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Abstract

The elegant theoretical results for strong duality and strict complementarity for linear pro-
gramming, LP, lie behind the success of current algorithms. In addition, preprocessing is an
essential step for efficiency in both simplex type and interior-point methods. However, the the-
ory and preprocessing techniques can fail for cone programming over nonpolyhedral cones. We
take a fresh look at known and new results for duality, optimality, constraint qualifications, CQ,
and strict complementarity, for linear cone optimization problems in finite dimensions. One
theme is the notion of minimal representation of the cone and the constraints. This provides a
framework for preprocessing cone optimization problems in order to avoid both the theoretical
and numerical difficulties that arise due to the (near) loss of the strong CQ, strict feasibility. We
include results and examples on the surprising theoretical connection between duality gaps in the
original primal-dual pair and lack of strict complementarity in their homogeneous counterpart.
Our emphasis is on results that deal with Semidefinite Programming, SDP.
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1 Introduction

In this paper we study duality, optimality conditions, and preprocessing for the conic optimization
problem, i.e., the problem of optimizing a linear objective function over the intersection of a convex
cone with an affine space. We include both the linear transformation and the subspace forms for
our optimization problems; we study known and new characterizations of optimality that hold
without any constraint qualification, CQ; and, we collect needed technical results on the cone facial
structure.

In addition, we derive new CQs including a universal constraint qualification, UCQ, i.e., a CQ
that holds independent of the data b, c; and, we study the geometry of nice and devious cones and
the relationship that lack of closure has to both strong duality and zero duality gaps, including
characterizations for a zero duality gap, and a surprising connection between duality gaps and the
failure of strict complementarity in the homogeneous problems.

One theme is the notion of minimal representation of the cone and the constraints in order to
preprocess and regularize the problem and thus avoid both the theoretical and numerical difficulties
that arise due to (near) loss of strict feasibility, i.e., we see that loss of this strong CQ is a modelling
issue rather than inherent to the problem instance. As it is well-known that the existence of a
strong CQ of the Mangasarian-Fromovitz or Robinson type is equivalent to stability of the problem,
e.g., [65], this justifies the pleasing paradigm: efficient modelling provides for a stable program.

1.1 Background and Motivation

The cone programming model has been studied for a long time, e.g., [23], as a generalization of
the classical linear program, LP. More recently, many important applications have arisen for more
general nonpolyhedral cones. This includes the case when K is the cone of positive semidefinite
matrices, S

n
+; then we get semidefinite programming, SDP, e.g., [73]. Another important case is
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second order cone programming, SOCP, where K = SOC 1 ⊕ · · · ⊕ SOC k, a direct sum of second
order (Lorentz) cones, e.g., [4, 45]. These research areas remain very active, see e.g., [2, 33, 38, 41,
49, 67, 73, 77] and URL: www-user.tu-chemnitz.de/˜helmberg/semidef.html. Optimality conditions
and CQs have been studied in e.g., [23, 31, 62] and more recently for both linear and nonlinear
problems in e.g., [65]. (See the historical notes in [65, Sect. 4.1.5].) Optimality conditions and
strong duality results without a CQ have appeared in e.g., [13, 14, 15, 16, 35, 36, 53, 57, 58].

Both strong duality and strict complementarity behave differently for general cone optimization
problems, compared to the LP case. First, strong duality for a cone program can fail in the absence
of a CQ, i.e., there may not exist a dual optimal solution and there may be a nonzero duality gap. In
addition, the (near) failure of the Slater CQ (strict feasibility) has been used in complexity measures,
[60, 61]. Moreover, numerical difficulties are well correlated with (near) failure of the Slater CQ,
see [25, 26]. Similarly, unlike the LP case, [28], there are general cone optimization problems for
which there does not exist a primal-dual optimal solution that satisfies strict complementarity,
see e.g., [73] for examples. Theoretical difficulties arise, e.g., for local convergence rate analysis.
Again, we have that numerical difficulties are well correlated with loss of strict complementarity, see
[71]. An algorithm for generating SDP problems where strict complementarity fails, independent
of whether the Slater CQ holds or not, is also given in [71].

Connections between weakest CQs and the closure of the sum of a subspace and a cone date
back to e.g., [31]. We present a surprising theoretical connection between strict complementarity of
the homogeneous problem and duality gaps, as well as show that both loss of strict complementarity
and strong duality are connected to the lack of closure of the sum of a cone and a subspace.

Examples where no CQ holds arise in surprisingly many cases. For example, Slater’s CQ fails
for many SDP relaxations of hard combinatorial problems, see e.g., [5, 74, 75]. A unifying approach
to remedy this situation is given in [68]. Another instance is the SDP that arises from relaxations of
polynomial optimization problems, e.g., [69]. Exploiting the absence of Slater’s CQ is done in [42].
Current public domain codes for SDP are based on interior-point methods and do not take into
account loss of Slater’s CQ (strict feasibility) or loss of strict complementarity. As discussed above,
both of these conditions can result in theoretical and numerical problems, e.g., [25, 69, 71]. Contrary
to the LP case, e.g., [29, 39, 48], current SDP codes do not perform extensive preprocessing to avoid
these difficulties. (Though some preprocessing is done to take advantage of sparsity, e.g., [27]. A
projection technique for the cases where Slater’s CQ fails is studied in [18].)

1.2 Outline

In Section 2 we present the notation and preliminary results. We introduce: the subspace forms
for the cone optimization in Section 2.1.1 and the complementarity partition and minimal sets in
Section 2.1.2. Technical facial properties are presented in Sections 3.1 and 3.2. The notions of
nice and devious cones are described in Section 3.3. We include many relationships for the facial
structure of the cone optimization problems.

The strong duality results, with and without CQs, and the CQs and UCQ, are presented in
Section 4, see e.g., Theorem 4.10. We use both the minimal cone known in the literature and
introduce the minimal subspace in order to obtain a regularization that guarantees that Slater’s
CQ holds, rather than the weaker generalized Slater CQ given in the literature, see (4.9) in Theorem
4.10. We study the failure of strong duality and strict complementarity in Section 5. This includes
a characterization for a zero duality gap in Section 5.1. The surprising relation between duality
gaps and the failure of the strict complementarity property for the homogeneous problem, is given
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in Section 5.1.2, see e.g., Theorems 5.9 and 5.7. Our concluding remarks are in Section 6.

2 Notation and Preliminary Results

The set K is a convex cone if it is a cone, i.e., it is closed under nonnegative scalar multiplication,
λK ⊆ K,∀λ ≥ 0, and, it is also closed under addition K + K ⊆ K. The cone K is a proper cone if
it is closed, pointed, and has nonempty interior. We let u �K v (respectively, u ≺K v) denote the
partial order induced by K, i.e., v − u ∈ K (respectively, v − u ∈ intK).

We use S to denote closure, preclS = S\S to denote the preclosure of a set S. We let conv S
denote the convex hull of the set S and cone S denote the convex cone generated by S. (By abuse of
notation, we use cone s := cone {s}, for a single element s. This holds similarly for, e.g., s⊥ := {s}⊥
and other operations that act on single element sets.) The dual or nonnegative polar cone of a set
S is S∗ := {x : 〈x, s〉 ≥ 0, ∀s ∈ S}. In particular, for the space of n×n symmetric matrices, S

n, we
use the trace inner-product 〈x, s〉 = trace xs, i.e., the trace of the product of the matrices x and s.
We use R(·) and N (·) to denote range space and nullspace, respectively. We let S

n
+ ⊂ S

n denote
the cone of positive semidefinite matrices. In particular, setting K = S

n
+ yields the partial order

induced by the cone of positive semidefinite matrices in S
n, i.e., the so-called Löwner partial order,

x �Sn

+
s.

We let ei denote the ith unit vector of appropriate dimension, and Eij denote the (i, j)th unit
matrix in S

n, i.e., Eii = eie
T
i and if i 6= j, Eij = eie

T
j + eje

T
i . By abuse of notation, we let xij

denote the ij element of x ∈ S
n.

The subset F ⊆ K is a face of the cone K, denoted F � K, if

(s ∈ F, 0 �K u �K s) implies (cone u ⊆ F ) . (2.1)

If F � K but is not equal to K, we write F � K. If {0} ⊂ F � K, then F is a proper face of K.
(Similarly, S1 ⊂ S2 denotes a proper subset, i.e., S1 ⊆ S2, S1 6= S2.) For S ⊆ K, we let face S
denote the smallest face of K that contains S; equivalently face S is the intersection of all faces
containing S. A face F � K is an exposed face if it is the intersection of K with a hyperplane.
The cone K is facially exposed if every face F � K is exposed. If F � K, then the conjugate face
is F c := K∗ ∩ F⊥. Note that if the conjugate face F c is a proper face, then it is exposed using any
s ∈ relint F , i.e., F c = K ∩ s⊥,∀s ∈ relint F .

