = 1, 2, · · · . (3.24)

Since ∥Qk∥ ≤ 1 for all k = 1, 2, · · · , the bounded sequence has a convergent subsequence.
Without loss of generality, we directly assume that limk→+∞Qk = Q∗. According to (3.23)
and (3.24), we have

R∗T := L∗Q∗ = lim
k→+∞

LkQk = lim
k→+∞

RT
k .
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Since the first d rows of L∗ := LTriag(ℓ∗) are linear independent, the QR-factorization of
L∗T is unique except for signs in every dimension, i.e., with diagonal Q∗ = Λ, Λ2 = Id and
R∗ = ΛL∗T . Considering

ℓ∗ = LTriag∗(L∗) = LTriag∗(R∗TΛ), ℓk := LTriag∗(RT
k Λ), k = 1, 2, · · · ,

we get
lim

k→+∞
ℓk = ℓ∗.

By (3.23), we have

fℓ(ℓk) = fL(R
T
k ) = fL(Lk) < fL(L

∗) = fL(R
∗TQ∗T )

= fL(R
∗T ) = fℓ(ℓ

∗).

Thus, ℓ∗ is not a local minimizer of fℓ, a contradiction.

The optimality conditions of (2.2) and (2.4) also have an equivalence relationship. To this end,
we first note that the directional derivatives of f(P ) are zero in any translation.

Lemma 3.9. For any w ∈ Rd, we have

⟨f ′(P ), wT ⊗ e⟩ = 0, and f ′′(P )(wT ⊗ e) = 0. (3.25)

Proof. For t ∈ R, we have

f(P + twT ⊗ e) = f(P ) + t⟨f ′(P ), wT ⊗ e⟩+ t2

2 ⟨f
′′(P )(wT ⊗ e), wT ⊗ e⟩+ o(t2).

Since f(P + twT ⊗ e) = f(P ) holds for all w ∈ Rd and t ∈ R, we get

⟨f ′(P ), wT ⊗ e⟩ = ⟨f ′′(P )(wT ⊗ e), wT ⊗ e⟩ = 0.

Moreover, by the form of f ′′(P ) in (3.3) and the fact that range(K∗) ⊂ {wT ⊗ e : w ∈ Rd}⊥ (Item 7
of Lemma 3.1), we have f ′′(P )(wT ⊗ e) = 0.

Theorem 3.10. For P ∈ Rn×d, denote v = (P T e)/n ∈ Rd, Pv = P − vT ⊗ e, L = V TPv where
V is defined in (2.3), denote LT = QR where R is upper triangular and Q ∈ Rd×d is orthogonal.
Then, the following conditions are equivalent:

(i) the first (resp., second)-order necessary conditions of (2.2) hold at P ;

(ii) the first (resp., second)-order necessary conditions of (2.2) hold at Pv;

(iii) the first (resp., second)-order necessary conditions of (2.4) hold at L;

(iv) the first (resp., second)-order necessary conditions of (2.4) hold at R.
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Proof. We first notice that
f ′(Pv) = f ′(P ), f ′′(Pv) = f ′′(P ) (3.26)

and
f ′
L(R) = f ′

L(L)Q
T , f ′′

L(R) = Qf ′′
L(L)Q

T (3.27)

by the chain rule. So, it is straightforward that (i)⇔(ii) and (iii)⇔(iv). In the following, we prove
that (ii)⇔(iii) .

Firstly, we prove the equivalence of their first-order necessary conditions. According to (3.1)
and range(K∗) = Sn

C (Lemma 3.1, Item 7), we have

eT f ′(P ) = 2eTK∗(F (P ))P = 0. (3.28)

By (3.28) and the definition of V , we obtain

f ′(Pv) = 0 ⇐⇒ f ′
L(L) = V T f ′(Pv) = 0. (3.29)

Secondly, we prove the equivalence of their second-order necessary conditions. According to (3.13),
for any ∆L ∈ Rn−1×d, we have

f ′′
L(L)(∆L,∆L) = V T f ′′(V L)V (∆L,∆L) = f ′′(V L)(V∆L, V∆L). (3.30)

According to Lemma 3.9 and (3.30), we have f ′′
L(L)(∆L,∆L) ≥ 0 if, and only if,

f ′′(Pv)(∆P,∆P ) = f ′′(Pv)(V∆L+ wT ⊗ e, V∆L+ wT ⊗ e) ≥ 0.

The proof is complete.

Remark 3.11. The reduction from (2.4) to (2.8) can introduce additional stationary points. Let
LTriag(ℓ∗) = R∗T . According to (3.14), f ′

ℓ(ℓ) = 0 holds if, and only if, the lower triangular part of
f ′
L(R

∗T ) is zero. Moreover, the linear independence assumption in Theorem 3.8, Item 2 is needed.

