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3 Department of Statistics and Actuarial Science, University of Waterloo,

Waterloo, Ontario, Canada

4 Department of Combinatorics and Optimization, University of Waterloo,

Waterloo, Ontario, Canada

5 Department of Biology, York University,

Toronto, Ontario, Canada
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dynamics coupled with a simulated annealing schedule. The objective of these methods is to minimize

the error of deviating from the NOE distance constraints. However, this objective function is highly

nonconvex and, consequently, difficult to optimize. Euclidean distance geometry methods based on

semidefinite programming (SDP) provide a natural formulation for this problem. However, complexity of

SDP solvers and ambiguous distance constraints are major challenges to this approach. The contribution

of this paper is to provide a new SDP formulation of this problem that overcomes these two issues for

the first time. We model the protein as a set of intersecting two- and three-dimensional cliques, then

we adapt and extend a technique called semidefinite facial reduction to reduce the SDP problem size

to approximately one quarter of the size of the original problem. The reduced SDP problem can not

only be solved approximately 100 times faster, but is also resistant to numerical problems from having

erroneous and inexact distance bounds.
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1 Introduction

Computing three-dimensional protein structures from their amino acid sequences has been

one of the most widely studied problems in bioinformatics because knowing the structure of

protein structure is key to understanding its physical, chemical, and biological properties.

The protein nuclear magnetic resonance (NMR) method is fundamentally different from the

X-ray method: It is not a “microscope with atomic resolution”; rather it provides a network

of distance measurements between spatially proximate hydrogen atoms (Güntert, 1998). As

a result, the NMR method relies heavily on complex computational algorithms. The existing

methods for protein NMR can be categorized into four major groups: (i) methods based on

Euclidean distance matrix completion (EDMC) (Braun et al., 1981; Havel and Wüthrich,

1984; Biswas et al., 2008; Leung and Toh, 2009), (ii) methods based on molecular dynamics

and simulated annealing (Nilges et al., 1988; Brünger, 1993; Schwieters et al., 2003; Güntert

et al., 1997; Güntert, 2004), (iii) methods based on local/global optimization (Braun and

Go, 1985; Moré and Wu, 1997; Williams et al., 2001), and (iv) methods originating from

sequence-based protein structure prediction algorithms (Shen et al., 2008; Raman et al.,

2010; Alipanahi et al., 2011).

In the early years of protein NMR, many EDMC-based methods directly worked on the

corresponding Euclidean distance matrix (EDM). The first method to use EDMC for protein

NMR was developed by Braun et al. (Braun et al., 1981). Other notable methods include

EMBED (Havel et al., 1983) and DISGEO (Havel and Wüthrich, 1984). These methods face

two major drawbacks: Randomly guessing the unknown distances is ineffective and after

several iterations of distance correction, distances tend to become large (Güntert, 1998). In

addition, there is no way to control the embedding dimensionality.

A major breakthrough came by combining simulated annealing with molecular dynamics

(MD) simulation. Nilges et al. made some improvements in the MD-based protein NMR

structure determination (Nilges et al., 1988): Instead of an empirical energy function, they
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proposed a simple geometrical energy function based on the NOE restraints that penalized

large violations and they also combined simulated annealing (SA) with MD. These methods

were able to search the massive conformation space without being trapped in one of numerous

local minima. The XPLOR method (Brünger, 1993; Schwieters et al., 2003, 2006) was one

of the first successful and widely-adapted methods that was built on the molecular dynamics

simulation package CHARMM (Brooks et al., 1983). The number of degrees of freedom in

torsion angle space is nearly 10 times smaller than in Cartesian coordinates space, while being

equivalent under mild assumptions. The torsion angle dynamics algorithm implemented in

the program CYANA (Güntert, 2004), and previously in the program DYANA (Güntert

et al., 1997), is one of the fastest and most widely-used methods.

1.1 Gram Matrix Methods

Using the Gram matrix, or the matrix of inner products, has many advantages: (i) The Gram

matrix and Euclidean distance matrix (EDM) are linearly related to each other. (ii) Instead

of enforcing all of the triangle inequality constraints, it is sufficient to enforce that the Gram

matrix is positive semidefinite. (iii) The embedding dimension and the rank of the Gram

matrix are directly related.

Semidefinite programming (SDP) is a natural choice for formulating the EDMC problem

using the Gram matrix. SDP-based EDMC methods demonstrated great success in solving

the sensor network localization (SNL) problem (Doherty et al., 2001; Biswas and Ye, 2004;

Biswas et al., 2006; Wang et al., 2008; Kim et al., 2009; Krislock and Wolkowicz, 2010).

In the SNL problem, the location of a set of sensors is determined, given the short-range

distances between spatially proximate sensors. As a result, the SNL problem is inherently

similar to the protein NMR problem. The major obstacle in extending SNL methods to

protein NMR is the complexity of SDP solvers. To overcome this limitation Biswas et al.

proposed DAFGAL, which is built on the idea of divide-and-stitch (Biswas et al., 2008).