We study the following pair of dual conic optimization problems in standard form:

(P) vP := sup
y
{〈b, y〉 : A∗ y �K c} (2.2)

(D) vD := inf
x
{〈c, x〉 : Ax = b, x �K∗ 0}, (2.3)

where: A : V → W is a (onto) linear transformation between two finite dimensional inner-product
spaces; A∗ denotes the adjoint transformation; and K is a convex cone. Throughout, we assume
that the optimal value vP is finite. Weak duality holds for any pair of primal-dual feasible solutions
y, x, i.e., if s = c −A∗ y �K 0,Ax = b, x �K∗ 0, then we get

〈b, y〉 = 〈Ax, y〉 = 〈A∗ y, x〉 = 〈c − s, x〉 ≤ 〈c, x〉 . (Weak Duality)

The usual constraint qualification, CQ, used for the primal (2.2) is the Slater condition, i.e., strict
feasibility A∗ ŷ ≺ c. If we assume Slater’s CQ holds and the primal optimal value is finite, then
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strong duality holds, i.e., we have a zero duality gap and attainment of the dual optimal value,

vP = vD = 〈c, x∗〉 , for some dual feasible x∗. (Strong Duality)

Denote the primal-dual feasible sets of (2.2) and (2.3) by

Fy
P = Fy

P (c) = {y : A∗ y �K c}, Fx
D = Fx

D(b) = {x : Ax = b, x �K∗ 0}, (2.4)

respectively. The set of feasible slacks for (2.2) is

Fs
P = Fs

P (c) = {s : s = c −A∗ y �K 0, for some y}. (2.5)

We allow for the dependence on the parameters b and c. Similarly, the optimal solution sets are
denoted by Os

P ,Oy
P ,Ox

D. Moreover, the pair of feasible primal-dual solutions s, x are said to satisfy
strict complementarity, SC if

(SC)
s ∈ relint FP and x ∈ relint F c

P , for some FP � K,
or

s ∈ relint F c
D and x ∈ relint FD, for some FD � K∗.

(2.6)

(Note that this implies s + x ∈ int (K + K∗), see Proposition 3.3 part 1, below.)

2.1 Subspace Form, Complementarity Partitions, and Minimal Sets

2.1.1 Subspace Form for Primal-Dual Pair (P) and (D)

Suppose that s̃, ỹ, and x̃ satisfy
A∗ ỹ + s̃ = c, A x̃ = b. (2.7)

Then, for any feasible primal-dual triple (x, y, s), where s is, as usual, the primal slack given by
s = c − A∗ y, we have 〈c, x̃〉 = 〈A∗ y + s, x̃〉 = 〈b, y〉 + 〈s, x̃〉. Therefore, the objective in (2.2) can
be rewritten as

sup
y

〈b, y〉 = sup
s

(〈c, x̃〉 − 〈s, x̃〉) = 〈c, x̃〉 − inf
s
〈s, x̃〉 .

We let L denote the nullspace N (A) of the operator A. Then

Fs
P = Fs

P (c) = (c + L⊥) ∩ K = (s̃ + L⊥) ∩ K. (2.8)

In addition, for x ∈ x̃ + L, we get 〈c, x〉 = 〈A∗ ỹ + s̃, x〉 = 〈s̃, x〉 + 〈A∗ ỹ, x̃〉 = 〈s̃, x〉 + 〈ỹ, b〉. We
can now write the primal and dual conic pair, (2.2) and (2.3), in the so-called subspace form (see
e.g., [50, Section 4.1]):

vP = 〈c, x̃〉 − inf
s
{〈s, x̃〉 : s ∈ (s̃ + L⊥) ∩ K} (2.9)

vD = 〈ỹ, b〉 + inf
x
{〈s̃, x〉 : x ∈ (x̃ + L) ∩ K∗}. (2.10)

The symmetry means that we can directly extend results proved for (2.9) to (2.10). Note that we
have much flexibility in the choice of s̃ and x̃. In particular, if (2.9) and (2.10) are feasible, we may
choose s̃ ∈ Fs

P and x̃ ∈ Fx
D, and in the case that the optimal values are attained, we may choose

s̃ ∈ Os
P and x̃ ∈ Ox

D.

Proposition 2.1 Let s̃, ỹ, and x̃ satisfy (2.7). Then (2.9) and (2.10) are a dual pair of cone
optimization problems equivalent to (2.2) and (2.3), respectively. Moreover, (2.2) (resp. (2.3)) is
feasible if, and only if, s̃ ∈ K + L⊥ (resp. x̃ ∈ K∗ + L). �
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2.1.2 Complementarity Partitions, CP, and Minimal Sets

Denote the minimal faces for the homogeneous problems (recession directions) by

f0
P := faceFs

P (0) = face
(

L⊥ ∩ K
)

(2.11)

f0
D := faceFx

D(0) = face (L ∩ K∗) . (2.12)

For connections between recession directions and optimality conditions, see e.g., [1, 6, 11]. Note
that f0

P ⊆ (f0
D)c (equivalently, f0

D ⊆ (f0
P )c).

Definition 2.2 The pair of faces F1 � K,F2 � K∗ form a complementarity partition of K,K∗,
denoted CP, if F1 ⊆ F c

2 . (Equivalently, F2 ⊆ F c
1 .) The partition is proper if both F1 and F2 are

proper faces. The partition is strict if (F1)
c = F2 or (F2)

c = F1.

It is well known that
F � K,G � K,F ⊆ G =⇒ F � G. (2.13)

Therefore, we can assume F1�F c
2 and F2�F c

1 in Definition 2.2. Moreover, for every linear subspace
L, the pair of faces

(f0
P , f0

D) form a complementarity partition, CP (2.14)

of K,K∗; and, if K is a polyhedral cone, then the partition is strict. The minimal face of (2.2) is the
face of K generated by the feasible slack vectors; while the minimal face for (2.3) is the face of K∗

generated by the feasible set of the dual problem, i.e., we denote fP := faceFs
P , fD := faceFx

D.
Note that both fP = fP (s̃) and fD = fD(x̃), i.e., they depend implicitly on the points s̃, x̃ in the
subspace formulations (2.9) and (2.10).

An immediate important property of the complementarity partitions is:

if (F1, F2) form a CP, then 0 6= φ ∈ F1 =⇒ F2 ⊆ {φ}⊥ =⇒ intF2 = ∅ (2.15)

We now obtain the following complementarity partitions and the corresponding theorems of the
alternative from (2.15).

Proposition 2.3 Let ỹ, s̃, x̃ satisfy (2.7). Then the five pairs of faces








f0
P f0

D

face
(
(L⊥ + span s̃) ∩ K

)
face

(
f0

D ∩ s̃⊥
)

face
(
f0

P ∩ x̃⊥
)

face ((L + span x̃) ∩ K∗)
fP face

(
f0

D ∩ s̃⊥
)

face
(
f0

P ∩ x̃⊥
)

fD









(2.16)

form complementarity partitions of K,K∗.

Proof.
That the first pair in (2.16) forms a complementarity partition follows from definitions. The result
for the second and third pairs follow from replacing L⊥ with L⊥ + span s̃, and from replacing L
with L + span x̃, respectively. The result for the final two pairs follows from

Fs
P ⊆

(

L⊥ + span s̃
)

∩ K, Fx
D ⊆ (L + span x̃) ∩ K∗.

�
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If int K∗ 6= ∅ (respectively, int K 6= ∅), then the first pair in Proposition 2.3 is related to the
following characterization for Slater’s CQ when c = 0 (respectively, b = 0):

f0
P = {0} ⇐⇒ L ∩ intK∗ 6= ∅

(

respectively, f0
D = {0} ⇐⇒ L⊥ ∩ int K 6= ∅

)

. (2.17)

Equivalent characterizations for strict feasibility are related to the remaining four pairs in Propo-
sition 2.3.

The primal and dual minimal subspace representations of L⊥ and of L, respectively, are given
by

L⊥
PM := L⊥ ∩ (fP − fP ), LDM := L ∩ (fD − fD). (2.18)

The cone of feasible directions at ŷ ∈ Fy
P is

D≤
P (ŷ) = cone

(
Fy

P − ŷ
)
. (2.19)

We similarly define the cones D≤
P (ŝ),D≤

D(x̂). For these three cones, we assume that ŷ, ŝ, x̂ are
suitable feasible points in Fy

P ,Fs
P ,Fx

D, respectively. The closures of these cones of feasible directions
yield the standard tangent cones, denoted TP (ŷ), TP (ŝ), TD(x̂), respectively. (See e.g., [9, 21].) Note
that if the primal feasible set is simply K, the cone of feasible directions corresponds to the so-called
radial cone.