4 Second Order Conditions

We now consider the optimality conditions and give a sufficient condition such that there is no
lngm. First of all, the necessary and sufficient characterization for the global minimizer is made
clear.

Lemma 4.1. A matrix P ∈ Rn×d is a global minimizer of (2.2) if, and only if, D(P ) = D̄.

Proof. Since f(P ) ≥ 0 holds for all P ∈ Rn×d and f(P̄ ) = 0, the global minimum of f is 0. By the
definition of f and property of norms , f(P ) = 0 holds if, and only if, F (P ) = D(P )− D̄ = 0.

In order to further characterize the second order optimality conditions we shall discuss essential
properties of the matrices H1 and H2.

Lemma 4.2. The matrix H1 defined in (3.11) is always positive semidefinite. The matrix H2 ⪰ 0
(resp., H2 ⪯ 0) holds if every element of F (P ) is nonnegative (resp., nonpositive), i.e., F (P ) ≥ 0
(resp., F (P ) ≤ 0).
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Proof. For any x ∈ Rnd,
xTH1x = ⟨x, J∗Jx⟩ = ⟨Jx, Jx⟩ ≥ 0.

Thus, H1 is always positive semidefinite. By Lemma 3.1, Item 7, if F (P ) ≥ 0, then K∗(F (P )) ⪰ 0
holds, i.e.,

xTH2x = ⟨x,Mat∗K∗F (P )Matx⟩ = ⟨Matx,K∗(F (P ))Matx⟩ ≥ 0

holds for all x ∈ Rnd. Thus, H2 ⪰ 0 (resp., H2 ⪯ 0 ) if F (P ) ≥ 0 (resp., F (P ) ≤ 0).

Lemma 4.3. The matrix H2 is the zero matrix if, and only if, F (P ) = 0 holds, i.e., P is a global
minimizer.

Proof. By Lemma 3.1, Item 7, K∗(S) = 2(Diag(Se)− S) for any S ∈ Sn and null(K∗) = Diag(Rn).
Since diag(F (P )) = diag(D(P )) − diag(D̄) = 0 is always true, we get K∗(F (P )) = 0 holds if, and
only if, F (P ) = 0.

Lemma 4.4. Suppose that P is a stationary point for (2.2) but is not a global optimum. Then H2

is not positive semidefinite, i.e., p̄TH2p̄ < 0, for p̄ = vec(P̄ ).

Proof. By (3.9) we have

p̄TH2p̄ = ⟨P̄ ,K∗F (P )P̄ ⟩ − ⟨P,K∗F (P )P ⟩
= ⟨K(P̄ P̄ T ), F (P )⟩ − ⟨K(PP T ), F (P )⟩
= ⟨K(P̄ P̄ T )−K(PP T ), F (P )⟩
= ⟨D̄ −D(P ), F (P )⟩
= −⟨F (P ), F (P )⟩
< 0.

The last inequality holds since P is not a global minimizer, i.e., F (P ) ̸= 0 by Lemma 4.1.

Under the condition of Lemma 4.4, we have known that

⟨P̄ ,K∗F (P )P̄ ⟩ < 0,

which implies that
K∗F (P ) ⪰̸ 0. (4.1)

Otherwise,
⟨P̄ ,K∗F (P )P̄ ⟩ = Tr

(
K∗F (P )P̄ P̄ T

)
≥ 0,

which contradicts Lemma 4.4.
We analyze the extreme case of D̄ = 0.

Corollary 4.5. If D̄ = 0, then every stationary point is a global minimizer.

Proof. As D̄ = 0, we get p̄1 = · · · = p̄n holds. Since K∗F (P ) is a Laplacian2, we have K∗F (P )P̄ = 0.
Combining this with the first-order condition (3.9), we have

p̄TH2p̄ = ⟨P̄ ,K∗(F (P ))P̄ ⟩ − ⟨P,K∗(F (P ))P ⟩
= 0.

From Lemma 4.4 we conclude P is a global minimizer.

2sum of its columns is zero
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Next, we consider another extreme case, that of D̄ ̸= 0 and D(P ) = 0.

Theorem 4.6. Let D̄ ̸= 0, and let P satisfy D(P ) = 0, i.e., p1 = · · · = pn. Then P is a stationary
point but the Hessian matrix is nonzero and negative semidefinite, i.e.,

0 ̸= 4H1 + 2H2 ⪯ 0.

