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Abstract
Let G = (N, E) be a given undirected graph. We present several new techniques for

partitioning the node set N into k disjoint subsets of specified sizes. These techniques involve
eigenvalue bounds and tools from continuous optimization. Comparisons with examples taken

from the literature show these techniques to be very successful.

1 Introduction

Let G = (N, E) be a given undirected graph with node set N = {1,...,n} and edge set E.
A common problem in circuit board and micro-chip design, computer program segmentation,
floor planning and other layout problems is to partition the node set NV into k disjoint subsets
S1y...59% of specified sizes m; > mqy > ... > my, Ele m; = m, so as to minimize the number of
edges connecting nodes in distinct subsets of the partition. We refer to an edge, which connects
nodes in distinct subsets of the partition, as being cut by the partition. A recent survey on the
graph partitioning problem and further related problems is contained in [1].

The graph partitoning problem can be formulated as a 0-1 quadratic programming problem
(see e.g. [2]): let X € R™** with the columns

iBj = (iI)lj 1B2j .. .iEnj)t
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being the indicator vector for the set §;,5 =1,...k, i.e.

1 if i€,
Ti; =
! 0 if i¢gs§;.

Let Ay = (ai;) be the adjacency matriz for G, i.e. a;; denotes the number of edges connecting

nodes ¢ and j,% # j,a; = 0,72 =1,...,n. Then

n n 1
Zzarsmrjwsj = §$;A0Z] (11)
r=1s=1

is the number of edges with both endpoints in 5;. Moreover, the nonnegative integer matrix X

N | =

defines a partition if and only if its elements satisfy the transportation problem constraints

n -
Yz @iy =my,J = 1,0k,
k .
YimiZ =1, i=1,...,n.
To minimize the number of edges cut in a partition, we can maximize the number of edges not

cut. Our problem becomes

max % tr XtAX
s.t. Xup =u,
(P)

t .
Xtu, =m

X is a 0,1 matrix ,

where tr denotes trace, u; € 7 is the vector of ones, and m = (my, ..., m;)" is the ordered vector
of specified sizes. We allow for general matrices A in the objective function rather than restrict
A = A,. (The matrix A may contain weights for the edges.)
For a given partition X, we say that T' = (¢;;) € " represents the partition X if
t =

7

{ 1 if nodes 7 and j belong to the same subset

0 otherwise.

Then each partition is identified with a matrix 7. The nonzero eigenvalues of T are my,..., my

with normalized eigenvectors ﬁzzzj,j =1,...,k, where the z; are the columns of X. Thus
T= VMV, |IT|P = |M|F, (1.2)
where M = diag(m) € R***, ||M||® = trM*M is the Frobenius norm, and the columns of V are

v; = ——z;. Note that T = VMVt = XM-'?MM-1/2Xt = X X?,

Vg

|A=TI|* = ||A|[* +|[T|]* - 2tr AT
= |[A]]* + [|M]|* - 2tr AT,

and %trAT is the number of edges not cut by the partition. In addition

trAT =tr AXX?
=tr Xt1AX .



Therefore, an equivalent formulation to (P) is the best matrix approximation problem
(F) min{||4 —T||: T represents a partition} .

The formulation (P) is very similar to the quadratic assignment problem, QAP. Continuous
optimization techniques are employed in [3, 4, 5] to find bounds for the QAP. In particular, a
projection technique is used in [4] to eliminate the constraints on the row and column sums of
X. An iterative improvement of QAP bounds, based on ”reductions”, is presented in [5]. In this
paper we extend the continuous optimization techniques from [4, 5] to the graph partitioning
problem.

The rest of the paper is organized as follows. This section is concluded with an overview of
existing results for the graph partitioning problem that are relevant in the present context.

In Section 2 we first scale (P) to get an equivalent scaled program (SP) for which the vector
m of specified sizes becomes a vector of ones. The orthogonal relaxation of this program yields
the eigenvalue bound for (P) proposed in [6].

In Section 3 we extend the projection technique from [4] to (P) to get an equivalent program
(EP), where the constraints on the row and column sums of X are implicitly satisfied. The
program (EP) is the key to several new bounds. These will be presented in Section 4. We also
discuss several special cases where the bound can be further strengthened.

In Section b we exploit the concept of diagonal perturbations to improve the bounds. We use
an iterative improvement technique to find the best perturbations. Section 6 shows how to find
feasible solutions using information from the bounding techniques.

We conclude with some numerical experiments in Section 7 both on published data and on
randomly generated graphs. We are able to solve smaller problems (n < 20) to optimality in
many cases using the new bounds. In general the best upper bounds proposed in this paper

constitute a substantial improvement over the existing bounding rules.

