
Noisy sensor network localization:

robust facial reduction and the Pareto frontier∗

Vris Yuen-Lam Cheung †‡ Dmitriy Drusvyatskiy ∗§ Nathan Krislock ¶

Henry Wolkowicz∗

October 23, 2014

Key Words: Sensor network localization, Euclidean distance matrix completions, convex optimization,
semidefinite programming

Abstract

We consider the localization problem in sensor networks where the inter-sensor distance measure-

ments are inaccurate and incomplete. In this paper, we present two novel algorithms for large-scale

sensor localization based on semidefinite programming relaxations. Emerging exoscale networks lead to

semidefinite relaxations that are prohibitively large for interior-point methods to handle. Both of our

methods are able to efficiently solve the semidefinite programming relaxations without the use of interior-

point methods. Our first method works by relating cliques in the graph of the problem to faces of the

positive semidefinite cone, allowing us to devise a combinatorial algorithm for the localization problem

that is provably robust and parallelizable. Our second algorithm is a first order method for maximizing

the trace—a popular low-rank inducing regularizer—in a robust formulation of the localization problem.

Namely, we consider the related much easier problem where the trace objective and the robust constraint

are interchanged. By solving a sequence of these easier problems, we are able to obtain a solution to

the original max-trace problem. Both of our algorithms output a configuration of sensors that can serve

as a high-quality initialization for local optimization techniques. We provide numerical experiments on

large-scale sensor network localization problems illustrating the development.

1 Introduction

Given a network of sensors physically located in two or three dimensional space, the sensor network local-
ization (or SNL for short) problem is to reconstruct the location of the sensors from incomplete and inexact
pairwise distances. Typically, a pairwise distance between two sensors is approximately known when they
are within a certain physical distance, called the radio range. Moreover, the exact location of some sensors
(called anchors) is a priori known.

The SNL problem can be modeled as a nonconvex optimization problem. Semidefinite programming
techniques have proven to be extremely useful for this problem; see for example [4–8,16,20,23,31]. It can be
shown that under reasonable conditions [22], the SNL problem is indeed equivalent to a semidefinite program.
For large networks, however, the semidefinite programs become intractable for off-the-shelf methods.

In the current work, we attempt to close the computational gap by focusing on combinatorial algorithms
and efficient first-order methods. The starting point is the observation that the standard convex relaxation
for the SNL problem becomes ill-conditioned as the noise in the distance measurements tends to zero [16],

∗Research supported by Natural Sciences Engineering Research Council Canada and a grant from AFOSR.
†Department of Combinatorics and Optimization, Waterloo, Ontario N2L 3G1, Canada.
‡Department of Computer Science, University of Colorado, Boulder, CO 80309-0430, USA.
§Department of Mathematics, University of Washington, Seattle, WA 98195-4350, USA.
¶Department of Mathematical Sciences, Northern Illinois University, DeKalb, IL 60115, USA.

1

http://www.math.uwaterloo.ca/~yl2cheun/
http://people.orie.cornell.edu/dd379
https://sites.google.com/site/nathankrislock/
http://orion.math.uwaterloo.ca/~hwolkowi/

i.e., the strict feasibility fails. Krislock and Wolkowicz [16] effectively used this observation in a combinatorial
algorithm that was able to solve SNL instances with exact distance measurements on hundreds of thousands
of sensors on a conventional laptop in minutes.

An important caveat of this geometric approach is that near-exactness of the distance measurements
is essential for their algorithm to work, both in theory and in practice. Indeed, the basic idea of the
algorithm is that each clique in the graph describing the problem certifies that the entire feasible region
lies in a certain face of the positive semidefinite cone. The method proceeds by exploring cliques and
intersecting the corresponding faces, yielding in many cases a unique solution to the SNL problem. An
immediate extension of this idea to the inexact setting does not work for the simple reason that randomly
perturbed faces of the positive semidefinite cone typically intersect only at the origin. Remarkably, using
dual information, we are able to design a method complementary to [16] for the SNL problem with noisy
distance measurements. Under reasonable conditions, the algorithm is provably robust to noise in the sense
that the output error is linearly proportional to the noise level in the distance measurements. Moreover, in
contrast to the algorithm [16], the new method is in large part parallelizable even in the exact setting.

Next we explore the Pareto search strategy for the SNL problem, which targets sparse networks and
therefore complements the robust facial reduction technique (which relies on the amount of cliques available
in the networks). We consider maximizing the trace—a popular low-rank inducing regularizer [3,32]—in the
robust formulation of the localization problem. Following the root finding strategy of [2, 28, 29], originating
much earlier in portfolio optimization, we exchange the trace objective function and the robust constraint.
We observe that this flipped problem is readily amenable to first-order methods since the nearest-point
mapping to the feasible region is easy to compute. Applying a Newton type method to the value function
(as was pioneered in the SPGL1 code [28–30] for basis pursuit), we use this easier flipped problem to solve
the original.

We first formalize the SNL problem in the noiseless and noisy settings in Section 2, which also reviews
the notion of unique localizability. In Section 3 we introduce the robust facial reduction technique for solving
the noisy SNL problem, provide the framework (in Algorithm 1), discuss the implementation and provide
some numerical results. Section 4 outlines the Pareto search technique, which primarily deals with sparse
graphs and uses first-order optimization techniques.

2 Sensor network localization: problem statement

In this section, we formally state the SNL problem in the noiseless and in the noisy settings. A noiseless
SNL problem boils down to a feasibility problem (as in (1) below), which is typically NP-hard because of the
dimension constraint. A noisy SNL can be phrased as a rank- and cone-constrained least squares problem
(as in (5)).

To model the SNL problem, throughout we fix an undirected graph G = (V , E) on a node set V =
{1, . . . , n} and an edge set E ⊂ {ij : 1 ≤ i < j ≤ n}. The vertices represent sensors in an r-dimensional
space R

r, while the presence of an edge ij joining the vertices i an j signifies that the physical distance
between the sensors i and j is available.

2.1 Noiseless SNL problem

Given a set of squared distances dij indexed by the edges ij ∈ E , the noiseless SNL problem asks to recover
the configuration of sensors in space of a given dimension r, that is to find a collection of points x1, . . . , xn

satisfying
‖xi − xj‖2 = dij for all ij ∈ E , x1, . . . , xn ∈ R

r. (1)

The collection of points x1, . . . , xn is then called a localization of the network. Usually there is in addition
a distinguished subset of sensors, called anchors, whose location in space is a priori known. For ease of
exposition, we will treat such anchors as regular sensors, throughout. This is fairly innocuous, since if the
solution to the anchorless problem is unique up to orthogonal transformations, which is the usual setting,
then we may first localize the anchorless network, and then easily translate and rotate the configuration of

2

sensors to align the anchors with their known positions. We comment further on incorporating anchors into
our framework in the conclusion.

The main tool we use in the current work (even if indirectly) is semidefinite programming (SDP). To this
end, let Sn denote the Euclidean space of n×n real symmetric matrices endowed with the trace inner product
〈A,B〉 = trAB and the Frobenius norm ‖A‖F =

√
trA2. The convex cone of n × n positive semidefinite

matrices will be denoted by Sn+. This cone defines a partial ordering: for any A,B ∈ Sn the binary relation
A � B means A−B ∈ Sn+. We let e ∈ R

n denote the vector of all ones.
The noiseless SNL problem is equivalent to finding a matrix X ∈ Sn satisfying the system:





Xii +Xjj − 2Xij = dij for all ij ∈ E
Xe = 0
rankX ≤ r

X � 0.