Proof. Since p1 = · · · = pn and K∗(F (P )) is a Laplacian, P satisfies the first-order optimality

condition (3.9). Since f(P ) = ∥D̄ −D(P )∥2F = ∥D̄∥2F > 0, P is not a global minimizer. By
p1 = · · · = pn, and Lemma 3.1, Item 5, J = 0 defined in (3.8) holds, and then H1 = 0. Since
D(P ) = 0 and D̄ ≥ 0, F (P ) ≤ 0 holds. According to Lemma 4.2 and Lemma 4.3, 0 ̸= H2 ⪯ 0
holds. Therefore, the Hessian matrix satisfies 0 ̸= 4H1 + 2H2 ⪯ 0.

Remark 4.7. In fact, one can show that if P is a local maximizer of f , then D(P ) = 0, i.e.,
p1 = · · · = pn. Indeed, if P is a local maximizer of f , then t = 1 is a local maximizer of
g(t) = f(tP ). By the second order necessary conditions, we have g′(1) = 0 and g′′(1) ≤ 0. Since
g′(t) = 4t3∥D(P )∥2F − 4t⟨D̄,D(P )⟩, 0 = g′(1) implies that ∥D(P )∥2F = ⟨D̄,D(P )⟩. Then, 0 ≥
g′′(1) = 8∥D(P )∥2F and we conclude that D(P ) = 0.

In the following, we present the condition under which there is no lngm . Recall the equivalence
between local minimizers of (2.4) and (2.2) in Theorem 3.7. For convenience, we use (2.4) for the
analysis instead of (2.2).

Theorem 4.8. Any stationary point L of (2.4) satisfying rank(L) = n− 1 is a global minimizer.

Proof. Since f ′
L(L) = V TK∗F (V L)V L = 0, the span of columns of L is an n − 1 dimensional

eigenvector space corresponding to the zero eigenvalue of the (n−1)×(n−1) matrix V TK∗F (V L)V .
Therefore V TK∗(F (P ))V = 0. Combining this with range(K∗) = Sn

C from Lemma 3.1, Item 7, we
conclude that K∗(F (P )) = 0, and moreover H2 = 0. Thus, L is a global minimizer according to
Lemma 4.3.

As L ∈ Rn−1×d, the condition in Theorem 4.8 holds only in the case of d ≥ n − 1 and L full
row rank. Next, we consider another case where L is not full rank.

Theorem 4.9. Suppose that L is a non-globally-optimal stationary point of (2.4) and

rank(L) < d. (4.2)

Then, the second-order necessary optimality conditions fail at L.

Proof. Denote P = V L. According to Lemma 4.4 and the subsequent discussion, (4.1) holds. Thus
there exists a ∈ Rn such that aTK∗F (P )a < 0. Then, for any nonzero w ∈ Rd,

vec(a⊗ wT )TH2 vec(a⊗ wT ) = ⟨a⊗ wT ,K∗F (P )(a⊗ wT )⟩
= Tr

(
K∗F (P )(a⊗ wT )(a⊗ wT )T

)
= wTwTr

(
K∗F (P )aaT

)
= wTwaTK∗F (P )a
< 0.
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By (4.2), there exists a nonzero w ∈ Rd such that w ∈ null(L), i.e.,

Lw = 0. (4.3)

We claim that H1 vec(a⊗ wT ) = 0 holds. First, we have

J vec(a⊗ wT ) = KSV LT (a⊗ wT ).

By (4.3), we have
LT (a⊗ wT ) = L

[
a1w a2w · · · an−1w

]
= 0.

Thus, H1 vec(a⊗ wT ) = 0 holds. In sum, we have

vec(a⊗ wT )T (4H1 + 2H2) vec(a⊗ wT ) < 0,

i.e., the second-order necessary optimality conditions (3.9)-(3.10) fail.

Combining Theorem 4.8 and Theorem 4.9, we present the main result of this section.

Theorem 4.10. If n ≤ d + 1, then any stationary point satisfying the second-order necessary
optimality condition is a global minimizer.

Proof. Suppose that n ≤ d + 1, and L is a stationary point satisfying the second-order necessary
optimality condition. If rank(L) = n− 1, then L is globally optimal by Theorem 4.8. If rank(L) <
n − 1, then rank(L) < d. If we assume L is not a global minimizer, according to Theorem 4.9, L
does not satisfy the second-order necessary optimality condition, a contradiction.

Recalling Remark 2.4, we note that n ≤ d+1 is exactly the condition such that the underlying
system of equations is square. When n > d+1 (overdetermined), it is possible to find local nonglobal
minimizers. We prove this claim below by presenting two examples where we are able to numerically
obtain second order stationary points. Then, we will analytically prove that the assumptions of
the Kantorovich theorem hold at these two points. This implies that in a neighborhood there exist
strict lngms.

5 Kantorovich Theorem and Sensitivity Analysis

We now consider the sensitivity analysis needed to analytically prove that we have a lngm. We
exploit the strength of the classical Kantorovich theorem for convergence of Newton’s Method to a
stationary point.