Proposition 2.4 ([66, 70]) Let K be closed. Then K is a polyhedral cone if, and only if, at every
point ŝ ∈ K, the radial cone of K, cone (K − ŝ), at ŝ is closed. �

Example 2.5 We now look at two examples that illustrate the lack of closure for nonpolyhedral
cones, e.g., in each instance we get

K + span f0
P ⊂ K + span f0

P = K + ((f0
P )c)⊥. (2.20)

The lack of closure in (2.20) can be used to find examples with both finite and infinite positive
duality gaps; see e.g., the following example in item 1.

1. First, let n = 2 and L in (2.9) and (2.10) be such that L⊥ = span {E22}. Then f0
P =

cone {E22} and f0
D = cone {E11}. Therefore, f0

P = (f0
D)c and f0

D = (f0
P )c, i.e., this is a strict

complementarity partition. Moreover, (2.20) holds e.g., E12 ∈ (f0
P )⊥ ∩ (f0

D)⊥ and

E12 = lim
i→∞

([
1/i 1
1 i

]

− iE22

)

∈
(

S
2
+ + (f0

D)⊥
)∖(

S
2
+ + span f0

P

)
= precl

(
S

2
+ + span f0

P

)
.

We can now choose s̃ = E12, x̃ = E11. Then the primal is infeasible, e.g., Proposition 2.1,
while the dual optimal value vD = 0.

2. Now, let n = 3 and suppose that L⊥ = span {E33, E22 + E13}. Then f0
P = cone {E33}

and f0
D = cone {E11}. Therefore, f0

P ⊂
(
f0

D

)c
and f0

D ⊂
(
f0

P

)c
, i.e., this is not a strict

complementarity partition. In addition, note that (2.20) holds and moreover, if we choose
s̃ = x̃ = E22 ∈ (f0

P )c ∩ (f0
D)c, then E22 ∈ precl (L + (face s̃)c) ∩ precl

(
L⊥ + (face s̃)c

)
. This

means that 0 6= s̄ = x̄ = E22 is both primal and dual optimal, see Proposition 5.2, below.
Since 〈s̄, x̄〉 > 0, we have obtained a finite positive duality gap.
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Example 2.6 We can use K = K∗ = S
n
+ and the algorithm in [71] to generate A so that we have

(f0
P )c ∩ (f0

D)c 6= {0}. Here the linear transformation A∗ y =
∑m

i=1 yiAi for given Ai ∈ S
n, i =

1, . . . ,m. The main idea is to start with
[
QP QG QD

]
an orthogonal matrix; and then we

construct one of the m matrices representing A as

A1 =
[
QP QG QD

]





0 0 Y T
2

0 Y1 Y T
3

Y2 Y3 Y4




[
QP QG QD

]T
,

where Y1 ≻ 0, Y4 symmetric, and QDY2 6= 0. The other matrices Ai ∈ S
n are chosen so that the

set {A1QP , . . . , AmQP } is linearly independent. Then we get the partition in positions given by




f0
P · ·
· G ·
· · f0

D



 ,

where G represents the gap in the partition.

All instances in the above examples have the facial block structure





f0
D 0 0
0 0 0
0 0 f0

P



. Viz., the

matrices in f0
D are nonzero only in the (1, 1) block, and the matrices in f0

P are nonzero only in the
(3, 3) block. We now formalize the concept of such block structure for S

n in the following definition
and lemma. (These may be extended to more general cones using appropriate bases.)

Definition 2.7 The support of x ∈ S
n is S(x) := {(ij) : xij 6= 0}.

Lemma 2.8 Let K := S
n
+.

1. There exists an orthogonal matrix Q and integers 0 ≤ kD < kP ≤ n + 1 such that

x ∈ f0
D, (ij) ∈ S(QT xQ) =⇒ max{i, j} ≤ kD, (2.21)

and
s ∈ f0

P , (ij) ∈ S(QT sQ) =⇒ min{i, j} ≥ kP . (2.22)

2. Let n ≥ 3 and suppose the subspace L is such that the complementarity partition (f0
P , f0

D) is
not strict. Then, there exists an orthogonal matrix Q and integers 1 ≤ kD < kP − 1 ≤ n − 1
such that (2.21) and (2.22) hold.

Proof.
We can choose x = QxDxQT

x ∈ relint f0
D and s = QsDsQ

T
s ∈ relint f0

P , where Qx, Qs has orthonor-
mal columns (of eigenvectors) and both Dx and Ds are diagonal positive definite. Choose Qr so
that Q :=

[
Qx Qr Qs

]
is an orthogonal matrix. Then this Q does what we want, since f0

P f0
D = 0.

�

3 Facial Properties

We now collect some interesting though technical facial properties for general convex cones K.
These results are particularly useful for SDP. We include the notions of nice and devious cones.
Further results are given in e.g., [7, 8, 17, 51].
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3.1 Faces of General Cones

Recall that a nonempty face F � K is exposed if F = φ⊥ ∩ K, for some φ ∈ K∗. Note that the
faces of K are closed if K is closed.

Proposition 3.1 Let K be closed and ∅ 6= F � K. Then:

1. (F − F ) ∩ K = (span F ) ∩ K = F .

2. F cc = F if, and only if, F is exposed.

3. K∗ + spanF c ⊆ K∗ + F⊥. Moreover, if K is facially exposed, then K∗ + spanF c = K∗ + F⊥.

Proof.

1. That F −F = spanF follows from the definition of a cone. Further, suppose s = f1−f2 with
s ∈ K and fi ∈ F, i = 1, 2. Then s + f2 = f1 ∈ F . Therefore, s ∈ F , by the definition of a
face.

2. The result follows from the facts: the conjugate of G := F c is exposed by any x ∈ relint G;
and, every exposed face is exposed by any point in the relative interior of its conjugate face.

3. That K∗ + span F c ⊆ K∗ + F⊥ is clear from the definition of the conjugate face F c. To prove
equality, suppose that K is facially exposed and that w = (x+f) ∈ (K∗+F⊥)\K∗ + span F c,
with x ∈ K∗, f ∈ F⊥. Then there exists φ such that 〈φ,w〉 < 0 ≤ 〈φ, (K∗ + span F c)〉. This
implies that φ ∈ K ∩ (F c)⊥ = K ∩ F , since K is facially exposed. This in turn implies
〈φ,w〉 = 〈φ, x + f〉 ≥ 0, a contradiction.

�

Proposition 3.2 Let s ∈ relint S and S ⊆ K be a convex set. Then:

1. face s = face S,

2. cone (K − s) = cone (K − S) = K − face s = K − face S = K + span face s = K + span face S.

Proof.

1. That face s ⊆ face S is clear. To prove the converse inclusion, suppose that z ∈ S ⊆ K, z 6= s.
Since s ∈ relint S, there exists w ∈ S, 0 < θ < 1, such that s = θw + (1 − θ)z, i.e., s ∈ (w, z).
Since s ∈ face s, we conclude that both w, z ∈ face s.

2. That cone (K − s) ⊆ K − cone s ⊆ K − face s ⊆ K − span face s is clear. The other inclusions
follow from part 1 and cone (K − s) ⊇ cone (face (s) − s) = span face s.

�

We can combine Proposition 2.4 and Proposition 3.2, and conclude that K is polyhedral if, and
only if, K +spanF is closed, for all F �K. The following Proposition 3.3 illustrates some technical
properties of faces, conjugates, and closure.
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Proposition 3.3 Let T be a convex cone and F � T .

1. Suppose that s̄ ∈ relint F and x̄ ∈ relint F c. Then

s̄ + x̄ ∈ int (T + T ∗).

2. Suppose that s̄ ∈ relint F . Then

cone (T − s̄) = (F c)∗;

cone (T − s̄) ⊇ relint ((F c)∗) .
(3.1)

Proof.

1. First, note that if int (T + T ∗) = ∅, then we have

0 6= (T + T ∗)⊥ ⊆ T ∗∗ ∩ T ∗ = T ∩ T ∗ ⊆ T + T ∗,

a contradiction, i.e., this shows that int (T + T ∗) 6= ∅.
Now suppose that s̄+ x̄ /∈ int (T +T ∗). Then we can find a supporting hyperplane φ⊥ so that
s̄ + x̄ ∈ (T + T ∗) ∩ φ⊥ � T + T ∗ and 0 6= φ ∈ (T + T ∗)∗ = T ∩ T ∗. Therefore, we conclude
〈φ, s̄ + x̄〉 = 0 implies that both 〈φ, s̄〉 = 0 and 〈φ, x̄〉 = 0. This means that φ ∈ T ∗ ∩ s̄⊥ = F c

and φ ∈ T̄ ∩ x̄⊥ = (F c)c, giving 0 6= φ ∈ (F c) ∩ (F c)c = {0}, which is a contradiction.

