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Abstract

We study a method that involves principally convex feasibility-
seeking and makes secondary efforts of objective function values re-
duction. This is the well-known superiorization method (SM) where
the iterates of an asymptotically convergent iterative feasibility-seeking
algorithm are perturbed by objective function nonascent steps. We inves-
tigate the, yet only partially answered in the literature, question under
what conditions one can guarantee that a sequence generated by an SM
algorithm asymptotically converges to a feasible point whose objective
function value is superior (meaning smaller or equal) to that of a feasible
point reached by the unperturbed exactly same feasibility-seeking algo-
rithm that the SM algorithm employs. We present a condition under
which an SM algorithm that uses negative gradient descent steps in its
perturbations fails to yield such a superior outcome. The significance
of the discovery of this “negative condition” is that it necessitates that
the inverse of this condition will have to be assumed to hold in any
future guarantee result for the SM. The condition is important for
practitioners who use the SM because it is avoidable in experimental
work with the SM, thus increasing the success rate of the method in
real-world applications.
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1 Introduction

The superiorization method (SM) interlaces into a feasibility-seeking algorithm
(called the “basic algorithm”) objective function value reduction steps (called
“perturbations”) creating a, so called, “superiorized version of the basic algo-
rithm”. These steps cause the objective function to reach lower values locally,
prior to performing the next feasibility-seeking iterations. A mathematical
guarantee has not been found to date that the overall process of the superiorized
version of the basic algorithm will not only retain its feasibility-seeking nature,
but also accumulate and preserve globally the objective function reductions.

Numerous works that are cited in [9] show that this global function reduction
of the SM occurs in practice in many real-world applications. In addition
to a partial answer in [17] with the aid of the concentration of measure
principle there is also the partial result of [20, Theorem 4.1] about strict
Fejér monotonicity of sequences generated by an SM algorithm.

The guarantee problem of the SM is the question: under what conditions, if
any, one can guarantee that a sequence generated by the superiorized version of
a bounded perturbation resilient (see Definition 3.1 below) iterative feasibility-
seeking algorithm converges to a feasible point that has objective function
value smaller or equal to that of a point to which this algorithm would have
converged if no perturbations were applied-everything else being equal.

In the preliminaries section we provide, for the reader’s convenience, a
compact brief review about the SM and bounded perturbations resilience
of algorithms and present the dynamic string-averaging projection (DSAP)
feasibility-seeking algorithmic scheme of [20] that is discussed here. Recent
reviews on the topic appear in [25] and [10].

In spite of all the above, examples of cases where the SM fails have been
constructed, see [2, 33]. In this context, “fails” means that the guarantee
problem question stated above did not hold. So, the quest for recognizing the
properties of such situations in order to make statements on the guarantee
problem of the SM continues.

Proving mathematically a guarantee of global objective function value
reduction of the SM, compared to running its feasibility-seeking algorithm
without perturbations, will probably require some additional assumptions on
the feasible set, on the objective function, on the parameters involved, or
even on the set of permissible initialization points. We present in this note
a “negative condition”, namely, a condition under which an SM algorithm
that is based on the dynamic string-averaging projection (DSAP) feasibility-
seeking algorithmic scheme, which uses negative gradient descent steps in its
perturbations, will fail to yield a superior outcome.
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The significance of this negative condition is twofold. On one hand, it
necessitates that a reverse statement that will nullify it will have to be assumed
to hold in any potential future guarantee result for the SM. On the other
hand, we show that when this condition does hold, then the SM algorithm can
produce a superior result only if it converges to an optimal point. The latter
statement is related to the alternative in Theorem 4.1(a) of [20], reproduced
in Theorem 3.5 below.

Although this note is discussing theory, we care to make a comment
about computational aspects. In numerical examples one should present
large-size problems because for small problems many algorithms “work” and
the performance differences start to show when the problems are very large
and quite sparse. We care to mention this because this is why the SM was
envisioned in the first place. For example, in [8] it is shown that the advantage
of an SM algorithm (called there “LinSup” for Linear Superiorization) for the
data of a linear program, over an LP algorithm (Malab’s Simplex) increases as
the problem sizes grow. Many papers referenced in the continuously updated
bibliography page on the SM and perturbation resilience of algorithms [9]
attest to the success of SM algorithms in a variety of real-world practical
large-size problems.