(2)

Indeed, suppose that X is feasible for (2). Then since X is positive semidefinite and has rank at most r, we
may form a factorization X = BBT for some n× r matrix B. It is easy to verify that the rows of B yield a
solution to the noiseless SNL problem (1). Conversely, if some points x1, . . . , xn ∈ R

r localize the network,
then we may center them around the origin and assemble them into the matrix B = [x1; . . . ;xn]

T ∈ R
n×r.

The resulting Gram matrixX := BBT is feasible for the above system. For more details, see for example [16].
The formulation (2) is nonconvex, and indeed the noiseless SNL problem is in general NP-hard [21, 33].

A convex relaxation is obtained simply by ignoring the rank constraint yielding an SDP feasibility problem:





Xii +Xjj − 2Xij = dij for all ij ∈ E
Xe = 0
X � 0.



 (3)

For many SNL instances, however, this convex relaxation is “exact” [22]. For example the following is
immediate.

Observation 1 (Exactness of the relaxation). If the noiseless SNL problem (1) is feasible, then the following
are equivalent:

1. No localization in R
l, for l > r, spans the ambient space R

l.

2. Any solution of the relaxation (3) has rank at most r and consequently any maximal rank solution of
(3) yields a localization of the noiseless SNL.

In theory, the exactness of the relaxation is a great virtue. From a computational perspective, however, the
observation above shows that the SDP formulation (3) usually does not admit a positive definite solution, that
is strict feasibility fails. Moreover, it is interesting to note that a very minor addition to the assumptions of
Observation 1 implies that the SDP admits a unique solution [22]. We provide a quick proof for completeness,
though the reader can safely skip it.

Observation 2 (Uniqueness of the solution). If the noiseless SNL problem (1) is feasible, then the following
are equivalent:

1. The network does not admit a localization in R
r−1, and moreover for any l > r no localization in R

l

spans the ambient space R
l .

2. The relaxation (3) has a unique solution.

Moreover, if either of the above conditions holds, then the SNL problem has a unique solution, up to a linear
isometry.

3

Proof. The implication 2 ⇒ 1 is immediate. To see the converse implication 1 ⇒ 2, suppose that the SDP
(3) admits two solutions X and Y . Combining the assumption 1 and Observation 1, we deduce that any
solution of the SDP has rank at most r, and moreover both X and Y have rank exactly equal to r. Consider
now the line L := {X +λ(Y −X) : λ ∈ R}. Since the cone Sn+ is pointed, the line L is not fully contained in
the feasible region. Consequently the line segment L ∩ Sn+ has at least one endpoint, which must have rank
at most r − 1. This is a contradiction since this endpoint yields a localization of the network in R

r−1.

In principle, one may now apply any off-the-shelf SDP solver to solve the problem (3). The effectiveness
of such methods, however, depends heavily on the “conditioning” of the SDP system. In particular, if the
system admits no feasible positive definite matrix, as is often the case (Observation 1), then no standard
method can be guaranteed to perform very well nor be robust to perturbations in the distance measurements.

The authors of [16] found a way to use the degeneracy of the system (3) explicitly to design a combinatorial
algorithm for the noiseless SNL problem. To describe the basic idea behind their procedure, we first recall
that a convex subset F of the positive semidefinite cone Sn+ is called a face if it can be written as

F =

{
U

[
A 0
0 0

]
UT : A ∈ Sk+

}
, (4)

for some n × n orthogonal matrix U and some integer k ∈ {0, 1, . . . , n}. In [16], the authors observed that
each k-clique in the graph G, with k > r, certifies that the entire feasible region (3) lies in a certain face F of
the positive semidefinite cone Sn+. Therefore, the facial reduction technique of replacing Sn+ by a smaller set
F can be applied on (3) to obtain an equivalent problem involving fewer variables. Their method explores
cliques in the graph, while possibly growing them, and intersects pairwise such faces in a computationally
effective way. Since typical graphs appearing in the SNL problem are fairly dense, there are many cliques
to be found. For reasonable instances the procedure would terminate with a unique solution of the SNL
problem. Since the algorithm is entirely combinatorial, noiseless SNL problems with 105 nodes could be
solved on a conventional laptop in a few minutes. In contrast, no standard method for SDP can solve
problems with 105 × 105 matrices, especially when strict feasibility fails, as is the case here.

2.2 Noisy SNL problem

In most applications, the inter-sensor distance measurements dij incorporate a certain degree of noise,
and hence are inexact. One way to deal with the inexactness is to assume that the noise comes from
some reasonable distribution (e.g., the multiplicative noise model [8]) and search for a maximum-likelihood
estimator of the configuration. Such problem formulations lead to nonlinear SDPs that are difficult to solve
[5, 8]—a usual trade-off between statistical motivation and computational efficiency. A different approach,
more attune to computation, is to consider a rank-constrained least squares formulation:

min
X

∑
ij∈E |Xii +Xjj − 2Xij − dij |2

s.t. Xe = 0
rankX = r

X � 0.

(5)

This is a smooth optimization problem with many local minima, and therefore nonlinear programming
methods and manifold optimization techniques are highly sensitive to the initial point and often output
irrelevant local minimizers. As a result most algorithms utilizing this framework have two stages: (1) obtain
a good guess of the localization, and (2) refine the guess with a local nonlinear programming method. Most
of the difficulty and novelty is in dealing with the first stage. A popular heuristic for obtaining an initial
point for a local search method is to relax the rank constraint (as before), solve the least squares SDP,
and project the resulting point onto the set of rank r matrices. For large scale problems, this approach is
expensive and can perform poorly, though some techniques utilizing parallelism are available; for a discussion
see [4]. Moreover, it seems desirable to avoid the use of expensive semidefinite programming in the first stage
altogether. We propose a provably robust algorithm that does just that.

4

3 Robust facial reduction for noisy SNL

An immediate obstacle to the success of the facial reduction algorithm of [16] in the noisy setting is that
the algorithm is highly unstable. The reason is simple: randomly perturbed faces of the semidefinite cone
typically intersect only at the origin. Hence small perturbations in the distance measurements will generally
lead to poor guesses of the face intersection arising from pairs of cliques. Moreover, even if pairs of cliques
can robustly yield some facial information, the accumulated error compounds as the algorithm moves from
clique to clique. The algorithm we propose revolves around the “dual” representations of faces. To this end,
consider a face F of Sn+ in the “primal” form (4). Subdivide U now into two parts U =

[
UR UN

]
, where

UR has k columns and UN has n− k columns. Then F can equivalently be written as

F = (UN ·B · UT
N)⊥ ∩ Sn+, (6)

for any nonsingular matrix B in Sn−r
+ , where ⊥ denotes the orthogonal complement with respect to the trace

inner product. Going back and forth between primal (4) and dual (6) representations is easy, requiring a
single eigenvalue decomposition, or more cheaply a QR factorization, for example. In general, if a face has
the form F = Y ⊥ ∩ Sn+ for some positive semidefinite matrix Y , then we say that Y exposes F .

