Items: 1 - 19 of 19
Items Authored by: Wolkowicz, Gail
Note pointers do not work - from MathSciNet search.
) Copyright American Mathematical Society 1996
[1] 1 371 866 Wolkowicz, Gail S. K.; Ballyk, Mary M.; Lu, Zhiqi Microbial dynamics in a chemostat: competition, growth, implications of
enrichment.
Differential equations and control theory (Wuhan, 1994),
389--406, Lecture Notes in Pure and Appl. Math., 176,
Dekker, New York, 1996. 92D25 (34C99)
[2] 1 360 033 Ruan, Shi Gui; Wolkowicz, Gail S. K. Persistence in plankton models with delayed nutrient recycling.
Proceedings of the G. J. Butler Workshop in Mathematical Biology
(Waterloo, ON, 1993).
Canad. Appl. Math. Quart. 3 (1995), no. 2, 219--235.92Dxx (34C35 34K15)
[3] 1 340 025 Wolkowicz, Gail S. K.; Ballyk, Mary M.; Daoussis, Spiro P. Interaction in a chemostat: introduction of a competitor can promote
greater diversity.
Second Geoffrey J. Butler Memorial Conference in Differential Equations
and Mathematical Biology (Edmonton, AB, 1992).
Rocky Mountain J. Math. 25 (1995), no. 1, 515--543.92D25 (80A30)
[4] 1 320 432 Ballyk, Mary M.; Wolkowicz, Gail S. K. An examination of the thresholds of enrichment: a resource-based growth
model.
J. Math. Biol. 33 (1995), no. 4, 435--457.92-xx
[5] 95e:92014 Hsu, Sze Bi; Waltman, Paul; Wolkowicz, Gail S. K. Global analysis of a model of plasmid-bearing, plasmid-free competition
in a chemostat.
J. Math. Biol. 32 (1994), no. 7, 731--742.92D25
[6] 95e:92011 Ballyk, Mary M.; Wolkowicz, Gail S. K. Exploitative competition in the chemostat for two perfectly
substitutable resources.
Math. Biosci. 118 (1993), no. 2, 127--180.92D25 (34C35)
[7] 94c:92019 Tang, Betty; Wolkowicz, Gail S. K. Mathematical models of microbial growth and competition in the
chemostat regulated by cell-bound extracellular enzymes.
J. Math. Biol. 31 (1992), no. 1, 1--23. (Reviewer: Lan-Sun Chen) 92D25 (34C99 34D05)
[8] 93b:92019 Wolkowicz, Gail S. K.; Lu, Zhi Qi Global dynamics of a mathematical model of competition in the
chemostat: general response functions and differential death rates.
SIAM J. Appl. Math. 52 (1992), no. 1, 222--233.92D25 (34C35)
[9] 92c:92027 Wolkowicz, Gail S. K. Invasion of a persistent system.
Geoffrey J. Butler Memorial Conference in Differential Equations and
Mathematical Biology (Edmonton, AB, 1988).
Rocky Mountain J. Math. 20 (1990), no. 4, 1217--1234. (Reviewer: K. Gopalsamy) 92D25 (34D10 92D40)
[10] 91j:92012 Mischaikow, Konstantin; Wolkowicz, Gail A predator-prey system involving group defense: a connection matrix
approach.
Nonlinear Anal. 14 (1990), no. 11, 955--969. (Reviewer: Stanis\l aw S\c edziwy) 92D40 (34C23 58F14)
[11] 91c:92060 Mischaikow, Konstantin; Wolkowicz, Gail S. K. A connection matrix approach illustrated by means of a predator-prey
model involving group defense.
Mathematical ecology (Trieste, 1986),
682--716, World Sci. Publishing, Teaneck, NJ, 1988. (Reviewer: Joseph So) 92D25 (58F12 58F25)
[12] 90f:92027 Wolkowicz, Gail S. K. Successful invasion of a food web in a chemostat.
Math. Biosci. 93 (1989), no. 2, 249--268. (Reviewer: K. Gopalsamy) 92A15 (34D40 92A17)
[13] 89g:92058 Wolkowicz, G. S. K. Bifurcation analysis of a predator-prey system involving group
defence.
SIAM J. Appl. Math. 48 (1988), no. 3, 592--606. (Reviewer: Joseph So) 92A17 (34C25 34C35 58F14)
[14] 89a:92035 Butler, G. J.; Wolkowicz, G. S. K. Exploitative competition in a chemostat for two complementary, and
possibly inhibitory, resources.
Math. Biosci. 83 (1987), no. 1, 1--48. (Reviewer: J. Tóth) 92A15
[15] 88j:92073 Freedman, H. I.; Wolkowicz, G. S. K. Predator-prey systems with group defence: the paradox of enrichment
revisited.
Bull. Math. Biol. 48 (1986), no. 5-6, 493--508. (Reviewer: J. M. Cushing) 92A17
[16] 88e:92020 Butler, G. J.; Wolkowicz, G. S. K. Predator-mediated competition in the chemostat.
J. Math. Biol. 24 (1986), no. 2, 167--191. (Reviewer: K. E. Swick) 92A15 (34D20)
[17] 87e:92011 Butler, G. J.; Wolkowicz, G. S. K. A mathematical model of the chemostat with a general class of functions
describing nutrient uptake.
SIAM J. Appl. Math. 45 (1985), no. 1, 138--151.92A08 (92A09)
[18] 925 673 Freedman, H. I.; Wolkowicz, G. S. K. A mathematical model of group defence in predator-prey systems.
Dynamical systems and environmental models (Eisenach, 1986),
149--153, Math. Ecol.,
Akademie-Verlag, Berlin, 1987. 92A15
[19] 877 980 Butler, G. J.; Wolkowicz, G. S. K. Predator-mediated coexistence in a chemostat: coexistence and
competition reversal.
Mathematical modelling in science and technology (Berkeley, Calif.,
1985).
Math. Modelling 8 (1987), 781--785.92A15 (92A09)
) Copyright American Mathematical Society 1996