For d = 1, we consider an example where we have the following: rational matrices L̃ ∈
Qn−1×1, P̃ = V L̃ ∈ Qn×1 with the function value f(P̃ ) = fL(L̃) > f̃L > 0; the gradient is ap-
proximately zero, i.e., we have a near stationary point ∥∇fL(L̃)∥ < g̃L, for small g̃L; and the
Hessian is positive definite, λmin(∇2fL(L̃)) > λ̃L > 0. Then for d = 2, we consider another case
with a ℓ̃ with similar properties.

We emphasize that P̃ , L̃ have rational entries and that we are doing finite precision arithmetic
for which both sensitivity and roundoff error analysis can be done. In our calculations, the roundoff
error in every step is less than 10−15, and all of the absolute values of elements in the original data
L̃ and L̄ are greater than 5×10−4. This yields a relative error of at most 2×10−12. As the number
of arithmetic calculations increases, this relative error can accumulate. However, as the number of
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all arithmetic operations in this section, including the calculations of gradients, Hessians and all
parameters used later, is definitely less than 1010, the relative error in the end will be less than
(2 × 10−12 + 1)10

10 − 1 < 10−1. In this section, we choose 10−1 as a bound on the relative error
contained in the calculated data.

In fact, for our first numerical example, f̃L ≈ 2.6×103 > 0, g̃L ≈ 1.8×10−3, λ̃L ≈ 2.1×102 > 0.
We apply sensitivity analysis to guarantee that these properties hold in a r-neighbourhood of L̃ and
then apply the classical Kantorovich theorem, e.g., [5, Thm 5.3.1], to show that there is a stationary
point nearby where the function value is positive and the Hessian is still positive definite. This
provides an analytic proof that we have a proper lngm near L̃.

Example 5.1. 3 An example with n = 50, d = 1 is given, with data L̄, L̃ ∈ Rn−1×d, see Footnote 3.
Matrix D̄ is the distance matrix obtained from L̄ by D̄ = K(V L̄(V L̄)T ). Thus, L̄ is a global
minimizer, and we verify that L̃ is a numerically convergence point, where the objective value is

fL(L̃) > 2.6× 103, (5.1)

the absolute and relative gradient norms are

∥∇fL(L̃)∥ < 1.8× 10−3,
∥∇fL(L̃)∥
1 + fL(L̃)

≈ 6× 10−5, (5.2)

and the least eigenvalue of the Hessian matrix is

λmin(∇2fL(L̃)) > 211. (5.3)

Remark 5.2. The problem to find a lngm is a nonlinear least squares problem. The standard
approach for nonlinear least squares is to use the Gauss-Newton method rather than the Newton
method, i.e., relax the Hessian and only use 4H1 (or the corresponding one for L) by discarding the
second order terms from 2H2 (or the corresponding one for L) in (3.11) and (3.13). However, one
major reason for the success of Gauss-Newton is that one expects fL(L) to be near 0, a root. In
our case, we want the opposite as we do not want to be near a root of fL as that yields the global
minimum.

Now, we calculate a Lipschitz constant estimate γ > 0 of the Hessian matrix of fL. From
our numerical output, we have that the smallest eigenvalue λmin(∇2fL(L̃)) > 0. By continuity of
eigenvalues, we are guaranteed that this holds in a neighbourhood of L̃, which can be estimated
out by Proposition 5.3.

Proposition 5.3. Let r > 0, L̃ ∈ Rn−1×d be given. If

γ ≥ 48
√
2r

∑
i,j

∥(V L̃)[i, :]− (V L̃)[j, :]∥+ 2n
√
nr

 , (5.4)

then γ is a Lipschitz constant for the Hessian of fL in the radius-r neighborhood of L̃, i.e.,

∥∇2fL(L̂)−∇2fL(Ľ)∥ ≤ γ∥L̂− Ľ∥, if L̂, Ľ ∈ Br(L̃). (5.5)

Moreover,
λmin(∇2fL(L)) ≥ λmin(∇2fL(L̃))− γr, if L ∈ Br(L̃). (5.6)

3 The preprint and a link to the data and codes are available at
www.math.uwaterloo.ca/˜hwolkowi/henry/reports/ABSTRACTS.html
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Proof. By the definition of the induced norm, we see that (5.5) is equivalent to

|f ′′
L(L̂)(∆L,∆L)− f ′′

L(Ľ)(∆L,∆L)| ≤ γ∥L̂− Ľ∥, (5.7)

for all L̂, Ľ ∈ Br(L̃), ∥∆L∥F = 1. Let

P̂ = V L̂, P̌ = V Ľ,∆P = V∆L.