Overview of previous related research

In [7, 6] spectral information of A4 is used to bound the objective function of (P). Boppana [8]
considers graph bisection, i.e. m; = m, = 7, and improves the eigenvalue bound from [6] for this
special case. The papers [9, 10] describe Branch and Bound approaches to solve the partitioning
problem in the case k = 2 and for general weighted graphs. Both methods seem to work only for
extremely thin graphs ( average degree not more than 4).

Several articles are devoted to finding ”good” partitions using spectral information from A.
In [11] the formulation (F) is used and a transportation problem is proposed to find a feasible X.
The transportation costs are determined by the (pairwise orthogonal and normed) eigenvectors
of A, corresponding to the k largest eigenvalues. The formulation (P) is used in [2]. Therein Aq
is shifted by a diagonal matrix D so that A = A+ D is positive semidefinite. Then the Cholesky

decomposition of A is used to improve a given partition.



Node Connections to
1 7,12,13,14,15,16,17
2 12,17,18,20
3 5,11,13,14,18,19,20
4 6,9
5 7,9,10,12,16,19
6 16,18,20
7 8,9,11,16
8 15,18
9 11,15,19
11 14,17,18,20
12 14
13 18,20
14 16,18,20
16 18
17 18
18 20

Table 1.1: Edge set of Example 1

Finally a survey on various aspects of the graph partitioning problem and further references

are contained in Chapter 6 of [1].

Example 1. We will illustrate our results, as we progress through the paper, on the following
example from [6]. The graph has 20 nodes and we partition it into two equal parts, i.e. m; =
my; = 10. The connections are given in Table 1.1. Note that the cardinality |E| = 51. This

provides a trivial upper bound on the number of edges not cut by any partition.

2 Preliminaries

We first present some notation and basic results. We let Oy ; (or O when the meaning is clear)
denote the set of k X I orthogonal matrices, i.e. Q € O, if Q*Q = I. The vector of ones
isw = (1,...,1) € ®; r(K) = Ky is the vector of row sums of a k x [ matrix K, while
s(K) = ulKu is the sum of all the elements of K. We denote by m = (mq,---,my) the
vector of specified sizes of the partition and assume without loss of generality that m is ordered
nonincreasingly. We let the (positive) diagonal matrix M = diag (m), while for a given matrix
M, diag (M) denotes the vector formed from the diagonal of M. For a given Hermitian matrix
A, X;(A) denotes the j** largest eigenvalue of A.



The set of matrices satisfying the transportation constraints of (P) forms an affine space of

matrices and is denoted by &:
E={X e ®*: Xup = u,, X'u, = m}. (2.1)
The set of nonnegative matrices is
N ={X € % : X > 0 elementwise }.
The feasible set of matrices for (P) is
F={XeR"*:2;is00r 1} NE. (2.2)
Lemma 2.1 The feasible set satisfies

F ENNN{X e ®™F: X'X = M}

ENNN{X e RV* : tr X' X = n}.

Proof.  We prove only that the second set on the right is contained in F. (The rest is clear
from the definitions.) We see that

XeN,Xuy=u, = 0<e; <1
= azfjgazij.

And so
n=trX'X <s(X)=u.Xu=n

implies

2 . .
T = Tijy Vi, ]

The above lemma suggests several relaxations of the constraints of the graph partitioning
problem (P). First, the relaxation to X € £ N A corresponds to Quadratic Programming. Note
that A is in general indefinite (e.g. diag(A4,) = 0), so the (global) maximum is difficult to find.
Relaxing to X € {X € R"** : X*X = M} leads to the eigenvalue bound derived in [6], see also

Theorem 2.1 below. In this paper we strengthen the bound by maximizing over
Xc{XcR*: X'X = M}né&.
We now scale X in (P) in order to change M to the identity I. We let
X =YM*'? (2.3)

and define
m= MY = (V/my,...,v/mz)t



Note that
m=M1*m

and
| m =l wn [|= v/n

The constraint Xu; = u, is equivalent to (X M~1/2)(M* ?u;) = u, while X*u, = m is equivalent
to (X M~Y/?)tu, = M~'/*m = m. Therefore the problem (P) is equivalent to the scaled problem

max % tr MYtAY
4. Ym=u,
(SP) Sl M
Yiu, = m
YM'Y?is0,1.
Note that Y is n X &k and
Y = (XM Y)Y XM =1.

Moreover Y'Y m = m and YY'u, = u,, i.e. 1 is a singular value of Y with right and left singular
vectors m and u,.

We conclude this section with an eigenvalue based upper bound on |E,, .|, the weight of
edges not cut by any partition. This bound was proposed by Donath and Hoffman in 1973 and
is the starting point of the present paper. In the subsequent sections we will provide various
improved versions of this bound. The bound follows from the scaled program (SP) by relaxing

the constraints to Y'Y = I. This is a different derivation than the one in [6].