Leung and Toh proposed the DISCO method (Leung and Toh, 2009). It is an extension of
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DAFGAL that can determine protein molecules with more than 10,000 atoms using a divide-

and-conquer technique. The improved methods for partitioning the partial distance matrix

and iteratively aligning the solutions of the subproblems, boost the performance of DISCO

in comparison to DAFGAL.

1.2 Contributions of the Proposed SPROS Method

Most of the existing methods make some of the following assumptions: (i) assuming to know

the (nearly) exact distances between atoms, (ii) assuming to have the distances between

any type of nuclei (not just hydrogens), (iii) ignoring the fact that not all hydrogens can be

uniquely assigned, and (iv) overlooking the ambiguity in the NOE cross-peak assignments.

In order to automate the NMR protein structure determination process, we need a robust

structure calculation method that tolerates more errors. We give a new SDP formulation that

does not assume (i–iv) above. Moreover, the new method, called “SPROS” (Semidefinite

Programming-based Protein structure determination), models the protein molecule as a set

of intersecting two- and three-dimension cliques. We adapt and extend a technique called

semidefinite facial reduction which makes the SDP problem strictly feasible and reduces its

size to approximately one quarter the size of the original problem. The reduced problem is

more numerically stable to solve and can be solved nearly 100 times faster.
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2 The SPROS Method

We have divided the presentation of the SPROS method into providing the necessary back-

ground, followed by giving a description of techniques used for problem size reduction, and

finally, showing the performance of the method on experimentally derived data.

2.1 Euclidean Distance Geometry

Scalars, vectors, sets, and matrices are shown in lower case, lower case bold italic, script,

and upper case italic letters, respectively. We work only on real finite-dimensional Euclidean

Spaces E and define an inner product operator 〈·, ·〉 : E×E→ R for these spaces: (i) for the

space of real p-dimensional vectors, Rp, 〈x,y〉 := x⊤y =
∑p

i=1 xiyi, and (ii) for the space

of real p × q matrices, Rp×q, 〈A,B〉 := trace(A⊤B) =
∑p

i=1

∑q

j=1AijBij . The Euclidean

distance norm of x ∈ R
p is defined as ‖x‖ :=

√

〈x,x〉. We use the Matlab notation that

1:n := {1, 2, . . . , n}. For a matrix A ∈ R
n×n and an index set I ⊆ 1:n, B = A[I] is the

|I|× |I| matrix formed by rows and columns of A indexed by I. Finally, we let Sp the space

of symmetric p× p matrices.

Euclidean Distance Matrix A symmetric matrix D is called a Euclidean Distance Matrix

(EDM) if there exists a set of points {x1, . . . ,xn}, xi ∈ R
r such that:

Dij = ‖xi − xj‖
2, ∀i, j. (1)

The smallest value of r is called the embedding dimension of D, and is denoted embdim(D).

The space of all n× n EDMs is denoted En.

The Gram Matrix If we define X := [x1, . . . ,xn] ∈ R
r×n, then the matrix of inner-

products, or Gram Matrix, is given by G := X⊤X . It immediately follows that G ∈ Sn
+,

where Sn
+ is the set of symmetric positive semidefinite n×n matrices. The Gram matrix and
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the Euclidean distance matrix are linearly related:

D = K(G) := diag(G) · 1⊤ + 1 · diag(G)⊤ − 2G, (2)

where 1 is the all-ones vector of the appropriate size. To go from the EDM to the Gram

matrix, we use the K
† : Sn → Sn linear map:

G = K
†(D) := −1

2
HDH, D ∈ Sn

H , (3)

where H = I − 1
n
11⊤ is the centering matrix, Sn is the space of symmetric n× n matrices,

and Sn
H := {A ∈ Sn : diag(A) = 0}, is the set of symmetric matrices with zero diagonal.

Schoenberg’s Theorem Given a matrix D, we can determine if it is an EDM with the

following well-known theorem (Schoenberg, 1935):

Theorem 1. A matrix D ∈ Sn
H is a Euclidean distance matrix if and only if K

†(D) is

positive semidefinite. Moreover, embdim(D) = rank(K†(D)) for all D ∈ En.

2.2 The SDP Formulation

Semidefinite optimization or, more commonly, semidefinite programming is a class of convex

optimization problems that has attracted much attention in the optimization community and

has found numerous applications in different science and engineering fields. Notably, several

diverse convex optimization problems can be formulated as SDP problems (Vandenberghe

and Boyd, 1996). Current state-of-the-art SDP solvers are based on primal-dual interior-point

methods.