The original motivation of the SM was, and still is, to handle situations
in which reaching a feasible point in the nonempty intersection of finitely
many sets, in a tractable manner, is the principal task. In such situations
the SM provides a low cost perturbation that preserves the convergence of
the perturbed feasibility-seeking algorithm to a feasible point while aiming
to improve, aka superiorize, (reduce, not necessarily optimize) the value of
an objective function. Methods to increase the effectiveness of the objective
function reduction steps in SM algorithms, without invalidating the bounded
perturbation resilience of the embedded feasibility-seeking algorithm, have
recently been published. These include a randomization approach and an
approach with restarts of the step-sizes.

The paper is structured as follows. In Section 2 we list a few (out of
many) works that used the SM in practice and in Section 3 we provide, for
the reader’s convenience, a compact brief review about the SM and bounded
perturbations resilience of algorithms, recent reviews appear in [25] and [10].
In that section we also summarize the dynamic string-averaging projection
(DSAP) feasibility-seeking algorithmic scheme of [20], that is discussed in this
paper. The negative condition and its consequences appear in Section 4.

2 Some applications that used the superioriza-

tion methodology

In [21] Guenter et al. consider the fully-discretized modeling of an image
reconstruction from projections problem that leads to a system of linear
equations which is huge and very sparse. Solving such systems, sometimes
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under limitations on the computing resources, is and remains a challenge. The
authors aim not only at solving the linear system resulting from the modeling
alone, but consider the constrained optimization problem of minimizing an
objective function subject to the modeling constraints. To do so, they recog-
nize two fundamental approaches: (i) superiorization, and (ii) regularization.
Within these two methodological approaches they evaluate 21 algorithms over
a collection of 18 different phantoms (i.e., test problems), presenting their
experimental results in very informative ways.

In [7] Fink et al. study the nonconvex multi-group multicast beam-
forming problem with quality-of-service constraints and per-antenna power
constraints. They formulate a convex relaxation of the problem as a semidef-
inite program in a real Hilbert space, which allows them to approximate
a point in the feasible set by iteratively applying a bounded perturbation
resilient fixed-point mapping. Inspired by the superiorization methodology,
they use this mapping as a basic algorithm, and add in each iteration a small
perturbation with the intent to reduce the objective value and the distance to
nonconvex rank-constraint sets.

Pakkaranang et al. [3] construct a novel algorithm for solving non-smooth
composite optimization problems. By using an inertial technique, they
propose a modified proximal gradient algorithm with outer perturbations
and obtain strong convergence results for finding a solution of a composite
optimization problem. Based on bounded perturbation resilience, they present
their algorithm with the superiorization method and apply it to image recovery
problems. They provide numerical experiments that show the efficiency of the
algorithm and compare it with previously known algorithms in signal recovery.

Especially interesting is the recent work of Ma et al. [1] who propose a
novel decomposition framework for derivative-free optimization (DFO)
algorithms which significantly extends the scope of current DFO solvers to
larger-scale problems. They show that their proposed framework closely relates
to the superiorization methodology.

Many more publications on practical applications of the SM can be found
in [9], such as [28–32], to mention but a few.

3 Preliminaries: The superiorization method-

ology and the dynamic string-averaging pro-

jection (DSAP) feasibility-seeking algorith-

mic scheme

3.1 The superiorization methodology

The superiorization methodology (SM) was born when the terms and notions
“superiorization” and “perturbation resilience”, in the present context, first
appeared in the 2009 paper [14] which followed its 2007 forerunner by Butnariu
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et al. [4]. The ideas have some of their roots in the 2006 and 2008 papers of
Butnariu et al. [5, 6] where it was shown that if iterates of a nonexpansive
operator converge for any initial point, then its inexact iterates with summable
errors also converge. Since its inception in 2007, the SM has evolved and
gained ground. Recent publications on the SM are devoted to either weak
or strong superiorization, without yet using these terms. They are [4, 11–14,
18,19,22,23,27] many of which contain a detailed description of the SM, its
motivation, and an up-to-date review of SM-related previous work.