The salient feature of the dual representation is that it is much better adapted at handling noise. Before
proceeding with the details of the proposed algorithmic framework, we provide some intuition. To this end,
an easy computation shows that if Y1 exposes a face F1 and Y2 exposes a face F2, then the sum Y1 + Y2

exposes the intersection F1 ∩F2. Thus the faces F1 and F2 intersect trivially if and only if the sum Y1 + Y2

is positive definite. On the other hand, for the SNL problem if the true exposing vectors arising from the
cliques are corrupted by noise, then one can round off the small eigenvalues of Y1+Y2 (due to noise) to guess
at the true intersection of the faces arising from the noiseless data.

3.1 The algorithmic framework

To describe our proposed algorithmic framework, we first need some notation. To this end, define the
Lindenstrauss mapping K : Sn → Sn by

K(X)ij := Xii +Xjj − 2Xij ,

and, for notational convenience, define the centered sets

Snc := {X ∈ Sn : Xe = 0},
Snc,+ := {X ∈ Sn+ : Xe = 0},
Sn,rc,+ := {X ∈ Snc,+ : rankX ≤ r}.

It is easy to see that Snc,+ is a face of Sn+, and is linearly isomorphic to Sn−1
+ . Indeed, the matrix eeT exposes

Snc,+. More specifically, for any n× n orthogonal matrix
[

1√
n
e U

]
, we have the representation

Snc,+ = USn−1
+ U. (7)

Consequently, we now make the following important convention: the ambient space of Snc,+ will always be
taken as Snc . The notion of faces of Snc,+ and the corresponding notion of exposing matrices naturally adapts

to this convention by appealing to (7) and the respective standard notions for Sn−1
+ . Namely, we will say

that F is a face of Snc,+ if it has the form F = U F̂UT for some face F̂ of Sn−1
+ , and that a matrix Y exposes

F whenever it has the form UŶ UT for some matrix Ŷ exposing F̂ . Finally, for any convex subset Ω ⊂ Snc,+,
the symbol face(Ω;Snc,+) will denote the minimal face of Snc,+ containing Ω.

We note that the Moore-Penrose pseudoinverse of K is easy to describe: for any matrix D ∈ Sn having
all-zeros on the diagonal, we have

K†(D) =
1

2
J ·D · J,

5

where J := I − 1
n
eeT is the projection onto e⊥. These and other related results have appeared in a number

of publications; see for example [1, 13, 14, 17, 18, 24–27].
The following result (in a primal form) was the basis for the algorithm in [16]. An easier proof appears

in the recent manuscript [10, Theorem 4.9].

Theorem 1 (One clique facial reduction). Consider a noiseless SNL instance on the graph G = (V , E) with
distance measurements d ∈ R

E . Define the set

Ω̂ := {X ∈ Snc,+ : [K(X)]ij = dij for all ij ∈ E}
of all the feasible solutions of (3). Suppose that the vertices {1, . . . , k} span a clique in G. Let the matrix

d̂ ∈ Sk be the restriction of d to the edges between any vertices in {1, . . . , k}. Then for any matrix Ŷ exposing

face
(
K†d̂;Skc,+

)
,

the matrix



Ŷ 0

0 0


 exposes face(Ω̂;Snc,+).

Thus any clique in the graph G certifies that the entire feasible region of the convex relaxation (3) to the
noiseless SNL problem is contained in a certain face of the cone Snc,+. If the clique has more than r vertices,
then the corresponding face is guaranteed to be proper, meaning that it is strictly contained in Snc,+. We can
now state our proposed algorithmic framework for the noisy SNL problem, which works for general noisy
Euclidean distance matrix (EDM) completion problem. (Recall that D ∈ Sn is a Euclidean distance matrix
if there exist vectors x1, . . . , xn of the same length such that Dij = ‖xi − xj‖22 for all i, j, or equivalently, if
D ∈ K(Sn+).)

Algorithm 1 Basic strategy for Noisy EDM completion

INPUT: A graph G = (V , E), noisy distance measurements d ∈ R
E , and a target rank r ≥ 0;

OUTPUT: a Gram matrix X ;
generate a set of cliques Θ in G;
generate a set of weight functions {ωα : R

E → R+}α∈Θ;
for each clique α in Θ do

k ← |α|;
Xα ← a nearest matrix in Sk,rc,+ to K†dα;

Uα ← exposing vector of face(Xα,Skc,+);
end for

U ←∑
α∈Θ ωα(d) · Uα;

Y ← a nearest matrix in Sn,n−r
c,+ to U ;

X ← a solution of
min
X

∑
ij∈E |Xii +Xjj − 2Xij − dij |2

s.t. X ∈ Snc,+ ∩ Y ⊥;
(8)

return X ;

3.2 Robustness guarantees

In this section, we outline a rudimentary robustness guarantee of the facial reduction method given in Algo-
rithm 1. To this end, consider a noiseless SNL problem on the graph G = (V , E), with distance measurements
d, and a target embedding dimension r. For any subgraph H of G, we let d[H] denote the restriction of d
to H. Following [22], the noisy SNL problem is said to be uniquely r-localizable if either of the equivalent
conditions in Observation 2 holds.

In what follows, fixing a graph G = (V , E), we let Alg(d) be the output of Algorithm 1 on the SNL
instance with distance measurements d ∈ R

E .

6

Theorem 2 (Robustness). Consider an SNL instance on the graph G = (V , E) with noiseless distance
measurements d ∈ R

E . Suppose the following:

• for any clique α ∈ Θ, the subnetwork on α is uniquely r-localizable; and

• the noiseless SNL instance is uniquely r-localizable and Alg(d) is the localization.

Then there exist constants ε > 0 and κ > 0 so that

‖Alg(d+∆d)−Alg(d)‖F ≤ κ‖∆d‖F whenever ‖∆d‖F < ε.

The proof is standard but lengthy. We refer the interested reader to the followup full length paper.

3.3 Implementing facial reduction for noisy EDM

In the next few subsections, we elaborate on the some of the main ingredients of Algorithm 1:

• the choice of sets of cliques Θ and weight functions {ωα}α∈Θ (in Section 3.3.1);

• the nearest-point mapping to Sk,rc,+ (in Section 3.3.2); and

• the solution of the facially reduced least squares problem (8) (in Section 3.3.3).

To improve the solution quality of Algorithm 1, we also use preprocessing and postprocessing steps. The
preprocessing involves refining the clique set Θ and ensures that the exposing vector U computed in Algorithm
1 has exactly r + 1 eigenvalues that are very close to zero; see Section 3.3.4. The postprocessing is the use
of a nonlinear optimization technique to find a local solution of (5) using the solution X from Algorithm 1
as the initial point. Such a local refinement procedure, which by itself often fails to find a global optimal
solution, can greatly improve the solution quality of Algorithm 1.

3.3.1 Choosing the clique set and the weights

The clique set Θ is crucial for the success of Algorithm 1, since the exposing vector Y is formed based on
the clique information. In practice, it is inefficient to get the set of all cliques of G (noting that in general,
determining whether a graph has a clique of an arbitrary given size is NP-hard), so we can only hope to find
a subset of cliques of the graph.