2. The first result follows from: cone (T − s̄) = (T − s̄)∗∗ = (T ∗ ∩ s̄⊥)
∗
.

For the second result, we use the first result and Theorem 6.3 of Rockafellar [63] to deduce

relint (cone (T − s̄)) = relint
(

cone (T − s̄)
)

= relint [(F c)∗]

which implies the desired conclusion.

�

3.2 Faces for Primal-Dual Pair (P) and (D)

We now present facial properties specific to the primal-dual pair (2.2) and (2.3). In particular, this
includes relationships between the minimal faces fP , fD and the minimal faces for the homogeneous
problems, f0

P , f0
D.

Proposition 3.4 Suppose that both (2.2) and (2.3) are feasible, i.e., equivalently s̃ ∈ K + L⊥ and
x̃ ∈ K∗ + L. Let ŝ ∈ FP (s̃) and x̂ ∈ FD(x̃). Then the following hold.

1.
f0

P ⊆ face (ŝ + f0
P ) ⊆ fP (s̃), f0

D ⊆ face (x̂ + f0
D) ⊆ fD(x̃). (3.2)

2.
s̃ ∈ (f0

D)c + L⊥ ⇔ fP (s̃) ⊆ (f0
D)c; x̃ ∈ (f0

P )c + L ⇔ fD(x̃) ⊆ (f0
P )c.
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Proof.
Since both problems are feasible, we can assume, without loss of generality, that ŝ = s̃ ∈ K, x̂ =
x̃ ∈ K∗.

1. Since cone s̃ and f0
P are convex cones containing the origin, cone s̃ + f0

P = conv(cone s̃ ∪ f0
P );

see e.g., [63, Theorem 3.8]. Hence,

f0
P ⊆ conv(s̃ ∪ f0

P ) ⊆ conv(cone s̃ ∪ f0
P ) = cone s̃ + f0

P = cone (s̃ + f0
P ) ⊆ face (s̃ + f0

P ).

This proves the first inclusion. It is clear that s̃ + (L⊥ ∩K) ⊆ (s̃ +L⊥) ∩ K. This yields the
second inclusion. The final two inclusions follow similarly.

2. Suppose that s̃ ∈ (f0
D)c+L⊥ and s̃+r ∈ K with r ∈ L⊥. Then, for all ℓ ∈ L∩K∗ ⊆ f0

D, we have
〈s̃ + r, ℓ〉 = 〈s̃, ℓ〉 = 0, since s̃ ∈ (f0

D)c + L⊥. This implies that fP (s̃) = face
(
(s̃ + L⊥) ∩ K

)

is orthogonal to f0
D = face (L ∩ K∗), i.e., the first implication holds. (This also follows from

part 1, using fP (s̃) ⊆ [fD(x̃)]c.)

For the converse implication, since (2.2) is feasible, we have s̃ ∈ fP (s̃). So if fP (s̃) ⊆ (f0
D)c,

then s̃ ∈ (f0
D)c.

The second equivalence follows similarly.

�

Additional relationships between the faces follow. First, we need a lemma that is of interest in
its own right.

Lemma 3.5 Let s̃ ∈ f0
P , and suppose that s = s̃ + ℓ is feasible for (2.2) with ℓ ∈ L⊥. Then

ℓ ∈ span f0
P .

Proof.
Let v ∈ relint (L⊥ ∩K). Then v ∈ relint f0

P , and since s̃ ∈ f0
P , we have v − ǫs̃ ∈ f0

P for some ǫ > 0.
Now if ℓ is such that s = s̃ + ℓ is feasible for (2.2), then s̃ + ℓ ∈ K, and

1

ǫ
v + ℓ =

1

ǫ
(v − ǫs̃) + (s̃ + ℓ) ∈ f0

P + K = K.

For convenience, define α := 1/ǫ. Since αv ∈ L⊥ and ℓ ∈ L⊥, we in fact have

αv + ℓ ∈ K ∩ L⊥ ⊆ f0
P , (3.3)

which implies ℓ ∈ f0
P − f0

P . �

Proposition 3.6 1. s̃ ∈ f0
P ∪ L⊥ =⇒ fP (s̃) = f0

P and x̃ ∈ f0
D ∪ L =⇒ fD(x̃) = f0

D.

2. Let f0
D � K∗. Then there exists 0 6= φ ∈ K ∩ L⊥.

Proof.

1. We begin by proving the first statement. If s̃ ∈ L⊥, then s̃ + L⊥ = L⊥, so the desired
result holds. If instead s̃ ∈ f0

P , then it follows from Lemma 3.5 that ℓ ∈ span f0
P for all

feasible points of the form s = s̃ + ℓ. Hence all feasible s lie in the set span (f0
P ) ∩ K, which

by Proposition 3.1, part 1, equals f0
P . So fP (s̃) ⊆ f0

P ; but, the reverse inclusion holds by
Proposition 3.4, part 1.

The second statement for f0
D in proven in a similar way.
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2. Existence is by the theorem of the alternative for the Slater CQ; see (2.15) and the related
Proposition 2.3.

�

We conclude this subsection with a new result indicating that the failure of strict complemen-
tarity in

(
f0

P , f0
D

)
can be related to the lack of closure in the sum of the cone and the subspace.

Proposition 3.7 Let K be closed. If there exists a nonzero x ∈ −(K ∩ K∗) such that

x ∈ (K ∩ L⊥)⊥ ∩ (K∗ ∩ L)⊥, (3.4)

then x ∈ precl(K + L⊥) ∩ precl(K∗ + L). Hence, neither K + L⊥ nor K∗ + L is closed.

Proof.
To obtain a contradiction, suppose that (3.4) holds for a nonzero x ∈ −(K ∩K∗), but x ∈ K +L⊥.
Then there exists w ∈ K such that x − w ∈ L⊥. Moreover, x − w ∈ −K − K = −K, so x − w ∈
−(K ∩ L⊥). It follows from (3.4) that 〈x, x − w〉 = 0. However, 〈x, x − w〉 = 〈x, x〉 + 〈−x,w〉 > 0,
where we have used the fact that x ∈ −K∗. Hence, x /∈ K + L⊥. A similar argument shows that
x /∈ K∗ + L.

Since K and L⊥ are closed convex cones, we have (K ∩ L⊥)∗ = K∗ + (L⊥)∗ = K∗ + L. It

follows from (3.4) that x ∈ K∗ + L. Similarly, x ∈ K + L⊥. This completes the proof. �

The reader might naturally ask: when does such an x satisfying the conditions of the last
proposition exist? As an answer, consider the case K = K∗ and a linear subspace L such that
(f0

P , f0
D) is a proper partition but is not strictly complementary. Let G :=

(
f0

P

)c ∩
(
f0

D

)c
. Then

every x ∈ −G \ {0} satisfies the assumption of the above proposition.

3.3 Nice Cones, Devious Cones, and SDP

Definition 3.8 A face F �K is called nice if K∗ +F⊥ is closed. A closed convex cone K is called
a nice cone or a facially dual-complete cone, FDC , if

K∗ + F⊥ is closed for all F � K. (3.5)

The condition in (3.5) was used in [13] to allow for extended Lagrange multipliers in f∗
P to be

split into a sum using K∗ and f⊥
P . This allowed for restricted Lagrange multiplier results with

the multiplier in K∗. The condition (3.5) was also used in [52] where the term nice cone was
introduced. In addition, it was shown by Pataki (forthcoming paper) that a FDC cone must be
facially exposed.

Moreover, the FDC property has an implication for Proposition 3.1, part 3. We now see that
this holds for SDP.

Lemma 3.9 ([73],[58]) Suppose that F is a proper face of S
n
+, i.e., {0} 6= F � S

n
+. Then:

F ∗ = S
n
+ + F⊥ = Sn

+ + spanF c,

S
n
+ + spanF c is not closed.

�
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From Lemma 3.9, we see that S
n
+ is a nice cone. In fact, as pointed out in [52], many other

classes of cones are nice cones, e.g., polyhedral and p-cones. However, the lack of closure property
in Lemma 3.9 is not a nice property. In fact, from Proposition 3.2, part 2, this corresponds to the
lack of closure for radial cones, see [66] which can result in duality problems. Therefore, we add
the following.

Definition 3.10 A face F � K is called devious if the set K + span F is not closed. A cone K is
called devious if

the set K + span F is not closed for all {0} 6= F � K.