The Webpage1 [9] is dedicated to superiorization and perturbation resilience
of algorithms and contains a continuously updated bibliography on the subject.
It is a source for the wealth of work done in this field to date, including two
dedicated special issues of journals [16] and [24].

Our recent review [10] can serve as an introduction to the SM, also [26] and
[25] are very helpful. Just to make the continued reading here more convenient
for the reader we give below some of the fundamental notions of the SM.

Throughout the rest of the paper we consider a real Hilbert space X with
the norm ∥·∥, a real-valued, convex and continuous function ϕ : X → R. For a
point z ∈ X, we denote by ∂ϕ (z) the subgradient set of ϕ at z.

Definition 3.1. Bounded perturbation resilience (BPR). Let Γ ⊆ X be
a given nonempty subset of X. An algorithmic operator A : X → X is said to
be bounded perturbations resilient with respect to Γ if the following is
true: If a sequence {xk}∞k=0, generated by the basic algorithm xk+1 := A(xk),
for all k ≥ 0, converges to a point in Γ for all x0 ∈ X, then any sequence
{yk}∞k=0 of points in X that is generated by the algorithm yk+1 = A(yk+βkv

k),
for all k ≥ 0, also converges to a point in Γ for all y0 ∈ X provided that, for all
k ≥ 0, βkv

k are bounded perturbations, meaning that βk ≥ 0 for all k ≥ 0
such that

∑∞
k=0 βk <∞, and that the vector sequence {vk}∞k=0 is bounded.

A basic algorithm of the form xk+1 := A(xk), for all k ≥ 0,is said to be
bounded perturbations resilient with respect to Γ if its algorithmic
operator A is bounded perturbations resilient with respect to Γ.

Algorithm 3.2 is a superiorized version of the basic algorithm governed by
A.

3.2 Strict Fejér monotonicity of sequences generated by
an SM algorithm with the dynamic string-averaging
projection (DSAP) feasibility-seeking algorithmic
scheme

The Dynamic String-Averaging Projection (DSAP) method of [19] constitutes
a family of algorithmic operators that can play the role of A in Algorithm 3.2.
For each i = 1, 2, . . . ,m, denote by Pi := PCi

the metric projection onto the set

1http://math.haifa.ac.il/yair/bib-superiorization-censor.html#top, last updated on June
15, 2024 with 186 items.
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Algorithm 3.2. Superiorized version of the basic algorithm governed by A.
(0) Initialization: Let N be a natural number and let y0 ∈ X be an arbitrary
user-chosen vector.
(1) Iterative step: Given a current iteration vector yk pick an Nk ∈
{1, 2, . . . , N} and start an inner loop of calculations as follows:
(1.1) Inner loop initialization: Define yk,0 = yk.
(1.2) Inner loop step: Given yk,n, as long as n < Nk, do as follows:
(1.2.1) Pick a 0 < βk,n ≤ 1 in a way that guarantees that

∞∑
k=0

Nk−1∑
n=0

βk,n <∞.

(1.2.2) Pick an sk,n ∈ ∂ϕ(yk,n) and define direction vectors vk,n as follows:

vk,n :=

 − sk,n∥∥sk,n∥∥ , if 0 /∈ ∂ϕ(yk,n),

0, if 0 ∈ ∂ϕ(yk,n).

(1.2.3) Calculate the perturbed iterate

yk,n+1 := yk,n + βk,nv
k,n (3.1)

and if n+ 1 < Nk set n← n+ 1 and go to (1.2), otherwise go to (1.3).
(1.3) Exit the inner loop with the vector yk,Nk

(1.4) Calculate
yk+1 := A(yk,Nk)

set k ← k + 1 and go back to (1).
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Ci. An index vector is a vector t = (t1, t2, . . . , tq) such that ts ∈ {1, 2, . . . ,m}
for all s = 1, 2, . . . , q, whose length is ℓ(t) = q. The composition of the
individual projections onto the sets whose indices appear in the index vector t
is P [t] := Ptq · · ·Pt2Pt1 , called a string operator.