According to Lemma 3.1 and Proposition 3.3, we have

f ′′
L(L̂)(∆L,∆L)

= f ′′(P̂ )(∆P,∆P )

= ∥K(P̂∆P T +∆PP̂ T )∥2 + 2⟨F (P̂ ),K(∆P∆P T )⟩
=

∑
i,j [2p̂

T
i ∆pi + 2p̂Tj ∆pj − 2p̂Ti ∆pj − 2p̂Tj ∆pi]

2 + 2
∑

i,j ∥p̂i − p̂j∥2∥∆pi −∆pj∥2
= 4

∑
i,j [(p̂i − p̂j)

T (∆pi −∆pj)]
2 + 2

∑
i,j ∥p̂i − p̂j∥2∥∆pi −∆pj∥2.

The calculations about Ľ are similar, implying

f ′′
L(L̂)(∆L,∆L)− f ′′

L(Ľ)(∆L,∆L)
= 4

∑
i,j

{
[(p̂i − p̂j)

T (∆pi −∆pj)]
2 − [(p̌i − p̌j)

T (∆pi −∆pj)]
2
}

+2
∑

i,j(∥p̂i − p̂j∥2 − ∥p̌i − p̌j∥2)∥∆pi −∆pj∥2
= 4

∑
i,j(p̂i − p̂j − p̌i + p̌j)

T (∆pi −∆pj)(p̂i − p̂j + p̌i − p̌j)
T (∆pi −∆pj)

+2
∑

i,j(p̂i − p̂j − p̌i + p̌j)(p̂i − p̂j + p̌i − p̌j)∥∆pi −∆pj∥2.

Then,
|f ′′

L(L̂)(∆L,∆L)− f ′′
L(Ľ)(∆L,∆L)|

≤ 6
∑

i,j ∥p̂i − p̂j − p̌i + p̌j∥∥p̂i − p̂j + p̌i − p̌j∥∥∆pi −∆pj∥2.

Since ∥∆P∥ = ∥V∆L∥ = ∥∆L∥ = 1,

∥∆pi −∆pj∥2
≤ 2(∥∆pi∥2 + ∥∆pj∥2)
≤ 2.

From L̂, Ľ ∈ Br(L̃) and the Cauchy-Schwarz inequality, we have

∥p̂i − p̂j − p̌i + p̌j∥ ≤ ∥(p̂i − p̃i)− (p̂j − p̃j)− (p̌i − p̃i) + (p̌j − p̃j)∥
≤ ∥p̂i − p̃i∥+ ∥p̂j − p̃j∥+ ∥p̌i − p̃i∥+ ∥p̌j − p̃j∥
≤

√
(∥p̂i − p̃i∥2 + ∥p̂j − p̃j∥2 + ∥p̌i − p̃i∥2 + ∥p̌j − p̃j∥2)

×
√
12 + 12 + 12 + 12

≤
√
2r2 · 2

= 2
√
2r,

and ∑
i,j ∥p̂i − p̂j + p̌i − p̌j∥

=
∑

i,j ∥2(p̃i − p̃j) + (p̂i − p̃i)− (p̂j − p̃j) + (p̌i − p̃i)− (p̌j − p̃j)∥
≤ 2

∑
i,j ∥p̃i − p̃j∥+

∑
i,j ∥p̂i − p̃i∥+

∑
i,j ∥p̂j − p̃j∥+∑

i,j ∥p̌i − p̃i∥+
∑

i,j ∥p̌j − p̃j∥
= 2

∑
i,j ∥p̃i − p̃j∥+ n

∑
i ∥p̂i − p̃i∥+ n

∑
j ∥p̂j − p̃j∥+

n
∑

i ∥p̌i − p̃i∥+ n
∑

j ∥p̌j − p̃j∥
≤ 2

∑
i,j ∥p̃i − p̃j∥+ 4n

√
nr.
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Thus,

∥f ′′
L(L̂)(∆L,∆L)− f ′′

L(Ľ)(∆L,∆L)∥ ≤ 24
√
2r

∑
i,j ∥p̂i − p̂j + p̌i − p̌j∥

≤ 48
√
2r

(∑
i,j ∥p̃i − p̃j∥+ 2n

√
nr

)
,

implying (5.4) and (5.5). By (5.7), we have

f ′′
L(L)(∆L,∆L) = f ′′

L(L̃)(∆L,∆L)− (f ′′
L(L̃)(∆L,∆L)− f ′′

L(L)(∆L,∆L))

≥ f ′′
L(L̃)(∆L,∆L)− |f ′′

L(L)(∆L,∆L)− f ′′
L(L̃)(∆L,∆L)|

≥ λmin(∇2fL(L̃))− γ∥L̂− L̃∥
≥ λmin(∇2fL(L̃))− γr, for all L ∈ Br(L̃), ∥∆L∥ = 1.

Thus, we obtain (5.6).