Preliminary Problem Formulation There are three types of constraints in our for-

mulation: (i) equality constraints, which are the union of equality constraints preserving

bond lengths (B), bond angles (A), and planarity of the coplanar atoms (P), giving E =

EB ∪ EA ∪ EP ; (ii) upper bounds, which are the union of NOE-derived (N ), hydrogen
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bonds (H), disulfide and salt bridges (D), and torsion angle (T ) upper bounds, giving

U = UN ∪ UH ∪ UD ∪ UT ; (iii) lower bounds, which are the union of steric or van der

Waals (W) and torsion angle (T ) lower bounds, giving L = LW ∪LT . We assume the target

protein has n atoms, a1, . . . , an. The preliminary problem formulation is given by:

minimize γ〈I,K〉+
∑

ij wijξij +
∑

ij w
′
ijζij (4)

subject to 〈Aij, K〉 = eij , (i, j) ∈ E

〈Aij, K〉 ≤ uij + ξij, (i, j) ∈ U

〈Aij, K〉 ≥ lij − ζij, (i, j) ∈ L

ξij ∈ R+, (i, j) ∈ U , ζij ∈ R+, (i, j) ∈ L

K1 = 0, K ∈ Sn
+,

where Aij = (ei−ej)(ei−ej)
⊤ and ei is the ith column of the identity matrix. The centering

constraint K1 = 0, ensures that the embedding of K is centered at the origin. Since both

upper bounds and lower bounds may be inaccurate and noisy, non-negative penalized slacks,

ζij’s and ξij’s, are included to prevent infeasibility and manage ambiguous upper bounds.

The heuristic rank reduction term, γ〈I,K〉, with γ < 0, in the objective function, produces

lower-rank solutions (Weinberger and Saul, 2004).

Bond lengths and angles Covalent bonds are very stable, and since their fluctuations cannot

be detected in NMR experiments, all bond lengths and angles must be set to ideal values

computed from accurate X-ray structures; see (Engh and Huber, 1991). Bonds length and

angle constraints are written in terms of the distance between an atom and its immediate

neighbor and an atom and its second nearest neighbor, respectively.

Planarity constraints Proteins contain several coplanar atoms, from HCON in the peptide

planes, and from side chain in moieties found in nine amino acids (Hooft et al., 1996). We

have enforced planarity by preserving the distances between all coplanar atoms.
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Torsion angle constraints Another source of structural information in protein NMR is the set

of torsion angle restraints, defined as θmin
i ≤ θi ≤ θmax

i , i ∈ T . We extend the idea proposed

in (Sussman, 1985) and define upper and lower bounds on the torsion angles based on the

distance between the first and the fourth atom in the torsion angle. Thus, for example, we

can constrain the Φi angle by constraining the distance between the Ci and Ci−1 atoms.

Penalizing incorrect bounds Let ξ ∈ R
|U| be a vector containing all of the slacks for upper

bounds. Since ξij ∈ R+, assuming that all the weights are the same, i.e., wij = w, we have

w
∑

ij ξij = w ‖ξ‖1, where ‖x‖1 is the ℓ-1 norm of vector x. The fact that minimizing the ℓ1-

norm finds sparse solutions is a widely known and used heuristic (Boyd and Vandenberghe,

2004). In our problem, ξij = 0 implies no violation; consequently, SPROS tends to find a

solution that violates a minimum number of upper bounds.

Pseudo-atoms Not all hydrogens can be uniquely assigned, such as the hydrogens in the

methyl groups; therefore, upper bounds involving these hydrogens are ambiguous. To over-

come this problem, pseudo-atoms are introduced (Güntert, 1998). Given an ambiguous con-

straint between one of the hydrogens and atom A, by using the triangle inequality, we modify

the constraint as follows:

‖HBi −A‖ ≤ b, i ∈ {1, 2, 3} ⇒ ‖QB− A‖ ≤ b+ ‖HBi −QB‖, (5)

where ‖HBi−QB‖ is the same for i = 1, 2, 3. Pseudo-atoms are named corresponding to the

hydrogens they represent; only H is changed to Q and the rightmost number is dropped. For

example, in leucine, QD1 represents HD11, HD12, and HD13. We adapt the pseudo-atoms

used in CYANA (Güntert, 2004).

Side chain simplification In CYANA, hydrogens that do not participate directly in the struc-

tural solution are discarded initially and then added at later stages (Güntert, 2004). We have

adapted this approach by discarding hydrogens only if they make our problem smaller. In the

side chain simplification process, we temporarily discard (i) all of the methyl hydrogens, (ii)
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all of the methylene hydrogens, (iii) hydroxyl hydrogens of tyrosine and serine, (iv) amino

hydrogens of arginine and threonine, and (v) sulfhydryl hydrogen of cysteine. After the SDP

problem is solved, the omitted hydrogen atoms are replaced and remain in all post-processing

stages.

Challenges in Solving the SDP Problem Solving the optimization problem in (4) can

be challenging: For small to medium sized proteins, the number of atoms, n, is 1,000-3,500,

and current primal-dual interior-point SDP solvers cannot solve problems with n > 2, 000

efficiently. Moreover, the optimization problem in (4) does not satisfy strict feasibility, causing

numerical problems; see (Wei and Wolkowicz, 2010).

It can be observed that the protein contains many small intersecting cliques. For example,

peptide planes or aromatic rings, are 2D cliques, and tetrahedral carbons form 3D cliques.