By Lemma 3.9, S
n
+ is a nice but devious cone. On the other hand, polyhedral cones are nice and

not devious, since sums of polyhedral cones and subspaces are closed, e.g., [63, Chapter 9].
The facial structure of S

n
+ is well known, e.g., [58, 73]. Each face F � S

n
+ is characterized by a

unique subspace S ⊆ R
n:

F =
{
x ∈ S

n
+ : N (x) ⊇ S

}
; relint F =

{
x ∈ S

n
+ : N (x) = S

}
.

The conjugate face satisfies

F c =
{

x ∈ S
n
+ : N (x) ⊇ S⊥

}

; relint F =
{

x ∈ S
n
+ : N (x) = S⊥

}

.

The description of spanF for F � S
n
+ is now clear.

Another useful property of SDPs (and the Löwner partial order) is given by the following lemma.
This lemma played a critical role in the explicit description of a dual SDP problem for which strong
duality holds.

Lemma 3.11 ([57]) Let K̃ ⊆ S
n
+ be a closed convex cone. Then

[(

face K̃
)c]⊥

=

{

W + W T : W ∈ R
n×n,

[
I W T

W U

]

� 0, for some U ∈ K̃

}

.

�

Properties 3.12 The following three properties of the cone S
n
+ are needed for the strong duality

approach in Ramana [57]. The first two also make the Borwein-Wolkowicz approach in [15] behave
particularly well:
1. K is facially exposed. 2. K is FDC . 3. Lemma 3.11. �

Suppose that the cone K describing the problem (P) is SDP-representable. (That is, there
exists d and a linear subspace V ⊂ S

d such that V ∩ S
d
++ 6= ∅ and K is isomorphic to (V ∩ S

d
+).)

Then by [20, Cor. 1, Prop. 4], K is facially exposed and FDC , since S
d
+ is. Moreover, by [20,

Prop. 3], every proper face of K is a proper face of S
d
+ intersected with the subspace V . Hence,

assuming that a suitable representation of K is given, an analogue of Lemma 3.11 is also available
in this case. Therefore, SDP-representable cones (which strictly include homogeneous cones, due
to a result of Chua [19] and Faybusovich [24]) satisfy all three of the above-mentioned Properties
3.12. For related recent results on homogeneous cones and strong duality, see Pólik and Terlaky
[53].
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4 Duality and Minimal Representations

In this section, we see that minimal representations of the problem guarantee strong duality and
stability results, i.e., combining the minimal cone and the minimal subspace together reduces both
the dimension of the problem and the number of constraints, and also guarantees Slater’s constraint
qualification. We first use the minimal subspaces and extend the known strong duality results
without any constraint qualification, see e.g., [13, 14, 15, 72]. Equivalent strong duality results
based on an extended Lagrangian are given in [56, 57]. (See [58, 73] for comparison and summaries
of the two types of duality results.) By strong duality for (2.2), we mean that there is a zero duality
gap, vP = vD, and the dual optimal value vD in (2.3) is attained.

4.1 Strong Duality and Constraint Qualifications

We now present strong duality results that hold with and without CQs. We also present: a weakest
constraint qualification (WCQ), i.e., a CQ at a given feasible point ȳ ∈ Fy

P (c) that is independent
of b; and a universal constraint qualification, (UCQ), i.e., a CQ that is independent of both b and
c. Following is the classical, well-known, strong duality result for (2.2) under the standard Slater
CQ.

Theorem 4.1 (e.g., [46, 65]) Suppose that Slater’s CQ (strict feasibility) holds for (2.2). Then
strong duality holds for (2.2), i.e., vP = vD and the dual value vD in (2.3) is attained. Equivalently,
there exists x̄ ∈ K∗ such that

〈b, y〉 + 〈c −A∗ y, x̄〉 ≥ vP , ∀y ∈ R
m.

Moreover, if vP is attained at ȳ ∈ Fy
P , then 〈c −A∗ ȳ, x̄〉 = 0 (complementary slackness holds). �

A nice compact formulation follows.

Corollary 4.2 Suppose that Slater’s CQ (strict feasibility) holds for (2.2) and ȳ ∈ Fy
P . Then, ȳ is

optimal for (2.2) if, and only if,
b ∈ A [(K − s̄)∗] , (4.1)

where s̄ = c −A∗ ȳ.

Proof.
The result follows from the observation that (face s̄)c = K∗∩ s̄⊥ = (K − s̄)∗, i.e., (4.1) is equivalent
to dual feasibility and complementary slackness. �

Strong duality can fail if Slater’s CQ does not hold. In [14, 13, 15], an equivalent regularized
primal problem that is based on the minimal face,

vRP := sup{〈b, y〉 : A∗ y �fP
c} (4.2)

is considered. Its Lagrangian dual is given by

vDRP := inf{〈c, x〉 : Ax = b, x �f∗

P
0}. (4.3)
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Theorem 4.3 ([13]) Strong duality holds for the pair (4.2) and (4.3), or equivalently, for the pair
(2.2) and (4.3); i.e., vP = vRP = vDRP and the dual optimal value vDRP is attained. Equivalently,
there exists x∗ ∈ (fP )∗ such that

〈b, y〉 + 〈c −A∗ y, x∗〉 ≥ vP , ∀y ∈ (A∗)−1(fP − fP ).

Moreover, if vP is attained at ȳ ∈ Fy
P , then 〈c −A∗ ȳ, x∗〉 = 0 (complementary slackness holds). �

Corollary 4.4 Let ȳ ∈ Fy
P . Then ȳ is optimal for (2.2) if, and only if,

b ∈ A [(fP − s̄)∗] ,

where s̄ = c −A∗ ȳ.

Proof.
As above, in the proof of Corollary 4.2, the result follows from the observation that f∗

P ∩ s̄⊥ =
(fP − s̄)∗. �

The next result uses the minimal subspace representation of L⊥, introduced in (2.18), L⊥
PM =

L⊥ ∩ (fP − fP ).

Corollary 4.5 Let ỹ, s̃, and x̃ satisfy (2.7) with s̃ ∈ fP − fP and let

K∗ + (fP )⊥ = (fP )∗. (4.4)

Consider the following pair of dual programs.

vRPM
= 〈c, x̃〉 − inf

s
{〈s, x̃〉 : s ∈ (s̃ + L⊥

PM) ∩ K}, (4.5)

vDRPM
= 〈b, ỹ〉 + inf

x
{〈s̃, x〉 : x ∈ (x̃ + LPM ) ∩ K∗}. (4.6)

Then, vRPM
= vRP = vP = vDRPM

= vDRP , and strong duality holds for (4.5) and (4.6), or
equivalently, for the pair (2.2) and (4.6).

Proof.
That vP = vRPM

= vRP follows from the definition of the minimal subspace representation in
(2.18):

Fs
P (c) = Fs

P (s̃)
= (s̃ + L⊥) ∩ fP , by definition of fP ,
= (s̃ + L⊥

PM) ∩ K, since s̃ ∈ fP − fP .

For the regularized dual, we see that

vDRP = infx

{

〈c, x〉 : Ax = b, x �f∗

P
0
}

= 〈ỹ, b〉 + infx
{
〈s̃, x〉 : Ax = b, x = xk + xf , xk ∈ K∗, xf ∈ f⊥

P

}
, by (4.4)

= 〈ỹ, b〉 + infx
{
〈s̃, x〉 : x = xk + xf = x̃ + xl, xk ∈ K∗, xf ∈ f⊥

P , xl ∈ L
}

= 〈ỹ, b〉 + infx
{
〈s̃, xk〉 : xk ∈ (x̃ + L + f⊥

P ) ∩ K∗
}

= vDRPM
.

�
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Remark 4.6 The condition in (4.4) is equivalent to K∗ + (fP )⊥ being closed, and is clearly true
for every face of K, if K is a FDC cone.

Remark 4.7 Using the minimal subspace representations of L in (2.3), i.e., replacing L in (2.3)
by LDM in (2.18), we may obtain a result similar to Corollary 4.5.

Note that if the Slater CQ holds, then the minimal sets (face and subspace) satisfy fP = K
and (2.18). We now see that if at least one of these conditions holds, then strong duality holds.

Corollary 4.8 Suppose that intK = ∅ but the generalized Slater CQ (relative strict feasibility)
holds for (2.2), i.e.,

ŝ := c −A∗ ŷ ∈ relint K, for some ŷ ∈ W. (Generalized Slater CQ) (4.7)

(Equivalently, suppose that the minimal face satisfies fP = K.) Then strong duality holds for (2.2).