Theorem 2.1 [6] Let A and m describe a graph partitioning problem. Then
1 . . 1 1
|Eyncut| < max{itrMY AY : Y'Y =1} = 5Z)xj(Jv_r)Aj(A) =3 Y miXi(A). (2.3)
j=1 j=1

The proof, using Lagrange multipliers, is similar to that given in [5] for general square matrices
Aand M. X can be recovered using (2.3). Note that the transportation constraints corresponding

to X € £ as well as nonnegativity constraints are dropped and only X*X = M is maintained.

Example 1 (continued) In Tables 2.1 and 2.1, we summarize the various bounds for Ex-
ample 1 in detail. Table 2.1 contains the relevant eigenvalue information and the upper bounds.
The corresponding maximizers X are summarized in Table 2.1. Since A;(4) = 6.0429 and
A2(A4) = 3.1375, we get an upper bound of 45.9019 using Theorem 2.1. Thus no partition leaves
more than 45 edges uncut. We point out that the maximizer X does not give any clue on how

to obtain a good feasible partition from X.



Bound | eigenvalues
Theorem 2.1 | 45.9019 | 6.0429 3.1375
Corollary 4.1 | 42.1219 | 3.3254 2.1946
Lemma 5.3 38.5516 | 2.6103 2.6103

Table 2.1: Upper bounds for |E,,:| in Example 1.1. The eigenvalues given are the two largest

of A for Theorem 2.1 and of A for the remaining bounds.

X, X, X, X, X, X,
0.7530  0.4120 | 0.6406 0.3594 | 0.4282 0.5718
0.5510 -0.6441 | 0.0478 0.9522 | -0.0952  1.0952
0.9867 -0.2220 | 0.1052 0.8948 | -0.0355  1.0355
0.1746  0.3196 | 0.7922 0.2078 | 1.0256 -0.0256
0.6558 1.3613 | 1.2658 -0.2658 | 1.0287 -0.0287
0.5349 -0.3579 | 0.2295 0.7705 | 0.7049 0.2951
0.6799 1.2116 | 1.1458 -0.1458 | 1.0567 -0.0567
0.3638  0.3119 | 0.7042 0.2958 | 1.0558 -0.0558
0.5199 1.3605 | 1.3322 -0.3322 | 1.0194 -0.0194
0.1085 0.4339 | 0.8536 0.1464 | 1.0205 -0.0205
1.0031 -0.0850 | 0.1915 0.8085 | -0.0641 1.0641
0.4967 0.2494 | 0.6112 0.3888 | 0.2216 0.7784
0.6593 -0.5396 | 0.0341 0.9659 | -0.0824  1.0824
1.0421 -0.3468 | 0.0058 0.9942 | -0.0477  1.0477
0.2708  0.6644 | 0.9772 0.0228 | 1.0196 -0.0196
0.8131  0.4408 | 0.6033 0.3967 | 0.9723 0.0277
0.5882 -0.3871 | 0.1800 0.8200 | -0.0918  1.0918
1.2476 -0.8974 | -0.3540  1.3540 | -0.0163  1.0163
0.3578  0.7968 | 0.9851 0.0149 | 0.9113  0.0887
0.9970 -0.9857 | -0.3511  1.3511 | -0.0316  1.0316

Table 2.1: Three Maximizers X producing the bounds of the previous Table 2.1.



3 Projection of (P)

We now project the feasible set of the problem (P) onto the linear manifold defined by the
constraints £. We do this by eliminating the constraints £ while simultaneously maintaining the
trace structure of the objective function and the orthogonality properties of the constraints. This
structure allows us to still apply the eigenvalue bounds. This extends the projection technique
in [4] for the QAP.

We let P and @ be orthogonal matrices with
Uy, m

For example, we could apply the Gram-Schmidt process to the columns of the full rank matrix

7 0
I
to obtain V;. Note that V, V! is the orthogonal projection on {u,}* while V; V} is the orthogonal

projection on {m}*. Let

P=] Vil.

PtAP:la afl,QtMQzlﬁ g ]
a A

b M
where X R

A=V!AV,, M = VMV,

a = Vir(4)/vn, b=Vir(M*?)/\/n,

o=s(A)fn, B =s(M)fn=Nmn.
We define the following program in the variable Z ¢ R(»~1)x(k-1),

max % tr (MZtAZ + 2Z%ab’ + af3)
(EP) { st Z2'Z-1,
Vo ZVi > —Lugt,

We will see that (EP) is equivalent to (P). This follows from the following characterization of
the feasible set F' of (P).