A finite set Ω of index vectors is called fit if for each i ∈ {1, 2, . . . ,m}, there
exists a vector t = (t1, t2, . . . , tq) ∈ Ω such that ts = i for some s ∈ {1, 2, . . . , q}.
Denote byM the collection of all pairs (Ω, w), where Ω is a finite fit set of
index vectors and w : Ω→ (0,∞) is such that

∑
t∈Ω w(t) = 1.

For any (Ω, w) ∈M define the convex combination of the end-points of all
strings defined by members of Ω

PΩ,w(x) :=
∑
t∈Ω

w(t)P [t](x), x ∈ X.

Let ∆ ∈ (0, 1/m), and fix an arbitrary integer q̄ ≥ m. Denote byM∗ ≡
M∗(∆, q̄) the set of all (Ω, w) ∈ M such that the lengths of the strings are
bounded and the weights are all bounded away from zero, i.e.,

M∗ := {(Ω, w) ∈M | ℓ(t) ≤ q̄ and w(t) ≥ ∆, ∀ t ∈ Ω}.

The convergence properties and bounded perturbation resilience of the
DSAP method were analyzed in [19].

Algorithm 3.3. The DSAP method with variable strings and vari-
able weights
Initialization: Select an arbitrary x0 ∈ X,
Iterative step: Given a current iteration vector xk pick a pair (Ωk, wk) ∈M∗
and calculate the next iteration vector xk+1 by

xk+1 := PΩk,wk
(xk).

Theorem 3.4 ([19, Theorem 12]). Assume that {Ci}mi=1 is a family of nonempty,
closed and convex subsets of X with a nonempty intersection C. Let {βk}∞k=0 be
a sequence of non-negative numbers such that

∑∞
k=0 βk <∞, let

{
vk
}∞
k=0
⊂ X

be a norm-bounded sequence, let {(Ωk, wk)}∞k=0 ∈ M∗ for all k = 0, 1, . . . .
Then any sequence

{
yk
}∞
k=0

generated by the iterative formula

yk+1 := PΩk,wk

(
yk + βkv

k
)

converges in the norm of X and its limit belongs to C. That is, Algorithm 3.3
converges to a point in C and its algorithmic operator is bounded perturbation
resilient with respect to C.

Using the algorithmic operator of the DSAP feasibility-seeking Algorithm
3.3 as the algorithmic operator A in Algorithm 3.2, we recover the following
main Theorem 4.1 of [20].
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Theorem 3.5 ([20, Theorem 4.1]). Assume that {Ci}mi=1 be a family of
nonempty, closed and convex subsets of X with a nonempty intersection C. Set
Cmin := {x ∈ C | ϕ(x) ≤ ϕ(y) for all y ∈ C. Let C∗ ⊆ Cmin be a nonempty
subset of Cmin, let r0 ∈ (0, 1] and L̄ ≥ 1 be such that, for all x ∈ C∗ and all y
such that ||x− y|| ≤ r0,

|ϕ(x)− ϕ(y)| ≤ L̄||x− y||,

and suppose that {(Ωk, wk)}∞k=0 ⊂M∗. Then any sequence {yk}∞k=0, generated
by Algorithm 3.2, the superiorized version of the DSAP algorithm, converges
in the norm of X to a y∗ ∈ C and exactly one of the following two alternatives
holds:

(a) y∗ ∈ Cmin;
(b) y∗ /∈ Cmin and there exist a natural number k0 and a c0 ∈ (0, 1) such

that for each x ∈ C∗ and for each integer k ≥ k0,

∥yk+1 − x∥2 ≤ ∥yk − x∥2 − c0

Nk−1∑
n=1

βk,n.

This shows that {yk}∞k=k0
is strictly Fejér-monotone with respect to C∗,

i.e., that for every x ∈ C∗, the inequality ∥yk+1 − x∥2 < ∥yk − x∥2 holds for
all k ≥ k0, because c0

∑Nk−1
n=1 βk,n > 0. The strict Fejér-monotonicity however

does not guarantee convergence to a constrained minimum point, but only
says that the so-created feasibility-seeking sequence {yk}∞k=0 has the additional
property of getting strictly closer, without necessarily converging, to the points
of a subset of the solution set of the constrained minimization problem.