We use a simple and fast brute-force subroutine applied on the adjacency matrix H of the given graph
to find a collection Θ of cliques. First, for each vertex v, we use a greedy heuristic to find a sufficiently
large all-ones principal minor of H(δv, δv) + I (where δv :=

⋃{u ∈ V : uv ∈ E}), which would give a clique
covering v; let Θ1 be the set of distinct cliques found in this manner. Then we use a brute-force method to
find a collection Θk of k-cliques α of G such that α is not contained in any clique in Θ1, for k = 2 up to
a user-defined maximum size: for k = 2 we collect all the edges that are not in any clique in Θ1, and for
each k ≥ 3, we consider each of the k − 1 cliques and determine if the vertices in that clique have common
neighbors. This results in a collection of cliques Θ :=

⋃
k Θk.

The first step of computing Θ1 is very fast since it involves only repeatedly removing rows and columns
of H(δv, δv) + I that contain zero. As for the second step, while the brute-force method of listing all cliques
of fixed sizes would be prohibitive in practice, we find that the restriction imposed by Θ1 cuts down a huge
number of smaller non-maximal cliques that we need to keep track of, and the use of Θ1 significantly speeds
up the second step.

Another feature of Algorithm 1 is that we do not treat each clique in Θ equally, given that the noise in
the distance measurements does not have to be uniform and it may not be possible to recover all the cliques
with the same level of accuracy. We gauge the amount of noise present in the distance measurements of
cliques as follows: for each clique α ∈ Θ, letting d̂ ∈ Sα be the restriction of the distance measurements d in
the clique, we estimate the noise present in d̂ by considering the eigenvalues of K†d̂:

να(d) :=

∑|α|−r

j=1 λj(K†d̂)2

0.5|α|(|α| − 1)
. (9)

7

In the case where no noise is present in the distance measurements d, we have να(d) = 0 since the matrix

K†d̂ ∈ Sα+ is of rank r. To each clique α, we assign the weight

ωα(d) :=

∑
β∈Θ νβ(d)− να(d)∑

β∈Θ νβ(d)
.

A rationale behind this choice of weight is to reflect the contribution of noise in the clique α to the total
noise of all cliques (where the noise is measured by (9)). If a clique α is relatively noisy compared to other
cliques in Θ, the weight ωα(d) would be smaller than ωβ(d) for most β ∈ Ω.

3.3.2 Nearest-point mapping to Sk,rc,+

We now describe how to evaluate the nearest-point-mapping to the set Sk,rc,+—an easy and standard operation
due to the Eckart-Young Theorem. To describe this operation, consider any matrixX ∈ Sn and a setQ ⊂ Sn.
Define the distance function and the projection, respectively:

dist (X ;Q) = inf
Y ∈Q
‖X − Y ‖F ,

proj (X ;Q) = {Y ∈ Q : ‖X − Y ‖F = dist (X ;Q)}.

In this notation, we would like to find a matrix Y in the set proj (X ;Sk,rc,+). To this end, let
[

1√
k
e U

]
be

any k × k orthogonal matrix. First dealing with the centering constraint, one can verify

proj
(
X ;Sk,rc,+

)
= U

[
proj

(
UTXU ;Sk−1,r

+

)]
UT .

On the other hand, we have

proj
(
Z;Sk−1,r

+

)
= W Diag

(
0, . . . , 0, λ+

k−r(Z), . . . , λ+
k−1(Z)

)
WT ,

where λ1(Z) ≤ . . . ≤ λk−1(Z) are the eigenvalues of Z and the subscript λ+
i (Z) refers to their positive part,

and W is any orthogonal matrix in the eigenvalue decomposition Z = W Diag(λ(Z))WT . Thus computing

a matrix in proj (X ;Sk,rc,+) requires no more than an eigenvalue decomposition.

3.3.3 Solving the small least squares problem

We now describe how to easily solve the least squares system (8). Typically, the matrix Y will have rank
n − r. Then the face Snc,+ ∩ Y ⊥ can be written as Snc,+ ∩ Y ⊥ = USr+UT , where the n × r matrix U has as
columns an orthonormal basis for the kernel of Y . Consequently we are interested in solving an optimization
problem of the form

min
Z
‖A(Z)− d‖22

s.t. Z ∈ Sr+,

where the linear operator A : Sn → R
E is defined by [A(Z)]ij = [K(UZUT)]ij for all ij ∈ E . Let svec (Z)

be the vectorization of Z and let A be a |E| × r(r+1)
2 matrix representation of the operator A. Thus we are

interested in solving the system

min
Z
‖A(svecZ)− d‖22 (10)

s.t. Z ∈ Sr+,

where A is a tall-skinny matrix. One approach now is simply to expand the objective

‖A(svecZ)− d‖22 = 〈(ATA)(svecZ), svecZ〉 − 2〈A∗d, svecZ〉+ ‖d‖2,

8

and then apply any standard iterative method to solve the problem (10). Alternately, we may first form

an economic QR factorization A = QR (where Q ∈ R
|E|× 1

2 r(r+1) has orthonormal columns and R ∈
R

1
2 r(r+1)× 1

2 r(r+1) is upper triangular) and then write the objective as ‖A(svecZ)−d‖22 = ‖R(svecZ)−QTd‖2.
We can then pose the problem (10) as a small linear optimization problem over the product of the semidef-

inite cone Sr+ and a small second-order cone of dimension R
r(r+1)

2 , and quickly solve it by an off-the-shelf
Interior Point Method.

In practice, very often the cone constraint in (8) is inactive. Heuristically, we can simply drop the cone
constraint in (8) and consider the unconstrained least squares problem

min
Z
‖A(svecZ)− d‖22, (11)

which with the help of economic QR can be solved very efficiently. If the unique solution of (11) is positive
definite (which is often the case), then it is immediately the unique solution of (8). With this observation,
we often can solve (8) without using any optimization software.

3.3.4 Preprocessing: sequential clique union

To increase the robustness of Algorithm 1, our implementation includes a preprocessing step, which finds an
ordering to the cliques in the set Θ in Algorithm 1 and performs a sequential clique union procedure.

Specifically, we would like an ordering Θ = {α1, . . . , α|Θ|} such that

αj−1 and αj intersect in at least 2 vertices, ∀ j. (12)

Such an ordering can be found using a greedy approach: start with the largest clique α1 ∈ Θ and Θ̂ := Θ,
and for each j ≥ 2, pick αj among all the cliques in Θ̂ intersecting with αj−1 in at least 2 vertices, the one

that maximizes the set difference |α\αj−1|; then update Θ̂ by removing from it all the cliques whose nodes

are covered by
⋃j

l=1 αl.
If the graph G is sparse, such an ordering may not exist. Nonetheless, as long as G does not have a

cut vertex, it is possible to cover all the vertices of G with multiple sequences of cliques, each satisfying
the condition (12). (Note that if a noiseless SNL instance is r-uniquely localizable for any r ≥ 2, then the
corresponding graph cannot have a cut vertex.) In the following we discuss the clique union technique under
the assumption that an ordering of the elements of Θ satisfying (12) exists; the technique can be easily
extended even when such an assumption does not hold.