Lemma 3.1 Let P,Q and M be as above. Suppose X isnxk, Z is(n—1)x(k—1) and X and
Z are related by

1 0
X=P l 0z ] Q' M2, (3.1)
Then
(a) Xe&

(b) XeN = V. ZV{ > —Lu,mt



(¢) X' X=M <= Z€Opm_1)xx-1)
Proof. First note that expanding (3.1) yields
X = %unu}iM + V. ZVE M2, (3.2)
Now observe that, since Vu, = 0, we get
Xtu, = %Mukufbun + Ml/szZtV,fun = Mug = m.

Similarly,

1
Xuy, = —uput Muy + Vo ZVEM Py, = u,,
n

because V! M'/?u;, = 0. Thus a) is proved. By (3.2) we can write
1

X = —u,m'M? + V,ZV;! M2,
n

Thus .
XeN = V,ZV} > ——u,mt,
n

because multiplying with the positive diagonal matrix M ~'/? does not change the inequality.
Finally note that

1 0 1 0
X X=M — Qlo ZthtPlO Zth:I — ZeO,

because P and () are orthogonal. a
This lemma shows in particular that, given an arbitrary (n — 1) X (k — 1) matrix Z, there
exists a (unique) matrix X € £, satisfying (3.1). Conversely, any X € £ uniquely determines Z
by
Z = VXM Y,

using (3.2). We prove now that (P) is indeed equivalent to (EP).
Theorem 3.1 Suppose X and Z satisfy (3.1). Then Z solves (EP) <= X solves (P).

Proof. Lemmas 2.1 and 3.1 show that X is feasible for (P) if and only if Z is feasible for
(EP). The result follows upon noting that the objective function values of (P) and (EP) are
equal for matrices X and Z related by (3.2), i.e.

tr X'AX =tr(iMuul + M2V, Z'V)A(Ruub M + V, ZVEM?)
= tr | (vl Au, ) (ul M?uy) + 228V Au,ub MBIV, + (VEMVE) ZH(VEAV,)Z] .

= anS(A)S(M2) + tr [MZtAZ + %ZtV,fT(A)rt(M?’/z)Vk]



The projection technique was based on the decomposition given in Lemma 3.1. This technique
can be generalized using the singular value decomposition of X. Suppose that U € O,; and

V € O, are orthogonal matrices satisfying

XU =VX

XV =UYx,

for some matrix ¥ € ®"'. Let P and Q be square orthogonal matrices with P = [VV], Q = [UU].
Then

XXV =XUx=VY¥?

X'XU =X'VE=U%?

and
VIXU VXU
P'XQ=| _ _
ViXU VXU
or
X=P x _ 0 _ | Q.
0 VXU

We therefore get a decomposition of X which becomes particularly nice if X is orthogonal, for
then both ¥ and V!XV must also be orthogonal.

4 Bounds for (P)

Using the equivalent program (EP) instead of of the original problem (P), we get new bounds
for (P). First note that due to the elimination of the constraints £ we have a linear term in
the objective function of (EP), while (P) has a purely quadratic objective function. Maximizing
(EP) over orthogonal Z is in general difficult, because the linear term does not allow a direct
application of the bound from Theorem 2.1. Therefore we treat the quadratic and linear part
separately. The quadratic part is bounded using Theorem 2.1 while maximizing a linear function

over the constraints (P) is equivalent to a (bipartite) transportation problem, and so can be

handled directly.

Theorem 4.1 Let A and m describe a graph partitioning problem. Assume that the nodes are
numbered such that r(A) = (r1(A),...,7.(A4)), the vector of row-sums of A, is in nonincreasing
order and define po = 0 and the partial sums p; = Y)_, m; and R;(A) = S iTi(A), 7=
1,..., k. Then

N - 1
|Buncutl < 5 z;}\j(A))\j(M) + = D Ri(A)m; — o s(A)s(M?). (4.1)
=

2n?



Proof. The quadratic term in (EP) is bounded independently of the linear term by Theo-

rem 2.1, contributing the first summand in (4.1). To bound the linear term of (EP) we observe

trab'Zt = LtrV}Au,ul M3/*V, 7
= :—LtrAunuiM?’/z(M_l/th - %Mlﬂukufl)

= %tr {r(A)r*(M)X*} — nl—z.s(A)s(Mz).

The first equality follows from the definition of a and b, the second from (3.2). It is easy to verify
that due to the ordering of r(4) and m, the transportation problem

max{tr r(A)r'(M)X"': X € F}

has optimal value

i=1
(Take the partition where nodes 1,...,m; belong to S;, nodes m; + 1,...,m; + m, belong to
S, , etc.) Summing all the terms completes the proof. a

We point out that in general there will not be a matrix X for which the bound is attained,
because we maximize two terms independently. In the following three special cases however, we

are able to treat the objective function as a whole.