To verify the existence of a lngm for Example 5.1, we calculate the Lipschitz constant estimated
in Proposition 5.3. Let r = 10−3. Since 2130 >

∑
i,j ∥(V L̃)[i, :] − (V L̃)[j, :]∥ ∈ (2127.8, 2127.9),

(5.4) gives
γ = 145.

Moreover, by (5.6),

λmin(∇2fL(L)) ≥ 211− 145r > 0, for all L ∈ Br(L̃). (5.8)

That is, we find a neighbourhood where the Hessian stays positive semidefinite. Next, we prove
that the objective stays sufficiently positive in a region around L̃.

Lemma 5.4. Let the configuration P̃ = V L̃ ∈ Rn−1×d, L̃ ∈ Rn−1×d and positive parameters f̄L, r ∈
R++, be given. Suppose that fL(L̃) > f̄L and that the Hessian ∇2fL is uniformly positive definite
in the r-ball around L̃, i.e.,

λmin(∇2fL(L̃)) > 0, for all L̃ ∈ Br(L̃). (5.9)

Then, fL is positively uniformly bounded below in Br(L̃), i.e.,

fL(L) > f̄L > 0, for all ∥L− L̃∥ ≤ min

{
r,
fL(L̃)− f̄L

∥∇fL(L̃)∥

}
.

Proof. By the positive definiteness of the Hessian in the r-ball Br(L̃), we can apply the convexity
of fL in the ball, implying that

fL(L) ≥ fL(L̃) + ⟨∇fL(L̃), L− L̃⟩, if L̃ ∈ Br(L̃),

≥ fL(L̃)− ∥∇fL(L̃)∥∥L− L̃∥, if L̃ ∈ Br(L̃),

> f̄L > 0, if ∥L− L̃∥ ≤ min
{
r, fL(L̃)−f̄L

∥∇fL(L̃)∥

}
.
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By (5.1), (5.2) and considering f̄L = 103, we get

fL(L̃)− f̄L

∥∇fL(L̃)∥
>

2.6× 103 − 1× 103

1.8× 10−3
> r. (5.10)

According to Lemma 5.4,
fL(L) > f̄L > 0, for all L ∈ Br(L̃).

We now apply the classical Kantorovich theorem to obtain a unique lngm point (within a certain
neighborhood) without needing the assumption of the existence of a stationary point. We reword
the version in [5, Thm 5.3.1].

Theorem 5.5. Let the configuration matrix P̃ = V L̃ ∈ Rn×d, L̃ ∈ Rn−1×d be given. Let r ∈ R++

be found such that
∇2fL(L) ≻ 0, for all L ∈ Br(L̃),

and f̄L satisfying
fL(L̃) > f̄L > 0, for all L ∈ Br(L̃).

Let γ be a Lipschitz constant for the Hessian of fL in the r-ball about L̃. Set

β := ∥∇2fL(L̃)
−1∥ and η := ∥∇2fL(L̃)

−1∇fL(L̃)∥.

Define γR = βγ and α = γRη. If α ≤ 1
2 and r ≥ r0 := 1−

√
1−2α
βγ , then the sequence L0 =

L̃, L1, L2, . . ., produced by

Lk+1 = Lk −∇2fL(Lk)
−1∇fL(Lk), k = 0, 1, . . . ,

is well defined and converges to L∗, a unique root of the gradient ∇fL in the closure of Br0(L̃). If
α < 1

2 , then L∗ is the unique zero of ∇fL in the closure of Br1(L̃),

r1 := min

{
r,
1 +

√
1− 2α

βγ

}
,

and ∥Lk − L∗∥ ≤ (2α)2k η
α , k = 0, 1, . . . . Moreover, L∗ is a lngm .

Proof. The proof is a direct application of the Kantorovich theorem, e.g., [5, Thm 5.3.1], along
with the above lemmas and corollaries in this section. The fact that ∇2fL is invertible and pos-
itive definite follows from finding r in Proposition 5.3. The strict positive lower bound follows
from Lemma 5.4.

As mentioned previously in this section, the conditions required in Lemma 5.4 and Theorem 5.5
are fulfilled with

r = 10−3, γ = 145, f̄L = 103.

Plugging into Theorem 5.5, we have

β ≈ 5.7× 10−4,
η ≈ 2.4× 10−6,
γR ≈ 8.2× 10−2,
α = γRη ≈ 2.0× 10−7,
r0 ≈ 2.4× 10−4 < r,
r1 = r = 10−3.
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According to Theorem 5.5, there exists a lngm in Br1 .
As mentioned above, for the case of d = 2, any local minimizer of fL(L) is nonisolate, implying

that the Hessian matrix at any local minimizer of fL(L) is singular. We consider the model fℓ(ℓ)
for an example with d = 2. We use Kantorovich Theorem to verify that this example has a strict
local nonglobal minimizer ℓ∗, where the first 2 rows of LTriag(ℓ∗) are independent. According to
Theorems 3.7 and 3.8, this local nonglobal minimizer corresponds to local nonglobal minimizers of
fL(L) and f(P ).