Then we would perform a sequential clique union procedure, whose goals are to ensure that the matrix
U found in Algorithm 1 is not too far from Sn,n−r

c,+ , and to avoid errors arising from (nearly) nonrigid
intersection, which we illustrate in the following example.

Example 3.1. Suppose that we have 5 sensors with radio range 0.05, whose true locations are given by

P =

[
0.4582 0.4793 0.5031 0.4360 0.4467
−0.4116 −0.3952 −0.3221 −0.3150 −0.3393

]T
.

Then the corresponding graph is as in the left picture in Figure 1: only the distance between sensors 1 and
5 is missing. The graph has two cliques α1 = {1, 2, 3, 4} and α2 = {2, 3, 4, 5}. Sensors 3, 4, 5 in the clique
intersection are almost collinear; α1 and α2 almost intersect nonrigidly, in the sense that the realization of
sensor locations:

P̃ =

[
0.4582 0.4793 0.4360 0.4467 0.4051
−0.4116 −0.3952 −0.3150 −0.3393 −0.3750

]T

obtained by reflecting α1 along the line passing through vertices 2 and 3 would give almost the same partial
EDM:

P
(
K(PPT)−K(P̃ P̃T)

)
≈ 6.84× 10−4,

9

where P : Sn → R
E is the canonical projection. (See the middle picture in Figure 1 for the sensor locations

depicted by P̃ .) In the presence of uncertainty in distance measurements, both P and P̃ seem to be reasonable
realization of the sensor locations. Yet with the additional knowledge of the radio range, we know that it is
unlikely P̃ gives the approximate sensor locations, since that would mean sensors 1 and 5 are in each other’s
radio range.

Figure 1: Left: true location of 5 sensors (given by P), with edges indicating known distances. Center:
realization of sensor location (given by P̃) satisfying the known distances but violating the radio range.
Right: solution from Algorithm 1. Blue: clique α1; red: clique α2.

Now suppose that the distance measurements are corrupted with 5% Gaussian noise (see the multiplicative
noise model outlined in Algorithm 2). If we apply Algorithm 1 on the noisy input, then the realization of
sensor locations could be as in the right picture in Figure 1, where sensors 1 and 5 are much closer than they
should be. Note that the right picture in Figure 1 shows a minor perturbation of the “incorrect” realization
P̃ .

Scenarios depicted in Example 3.1 can be quite prevalent; to ensure the robustness of the facial reduction
algorithm, we perform a clique union on αj−1 and αj (for each j = 2, . . . , |Θ|), by using a Procrustes rotation
to match the cliques αj−1, αj at the intersection. After we obtain a realization of αj−1 ∪ αj , we use that
realization to compute an exposing vector corresponding to αj−1∪αj , and replace αj−1, αj in Θ by αj−1∪αj .

3.3.5 Postprocessing: local refinement

Following Algorithm 1, we implement a local refinement, which could greatly improve the solution quality. By
local refinement, we mean the use of a nonlinear optimization technique for solving the nonconvex problem
(5) (which has a lot of local minima) using the output of Algorithm 1 as the initial point. Local refinement
has been commonly used for SDP-based algorithm for SNL problems and noisy EDM completion problem;
see [4, 6].

For local refinement, we use the Manopt, a MATLAB package for optimization on manifolds (also known
as Riemannian optimization) [9], which is well-suited for solving rank-constrained optimization problems
like (5). The Riemannian optimization techniques have been previously used to solve noiseless Euclidean
distance matrix completion problem [19]. Specifically, we use a Riemannian trust region method to solve

min
P∈R(n−1)×2

‖proj (K̂(PPT)−D)‖22 (13)

(which is equivalent to (5)). By itself, the Riemannian trust region method, like most nonlinear optimization
techniques, usually fails to find the global optimal solution of (13) and instead gets trapped at one of the
many critical points (as we can see in Table 1 in Section 3.4 on numerical results), since the problem is highly
nonconvex. Yet by providing the trust region with a “good” initial point (obtained from Algorithm 1), we
can greatly improve the performance of the Riemannian trust region method applied on (13), as illustrated
in the numerical results.

10

3.4 Numerics

Now we present some numerical results of applying Algorithm 1 to randomly generated instances, based on
a multiplicative noise model (see e.g. [4, 5]) outlined below.

Algorithm 2 Multiplicative noise model

INPUT: # sensors n, noise factor σ, radio range R;
For each i, j = 1, . . . , n:
- pick i.i.d. pi ∈ [−0.5, 0.5]2 with uniform distribution
- pick i.i.d. ǫij ∈ N (0, 1) (standard normal distribution)
Compute D ∈ Sn by

Dij = (1 + σǫij)
2‖pi − pj‖22, ∀ i, j = 1, . . . , n;

Build graph G = ({1, . . . , n}, E), where

ij ∈ E ⇐⇒ ‖pi − pj‖2 ≤ R;

d← [Dij]ij∈E, i<j ∈ R
E ;

OUTPUT: noisy distance measurements d ∈ R
E and graph G.

Since instances generated by the multiplicative noise model come with the true sensor locations, we can
gauge the performance of the robust facial reduction on random instances from the multiplicative noise
model using the root mean standard deviation (RMSD): given the true locations P ∈ R

n×2 of the sensors,
the RMSD of the estimated locations P̃ ∈ R

n×2 of the sensors estimates how far the estimated locations are
from the true locations:

RMSD :=
1√
n
‖P − P̃‖F ,

where ‖ · ‖F is the Frobenius norm of a matrix (i.e., the ℓ2 norm of the vectorization of that matrix).
A typical output of Algorithm 1 applied on an instance generated by the multiplicative noise model is

illustrated in Figure 2, for an instance with 1000 sensors and no anchor, with noise factor 0.05 and radio
range R = 0.1. The left figure shows the localization before local refinement (with RMSD being 61.52%R),
and the center figure shows the localization after local refinement (with RMSD being 1.39%R). While the
solution produced by Algorithm 1 may not seem very impressive, with the help of standard local refinement
techniques we can attain very high quality solution even with the high number of sensors and the presence
of noise. The right figure shows in comparison the optimal solution of (5) obtained using Manopt starting
at a (uniformly) randomly generated initial point.

Table 1 shows some numerical results on instances with 1000 sensors (and no anchors) generated as in
Algorithm 2, with varying number of sensors, noise factor and radio range. The tests were run on MATLAB
version R2014a, on a Linux machine with Intel(R) Xeon(R) CPU E5620 @ 2.40 GHz and 46.76 GB RAM.
We show the RMSD (as a percentage of the radio range) of the solutions provided by Algorithm 1 (in the
column “before refinement”), and also the RMSD of the solution after the local refinement using Manopt

(in the column “after refinement”). For comparison, we run Manopt on the same instances with a random
initial point; their RMSD values are shown in the column Manopt. We see that using Algorithm 1 together
with local refinement (which by itself does not perform very well) gives rather satisfactory results. The time
used by Algorithm 1, including the selection of cliques and computation of the exposing vectors, is very little
considering the size of the problem instances, usually around 1 minute.

Table 2 shows some numerical results on larger instances.

11

Table 1: Numerical results of robust facial reduction on 17 instances generated using the multiplicative noise
model on a [−0.5, 0.5]2 grid. n: number of sensors; R: radio range; nf : noise factor; m: number of edge.