As we show later, whenever there is a clique in the protein, the corresponding Gram matrix,

K, can never be full-rank, which violates strict feasibility. By adapting and extending a

technique called semidefinite facial reduction, not only do we obtain an equivalent problem

that satisfies strict feasibility, but we also significantly reduce the SDP problem size.

2.3 Cliques in a Protein Molecule

A protein molecule with ℓ amino acid residues has ℓ + 1 planes in its backbone. Moreover,

each amino acid has a different side chain with a different structure; therefore, the number of

cliques in each side chain varies (see Table 4 in Appendix B for the number of cliques in each

amino acid side chain). We assume that the i-th residue, ri, has si cliques in its side chain,

denoted by S(1)
i , . . . ,S(si)

i . For all amino acids (except glycine and proline), the first side

chain clique is formed around the tetrahedral carbon CA, S(1)
i = {Ni,CAi,HAi,CBi,Ci},

which intersects with two peptide planes Pi−1 and Pi in two atoms: S(1)
i ∩Pi−1 = {Ni,CAi}

and S(1)
i ∩Pi = {CAi,Ci}. Side chain cliques for all twenty amino acids are listed in Table 4

(see Appendix B). There is a total of q = ℓ + 1 +
∑ℓ

i=1 si cliques in the distance matrix of
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any protein. To simplify, let Ci = Pi−1, 1 ≤ i ≤ ℓ + 1, and Cℓ+2 = S(1)
1 , Cℓ+2 = S(2)

1 , . . . ,

Cq = S
(sℓ)
ℓ . For properties of the cliques in the protein molecule, see Appendix A.

2.4 Algorithm for Finding the Face of the Structure

For t < n and U ∈ R
n×t, the set of matrices USt

+U
⊤ is a face of Sn

+ (in fact every face of

Sn
+ can be described in this way); see, e.g., (Ramana et al., 1997). We let face(F) represent

the smallest face containing a subset F of Sn
+; then we have the important property that

face(F) = USt
+U

⊤ if and only if there exists Z ∈ St
++ such that UZU⊤ ∈ F . Furthermore,

in this case, we have that every Y ∈ F can be decomposed as Y = UZU⊤, for some Z ∈ St
+,

and the reduced feasible set {Z ∈ St
+ : UZU⊤ ∈ F} has a strictly feasible point, giving us

a problem that is more numerically stable to solve (problems that are not strictly feasible

have a dual optimal set that is unbounded and therefore can be difficult to solve numerically;

for more information, see (Wei and Wolkowicz, 2010)). Moreover, if t≪ n, this results in a

significant reduction in the matrix size.

The Face of a Single Clique Here, we solve the Single Clique problem, which is defined

as follows: Let D be a partial EDM of a protein. Suppose the first n1 points form a clique

in the protein, such that for C1 = {1, . . . , n1}, all distances are known. That is, the matrix

D1 = D[C1] is completely specified. Moreover, let r1 = embdim(D1). We now show how to

compute the smallest face containing the feasible set {K ∈ Sn
+ : K(K[C1]) = D1}.

Theorem 2 (Single Clique, (Krislock and Wolkowicz, 2010)). Let the matrix U1 ∈

R
n×(n−n1+r1+1) be defined as follows:

– let V1 ∈ R
n1×r1 be a full column rank matrix such that range(V1) = range(K†(D1));

– let Ū1 :=

[

V1 1

]

and U1 :=







r1+1 n−n1

n1 Ū1 0

n−n1 0 I






∈ R

n×(n−n1+r1+1).

Then U1 has full column rank, 1 ∈ range(U), and
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face{K ∈ Sn
+ : K(K[C1]) = D[C1]} = U1S

n−n1+r1+1
+ U⊤

1 .

Computing the V1 Matrix In Theorem 2, we can find V1 by computing the eigendecom-

position of K†(D[C1]) as follows:

K
†(D[C1]) = V1Λ1V

⊤
1 , V1 ∈ R

n1×r1, Λ1 ∈ S
r1
++. (6)

It can be seen that V1 has full column rank (columns are orthonormal) and also that

range(V1) = range(K†(D1)).

2.5 The Face of a Protein Molecule

The protein molecule is made of q cliques, {C1, . . . , Cq}, such that D[Cl] is known, and we

have rl = embdim(D[Cl]), and nl = |Cl|. Let F be the feasible set of the SDP problem. If

for each clique Cl, we define Fl := {K ∈ Sn
+ : K(K[Cl]) = D[Cl]}, then

F ⊆

(

q
⋂

l=1

Fl

)

∩ Sn
C , (7)

where Sn
C := {K ∈ Sn : K1 = 0} are the centered symmetric matrices. For l = 1, . . . , q, let

Fl := face(Fl) = UlS
n−nl+rl+1
+ U⊤

l , where Ul is computed as in Theorem 2. We have (Krislock

and Wolkowicz, 2010):

(

q
⋂

l=1

Fl

)

∩ Sn
C ⊆

(

q
⋂

l=1

UlS
n−nl+rl+1
+ U⊤

l

)

∩ Sn
C = (USk

+U
⊤) ∩ Sn

C , (8)

where U ∈ R
n×k is a full column rank matrix that satisfies range(U) =

⋂q

l=1 range(Ul).