Published experimental results repeatedly confirm that global reduction
of the value of the objective function ϕ is indeed achieved, without losing the
convergence toward feasibility, see [4, 11–14,18, 19, 22, 23, 27]. In some of these
cases the SM returns a lower value of the objective function ϕ than an exact
minimization method with which it is compared, e.g., [15].

4 The “negative condition” on the superior-

ization method

We consider the dynamic string-averaging projection (DSAP) feasibility-seeking
algorithmic scheme of [20] and its superiorized version, as presented above in
Subsection 3.2. Speaking specifically about Algorithm 4.1 of [20], we know
that according to Theorem 3.5, under the assumptions of this theorem, exactly
one of two things must happen, i.e., alternative (a) or alternative (b). This is
a non-constructive theorem because it tells nothing about when each of the
alternatives can occur.

If alternative (a) is the case, then it is correct to say that the sequence
generated by the superiorized version of the bounded perturbation resilient
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feasibility-seeking Algorithm 3.3 (i.e., Algorithm 4.1 of [20]), converges to a
feasible point that has objective function value smaller or equal to that of a
point to which this algorithm would converge if no perturbations were applied.
This would be true in this case because y∗ ∈ Cmin and the feasibility-seeking
algorithm cannot do better.

The question remains for the case of alternative (b). Namely, can we give
conditions under which, if alternative (b) holds, we will have that ϕ(y∗) ⩽ ϕ(x∗),
where x∗ is the limit of the same feasibility-seeking algorithm that is used
in this SM algorithm when it is run without perturbations, but everything
else being equal, such as initialization point, relaxation parameters, order of
constraints within the sweeps, etc.

The desire to distinguish between the alternatives (a) or (b) of Theorem
3.5 leads us to the next lemma which gives a condition under which a limiting
feasible point cannot belong to the solution set of the constrained minimization
problem min {ϕ (x) | x ∈ C}. This is the “negative condition” eluded to above,
under which an SM algorithm that is based on the dynamic string-averaging
projection (DSAP) feasibility-seeking algorithmic scheme, which uses negative
subgradient descent steps in its perturbations, will fail to yield a superior
outcome. The notation d (ĉ, D) below stands for the distance between the
point ĉ and the set D.

Lemma 4.1. Let {Ci}mi=1 be a family of nonempty, closed and convex subsets
of X with a nonempty intersection C, let D ⊂ C be a nonempty subset of
C and let r ≥ 1 be a real number. Assume that

{
yk
}∞
k=0

is any sequence,

generated by Algorithm 3.2 with positive step-sizes
{
{βk,n}Nk−1

n=0

}∞

k=0
, direction

vectors
{{

vk,n
}Nk−1

n=0

}∞

k=0
and y0 ∈ X as an arbitrary initialization point.

(i) If ĉ ∈ C is a point for which

∥∥y0 − ĉ
∥∥ ≤ (r − 1)

N0−1∑
n=0

β0,n, (4.1)

then the sequence
{
yk
}∞
k=0

satisfies for all k ≥ 1,

∥∥yk − ĉ
∥∥ ≤ r

k−1∑
ℓ=0

Nℓ−1∑
n=0

βℓ,n. (4.2)

(ii) If, additionally,

d (ĉ, D) > r
∞∑
ℓ=0

Nℓ−1∑
n=0

βℓ,n (4.3)

holds, then the limit point y∗ of the sequence
{
yk
}∞
k=0

, which exists according
to Theorem 3.5, obeys y∗ /∈ D.
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Proof. (i) The proof is by induction on k. For k = 1, we use (3.1), (4.1), the
nonexpansivity of the operator PΩ0,w0 and the boundedness of the sequence
{v0,n, }∞n=0 to obtain (since ĉ ∈ C)

∥∥yk − ĉ
∥∥ =

∥∥y1 − ĉ
∥∥ =

∥∥PΩ0,w0

(
y0,N0

)
− PΩ0,w0 (ĉ)