Instance n nf R m Time used by RMSD %R

Alg. 1 (s) before refinement after refinement Manopt

1016-1018 1000 0.1 0.15 31078 15.3 12.21 1.42 380.11

1016-1019 1000 0.1 0.15 30474 15 12.15 1.39 586.8

1016-1145 1000 0.1 0.15 30208 14.7 9.82 1.49 546.29

1016-1146 1000 0.1 0.15 31521 15.7 11 1.4 616.8

1016-1153 1000 0.1 0.15 30861 15.3 16.19 1.44 417.78

1016-1155 1000 0.1 0.15 30477 14.8 14.22 1.43 356.94

1016-1156 1000 0.1 0.15 30980 15.2 12.65 1.5 526.49

1016-1200 1000 0.1 0.15 31051 15 10.04 1.45 300.67

1016-1211 1000 0.15 0.15 30808 15.1 108.96 2.22 568.18

1016-1223 1000 0.15 0.15 31605 15.5 74.99 9.22 621.44

1016-1235 1000 0.15 0.15 30229 15 153.67 2.18 527.74

1016-1241 1000 0.15 0.15 31110 15.5 79.07 2.18 536.26

1016-1248 1000 0.15 0.15 31516 15.4 96.88 27.64 548.19

1016-1320 1000 0.2 0.15 31547 15 115.15 10.94 386.3

1016-1338 1000 0.2 0.15 31093 15.9 111.61 18.66 544.48

1016-1341 1000 0.2 0.15 31390 15.5 174.23 25.74 570.42

1016-1347 1000 0.2 0.15 30939 15.9 163.79 3.1 216.95

12

Table 2: Numerical results of robust facial reduction on 27 instances generated using the multiplicative noise
model on a [−0.5, 0.5]2 grid. n: number of sensors; R: radio range; nf : noise factor; m: number of edge.

Instance n nf R m Time used by RMSD %R

Alg. 1 (min) before refinement after refinement

1016-1442 2000 0.05 0.1 57620 0.79 10.57 0.75

1016-1451 2000 0.05 0.1 57347 0.26 11.05 0.76

1016-1638 2000 0.05 0.1 57821 0.76 10.03 0.76

1016-1646 2000 0.05 0.1 57309 0.75 24.91 0.78

1016-1652 2000 0.05 0.1 57170 0.73 7.91 0.76

1016-1657 2000 0.05 0.1 57522 0.8 13.27 0.84

1016-1701 2000 0.05 0.1 57492 0.73 12.7 0.77

1016-1713 2000 0.05 0.1 57685 0.76 9.67 0.76

1016-1717 2000 0.05 0.1 58146 0.79 9.53 0.78

1016-1724 2000 0.05 0.1 57855 0.75 9.14 0.73

1016-1729 2000 0.05 0.1 56819 0.74 10.98 0.78

1016-1855 2000 0.05 0.07 29164 0.83 37.71 1.32

1016-1925 2000 0.05 0.07 28558 0.86 47.53 1.17

1016-1939 2000 0.05 0.07 29163 0.9 32.59 1.26

1016-2045 2000 0.05 0.07 29248 1.05 58.22 1.3

1016-2058 2000 0.05 0.07 28537 0.83 54.23 1.18

1016-2119 2000 0.05 0.07 28846 0.86 63.82 1.19

1016-2134 2000 0.05 0.07 28371 0.83 55.96 1.24

1016-2109 2000 0.05 0.07 28713 0.82 33.58 1.27

1019-94 5000 0.05 0.05 94107 10.22 116.31 1.12

1019-428 5000 0.05 0.05 94085 9.83 53.11 1.07

1019-122 5000 0.05 0.05 93563 9.83 48.58 1.05

1018-224 5000 0.05 0.05 94059 10.03 44.98 1.05

1020-1115 8000 0.15 0.1 922111 38.91 58.61 1.04

1020-1525 8000 0.15 0.1 930180 39.26 75.39 1.06

1020-174 8000 0.15 0.1 921351 39.11 100.05 1.04

1020-1856 8000 0.15 0.1 921946 40.94 92.84 1.04

13

Figure 2: Illustration of robust facial reduction with refinement applied on an instance with 1000 sensors
(no anchors) on a [−0.5, 0.5]2 box, with noise factor 0.05 and radio range 0.1. From left to right: (1) using
Algorithm 1 without refinement (RMSD= 61.52%R); (2) using Algorithm 1 with refinement via Manopt

(RMSD= 1.39%R); (3) using only Manopt (RMSD= 380.59%R). Blue: true location; red: estimated location
and discrepancy.

4 The Pareto frontier of the unfolding heuristic

4.1 Robust formulation of the noisy SNL

Another common approach to the noisy SNL problem is to consider the optimization problem in the robust
form:

max
X

trX

s.t.
1

2
‖P ◦ K(X)− d‖22 ≤ σ (14)

Xe = 0

X � 0, X ∈ Sn,

where P is the canonical projection P : Sn → R
E . Here, the tolerance σ > 0 is typically known and the

Frobenius norm can be replaced by another measure of deviation depending on context. For simplicity we
restrict to the Frobenius norm in the discussion. Trace maximization encourages the solution X to have a
lower rank. This is in contrast to the usual min-trace strategy in compressed sensing; see [2, 28, 29] for a
discussion. We focus on the max-trace regularizer for concreteness, though an entirely analogous analysis
holds for the min-trace.

We propose a first-order method for this problem using a Pareto search strategy originating in portfolio
optimization. This technique has recently garnered much attention in wider generality; e.g. [28–30]. The
idea is simple: exchange the objective and the difficult constraint, and then use the easier flipped problem
to solve the original. Thus we are led to consider the parametric optimization problem

ϕ(τ) := min
X

1

2
‖P ◦ K(X)− d‖22

s.t. trX ≥ τ

Xe = 0

X � 0.

To solve the original problem (14), we simply need to find a real number τ satisfying ϕ(τ) = σ. This is
a one-dimensional root finding problem and can be solved with Newton’s method, provided that we can

14

compute the derivative ϕ′(τ). Namely we iterate:

τk+1 ← τk +
σ − ϕ(τk)

ϕ′(τk)
;

see [2] for more details.
To illustrate, let V ∈ R

n×(n−1) be any matrix satisfying

V full rank and range (V) = e⊥. (15)

Then the main problem (14) has the form

max
Z

trZ

s.t.
1

2
‖P ◦ K̂(Z)− d‖22 ≤ σ

Z � 0, Z ∈ Sn−1,

where we define K̂(Z) := K̂V (Z) := K(V ZV T) for every Z ∈ Sn−1. (The map K̂V depends on the choice of
V indicated by the suffix, but for simplicity we drop the suffix in the following discussion.) In this reduced
form, the flipped problem

min
Z

1

2
‖P ◦ K̂(Z)− d‖22

s.t. trZ ≥ τ (16)

Z � 0

is strictly feasible. Therefore, strong duality holds with the corresponding dual problem

max
y
− 1

2
‖y‖22 + 〈d, y〉 − τλ

s.t. K̂∗ ◦ P∗(y) � λI (17)

λ ≤ 0, y ∈ R
E .

If λ̄ is the optimal Lagrange multiplier for the trace constraint, then φ′(τ) = −λ̄.