Proof.
The proof follows immediately from Theorem 4.3 after noting that K = fP . �

The following corollary illustrates strong duality for a variation of the generalized Slater con-
straint qualification, i.e., for the case that the minimal subspace satisfies (2.18).

Corollary 4.9 Let s̃ ∈ fP − fP and K be FDC . Suppose that

L⊥ ∩ (K − K) ⊆ fP − fP . (Subspace CQ) (4.8)

(Equivalently, suppose that L⊥
PM = L⊥ ∩ (K − K).) Then strong duality holds for (2.2).

Proof.
Follows directly from Corollary 4.5. �

We now summarize the results in the special case that K is FDC (a nice cone). The first item
presents a regularized problem that satisfies Slater’s CQ. This is the approach used in [18]. Note
that early results on weakest constraint qualifications for general nonlinear problems are given in
e.g., [31].

Theorem 4.10 Let s̃, x̃ satisfy linear feasibility (2.7) with s̃ ∈ fP − fP and let K be FDC . Then
we have the following conclusions.

1. The primal optimal values are all equal, vP = vRP = vRPM
. Moreover, strong duality holds

for the primal, where the primal is chosen from the set

{(2.9), (4.2), (4.5)} (set of primal programs)

and the dual is chosen from the set

{(4.3), (4.6)} (set of dual programs)

i.e., the optimal values are all equal and the dual optimal value is attained.
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2. Furthermore, let T : R
t → V be a one-one linear transformation with R(T ) = fP − fP . Then

Slater’s CQ holds for the regularized problem

vRPM
= 〈c, x̃〉 − inf

v∈Rt

{〈v,T ∗x̃〉 : v ∈
(

T †s̃ + T †(L⊥
PM )

)

∩ T †(fP )}. (4.9)

3. The following are CQs for (2.2):

(a) fP = K (equivalently generalized Slater CQ (4.7));

(b) L⊥ ∩ (K − K) ⊆ fP − fP (equivalently L⊥
PM = L⊥ ∩ (K − K));

4. Let ȳ ∈ Fy
P (c) and s̄ = c −A∗ ȳ. Then,

D≤
P (ȳ)∗ = −A((K − s̄)∗) is a WCQ for (2.2) at (ȳ, s̄). (4.10)

Equivalently,

A[(fP − s̄)∗] = A((K − s̄)∗) is a WCQ for (2.2) at (ȳ, s̄). (4.11)

Proof.

1. These results summarize Theorem 4.3 and Corollary 4.5.

2. From the definitions, we know that there exists ℓ ∈ L⊥
PM with ŝ = s̃+ℓ ∈ relint fP . Therefore,

v := T †ŝ = T †(s̃ + ℓ) ∈ intT †(fP ).

3. The results follow from Corollaries 4.8, 4.9, respectively.

4. The so-called Rockafellar-Pshenichnyi condition, e.g., [55], [31, Thm 1], states that ȳ is optimal
if, and only if, b ∈ −D≤

P (ȳ)∗. From Theorem 4.3, ȳ is optimal if, and only if, A x̄ = b, 〈s̄, x̄〉 = 0,
for some x̄ ∈ f∗

P ; equivalently, if, and only if, b ∈ A((fP − s̄)∗). The result follows from the
fact that strong duality holds at an optimal ȳ if, and only if, A x̄ = b, 〈s̄, x̄〉 = 0, for some
x̄ ∈ K∗; equivalently, A x̄ = b, for some x̄ ∈ (K − s̄)∗.

�

Remark 4.11 The WCQ in (4.10) follows the approach in e.g., [31, 22, 76, 43, 44]. Moreover,
since for any set S, A(S) is closed if, and only if, S +L is closed (e.g., [34, 10]), we conclude that
a necessary condition for the WCQ to hold at a feasible s̄ ∈ Fs

P is that

(K − s̄)∗ + L is closed. (4.12)

(For a recent detailed study of when the linear image of a closed convex set is closed, see e.g., [52].
For related perturbation results, see [12].)
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4.1.1 Universal Constraint Qualifications

A universal CQ, denoted UCQ, is a CQ that holds independent of the data b, c, i.e., as in LP, strong
duality holds for arbitrary perturbations of the data b, c as long as feasibility is not lost.

Theorem 4.12 Suppose that K is FDC , and s̃ ∈ K, x̃ ∈ K∗ in the primal-dual subspace represen-
tation in (2.9) and (2.10). Then

L⊥ ⊆ f0
P − f0

P

is a UCQ, i.e., a universal CQ for (2.2).

Proof.
The result follows from Corollary 4.9 and the fact that s̃ ∈ K, x̃ ∈ K∗ implies f0

P ⊆ fP and f0
D ⊆ fD,

see Proposition 3.4. �

Corollary 4.13 Suppose that K = S
n
+, both vP and vD are finite, and n ≤ 2. Then strong duality

holds for at least one of (2.2) or (2.3).

Proof.
We have both Fs

P 6= ∅ and Fx
D 6= ∅. By going through the possible cases, we see that one of the

CQs L⊥ ⊆ f0
P − f0

P or L ⊆ f0
D − f0

D must hold. �

5 Failure of Strong Duality and Strict Complementarity

As discussed above, the absence of a CQ for (2.2) can result in the failure of strong duality, i.e., we
have theoretical difficulties. In addition, it has been shown that near loss of Slater’s CQ is closely
correlated with an increase in the expected number of iterations in interior-point methods both
in theory [59, 61] and empirically, [25, 26]. Therefore, a regularization step should be an essential
preprocessor for SDP solvers.

It is also known that the lack of strict complementarity for SDP may result in theoretical
difficulties. For example, superlinear and quadratic convergence results for interior-point methods
depend on the strict complementarity assumption, e.g., [54, 37, 3, 47, 40]. This is also the case
for convergence of the central path to the analytic center of the optimal face, [32]. In addition,
it is shown empirically in [71] that the loss of strict complementarity is closely correlated with
the expected number of iterations in interior-point methods. However, one can generate problems
where strict complementarity fails independent of whether or not Slater’s CQ holds for the primal
and/or the dual, [71]. Therefore, we see a connection between the theoretical difficulty from an
absence of Slater’s CQ and numerical algorithms, and a similar connection for the absence of
strict complementarity. We see below that duality and strict complementarity of the homogeneous
problem have a surprising theoretical connection as well.

Strong duality for (2.2) means a zero duality gap, vP = vD and dual attainment, vD = 〈c, x∗〉,
for some x∗ ∈ Fx

D. The CQs (resp. UCQs), introduced above in Section 4, guarantee that strong
duality holds independent of the data b (resp. b and c). Under our assumption that vP is finite
valued, there are three cases of failure to consider: (i) a zero duality gap but no dual attainment;
(ii) an infinite duality gap (dual infeasibility); (iii) a finite positive duality gap.
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5.1 Finite Positive Duality Gaps

5.1.1 Positive Gaps and Cones of Feasible Directions

We present characterizations for a finite positive duality gap under attainment assumptions in
Proposition 5.2. We first give sufficient conditions for a positive duality gap using well known
optimality conditions based on feasible directions.

Proposition 5.1 Let s̃ ∈ Fs
P , x̃ ∈ Fx

D, and 〈s̃, x̃〉 > 0. Suppose that s̃ ∈ D≤
D(x̃)∗ and x̃ ∈ D≤

P (s̃)∗.
Then s̃ is optimal for (2.2), x̃ is optimal for (2.3), and −∞ < vP < vD < ∞.

Proof.
The optimality of s̃ and x̃ follows immediately from the definition of the cones of feasible directions
and the Rockafellar-Pshenichnyi condition, see e.g., the proof of Theorem 4.10. The finite positive
duality gap follows from the hypotheses that both (2.2) and (2.3) are feasible, and that 〈s̃, x̃〉 > 0.
�

A well-known characterization for a zero duality gap can be given using the perturbation func-
tion. For example, define

vP (ǫ) := sup
y
{〈b, y〉 : A∗ y �K c + ǫ}, where ǫ ∈ V.

The connection with the dual functional φ(x) := supy 〈b, y〉 + 〈x, c −A∗ y〉 is given in e.g., [46].
Then the geometry shows that the closure of the epigraph of vP characterizes a zero duality gap.
We now use representations of the cones of feasible directions and the optimal solution sets Os

P ,Ox
D,

to present a characterization for a finite positive duality gap in the case of attainment of the primal
and dual optimal values.

Proposition 5.2 Suppose that K is closed, ỹ is feasible for (2.2), with corresponding slack s̃, and
that x̃ is feasible for (2.3). Then

s̃ ∈ Os
P , x̃ ∈ Ox

D, 〈s̃, x̃〉 > 0,

if, and only if,
x̃ ∈ D≤

P (s̃)∗ \ (K − s̃)∗, and s̃ ∈ D≤
P (x̃)∗ \ (K∗ − x̃)∗.