Corollary 4.1 Under the conditions of Theorem 4.1 assume that m; = ... = my, (i.e. partition
into k blocks, each of size ). Then

1 ) n k21 - 1
| Eyneut| < max{ﬁtrXtAX X &, XX = EI} = 2% 2_:}‘1(‘4) + ﬁs(A).
Moreover the bound s attained for
1 t n t
X = Eunuk + EVnZVk
where Z = (z1,...,2;_1) € O contains the eigenvectors z; corresponding to )\j(A).

Proof. By substituting M = I in (EP) and using the expansion of the linear term, contained

in the proof of Theorem 4.1, we get

1 . 1 1
StrXTAX = %trIZtAZ + ~tr r(A)r(M)X* = 35 s(4)s(M).
Now note that X € £ implies
n n
Tt(M)XtI E ZXt— Eut



Thus the linear term is constant:

Finally we have

Bounding the quadratic term again by Theorem 2.1 and summing the remaining (constant)
terms proves the upper bound. The upper bound for the quadratic term is attained for Z con-
taining the (normalized and pairwise orthogonal) eigenvectors corresponding to the first £ — 1

largest eigenvalues of A. X is recovered using (3.2). O

It is worth mentioning that the bound from Corollary 4.1 is equivalent to the bound proposed
by Boppana [8] in the case k = 2. We leave it as an exercise for the interested reader to establish

this equivalence. Boppana’s bound however does not seem to allow a generalization to k > 2.

Corollary 4.2 Under the conditions of Theorem 4.1, assume that u, is an etgenvector of A with

eigenvalue t. (This occurs for instance if A = A, and the underlying graph is t—regular.) Then
1
meﬂgnmﬂﬁnXMX:XeggWX:An_ §:A +—ﬂuﬁ)

Moreover the bound s attained for
1
X = “uut M + VWUV M*/?
n

where U € Oy_1 -1 diagonalizes M and W € On_1,k-1 contains the eigenvectors corresponding

to the k — 1 largest eigenvalues of A.

Proof. We first show that in this case the linear term in (EP) vanishes. We have, as in the

proof of Theorem 4.1,

tr(ab’Z') = Lir(uiM)(X‘tu,)— Ls(M?)

tr(m'm) — Ls(M?)

The upper bound for the quadratic term is attained for Z = WU* where U € O diagonalizes
M, and W € O contains the eigenvectors corresponding to the k — 1 largest eigenvalues of A X

is recovered using (3.2). ]

In the previous two cases we were able to strengthen Theorem 4.1 because in these cases the
linear term in the objective function of (EP) was constant for all feasible X. We conclude this
section with a nontrivial extension of Theorem 4.1 in the case k¥ = 2, i.e. partition into two blocks

(of possibly different sizes).

12



Corollary 4.3 Under the conditions of Theorem 4.1 assume that k = 2. Then
1
| Euncut| < max{itrXtAX : X € £,X'X = M} =max{z'Cz + ¢’z + const : 2z = 1},

where .
FAS éRn_l, C = —m]_mzA,
n

myMmy My — My
c= V!Au,,
n n

1 2
const = ﬁs(A)s(M ).

Proof. From (EP) it is clear that the matrix Z = z € ! and M is a scalar. Note further
that by the definition of V; we can set

1 t
Vi = %(—\/m_z Vmi)'.

Thus )
M = VMV, = Zmym,.
n

The quadratic term in (EP) therefore simplifies to z*C'z, and the linear term simplifies to ¢*z. O
We point out that the (global) maximum of
{2'Cz + 'z + const : 2*z = 1}

can be calculated efficiently, see [12, 13, 14]. The main computational steps involve finding the
eigenvalues of the symmetric matrix C' and the largest zero of a rational function, see [13, 14] for

details and computational experiments. The maximizing z can be recovered using the eigenvectors

of C.
Example 1 (continued) );(A) = 3.3254. Using Corollary 4.1 we get
n . 1

Thus no partition leaves more than 42 edges uncut. Note also (see Table 2) that the largest
eigenvalue of A is simple and so the maximizer Z is unique up to multiplication by —1. It

produces a matrix X where already several components are either close to 0 or close to 1, see

Table 3.

13



5 Diagonal Perturbations to improve the Bounds

It is a trivial observation to note that loops in a graph (i.e. edges joining some ¢ € V to itself)
are not cut by any partition. Therefore adding ”weighted loops” to our graph, i.e. replacing A
by A + diag(d) for some d € R™ does not affect the graph partitioning problem, see also [2, 6].
To be more specific we will first show that adding a multiple of the identity to A not only leaves
the graph partitioning problem unchanged, but also all the bounds described so far.

Lemma 5.1 Let A and m describe a graph partitioning problem. Let A(a) := A + ol for some
a € R. Then
trX'AX =trX'A(a)X —an, VX:X'X =M. (5.1)

Moreover, the upper bounds from Theorem 2.1 and from Section j give the same result when
applied to the left hand side and to the right hand side of (5.1).