4.2 Solving the flipped problem

4.2.1 Projected gradient

An immediate approach for solving the flipped problem (16) is to apply the standard gradient projection
method to the problem (16). Indeed each projection onto the feasible region {Z � 0 : trZ ≥ τ} requires
only a single eigenvalue decomposition. Hence for moderately sized problems each iteration of the method
is relatively cheap. In turn, recovering the Lagrange multiplier is an easy operation.

4.2.2 Frank-Wolfe algorithm and dual subgradient descent

For large scale problems, the projected gradient method is too costly because one needs to compute the
eigenvalue decomposition of a dense matrix. We here propose an alternative utilizing sparsity, the Frank-
Wolfe algorithm [11], which has recently found many applications in machine learning (see e.g. [12,15]). The
general method considers problems of the form

min
x

f(A(x)) (18)

s.t. x ∈ D,

15

where f : Rm → R is a smooth convex function, A is a linear map from some Euclidean space (i.e., finite
dimensional inner product space) E to R

m, and D ⊆ E is a compact set. The Frank-Wolfe algorithm
for problem (18) is described in Algorithm 3. Assuming that the trace constraint in (16) is tight, our main

problem (16) certainly fits into this framework with f(·) = 1
2‖·−d‖22, A = P◦K̂, and D = {Z � 0 : trZ = τ}.

Algorithm 3 Frank-Wolfe algorithm

Let k ← 0 and l0 ← −∞. Pick any point x0 in D, and set a tolerance ε > 0.
while f(Axk)− lk > ε do

Choose a direction
sk ∈ argmin

s∈D

〈A∗∇f(Axk), s〉; (19)

Set the stepsize: γk ← 2
k+2 ;

Update the iterate: xk+1 ← xk + γk(sk − xk);
Set the lower bound:

lk+1 ← max{lk, f(Axk) + 〈sk − xk,A∗∇f(Axk)〉};

Increment the iterate: k ← k + 1;
end while

The Frank-Wolfe algorithm is guaranteed to complete in O(1
ε
) iterations. The computational burden of

the method is the minimization problem (19). In our situation (i.e., with f = 1
2‖ · −d‖22 and A = P ◦ K̂),

one can verify that for all x,

A∗∇f(Ax) = K̂∗ ◦ P∗(P ◦ K̂(Zk)− d
)

= V T
(
K∗ ◦ P∗(P ◦ K̂(Zk)− d

))
V.

It is important to notice is that in light of the standard formula K∗(X) = 2(Diag(Xe)−X) and the fact that

P∗ ◦P corresponds to the adjacency matrix of the graph, the inner matrix Wk := K∗ ◦P∗(P ◦K̂(Zk)−d
)
has

the same sparsity pattern, modulo the diagonal, as the adjacency matrix of the graph. As a result, when the
graph G is sparse, we claim that the linear optimization problem (19) is easy to solve. Indeed we may find
a minimal eigenvalue λk and a corresponding eigenvector vk of the matrix Wk fairly quickly by a Lanczos
method, and in particular, by orders of magnitude quicker than the full eigenvalue decomposition. One can
now easily check that vk is orthogonal to e and therefore lies in the range of V , for any V satisfying (15).
Letting wk be any vector satisfying V wk = vk, the matrix βwkw

T
k solves the linear optimization problem

(19). Consequently, the Frank-Wolfe method is perfectly adapted to our problem instance, since no full
eigenvalue decompositions are required, in contrast to the projected gradient method.

Moreover, recall that within the Newton method scheme we are not exactly after the solution to (16),
but rather to the Lagrange multiplier λ corresponding to the trace constraint. That is, we are interested in
the dual problem

max
y∈RE

− 1

2
‖y‖2 + 〈d, y〉 − τ · λmax

(
V T

(
K∗ ◦ P∗(y)

)
V
)
. (20)

The value λmax

(
V T

(
K∗P∗(y)

)
V
)
at optimality is the Lagrange multiplier that we seek. One can verify that

if {Zk} are the iterates generated by the Frank-Wolfe algorithm, then the images {yk} = {d − P ◦ K̂(Zk)}
are the iterates for the classical subgradient method on the dual problem (20), with the same step length.
The lower-bounds in the Frank-Wolfe algorithm lk are then the maximal objective values of the dual up to
iteration k, and therefore the stopping criterion is nothing more than the current best estimate on the duality
gap. Moreover, the eigenvalues λk are then precisely the required estimates on the Lagrange multiplier that
we seek.

16

5 Conclusion and work in progress

In this paper, we described two algorithms (robust facial reduction and a search along the Pareto frontier) to
solve the noisy sensor network localization problem, which has important applications and is a numerically
challenging problem due to its highly nonconvex nature. The two algorithms are intended for sensor networks
of different densities: the Pareto frontier algorithm outlined in Section 4 is designed for sparse graphs whereas
the robust facial reduction outlined in Algorithm 1 in Section 3 tends to work better for denser graphs. As
we illustrated, both approaches can work in anchorless sensor networks, since only the inter-sensor distance
measurements are used. Moreover, availability of anchor information will only improve the performance of
the algorithms.

We outlined some intuitive ideas behind the robustness of the two approaches, and the formal statements
of their robustness guarantees will be presented in our upcoming journal paper. We demonstrated some
preliminary numerical results for the robust facial reduction technique. Though not studied in this work,
it is possible to develop a distributed implementation of the robust facial reduction technique in order to
solve even larger scale SNL problem. In principle, the robust facial reduction technique should work with
networks that are sparser than those we have tested, but we have yet to verify this in practice.

The Pareto frontier estimation technique is promising for handling large scale SNL problems, since first-
order methods become immediately applicable and sparsity of the underlying graph can be exploited when
searching for a maximum eigenvalue-eigenvector pair via a Lanczos procedure. In the upcoming journal
paper, we will illustrate the numerical promise and implementation details of this approach.

References

[1] S. Al-Homidan and H. Wolkowicz. Approximate and exact completion problems for Euclidean distance
matrices using semidefinite programming. Linear Algebra Appl., 406:109–141, 2005. 6

[2] A. Aravkin, J. Burke, and M. Friedlander. Variational properties of value functions. SIAM J. Optim.,
23(3):1689–1717, 2013. 2, 14, 15

[3] J. Aspnes, T. Eren, D. Goldenberg, A. Morse, W. Whiteley, Y. Yang, B. Anderson, and P. Belhumeur.
Semidefinite programming approaches for sensor network localization with noisy distance measurements.
IEEE Transactions on Automation Science and Engineering, 3(4):360–371, October 2006. 2

[4] P. Biswas, T.-C. Lian, T.-C. Wang, and Y. Ye. Semidefinite programming based algorithms for sensor
network localization. ACM Trans. Sen. Netw., 2(2):188–220, 2006. 1, 4, 10, 11

[5] P. Biswas, T.-C. Liang, K.-C. Toh, , Y. Ye, and T.-C. Wang. Semidefinite programming approaches
for sensor network localization with noisy distance measurements. IEEE Transactions on Automation
Science and Engineering, 3:360–371, 2006. 1, 4, 11