Proof.
Using the subspace problem formulations, the Rockafellar-Psheninchnyi condition implies that

s̃ ∈ Os
P (resp. x̃ ∈ Ox

D) ⇐⇒ x̃ ∈ D≤
P (s̃)∗ (resp. x̃ ∈ D≤

P (s̃)∗).

However, x̃ ∈ (K − s̃)∗ (or s̃ ∈ (K∗ − x̃)∗) holds if, and only if, 〈s̃, x̃〉 = 0. �

5.1.2 Positive Gaps and Strict Complementarity

In this section, we study the relationships between complementarity partitions and positive duality
gaps. In particular, we consider cases where the complementarity partition for the pair of faces
(f0

P , f0
D) fails to be strict. An instance with a finite positive gap is given in Example 2.5, item 2.

We provide another example to illustrate the application of the optimality conditions that use the
minimal sets.
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Example 5.3 We let K = K∗ = S
6
+, with A∗ y =

∑

i Aiyi and

A1 = E11, A2 = E22, A3 = E34, A4 = E13 + E55, A5 = E14 + E66,

ỹ = 0, c = s̃ = E12 + E66, b =
(
0 0 2 0 1

)T
, x̃ = E34 + E66.

The primal and dual recession cones (first complementarity partition) are

f0
P =

[
S

2
+ 0
0 0

]

� K, f0
D = QS

2
+QT

� K∗, where Q = [e3 e4];

and positionwise




f0
P 0 0
0 f0

D 0
0 0 G



 ,

where G = 02 represents the gap in strict complementarity. We note that f0
D ∩ {c}⊥ = f0

D. We
apply (2.15) with the second (or fourth) complementarity partition in Proposition 2.3. We choose

x =





02 0 0
0 I2 0
0 0 02



 ∈ relint f0
D = relint(f0

D ∩ {c}⊥).

We get fP � f1 := K ∩ {x}⊥ and the equivalent problem to (P)

(P) vP = sup{〈b, y〉 : A∗ y �f1
c}.

However, we need one more step to find fP . We again apply (2.15) and choose

0 6= x = E55 ∈ relint(f1 ∩ {c}⊥).

This yields fP = QS
3
+QT ,where Q = [e1 e2 e6].

Similarly, we can work on the dual problem. In summary, we get that the faces and recession
cones of the primal and dual are

f0
P =

[
S

2
+ 0
0 0

]

� K, f0
D = QS

2
+QT

� K∗, where Q = [e3 e4],

fP = QS
3
+QT , where Q = [e1 e2 e6], fD = QS

3
+QT , where Q = [e3 e4 e6].

The optimal values are vP = 0 and vD = 1. �

A connection between optimality and complementarity can be seen in the following proposition.

Proposition 5.4 Suppose that (2.2) has optimal solution ỹ with corresponding optimal slack s̃,
and that (2.3) has optimal solution x̃. Then

〈s̃, x̃〉 = inf {〈s, x〉 : s ∈ Fs
P , x ∈ Fx

D} .
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Proof.
Since s̃ is feasible, there exists ℓ′ ∈ L⊥ such that c = s̃ + ℓ′. Then for every feasible solution x of
(2.3) and every feasible solution (y, s) of (2.2), we have

〈s, x〉 = 〈c, x〉 − 〈b, y〉 =
〈
s̃ + ℓ′, x

〉
− 〈A x̃, y〉

= 〈s̃, x〉 +
〈
ℓ′, x̃

〉
− 〈x̃,A∗ y〉

= 〈s̃, x〉 − 〈x̃, c − s〉 +
〈
ℓ′, x̃

〉

= 〈s̃, x〉 + 〈x̃, s〉 +
〈
ℓ′, x̃

〉
− 〈c, x̃〉

︸ ︷︷ ︸

constant

.

The second equation above uses the facts ℓ′ ∈ L⊥, (x̃ − x) ∈ L. Now, using the subspace form
(2.9), (2.10) of the primal-dual pair, we conclude the desired result. �

Example 5.5 (S. Schurr [64]) It is possible to have a finite positive duality gap even if the com-
plementarity partition for the pair of faces (f0

P , f0
D) is strict. Let K = K∗ = S

5
+, and

A1 = E11, A2 = E22, A3 = E34, A4 = E13 + E45 + E55,

b =
(
0 1 2 1

)T
, c = E44 + E55.

Then

f0
P =

[
S

2
+ 0
0 0

]

, f0
D =

[
0 0
0 S

3
+

]

, fP = QS
4
+QT , fD =

[
0 0
0 S

4
+

]

,

where Q = [e1 e2 e4 e5]. The primal optimal value is zero and the dual optimal value is (
√

5− 1)/2,
and both are attained. This can be seen using the optimal s̃ = c for (2.2), and x̃ optimal for (2.3)
(optimal x∗ = x̃ has values 1/

√
5 and (3 −

√
5)/(2

√
5) for the diagonal (5, 5) and (4, 4) elements,

respectively). �

We also have an example without the attainment of the optimal values.

Example 5.6 Consider the SDP with data K = K∗ = S
5
+, and

A1 = E11, A2 = E22, A3 = E34, A4 = E13 + E55, b =
(
0 1 2 1

)T
, c = E12 + E44 + E55.

The primal optimal value is zero and the dual optimal value is 1, but neither value is attained. �

We now consider cases when the assumption that the complementarity partition for the pair
of faces (f0

P , f0
D) fails to be strict implies a finite positive duality gap. Our main result for the

relationship between the failure of strict complementarity and finite nonzero duality gaps follows.
We focus on the SDP case.

Theorem 5.7 Let K = S
n
+, suppose that the subspace L ⊂ S

n is such that the complementarity
partition for the pair of faces (f0

P , f0
D) minimally fails to be strict (dimG = 1, where the face

G := (f0
P )c ∩ (f0

D)c �K). Then for every M > 0, there exist x̃, s̃ ∈ relint G such that the underlying
problems (2.9) and (2.10) have a duality gap of exactly M .
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Proof.
First note that L∩K = {0} if, and only if, L⊥ ∩ int K 6= ∅ if, and only if, f0

P = K. Using this and
a similar result for L⊥ ∩ K = {0}, we conclude that both f0

P and f0
D are proper faces of K. Let

M > 0 be arbitrary and s̃ ∈ relint G such that 〈s̃, s̃〉 = M . In the definition of (D), let x̃ := s̃. We
claim that s̃ is optimal in (P) and (D). We prove the optimality claim by contradiction. Suppose s̃
is not optimal in (P). Since it is feasible, with objective value M , there must exist another feasible
solution of (D) with strictly better objective value. The latter implies, there exists u ∈ S

n such
that u ∈ L⊥, u � −s̃ and 〈s̃, u〉 < 0. Under an orthogonal similarity transformation, we have the
following representation of the faces:





G 0 0
0 f0

P 0
0 0 f0

D



 .

Then, s̃ =
√

ME11, and u � −s̃ implies that the 3 × 3 block of u is zero. Thus,

u =





α v̄T 0
v̄ V 0
0 0 0



 ,

where α < 0. Now let ŝ ∈ relint f0
P , that is,

ŝ =





0 0 0
0 ξ 0
0 0 0



 ,

where ξ ≻ 0. For every β ∈ R, (βŝ − u) ∈ L⊥. Moreover,

βŝ − u =





−α −v̄T 0
−v̄ βξ − V 0
0 0 0



 ≻ 0, ⇐⇒ (βξ − V ) +
1

α
v̄v̄T ≻ 0.

The latter is true for all sufficiently large β > 0. Hence, for all sufficiently large β > 0, (βŝ − u) ∈
L⊥ ∩ S

n
+ with rank (βŝ − u) = rank(ŝ) + 1, a contradiction. This proves, s̃ is optimal in (P).

Similarly, x̃ is optimal in (D). The duality gap is 〈x̃, s̃〉 = 〈s̃, s̃〉 = M , as claimed. �

Example 5.8 We now see that choosing one of s̃, x̃ in relint G may not result in a positive duality
gap. Consider the SDP with data K = K∗ = S

4
+, and

A1 = E44, A2 = E24 + E33, A3 = E13 + E22.