Example 5.6. The details for the data and codes are given in Footnote 3. An example with
n = 100, d = 2 is given, with data ℓ̄, ℓ̃ ∈ R197 presented, see Footnote 3. Matrix D̄ is the distance
matrix obtained from ℓ̄ by

D̄ = K(V LTriag(ℓ̄)LTriag(ℓ̄)TV T ).

Thus, ℓ̄ is a global minimizer, and we verify that ℓ̃ is a numerically convergence point. The objective
value is

fℓ(ℓ̃) > 9× 103, (5.11)

the absolute and relative gradient norms are

∥∇fℓ(ℓ̃)∥ < 1.7× 10−2,
∥∇fℓ(ℓ̃)∥
1 + fℓ(ℓ̃)

< 10−6, (5.12)

and the least eigenvalue of the Hessian matrix is

λmin(∇2fℓ(ℓ̃)) > 8.

The analysis process for fℓ(ℓ) is similar to fL(L). For completeness, we present it as follows.

Proposition 5.7. Let r > 0, ℓ̃ ∈ Rn−1×d be given. If

γ ≥ 48
√
2r

∑
i,j

∥(V LTriag(ℓ̃))[i, :]− (V LTriag(ℓ̃))[j, :]∥+ 2n
√
nr

 ,

then γ is a Lipschitz constant for the Hessian of fℓ in the radius-r neighborhood of ℓ̃, i.e.,

∥∇2fℓ(ℓ̂)−∇2fℓ(ℓ̌)∥ ≤ γ∥ℓ̂− ℓ̌∥, if ℓ̂, ℓ̌ ∈ Br(ℓ̃).

Moreover,
λmin(∇2fℓ(ℓ)) ≥ λmin(∇2fℓ(ℓ̃))− γr, if ℓ ∈ Br(ℓ̃).

Lemma 5.8. Suppose that fℓ(ℓ̃) > f̄ℓ and that the Hessian ∇2fℓ is uniformly positive definite in
the r-ball around ℓ̃, i.e.,

λmin(∇2fℓ(ℓ̃)) > 0, for all ℓ̃ ∈ Br(ℓ̃).

Then, fℓ is positively uniformly bounded below in Br(ℓ̃), i.e.,

fℓ(ℓ) > f̄ℓ > 0, for all ∥ℓ− ℓ̃∥ ≤ min

{
r,
fℓ(ℓ̃)− f̄ℓ

∥∇fℓ(ℓ̃)∥

}
.
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Theorem 5.9. Let ℓ̃ ∈ Rtℓ be given and r ∈ R++ be found such that

∇2fℓ(ℓ) ≻ 0, for all ℓ ∈ Br(ℓ̃), (5.13)

and f̄ℓ satisfy
fℓ(ℓ̃) > f̄ℓ, for all ℓ̃ ∈ Br(ℓ̃).

Let γ be a Lipschitz constant for the Hessian of fℓ in the r-ball about ℓ̃. Set

β := ∥∇2fℓ(ℓ̃)
−1∥, and η := ∥∇2fℓ(ℓ̃)

−1∇fℓ(ℓ̃)∥.

Define γR = βγ and α = γRη. If α ≤ 1
2 and r ≥ r0 :=

1−
√
1−2α
βγ , then the sequence ℓ0 = ℓ̃, ℓ1, ℓ2, . . .,

produced by
ℓk+1 = ℓk −∇2fℓ(ℓk)

−1∇fℓ(ℓk), k = 0, 1, . . . ,

is well defined and converges to ℓ∗, a unique root of the gradient ∇fℓ in the closure of Br0(ℓ̃). If
α < 1

2 , then ℓ∗ is the unique zero of ∇fℓ in the closure of Br1(ℓ̃),

r1 := min

{
r,
1 +

√
1− 2α

βγ

}
and

∥ℓk − ℓ∗∥ ≤ (2α)2k
η

α
, k = 0, 1, . . . .

Moreover, ℓ∗ is a lngm .

The conditions required in Proposition 5.7 and Lemma 5.8 are fulfilled with

r = 10−3, γ = 651, f̄L = 103.

Plugging into Theorem 5.5, we have

β ≈ 1.0× 10−4,
η ≈ 1.3× 10−5,
γR ≈ 6.5× 10−2,
α = γRη ≈ 8.7× 10−7 < 1

2 ,

r0 =
1−

√
1−2α
βγ ≈ 1.3× 10−5 < r,

r1 = r = 10−3.