∥∥
≤

∥∥∥∥∥y0 +
N0−1∑
n=0

β0,nv
0,n − ĉ

∥∥∥∥∥ ≤ ∥∥y0 − ĉ
∥∥+ ∥∥∥∥∥

N0−1∑
n=0

β0,nv
0,n

∥∥∥∥∥
≤
∥∥y0 − ĉ

∥∥+ N0−1∑
n=0

β0,n ≤ r

N0−1∑
n=0

β0,n = r
k−1∑
ℓ=0

Nℓ−1∑
n=0

βℓ,n.

Suppose that k > 1 and make the inductive assumption that

∥∥yk−1 − ĉ
∥∥ ≤ r

k−2∑
ℓ=0

Nℓ−1∑
n=0

βℓ,n. (4.4)

The operator PΩk,wk
is nonexpansive for each k, and since ĉ ∈ C, recalling

(3.1) and using the inductive assumption (4.4) above (since r ≥ 1), we have∥∥yk − ĉ
∥∥ =

∥∥PΩk−1,wk−1

(
yk−1,Nk−1

)
− PΩk−1,wk−1

(ĉ)
∥∥

=

∥∥∥∥∥PΩk−1,wk−1

(
yk−1 +

Nk−1−1∑
n=0

βk−1,nv
k−1,n

)
− PΩk−1,wk−1

(ĉ)

∥∥∥∥∥
≤

∥∥∥∥∥yk−1 +

Nk−1−1∑
n=0

βk−1,nv
k−1,n − ĉ

∥∥∥∥∥ ≤ ∥∥yk−1 − ĉ
∥∥+ Nk−1−1∑

n=0

βk−1,n

≤ r

k−2∑
ℓ=0

Nℓ−1∑
n=0

βℓ,n + r

Nk−1−1∑
n=0

βk−1,n = r
k−1∑
ℓ=0

Nℓ−1∑
n=0

βℓ,n.

This completes the induction and shows that (i) indeed holds.
(ii) Assume to the contrary that y∗ ∈ D. Taking the limit, as k →∞, on both
sides of (4.2) yields

∥y∗ − ĉ∥ ≤ r
∞∑
ℓ=0

Nℓ−1∑
n=0

βℓ,n

which contradicts (4.3), thus proving that y∗ cannot be in D.

Remark 4.2. Lemma 4.1 shows that if (4.2) and (4.3) hold, then alternative
(a) of Theorem 3.5 cannot hold. The case r = 1 is of theoretical interest only
because then the initialization point y0 is feasible, contrary to the prevailing
situation in applications wherein the feasibility-seeking is initialized outside
the feasible set C.

The next corollary provides an insight into a necessary choice of an initial-
ization point of Algorithm 3.2 in order to establish its convergence to a point
in D.
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Corollary 4.3. Under the assumptions of Lemma 4.1, assume that a sequence{
yk
}∞
k=0

generated by Algorithm 3.2 with step-sizes
{
{βk,n}Nk−1

n=0

}∞

k=0
converges

to a point y∗ ∈ D and there exists a point ĉ ∈ C such that

d (ĉ, D) >
∞∑
k=0

Nk−1∑
n=0

βk,n. (4.5)

Then the following inequality holds

∥∥y0 − ĉ
∥∥ ≥

d (ĉ, D)

(
∞∑
k=0

Nk−1∑
n=0

βk,n

)−1

− 1

N0−1∑
n=0

β0,n. (4.6)

Proof. Clearly,

d (ĉ, D) > r

∞∑
k=0

Nk−1∑
n=0

βk,n

for any real 1 ≤ r < d (ĉ, D)
(∑∞

k=0

∑Nk−1
n=0 βk,n

)−1

. Since the limit point of

any sequence generated by Algorithm 3.2 belongs to D, we must have, by
Lemma 4.1, that ∥∥y0 − ĉ

∥∥ > (r − 1)

N0−1∑
n=0

β0,n

for each such r. (4.6) now follows by (4.5).