We now have an efficient method for computing the face of the feasible set F . To have

better numerical accuracy, we developed a bottom-up algorithm for intersecting subspaces

(see Algorithm 1 in Appendix C).
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After computing U , we can decompose the Gram matrix as K = UZU⊤, for Z ∈ Sk
+.

However, by exploiting the centering constraint, K1 = 0, we can reduce the matrix size one

more. If V ∈ R
k×(k−1) has full column rank and satisfies range(V ) = null(1⊤U), then we

have (Krislock and Wolkowicz, 2010):

F ⊆ (UV )Sk−1
+ (UV )⊤. (9)

For more details on facial reduction for Euclidean distance matrix completion problems,

see (Krislock, 2010).

Constraints for Preserving the Structure of Cliques If we find a base set of points

Bl in each clique Cl such that embdim(D[Bl]) = rl, then by fixing the distances between

points in the base set and fixing the distances between points in Cl \Bl and points in Bl, the

entire clique is kept rigid. Therefore, we need to fix only the distances between base points

(Alipanahi et al., 2012), resulting in a three- to four-fold reduction in the number of equality

constraints. We call the reduced set of equality constraints EFR.

2.6 Solving and Refining the Reduced SDP Problem

The SPROS method flowchart is depicted in Appendix D (see Fig. 2). In it, we describe the

blocks for solving the SDP problem and for refining the solution. From equation (9), we can

formulate the reduced SDP problem as follows:

minimize γ〈I, Z〉+
∑

ij wijξij +
∑

ij w
′
ijζij (10)

subject to 〈A′
ij, Z〉 = eij, (i, j) ∈ EFR

〈A′
ij, Z〉 ≤ uij + ξij, (i, j) ∈ U

〈A′
ij, Z〉 ≥ lij − ζij, (i, j) ∈ L

ξij ∈ R+, (i, j) ∈ U , ζij ∈ R+, (i, j) ∈ L

Z ∈ Sk−1
+ ,
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where A′
ij = (UV )⊤Aij(UV ).

Weights and the regularization parameter For each type of upper and lower bound,

we define a fixed penalizing weight for violations. For example, for upper bounds (similarly

for lower bounds) we have ∀(i, j) ∈ UX , wij = wX . We set wN = 1 and wH = wD = wT = 10

because upper bounds from hydrogen bonds and disulfide/salt bridges are assumed to be

more accurate than are NOE-derived upper bounds. Moreover, the range of torsion angle

violations is ten times smaller than NOE violations.

Let mU = |U| and R be the radius of the protein. Then, the maximum upper bound

violation is 2R. Moreover, 〈I, Z〉 ≤ nR. Discarding the role of lower bound violations, with

the goal of approximately balancing the two terms, a suitable γ is:

γnR ≈ 2εwmUR ⇒ γ =
2εwmU

n
, (11)

where 0 ≤ ε ≤ 1 is the fraction of violated upper bounds. In practice ε ≈ 0.01 − 0.30, and

γ̄ ≈ wmU/50n works well.

Post-Processing We perform a refinement on the raw structure determined by the SDP

solver. For this refinement we use a BFGS-based quasi-Newton method (Lewis and Overton,

2009) that only requires the value of the objective function and its gradient at each point.

Letting X(0) = XSDP, we iteratively minimize the following objective function:

φ(X) = wE

∑

(i,j)∈E

(‖xi − xj‖ − eij)
2 + wU

∑

(i,j)∈U

f (‖xi − xj‖ − uij)
2

+ wL

∑

(i,j)∈L

g (‖xi − xj‖ − lij)
2 + wR

n
∑

i=1

‖xi‖
2, (12)

where f(α) = max(0, α) and g(α) = min(0,−α). We set wE = 2, wU = 1, and wL = 1. In

addition, to balance the regularization term, we set wR = αφ(X(0))|wR=0/25
∑n

i=1 ‖x
(0)
i ‖

2,

where −1 ≤ α ≤ 1 is a parameter controlling the regularization. If α < 0, the distances
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between atoms are maximized, because, after projection, some of the distances have been

shortened, this term helps to compensate for that error. However, if α > 0, the distances

between atoms are minimized, resulting in better packing of atoms in the protein molecule.

In practice, different values for α can be used to generate slightly different structures, thus

creating a bundle of structures.

Fixing incorrect chiralities Chirality constraints cannot be enforced using only distances.

Consequently, some chiral centers may have the incorrect enantiomer. In this step, SPROS

checks the chiral centers and resolves any problems.

