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2 Abstract
3 Let H = K N be a Hermitian matrix. It is known that the eigenvalues of M @& N are
4 majorized by the eigenvalues of H. If, in addition, H is positive semidefinite and the block K
5 is Hermitian, then the following reverse majorization inequality holds for the eigenvalues:
M K

V([ 5] <x s 020

6 Interesting corollaries are included.
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1 Introduction

Matrix eigenvalue majorization results have interesting applications in many disciplines of math-
ematics, e.g. in linear algebra, probability, statistics, combinatorics, etc. It is still a very active
research topic that attracts many mathematicians. Recent results on this topic can be found in
e.g., [2,15, 18,7 9]

An early result concerning eigenvalue majorization is the fundamental result due to I. Schur
(see e.g [11, 6] ), which states that the diagonal entries of a Hermitian matrix A are majorized by its
eigenvalues, i.e., diag(A) < A(A). This result can be easily extended to block Hermitian matrices.

is Hermitian, then

)\(M@N)<>\<[I]\{/‘£ ﬂ) (1.1)

. oM K
More precisely, if K N

Here and throughout, K* denotes the Hermitian conjugate transpose of K; and M & N denotes

the direct sum of M and N, i.e., the block diagonal matrix []\04 ](3[] .

In this paper, we present the following reverse majorization inequality for a Hermitian positive
semidefinite 2 x 2 block matrix. The proof and some interesting consequences are given in the next
Section.

Theorem 1.1. Let H = ?{{ ﬁ} be a Hermitian positive semidefinite matriz. If, in addition,

the block K is Hermitian, then the following majorization inequality holds:

A <B§ ﬂ) SA(M + N) @ 0). (1.2)

Here, and throughout the paper, 0 is a zero block matrix of compatible size.

1.1 Preliminary Results

Let M"*"™(C) be the space of all complex matrices of size m x n with M"(C) = M"*"(C). For
A € M"(C), the vector of eigenvalues of A are denoted by A(A) = (A1 (A), A2(A), -+, A\ (A4)). If A
is Hermitian, we will always arrange the eigenvalues of A in nonincreasing order: Aj(A) > Aa2(A) >
> An(A).

For two sequences of real numbers arranged in nonincreasing order,

33‘:(331,332,“‘ 7$n)7 y:(y17y27"' 7yn)7

we say that z is majorized by y, denoted by x < y (or y > x), if

k k n -
ijSZyj (k=1,---,n—1), and ijzzyj-
=1 =1 =t =

We make use of the following lemmas in our proof of Theorem [Tl
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Lemma 1.2. If A, B € M"(C) are Hermitian, then
2M(A) < A(A+B)+ A(A—-B). (1.3)

Proof. The lemma is equivalent to Ky Fan’s eigenvalue inequality. The proof can be found in [4,
Theorem 4.3.27]; see also [10, Theorem 7.15]. O

Lemma 1.3. Let A € M"™*"(C) with m > n, then we have
ANAA®) = NA"A®0). (1.4)

2 Proof of Main Result and Corollaries

Before we give the proof of Theorem [Tl we show by an example that the requirement K being
Hermitian is necessary.

10 11 11
Example 2.1. Let M = [0 4], N = [1 2] and K = [0 2]. Then

MM+N)®0) = (4++2,4—+2,0,0),

A([?g JKVD = (4+5,4—+5,0,0).

Therefore \( [?({ ﬁ

})%A(M—FN)EBO).

. M
Proof of Theorem [I.Il. Since H := {K N

H € M?"(C) and write H = P*P, where P = [X Y], for some X,Y € M*""(C). Therefore,
we have M = X*X, N = Y*Y and K = X*Y = Y*X. Note that by Lemma [[.3, we have

A <[M K]) = M(PP*). The conclusion (2] is then equivalent to showing

] is positive semidefinite, we may suppose

K N
{(X'Y =YX} = (DN(X'X4+YY)D0) - A\(XX"+YY")}. (2.1)
First, note that
(X +iY)"(X +1Y) =X*X+Y*Y +i(X'Y —Y*X)
=X*X+Y*Y
(X —iY)*(X —1Y) =X*X+Y*Y —i(X'Y —Y*X)
=X*X4+Y*Y
(X +iY) (X +Y) =XX"4+YYV* —i(XY* -YX¥)
(X —iY)(X —iY)* =XX*"+YYV*+i(XY*-YX").
Therefore we see that
AMX*'X+YY)®0) = %{)\((X +iY)'(X+Y)D0)+ AN(X —iY)(X —1Y)D0)}
F{A((X +iY) (X +iY)") + A (X —iY) (X —iY)")}
= AXXT+YYH),

where the second equality is by Lemma [[3] and the majorization follows from applying Lemma
with A = (XX*+YY™), B=i¢(XY*-YX"*). O
As we can see from the above proof, a special case of of Theorem [I.1] can be stated as follows.
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Corollary 2.2. Let X,Y € M"(C) with X*Y is Hermitian. Then we have
AMXX*+YY") < MX*X +Y'Y). (2.2)
Corollary 2.3. Let k > 1 be an integer. If A, B € M"(C) are Hermitian matrices, then we have
AMA? + (AB)¥(BA)¥) = A(A% + (BA)*(AB)K). (2.3)

Proof. Let X = A and Y = (BA)*. Then XY = A(BA)* is Hermitian. The result now follows
from Corollary O

Corollary 2.4. Let k > 1 be an integer, and let A, B € M"(C) be Hermitian matrices. Then we
have

1. trace[(A2% 4 (AB)*(BA)F)P] > trace[(A? + (BA)*(AB)¥)?], for p > 1;
2. trace[(A% + (AB)*(BA)*)P] < trace[(A% + (BA)F(AB)*)P], for0 <p < 1.

Proof. Since f(x) = 2P, is a convex function for p > 1 and concave for 0 < p < 1, corollary follows
from Corollary and a general property of majorization. (See [6].) O

Remark 2.5. A key inequality used in [3] to strengthen some Golden-Thompson type inequalities
is just a special case of Corollary by taking k = 1.
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