[6] P. Biswas, K.-C. Toh, and Y. Ye. A distributed SDP approach for large-scale noisy anchor-free graph
reailzation with applications to molecular conformation. SIAM J. Sci. Comput., 30(3):1251–1277, 2008.
1, 10

[7] P. Biswas and Y. Ye. Semidefinite programming for ad hoc wireless sensor network localization. Technical
report, Dept. of Management Science and Engineering, Stanford University, 2003. 1

[8] P. Biswas and Y. Ye. Semidefinite programming for ad hoc wireless sensor network localization. In IPSN
’04: Proceedings of the 3rd international symposium on Information processing in sensor networks, pages
46–54, New York, NY, USA, 2004. ACM. 1, 4

[9] N. Boumal, B. Mishra, P.-A. Absil, and R. Sepulchre. Manopt, a matlab toolbox for optimization on
manifolds. Journal of Machine Learning Research, 15:1455–1459, 2014. 10

17

[10] D. Drusvyatskiy, G. Pataki, and H. Wolkowicz. Coordinate shadows of semi-definite and euclidean
distance matrices. Preprint, arXiv:1405.2037, 2014. 6

[11] M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Res. Logist. Quart., 3:95–110,
1956. 15

[12] Z. Harchaoui, A. Juditsky, and A. Nemirovski. Conditional gradient algorithms for norm-regularized
smooth convex optimization. Mathematical Programming, pages 1–38, 2014. 15

[13] T. Hayden, J. Lee, J. Wells, and P. Tarazaga. Block matrices and multispherical structure of distance
matrices. Linear Algebra Appl., 247:203–216, 1996. 6

[14] T. Hayden, J. Wells, W.-M. Liu, and P. Tarazaga. The cone of distance matrices. Linear Algebra Appl.,
144:153–169, 1991. 6

[15] M. Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In ICML, 2013. 15

[16] N. Krislock and H. Wolkowicz. Explicit sensor network localization using semidefinite representations
and facial reductions. SIAM J. Optim., 20(5):2679–2708, 2010. 1, 2, 3, 4, 5, 6

[17] H. Kurata and P. Tarazaga. Multispherical Euclidean distance matrices. Linear Algebra Appl.,
433(3):534–546, 2010. 6

[18] H. Kurata and P. Tarazaga. Majorization for the eigenvalues of Euclidean distance matrices. Linear
Algebra Appl., 436(5):1473–1481, 2012. 6

[19] B. Mishra, G. Meyer, and R. Sepulchre. Low-rank optimization for distance matrix completion. In
CDC-ECE’11, pages 4455–4460, 2011. 10

[20] T. Pong and P. Tseng. Robust edge-based semidefinite programming relaxation of sensor network
localization. Technical report, U. of Washington, 2009. 1

[21] J. Saxe. Embeddability of weighted graphs in k-space is strongly NP-hard. In Seventeenth Annual
Allerton Conference on Communication, Control, and Computing, Proceedings of the Conference held in
Monticello, Ill., October 10–12, 1979, pages xiv+1036, Urbana, 1979. University of Illinois Department
of Electrical Engineering. Proceedings of the International School of Physics “Enrico Fermi”, LXX*. 3

[22] A. So and Y. Ye. Theory of semidefinite programming for sensor network localization. Math. Program.,
109(2):367–384, 2007. 1, 3, 6

[23] A. M.-C. So and Y. Ye. Theory of semidefinite programming for sensor network localization. Math.
Program. Ser. B, pages 367–384, 2007. 1

[24] P. Tarazaga. Faces of the cone of Euclidean distance matrices: characterizations, structure and induced
geometry. Linear Algebra Appl., 408:1–13, 2005. 6

[25] P. Tarazaga and J. Gallardo. Euclidean distance matrices: new characterization and boundary proper-
ties. Linear Multilinear Algebra, 57(7):651–658, 2009. 6

[26] P. Tarazaga, T. Hayden, and J. Wells. Circum-Euclidean distance matrices and faces. Linear Algebra
Appl., 232:77–96, 1996. 6

[27] P. Tarazaga, B. Sterba-Boatwright, and K. Wijewardena. Euclidean distance matrices: special subsets,
systems of coordinates and multibalanced matrices. Comput. Appl. Math., 26(3):415–438, 2007. 6

[28] E. van den Berg and M. Friedlander. Probing the Pareto frontier for basis pursuit solutions. SIAM J.
Sci. Comput., 31(2):890–912, 2008/09. 2, 14

18

[29] E. van den Berg and M. Friedlander. Sparse optimization with least-squares constraints. SIAM J.
Optim., 21(4):1201–1229, 2011. 2, 14

[30] E. van den Berg and M. P. Friedlander. SPGL1: A solver for large-scale sparse reconstruction, June
2007. http://www.cs.ubc.ca/labs/scl/spgl1. 2, 14

[31] Z. Wang, S. Zheng, Y. Ye, and S. Boyd. Further relaxations of the semidefinite programming approach
to sensor network localization. SIAM J. Optim., pages 655–673, 2008. 1

[32] K. Weinberger, F. Sha, and L. Saul. Learning a kernel matrix for nonlinear dimensionality reduction.
In ICML ’04: Proceedings of the twenty-first international conference on Machine learning, page 106,
New York, NY, USA, 2004. ACM. 2

[33] Y. Yemini. Some theoretical aspects of position-location problems. In 20th Annual Symposium on
Foundations of Computer Science (San Juan, Puerto Rico, 1979), pages 1–8. IEEE, New York, 1979. 3

19

Index

Alg(·), output of Algorithm 1, 6
K, Lindenstrauss mapping, 5
Sn, real symmetric matrices, 3
Sn+, positive semidefinite matrices, 3
Snc , centered symmetric matrices, 5
Snc,+, centered PSD matrices, 5
Sn,rc,+, centered PSD matrices of rank ≤ r, 5
dist (·), distance function, 8
proj (·), projection function, 8
�, Löwner cone ordering, 3
e, vector of all ones, 3
n× n real symmetric matrices, Sn, 3
Manopt, 10

centered sets, 5

distance function, dist (·), 8

EDM, Euclidean distance matrix, 6
Euclidean distance matrix, EDM, 6

face, 4

Löwner cone ordering, �, 3
Lindenstrauss mapping, K, 5
local refinement, 10

multiplicative noise model, 11

positive semidefinite matrices, Sn+, 3
projection function, proj (·), 8

RMSD, root mean standard deviation, 11
root mean standard deviation, RMSD, 11

sensor network localization, SNL, 1
noiseless, 2
noisy, 4

SNL, sensor network localization, 1

trace inner product, 3

uniquely r-localizable, 6

vector of all ones, e, 3

20

	Introduction
	Sensor network localization: problem statement
	Noiseless SNL problem
	Noisy SNL problem

	Robust facial reduction for noisy SNL
	The algorithmic framework
	Robustness guarantees
	Implementing facial reduction for noisy EDM
	Choosing the clique set and the weights
	Nearest-point mapping to Sk,rc,+
	Solving the small least squares problem
	Preprocessing: sequential clique union
	Postprocessing: local refinement

	Numerics

	The Pareto frontier of the unfolding heuristic
	Robust formulation of the noisy SNL
	Solving the flipped problem
	Projected gradient
	Frank-Wolfe algorithm and dual subgradient descent

	Conclusion and work in progress
	Index