Improving the stereochemical quality Williamson and Craven have described the effectiveness

of explicit solvent refinement of NMR structures and suggest that it should be a standard

procedure (Williamson and Craven, 2009). For protein structures that have regions of high

mobility/uncertainty due to few or no NOE observations, we have successfully employed

a hybrid protocol from XPLOR-NIH that incorporates thin-layer water refinement (Linge

et al., 2003) and a multidimensional torsion angle database (Kuszewski et al., 1996, 1997).
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3 Results

We tested the performance of SPROS on 18 proteins: 15 protein data sets from the DOCR

database in the NMR Restraints Grid (Doreleijers et al., 2003, 2005) and three protein data

sets from Donaldson’s laboratory at York University. We chose proteins with different sizes

and topologies, as listed in Table 1. Finally, the input to the SPROS method is exactly the

same as the input to the widely-used CYANA method.

3.1 Implementation

The SPROS method has been implemented and tested in Matlab 7.13 (apart from the

water refinement, which is done by XPLOR-NIH). For solving the SDP problem, we used

the SDPT3 method (Tütüncü et al., 2003). For minimizing the post-processing objective

function (12), we used the BFGS-based quasi-Newton method implementation by Lewis and

Overton (Lewis and Overton, 2009). All the experiments were carried out on an Ubuntu

11.04 Linux PC with a 2.8 GHz Intel Core i7 Quad-Core processor and 8 GB of memory.

3.2 Determined Structures

From the 18 test proteins, 9 of them were calculated with backbone RMSDs less than or

equal to 1.0 Å, and 16 have backbone RMSDs less than 1.5 Å. Detailed analysis of calculated

structures is listed in Table 2. The superimposition of the SPROS and reference structures

for three of the proteins are depicted in Figure 1. More detailed information about the

determined structures can be found in (Alipanahi, 2011).

To further assess the performance of SPROS, we compared the SPROS and reference

structures for 1G6J, Ubiquitin, and 2GJY, PTB domain of Tensin, with their corresponding

X-ray structures, 1UBQ and 1WVH, respectively. For 1G6J, the backbone (heavy atoms) RMSDs

for SPROS and the reference structures are 0.42 Å (0.57 Å) and 0.73±0.04 Å (0.98±0.04 Å),

respectively. For 2GJY, the backbone (heavy atoms) RMSDs for SPROS and the reference

structures are 0.88 Å (1.15 Å) and 0.89 ± 0.08 Å (1.21 ± 0.06 Å), respectively.
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2L3O 2K49 2YTO
 

Fig. 1. Superimposition of structures determined by SPROS in blue and the reference structures in red.

3.3 Discussion

The SPROS method was tested on 18 experimentally derived protein NMR data sets of

sequence lengths ranging from 76 to 307 (weights ranging from 8 to 35 KDa). Calculation

times were in the order of a few minutes per structure. Accurate results were obtained for

all of the data sets, although with some variability in precision. The best attribute of the

SPROS method is its tolerance for, and efficiency at, managing many incorrect distance

constraints (that are typically defined as upper bounds).

The reduction methodology developed for SPROS is an ideal choice for protein-ligand

docking. If the side chains participating at the interaction surface are only declared to be

flexible, it has the effect of reducing the SDP matrix size to less than 100. Calculations

under these specific parameters can be achieved in a few seconds thereby making SPROS a

worthwhile choice for automated, high-throughput screening.

Our final goal is a fully automated system for NMR protein structure determination,

from peak picking (Alipanahi et al., 2009) to resonance assignment (Alipanahi et al., 2011),

to protein structure determination. An automated system, without the laborious human

intervention will have to tolerate more errors than usual. This was the initial motivation

of designing SPROS. The key is to tolerate more errors. Thus, we are working towards

incorporating an adaptive violation weight mechanism to identify the most significant outliers

in the set of distance restraints automatically.
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Table 1. Information about the proteins used in testing SPROS. The second, third, and fourth columns, list the topologies, sequence lengths, and molecular
weight of the proteins, the fifth and sixth columns, n and n′, list the original and reduced SDP matrix sizes, respectively. The seventh column lists the number of
cliques in the protein. The eights and ninth columns, mE and m′

E , list the number of equality constraints in the original and reduced problems, respectively. The
10th column, mU , lists the total number of upper bounds for each protein. The 11th column, bound types, lists intra-residue, |i− j| = 0, sequential, |i− j| = 1,
medium range, 1 < |i− j| ≤ 4, and long range, |i− j| > 4, respectively, in percentile. The 12th column, m̄U ± sU , lists the average number of upper bounds per
residue, together with the standard deviation. The 13th column, mN , lists the number of NOE-inferred upper bounds. The 14th column, pU , lists the fraction
of pseudo-atoms in the upper bounds in percentile. The last two columns, mT and mH, list the number of upper bounds inferred from torsion angle restraints,
and hydrogen bonds, disulfide and salt bridges, respectively.