Remark 4.4. Note that Lemma 4.1 and Corollary 4.3 are, in particular, true
for D = Cmin := {x ∈ C | ϕ(x) ≤ ϕ(y) for all y ∈ C}.

Under the assumption (4.5), Corollary 4.3 provides a non-trivial necessary
condition, namely, (4.6), for the convergence of any sequence generated by
Algorithm 3.2 to a point in D. However, the aforesaid condition is not
sufficient to this end, even if the assumption (4.5) holds. This observation is
demonstrated in following example.

Example 4.5. Let X := R, let ϕ : X → X be defined by ϕ (x) := x2 for each
x ∈ X and define C := [0, 10]. Clearly, C is closed and convex subset of R. Note
that ϕ is 20-Lipschitz continuous on C, that is, ∥ϕ (x)− ϕ (x′)∥ ≤ 20 ∥x− x′∥
for each x, x′ ∈ C. Set D := Cmin = {0}, ĉ := 8 ∈ C and define the sequence
of step-sizes {βk,0}∞k=0 of length 1 (that is, Nk = 1 for each k = 0, 1 . . . ) by
βk,0 := 2−k for each k = 0, 1 . . . . We then have

d (ĉ, D) = 8 > 2 =
∞∑
k=0

βk,0 =
∞∑
k=0

Nk−1∑
n=0

βk,n.

Now choose any y0 ≥ 13. Then we have

N0−1∑
n=0

β0,n = β0,0 = 1 and

d (ĉ, D)

(
∞∑
k=0

Nk−1∑
n=0

βk,n

)−1

− 1

 = 3,
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therefore,

∥∥y0 − ĉ
∥∥ ≥ 3 =

d (ĉ, D)

(
∞∑
k=0

Nk−1∑
n=0

βk,n

)−1

− 1

N0−1∑
n=0

β0,n.

However, the sequence
{
yk
}∞
k=0

, generated by Algorithm 3.2, satisfies for each
positive integer k,

yk = 10−
k−1∑
ℓ=1

2−ℓ →
k→∞

9 ̸∈ D.

Similarly, if we choose in this example C := [0, 3 · 2−1], ĉ := 1 ∈ C and keep
all other settings being the same, then Condition (4.5) fails and Condition
(4.6) trivially holds. But the sequence

{
yk
}∞
k=0

, generated by Algorithm 3.2,
satisfies for each positive integer k,

yk = 3 · 2−1 −
k−1∑
ℓ=1

2−ℓ →
k→∞

2−1 ̸∈ D.

Taking D in Corollary 4.3 to be a level-set of the function ϕ within C, the
next corollary follows.

Corollary 4.6. Under the assumptions of Lemma 4.1, pick any x∗ ∈ C
together with y0 ∈ X and define D := {c ∈ C | ϕ (c) ≤ ϕ (x∗)}. Choose positive

step-sizes
{
{βk,n}Nk−1

n=0

}∞

k=0
and ĉ ∈ C such that

d (ĉ, D) >
∞∑
k=0

Nk−1∑
n=0

βk,n (4.7)

and ∥∥y0 − ĉ
∥∥ <

d (ĉ, D)

(
∞∑
k=0

Nk−1∑
n=0

βk,n

)−1

− 1

N0−1∑
n=0

β0,n. (4.8)

If y∗ is the limit point of a sequence
{
yk
}∞
k=0

generated by Algorithm 3.2, then
y∗ /∈ D, that is, ϕ (y∗) > ϕ (x∗).

5 Concluding comments

Corollary 4.6 shows the following. If y∗ is the limit point of a sequence
generated by the superiorization algorithm and if x∗ is the limit point of
the same algorithm without perturbations, everything else being equal, then
under conditions (4.7) and (4.8), the superiorization algorithm fails to reach a
feasible point with objective function value smaller or equal than that of the
point reached by the feasibility-seeking algorithm used by that superiorization

12



algorithm. As mentioned above, a reverse of the negative condition will have
to be included in any future mathematical guarantee claim for the SM. In
future practical implementations of users of the SM it would be advisable to
choose the initialization point far enough from the feasible set, so as to avoid
the negative condition from occurring.
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