Proof. The equality (5.1) is obvious. Therefore any bound obtained by maximizing over
X'X = M will be unaltered by the change in A. The only open case is Theorem 4.1 because
there we maximize two terms independently.

We first point out that

A(a) = A+ al,_,
S(A(a)) = s(4) + an,
R;(A(a)) = R;(4) + am;,
. 1 1
trM = trM — —trM* = n — —s(M?).
n n

The last relation follows using V3 V¥ = I — Lmsmt. Let us denote by EPB(A) the eigenvalue
bound of Theorem 4.1 applied to the matrix A. Bounding the right hand side in (5.1) we get

EPB(A(a) - yan = o S A(A@) () + - 30 By(A(@))m; — 5 5 s(A(a))s(M?)
—ian
= _Z)\ M)+ aZ)\ +%ZRJ»(Am+

1 1
+— aE m? 2n23 A)s(M?) 2nas(M) 50n
1 1
= EPB(A)+ a(trM - —ter) + as(z\/_r?) — —as(M?) - Son

2n
= EPB(A).

As mentioned above, a general perturbation of the main diagonal of A does not affect the

edges cut by a partition. This has been pointed out and used by several researchers in the past.

14



Lemma 5.2 [2] [6] For d € R let A(d) = A + diag(d). Then
trX'A(d)X = trX"AX + s(d)
for all partitions X .

If d is arbitrary then A;(A(d)) will in general be different from A;(A)+d;, so the upper bounds
may vary with d. In view of Lemma 5.1 it is sufficient to consider perturbations d that sum up
to 0. Then the graph partitioning problems with matrices A(= A(0)) and A(d) are identical and
we may choose any A(d) where s(d) = 0 to derive an upper bound.

In the following we focus on the special case of Corollary 4.1, even though the techniques can

be extended to the general case (but become more complicated).

Let
A(d) := A + V'diag(d)V,,

and

k-1

g(d) =Y X;(A(d))

7j=1

Donath and Hoffman [6] point out that
k
Ai(A+ B)

j=1

is a convex function of B for A fixed, provided both A and B are symmetric. Therefore g(d) is

convex. Moreover, using Theorem 4.6 in [15], it is easy to verify that g(d) is differentiable for all

d such that
Ne-1(A(d)) £ M(A(d)).

Note also that under the assumption s(d) = 0 it is easily shown that

lim g(d) = oo. (5.1)

lldll—co

The above discussion is summarized as follows.
Lemma 5.3 Suppose m = Luz. Then

k-1
’; SN (A + Vidiag(d)V,) : d € R, s(d) = 0} (5.2)
ij=1

1
| EBuncut] < ——s(4) + min{2—

- 2k

a

We point out that the minimum is attained because of (5.1). We now address the question

of differentiability of g(d) in more detail. Suppose first that X;(A(d)) is simple with normalized
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eigenvector z;, then

0 . 0 ~
—Xi(A(d)) = — (VA d,e,et ;
adj l( ( )) 8d](szn( —I_; TeTeT)Vnwl)
= a:ZV,feje;Vn:ci
= (eVaz)?, Vi=1,...,n. (5.3)

Here e; denotes the j-th canonical unit vector. Otherwise an element of the eigenspace has to be
chosen properly, see Theorem 5.1 in [16], to provide the differentials. In the general case, (5.3)
still provides a subgradient.

In summary the function g(d) to be minimized is convex and we can provide a subgradient
for any d. So applying techniques from nonsmooth optimization applied to convex functions, it
is possible to find the best possible upper bound in (5.2). We used the BT-Method proposed in

[17] to carry out the minimization.

Example 1 (continued) The results for the iterative improvement of our example are
summarized in Table 5.1. As a stopping criterion, we tested whether a subgradient of norm
less than 0.001 was found. This occurred after 67 iterations. We observe that after only a few
iterations we have already a very good upper bound and most of the iterations are spent finding
a subgradient of small norm. Moreover, it turns out that at the final perturbation d, the largest
eigenvalue has multiplicity larger than 1, see also Table 2, therefore g(d) is nondifferentiable
for this d. This coincides with the experiences reported in [15]. Finally we point out that the

maximizer X, producing the bound, is already very close to a 0,1 matrix, see Table 3.

We conclude this section with a perturbation of the main diagonal of A that allows an appli-

cation of Corollary 4.2.

Theorem 5.1 Let A and m describe a graph partitioning problem. Let

¢::%4quqA)
and
A(d) = A + diag(d)
Then -
Bunewt] < %zlxj(fi(dwm + ggs(A)s(M7).