ID topo. len. weight n n′ cliques (2D/3D) mE m′
E mU bound types m̄U ± sU mN pU mT mH

1G6J a+b 76 8.58 1434 405 304 (201/103) 5543 1167 1354 21/ 29/ 17/ 33 31.9±15.3 1291 32 63 0
1B4R B 80 7.96 1281 346 248 (145/103) 4887 1027 787 26/ 25/ 6 / 43 17.1±10.8 687 30 22 78
2E8O A 103 11.40 1523 419 317 (212/105) 5846 1214 3157 19/ 29/ 26/ 26 71.4±35.4 3070 24 87 0
1CN7 a/b 104 11.30 1927 532 393 (253/140) 7399 1540 1560 46/ 24/ 12/ 18 23.1±13.4 1418 31 80 62
2KTS a/b 117 12.85 2075 593 448 (299/149) 7968 1719 2279 22/ 28/ 14/ 36 34.6±17.4 2276 25 0 3
2K49 a+b 118 13.10 2017 574 433 (291/142) 7710 1657 2612 22/ 27/ 18/ 38 40.9±21.1 2374 27 146 92
2K62 B 125 15.10 2328 655 492 (327/165) 8943 1886 2367 21/ 32/ 15/ 32 33.9±18.6 2187 32 180 0
2L3O A 127 14.30 1867 512 393 (269/124) 7143 1492 1270 24/ 38/ 20/ 18 22.5±12.7 1055 25 156 59
2GJY a+b 144 15.67 2337 639 474 (302/172) 8919 1875 1710 7 / 30/ 19/ 44 25.0±16.6 1536 29 98 76
2KTE a/b 152 17.21 2576 717 542 (360/182) 9861 2089 1899 17/ 31/ 22/ 30 24.3±20.8 1669 30 124 106
1XPW B 153 17.44 2578 723 541 (355/186) 9837 2081 1206 0 / 31/ 11/ 58 17.0±10.8 934 37 210 62
2K7H a/b 157 16.66 2710 756 563 (363/200) 10452 2196 2768 29/ 33/ 13/ 25 30.3±11.3 2481 19 239 48
2KVP A 165 17.28 2533 722 535 (344/191) 9703 2094 5204 31/ 26/ 23/ 20 59.2±25.0 4972 22 232 0
2YT0 a+b 176 19.17 2940 828 627 (419/208) 11210 2404 3357 23/ 28/ 14/ 35 34.9±22.3 3237 30 120 0
2L7B A 307 35.30 5603 1567 1205 (836/369) 21421 4521 4355 10/ 30/ 44/ 16 27.6±14.4 3459 23 408 488

1Z1V A 80 9.31 1259 362 272 (181/91) 4836 1046 1261 46/ 24/ 18/ 13 28.6±16.3 1189 15 0 72
HACS1 B 87 9.63 1150 315 237 (156/81) 4401 923 828 46/ 21/ 5 / 27 20.2±14.2 828 20 0 36
2LJG a+b 153 17.03 2343 662 495 (327/168) 9009 1909 1347 40/ 29/ 8 / 22 16.4±11.9 1065 28 204 78
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Table 2. Information about determined structures of the test proteins. The second, third, and fourth columns list SDP time, water refinement time, and total
time, respectively. For the backbone and heavy atom RMSD columns, the mean and standard deviation between the determined structure and the reference
structures is reported (backbone RMSDs less than 1.5 Å are shown in bold). The seventh column, CBd, lists the number of residues with “CB deviations” larger
than 0.25 Å computed by MolProbity, as defined by (Chen et al., 2010). The eighth and ninth columns list the percentage of upper bound violations larger than
0.1 Å and 1.0 Å, respectively (the numbers for the reference structures are in parentheses). The last three columns, list the percentage of residues with favorable
and allowed backbone torsion angles and outliers, respectively.

RMSD violations Ramachandran

ID ts tw tt backbone heavy atoms CBd. 0.1 Å 1.0 Å fav. alw. out.