Then

f0
P =

[
0 0
0 R+

]

� K, f0
D =

[
R+ 0
0 0

]

� K∗,

and
G := (f0

P )c ∩ (f0
D)c = QS

2
+QT ,

where Q = [e2 e3]. If s̃ and x̃ are chosen such that s̃ ∈ relint (G) and x̃ ∈ G, with x̃33 > 0, then the
optimal values are both x33(s33 − s2

23/s22). However, there exist matrices s̃, x̃ ∈ G that are singular
on G such that (2.2) and (2.3) admit a positive duality gap. For example, if s̃ = x̃ is the diagonal
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matrix s̃ = x̃ = Diag((0 0 s33 0)), then the primal optimal value is zero and the dual optimal value
is x33s33.

1 Both values are attained at s̃ = x̃.

Note that the construction in the proof of Theorem 5.7 resulted in a primal-dual pair for which
every feasible solution is optimal. We further investigate this connection in the next two results.

Theorem 5.9 Let K be a closed convex cone. Suppose that the partition
(
f0

P , f0
D

)
is strictly com-

plementary and that the following condition holds:

s̃ ∈ (f0
D)c + L⊥, x̃ ∈ (f0

P )c + L. (5.1)

Then every feasible solution in (P) and every feasible solution in (D) is optimal and strong duality
holds for both (P) and (D).

Proof.
Suppose that (5.1) holds. Then by Proposition 3.4, part 2, fP ⊆ (f0

D)c and fD ⊆ (f0
P )c. Further

suppose that (f0
P , f0

D) forms a strict complementarity partition. Then (f0
D)c = f0

P . Since for all
feasible problems, f0

P ⊆ fP and f0
D ⊆ fD (Proposition 3.4, part 1), we actually have f0

P = fP and
f0

D = fD. Then, 〈fP , fD〉 = 0, i.e. every feasible point is optimal (and we have no duality gap). �

Corollary 5.10 Suppose that both (2.9) and (2.10) are feasible but strong duality fails either prob-
lem. In addition, suppose that all feasible points for (2.2) and (2.3) are optimal. Then the comple-
mentarity partition for the pair of faces (f0

P , f0
D) fails to be strict.

Proof.
Suppose that all feasible points for (2.2) are optimal. Then the primal objective function is constant
along all primal recession directions. That is, 〈x̃,L⊥ ∩ K〉 = {0}, i.e, x̃ ∈ (L⊥ ∩ K)⊥. Now by
construction, x̃ is dual feasible, i.e, x̃ ∈ (L⊥ ∩ K)⊥ ∩ K∗ = (f0

P )⊥ ∩ K∗ = (f0
P )c. Finally, as argued

previously, translating x̃ by a point in L leaves the dual problem unchanged, giving the condition
on x̃ in (5.1). In a similar way we can show that if all feasible points for (2.3) are optimal, then
the condition on s̃ in (5.1) holds. The desired result now follows from Theorem 5.9. �

5.2 Infinite Duality Gap and Devious Faces

As we have already noted, (2.3) is feasible if, and only if, x̃ ∈ K∗ + L. Moreover the feasibility of
(2.3) is equivalent to a finite duality gap (possibly zero), recalling our assumption that the primal
optimal value vP is finite. We now see that if a nice cone has a devious face, then it is easy to
construct examples with an infinite duality gap.

Proposition 5.11 Suppose that K is a nice, proper cone and F is a devious face of K∗, i.e.,

K∗ + (F c)⊥ = K∗ + span F and (K∗ + span F ) is not closed.

Let L = spanF and choose c = s̃ = 0 and x̃ ∈ (K∗ + (F c)⊥)\(K∗ + L). Then (x̃ + L) ∩ K∗ = ∅
and we get vD = +∞. Moreover, L⊥ = F⊥ and, for every feasible s ∈ F⊥ ∩ K,

〈x̃, s〉 =
〈

x̃K∗ + x̃(F c)⊥ , s
〉

≥ 0,

i.e., 0 = vP < vD = ∞.

1Similarly, we can use the 2, 2 position rather than the 3, 3 position.

23



Proof.
The proof follows from the definitions. �

Proposition 5.11 can be extended to choosing any L that satisfies K∗ + L is not closed and
K∗ + L ⊂ K∗ + (F c)⊥.

Example 5.12 Let K = S
2
+, and suppose that (2.2) and (2.3) admit a nonzero duality gap. Then

Slater’s CQ fails for both primal and dual, i.e., {0} 6= f0
P ⊂ S

2
+ and {0} 6= f0

D ⊂ S
2
+. After a

rotation (see Lemma 2.8) we can assume the problem has the structure

[
f0

D 0
0 f0

P

]

,

viz., the matrices in f0
D are nonzero only in the (1, 1) position, and the matrices in f0

P are nonzero
only in the (3, 3) position. There are only three possible options for L: span {E11}, span {E22},
span {E11, E12}, or span {E22, E12}. In each case, either L is one-dimensional and L⊥ is two-
dimensional, or vice versa. So without loss of generality, we may choose L = span {E11}. Now
take x̃ = E12 ∈ S

2
+ + (f0

P )⊥. Then

x̃ /∈ S
2
+ + L = S

2
+ + span f0

D ⊂ S
2
+ + (f0

P )⊥, (5.2)

and the dual program (2.3) is infeasible. But choosing c = s̃ = E22 implies that the primal optimal
value vP = 〈c, x̃〉 − y1 〈E22, x̃〉 = 0 < vD = +∞.

Corollary 5.13 If K = S
2
+, then a finite positive duality gap cannot occur.

Proof.
See Corollary 4.13. �

The above Corollary 5.13 also follows from [66, Prop. 4], i.e., it states that a finite positive
duality gap cannot happen if dimW ≤ 3.

5.3 Regularization for Strict Complementarity

Suppose that strong duality holds for both the primal and dual SDPs, but strict complementarity
fails for every primal-dual optimal solution (s̄, x̄) ∈ S

n
+ ⊕ S

n
+. Following [71], (s̄, x̄) is called a

maximal complementary solution pair if the pair maximizes the sum rank(s) + rank(x) over all
primal-dual optimal (s, x). The strict complementarity nullity, g := n − rank(s̄) − rank(x̄).

Let U = N (s̄) ∩ N (x̄) be the common nullspace of dimension g, and U be the n × g matrix
with orthonormal columns satisfying R(U) = U . Let

[
U Q

]
be an orthogonal matrix. Then we

can regularize so that strict complementarity holds by replacing both primal-dual variables s, x by
QsQT , QxQT , respectively. This is equivalent to replacing the matrices C,Ai, i = 1, . . . ,m that
define A by QT CQ,QT AiQ, i = 1, . . . ,m. (Note that we would then have to check for possible
linear dependence of the new matrices QT AiQ, as well as possible loss of Slater CQ.) Finding the
common nullspace can be done dynamically during the solution process. This is done by checking
the ratios of eigenvalues of s and x between iterates to see if the convergence is to 0 or to O(1). (In
the case of LP, this corresponds to identifying nonbasic variables using the so-called Tapia indices,
see e.g., [30].)
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6 Conclusion

In this paper we have looked at known and new, duality and optimality results for the cone opti-
mization problem (2.2). We have used the subspace formulations of the primal and dual problems,
(2.9),(2.10), to provide new CQs and new optimality conditions that hold without any CQ. This
includes a UCQ, i.e., a CQ that holds independent of both data vectors b and c. In particular,
the optimality characterizations show that a minimal representation of the cone and/or the linear
transformation of the problem results in regularization, i.e., efficient modelling for the cone K and
for the primal and dual constraints results in a stable formulation of the problem. In addition, we
have discussed conditions for a zero duality gap and the surprising relations to the lack of strict
complementarity in the homogeneous problem and to the closure of sums of cones. The (near)
failure of Slater’s CQ relates to both theoretical and numerical difficulties. The same holds true
for the failure of strict complementarity. We have discussed regularization procedures for both fail-
ures. We hope that these results will lead to preprocessing for current cone optimization software
packages.
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[48] C. Mészáros and J. Gondzio. Addendum to: “Presolve analysis of linear programs prior
to applying an interior point method” [INFORMS J. Comput. 9 (1997), no. 1, 73–91; MR
99a:90120] by Gondzio. INFORMS J. Comput., 13(2):169–170, 2001. 3

[49] R.D.C. Monteiro. First- and second-order methods for semidefinite programming. Math.
Program., 97(1-2, Ser. B):209–244, 2003. ISMP, 2003 (Copenhagen). 3

[50] Y.E. Nesterov and A.S. Nemirovski. Interior Point Polynomial Algorithms in Convex Pro-
gramming. SIAM Publications. SIAM, Philadelphia, USA, 1994. 5

[51] A.G. Pais. Cone extreme points and faces. J. Math. Anal. Appl., 126(1):223–228, 1987. 8

[52] G. Pataki. On the closedness of the linear image of a closed convex cone. Math. Oper. Res.,
32(2):395–412, 2007. 12, 13, 17
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