Moreover, the bound is attained for
1
X = “u,ut M + VWUV M*/?
n

where U € Oy_1 -1 diagonalizes M and W ¢ On_1,k-1 contains the eigenvectors corresponding

to the k — 1 largest eigenvalues of A(d)
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iter. | bound | norm
1| 42.13 | 1.065
5| 41.11 | 0.598
10 | 39.38 | 0.338
15 | 39.23 | 0.194
20 | 38.74 | 0.124
25 | 38.63 | 0.202
30 | 38.56 | 0.072
35| 38.56 | 0.019
40 | 38.55 | 0.010
45 | 38.55 | 0.007
50 | 38.55 | 0.005
55 | 38.55 | 0.003
60 | 38.55 | 0.0014
65 | 38.55 | 0.0013
67 | 38.55 | 0.0005

Table 5.1: Subgradient improved upper bound for Example 1. The first column indicates the
iteration and the second column the corresponding upper bound. The last column contains the

norm of a subgradient for g(d) found at the given iteration.
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Proof. First note that s(d) = 0. Moreover, by the definition of d, u,, is an eigenvector of A(d)

with corresponding eigenvalue :—LS(A). The result now follows using Corollary 4.2. m

6 Finding a Closest Feasible Solution

Our bounding techniques find approximate solution matrices X which in general are not feasible
for (P). We now present several procedures for finding feasible solutions ¥ using the information
from X. One approach consists in looking for a feasible Y that is as close as possible to X.
Alternatively we propose to use X to linearize the objective function in (P) to derive good

feasible solutions.

6.1 Closest in Frobenius Norm

Suppose that the matrix X obtained from our relaxation procedure satisfies X*X = M, but is
not a 0,1 matrix. We want to find a feasible matrix Y for (P) which best approximates X in

Frobenius norm. Note that feasibility implies Y'Y = M as well. Therefore

X =Y =[IX[]*+[[Y]]* - 2tr XY

=2trM — 2tr XY .

We can now find the best feasible approximate to X in Frobenius norm by solving the following

transportation problem in the variable Y € ®"**,
min{—trX'Y :Y € F}

Since the sum of the elements of Y is n, note that the objective function is equivalent to ¢r( %unui —
X )'Y. This latter function has an I; norm quality.

We point out that this idea is also (implicitly) used by Barnes [11] to derive feasible solutions.
Barnes uses the appropriately normalized eigenvectors corresponding to the largest eigenvalues
of A for X. Tt is clear that the above model works for any X, as long as X*X = M. This
approximation model has the disadvantage however, that the structure of the problem, i.e. A, is
not used and one just tries to find a feasible Y closest to X. Therefore it makes only sense if X

is already ’very close’ to an optimal partition.

Example 1 (continued) If we solve the above transportation problem with the X corre-

sponding to the bound from Lemma 5.3, then we obtain the feasible solution

t
y_[11100000001111001101
1 00011111110000110010
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of value 38. Comparing with the bounds in Table 2 we conclude that Y is already optimal, because
the upper bound from Lemma 5.3 also becomes 38 after rounding down. We point out that this
solution Y can also be obtained by simply rounding the mazimizer X to the nearest integers, see

Table 3.

6.2 Linear Approximation

Expanding the objective function at X we get
trY'AY = tr X*AX + 2tr X*A(Y — X) +tr(Y — X)'A(Y - X) .
If we use the linear approximation, we get the transportation problem in Y.
maz{trX'AY :Y € F}
If A is positive definite, then the weighted Frobenius norm
42X — Y)|I* = || A2 + |42 - 2r X1 AY

i.e. the above problem is equivalent to the weighted Frobenius norm approximation problem if
we ignore the quadratic term in Y.

Barnes, Vanelli and Walker [2] use a feasible X and try to improve it. They propose a
diagonal perturbation that changes A to a positiv semidefinite matrix and then set up a trans-
portation problem to find a better partition Y. A careful analysis of their objective function
shows that it corresponds precisely to the linearized model above. Their model makes essential
use of semidefiniteness and feasibility of X. Our model shows that both these assumptions are

not necessary.

7 Computational Results

In this section we present computational experiences for the various new bounds. First we apply
our bounds to problems that have been published and studied previously. In particular we use
the following graphs described in Table 7.1. Note that G2 is our running Example 1.

In Table 7.1 we summarize the results in the case of partitions into sets of equal size. Com-
paring the last two columns, we see that the feasible solutions obtained are in fact optimal for

all graphs except G3. The solution of G3 is at most ”one edge off” from optimality.