According to Theorem 5.5, there exists a lngm in Br.

6 Final remarks

In this paper, we addressed the nonconvex optimization problem arising from the exact recovery
of points from a given Euclidean Distance Matrix (EDM). Our investigation led to significant
advancements in understanding the conditions under which local nonglobal minima (lngm ) exist
for the smooth stress function (as known in MDS literature) in EDM problems. We established that
for the smooth stress function, which is a quartic in P ∈ Rn×d, all second-order stationary points
are global minimizers when n ≤ d+1. For n > d+1, we not only identified lngm through numerical
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methods but also provided rigorous analytical proofs (via Kantorovich’s theorem) confirming their
existence.

Our methodology was characterized by a reduction in the problem’s dimensionality, leveraging
translation and rotation invariance, which simplified the analytical process and computational
efforts.

The findings of this research settle longstanding open questions regarding the existence of
lngm in the context of multidimensional scaling and highlight the importance of second-order
methods for minimizing the smooth stress function.

Acknowledgments

The work of MS was supported by the Academic Excellence Foundation of BUAA for PhD Stu-
dents, and international joint doctoral education fund of Beihang University. The work of DG
was supported in part by CNPq (Conselho Nacional de Desenvolvimento Cient́ıfico e Tecnológico)
Grant 305213/2021-0. HW research is supported by The Natural Sciences and engineering Research
Council of Canada. AM was partially supported by the ANR project EVARISTE (ANR-24-CE23-
1621), and by the CNRS (ITINERANCE@INC23 project). CL is supported in part by FAPESP
(Grant 2023/08706-1) and CNPq (Grant 305227/2022-0).

23



Index

D′(P )(∆P ) = Se(diag(M′(P )(∆P ))−2M′(P )(∆P ),
7
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F : Rn×d → Sn, F (P ) = K(M(P ))− D̄, 7
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H1 = [J∗J ], 9
H2 = [vec (K∗ (F (P ))Mat], 9
S, T ∈ Sn, 3
Se : Rn → Sn, Se(v) = veT + evT , 7
S∗
e (S) = 2Se, 7

[k] = {1, 2, . . . , k}, 3
Diag = diag∗, 7
K(G), Lindenstrauss operator, 4
Sn
C , centered, 4

Sn
H , hollow, 4

P̄ , configuration matrix, 2, 3
K∗(S) = 2(Diag(Se)− S), Laplacian matrix, 7
O = {Q ∈ Rd×d : QTQ = Id}, orthogonal group

of order d, 4
S : Rn×n → Sn,S(K) = (K +KT )/2, 8
δ-ball about L̃, Bδ(L̃), 20
diag(S) ∈ Rn, 3
diag∗(v) = Diag(v) ∈ Sn, 3
σ1(P ), raw stress, 2
σ2(P ), smooth stress, 2
f(P ) = 1

2σ2(P ), 2
fL(L), 5
fℓ(ℓ) := fL(LTriag(ℓ)), 5
t(n− 1) = n(n− 1)/2, triangular number, 5
D(P ) = K(PP T ), 4
D : Rn×d → Sn, D(P ) = K(M(P )) = Se(diag(M(P )))−

2M(P )., 7
K(G) = Se(diag(G))− 2G, 7
M(P ) = PP T , 4
M′(P )(∆P ) = P∆P T +∆PP T , 6
M′(P )∗(S) = 2SP , 7
EDM, Euclidean distance matrix, 4
lngm, local nonglobal minimum, 4, 5

centered subspace, Sn
C , 4

configuration matrix, P̄ , 2, 3

embedding dimension, d, 3, 5
Euclidean distance matrix, EDM, 4

Gram matrix, G = PP T , 4

hollow subspace, Sn
H , 4

Laplacian matrix, K∗(S) = 2(Diag(Se)− S), 7
Lindenstrauss operator, K : Sn → Sn, 4

nonnegative symmetric matrices order n, N n, 3

orthogonal group order d, O = {Q ∈ Rd×d :
QTQ = Id}, 4

raw stress, σ1(P ), 2

smooth stress, σ2(P ), 2

trace inner product, 3
triangular number, t(n− 1) := n(n− 1)/2, 5

24



References

[1] S. Al-Homidan and H. Wolkowicz, Approximate and exact completion problems for Eu-
clidean distance matrices using semidefinite programming, Linear Algebra Appl., 406 (2005),
pp. 109–141. 7

[2] J. Alencar, C. Lavor, and L. Liberti, Realizing Euclidean distance matrices by sphere
intersection, Discrete Appl. Math., 256 (2019), pp. 5–10. 2

[3] A. Alfakih, Euclidean distance matrices and their applications in rigidity theory, Springer,
Cham, 2018. 2, 3
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