Next we investigate our bounds for the weighted graph from [9], page 67. This graph has 40
nodes and m; = my; = 20. Two sets C; and C; of edge costs are given in [9]. The underlying
graph is 3-regular. According to the authors, the costs C; and C, are drawn uniformly from
{1,...,10}. We examine the following 3 variants V1, V2 and V3 for this problem:

V1: all edge costs are 1
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Name | |V| | |E] Source

G1| 20| 55| [6], Table 2 p.425
G2 | 20| 51| [6], Table 3 p.425
G3 | 20| 46 | [15], Table 1 p.52
G4 | 21| 48 | [2], Figure 2 p.305

Table 7.1: Graphs from the literature

Graph | k | Thm 2.1 | Cor. 4.2 | Lemma 5.3 | feas. X
G1 2 47.13 45.65 42.85 42
G2 2 45.90 42.13 38.55 38
G3 2 37.71 35.54 34.22 33
G4 3 47.98 47.19 45.47 45

Table 7.1: Partitioning into k sets of equal size

V2: use C; for the edge costs

V3: use C, for the edge costs

In Table 7.1 the results for the various bounds are summarized. Note that in the case of V1,
the bound from Lemma 5.3 hardly improves the classical bound of Theorem 2.1. One reason
for this may lie in the regular structure of the graph, which contains many optimal partitions.
We also point out that the bound from Theorem 5.1 is quite competitive with the subgradient

improved bound from Lemma 5.3 for the variants V2 and V3. The optimal solution values are
from [9].

To further examine the performance of these bounds we generated a series of pseudorandom
graphs of larger sizes. We generated 5 graphs, each of average degree 5 for n € {30,40,50}. The
results are summarized in Table 7.1.

Comparing again the last two columns, it turns out that the new bounding rules constitute

Variant | > a;;/2 | Thm 2.1 | Cor. 4.1 | Lemma 5.3 | Thm 5.1 | opt.
V1 60 58.52 58.52 57.35 58.52 54
V2 316 345.77 326.44 307.10 309.88 | 297
V3 341 397.18 367.84 330.42 334.34 | 322

Table 7.1: Three Variants of a 40 node graph
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n | |E| | Thm 2.1 | Cor. 4.1 | Lemma 5.3 | feas. X
30 | 75 66.65 62.51 58.10 56
30| 75 72.51 65.58 59.77 58
30 | 84 77.61 72.15 65.25 63
30| 73 67.43 62.47 58.06 56
30| 69 64.54 60.26 56.73 54
40 | 110 101.23 93.84 87.17 82
40 | 102 97.33 89.70 82.98 79
40 | 102 102.93 95.81 87.52 86
40 | 91 89.96 83.11 76.56 73
40 | 101 95.52 87.32 80.86 77
50 | 139 128.17 118.17 110.43 105
50 | 117 117.41 106.28 95.45 90
50 | 123 117.51 108.57 100.86 96
50 | 128 120.53 109.73 103.38 98
50 | 138 126.97 120.56 112.47 108

Table 7.1: Partitioning of pseudorandom graphs into two blocks of equal size

a significant improvement over the previously known techniques. The gap for the problems with
30 nodes is never larger than two edges, for problems with 50 nodes it never exceeds 5 edges.

It seems more difficult to find good bounds if the blocksizes m; are not equal. Since we have
proposed several new bounding techniques also for this situation, we conclude this section with
a numerical study of partitioning into sets of different sizes. We take the graph G2, our running
example, and partition it into 2 blocks of different sizes. The numerical results are summarized
in the following Table 7.1. Since G2 has only 51 edges we conclude that in the case of "very
unequal” blocksizes all bounds except Theorem 5.1 fail. We have to note, however, that the
bound in Theorem 5.1 does not improve after a diagonal perturbation, but all other bounds can
be further improved in general. As m,; decreases, the bound from Corollary 4.3 turns out to be

the favorite.

8 Summary and Conclusions

We have presented several new strategies to derive bounds for the graph partitioning problem.
Starting from the orthogonal relaxation (Theorem 2.1) the main improvement was achieved by
the additional restriction to the set £ of matrices with prescribed row and column sums. We
presented two general new bounds (Theorems 4.1 and 5.1), and studied the following special

cases in more detail:
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m; | Thm. 2.1 | Thm 4.1 | Cor. 4.3 | Thm 5.1
19 58.98 53.00 55.71 50.14
17 56.07 52.98 53.20 48.82
15 53.17 51.09 49.41 47.80
13 50.26 47.64 45.87 47.11
11 47.35 44.01 43.10 46.77

Table 7.1: Partitioning G2 into two blocks of sizes m; and 20 — m;

- partitioning into blocks of equal size (Corollary 4.1, Lemma 5.3)

- partitioning of regular graphs (Corollary 4.2)

- partitioning into only two blocks (Corollary 4.3)

In each of these special cases we were able to further strengthen the general bounds. It is a
challenging research task to use these new bounds in a Branch and Bound program to solve the

graph partitioning problem to optimality.

Acknowledgement: We thank Helga Schramm for the permission to use her code for the
BT method.
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