1G6J 44.5 175.5 241.0 0.68±0.05 0.90±0.05 0 4.96 (0.08±0.07) 0.85 (0) 100 100 0
1B4R 21.4 138.0 179.0 0.85±0.06 1.06±0.06 0 20.92 (13.87±0.62) 6.14 (2.28±0.21) 80.8 93.6 6.4
2E8O 129.8 181.3 340.9 0.58±0.02 0.68±0.01 0 31.33 (31.93±0.14) 9.98 (10.75±0.13) 96.2 100 0
1CN7 75.0 230.1 339.7 1.53±0.11 1.80±0.10 0 10.27 (7.63±0.80) 3.18 (2.11±0.52) 96.1 99.0 1.0
2KTS 116.7 231.0 398.5 0.92±0.06 1.13±0.06 0 25.36 (27.44±0.58) 6.49 (10.36±0.68) 86.1 95.7 4.3
2K49 140.7 240.7 422.7 0.99±0.14 1.24±0.16 0 13.75 (15.79±0.67) 2.80 (4.94±0.46) 93.8 97.3 2.7
2K62 156.1 259.0 464.2 1.40±0.08 1.72±0.08 1 33.74 (42.92±0.95) 10.79 (21.20±1.20) 87.8 95.9 4.1
2L3O 61.7 212.0 310.0 1.28±0.15 1.59±0.15 0 21.53 (19.81±0.58) 7.33 (7.61±0.31) 80.4 92.8 7.2
2GJY 113.7 285.9 455.7 0.99±0.07 1.29±0.09 0 11.67 (8.36±0.59) 0.36 (0.49±0.12) 85.4 92.3 7.7
2KTE 139.9 297.7 503.2 1.39±0.17 1.85±0.16 1 35.55 (31.97±0.46) 11.94 (11.96±0.40) 79.4 90.8 9.2
1XPW 124.8 297.1 489.7 1.30±0.10 1.68±0.10 0 9.74 (0.17±0.09) 1.20 (0.01±0.02) 87.9 97.9 2.1
2K7H 211.7 312.0 591.0 1.24±0.07 1.49±0.07 0 17.60 (16.45±0.30) 4.39 (4.92±0.35) 92.3 96.1 3.9
2KVP 462.0 282.4 814.8 0.94±0.08 1.05±0.09 0 15.15 (17.43±0.29) 4.01 (5.62±0.21) 96.6 100 0
2YT0 292.1 421.5 800.1 0.79±0.05 1.04±0.06 1 29.04 (28.9±0.36) 6.64 (6.60±0.30) 90.5 97.6 2.4
2L7B 1101.1 593.0 1992.1 2.15±0.11 2.55±0.11 3 19.15 (21.72±0.36) 4.23 (4.73±0.23) 79.2 91.6 8.4

1Z1V 30.6 158.8 209.2 1.44±0.17 1.74±0.15 0 3.89 (2.00±0.25) 0.62 (0) 90.9 98.5 1.5
HACS1 17.4 145.0 176.1 1.00±0.07 1.39±0.10 0 20.29 (15.68±0.43) 4.95 (3.73±0.33) 83.6 96.7 3.3
2LJG 94.7 280.4 426.3 1.24±0.09 1.70±0.10 1 28.35 (25.3±0.51) 10.76 (8.91±0.49) 80.6 90.7 9.3
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Appendix A: Properties of Cliques

Let Ci = Pi−1, 1 ≤ i ≤ ℓ + 1, and Cℓ+2 = S(1)
1 , Cℓ+2 = S(2)

1 , . . . , Cq = S(sℓ)
ℓ . Let ri =

embdim(D[Ci]). The following properties hold for cliques in a protein molecule:

1. Pi ∩ Pi′ = ∅, given |i− i′| > 1.

2. Pi ∩ S
(j)
i′ = ∅, given i′ 6= i, i+ 1.

3. S(j)
i ∩ S

(j′)
i′ = ∅, given i′ 6= i.

4. |Ci| ≥ ri + 1.

5. 3 ≤ |Ci| ≤ 16.

6. ∀i, i′, |Ci ∩ Ci′ | ≤ 2.

7. 6 ∃i such that ∀i′ 6= i, Ci ∩ Ci′ = ∅.

8. If Ii = {i′ : Ci ∩ Ci′ 6= ∅}, then ∀i, |Ii| ≤ 4.

9.
⋃q

i=1 Ci = 1:n.
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Appendix B: Additional Tables

Table 3. Table summarizing properties of different amino acids: p denotes abundance of amino acids in percentile, t
denotes the number of torsion angles (excluding ω), a denotes the total number of atoms and pseudo-atoms, s denotes
the total number of atoms and pseudo-atoms in the side chains, q denotes the number of cliques in each side chain
(the number in the parenthesis is the number of 3D cliques), and k denotes the increase in the SDP matrix size. The
values in the Reduced column denote the same values in the side chain simplified case. The weighted average (w.a.)
of quantity x is computed as

∑
i∈A

pixi, where A is the set of twenty amino acids.

Complete side chains Simplified side chains

A.A. p t a s q k a s q k

Ala 7.3 3 11 5 2 (2) 5 8 2 1 (1) 3
Arg 5.2 6 29 23 5 (4) 10 20 14 5 (1) 7
Asn 4.6 4 16 10 3 (2) 6 13 7 3 (1) 5
Asp 5.1 4 13 7 3 (2) 6 10 4 3 (1) 5
Cys 1.8 4 12 6 3 (2) 5 8 2 2 (1) 4
Glu 4.0 5 20 14 4 (3) 8 14 8 4 (1) 6
Gln 6.2 5 17 11 4 (3) 8 11 5 4 (1) 6
Gly 6.9 2 8 2 1 (1) 3 8 2 1 (1) 3
His 2.3 4 18 12 3 (2) 6 15 9 3 (1) 5
Ile 5.8 6 22 16 5 (5) 11 13 7 3 (2) 6
Leu 9.3 6 23 17 5 (5) 11 14 8 3 (2) 6
Lys 5.8 7 27 21 6 (6) 13 12 6 5 (1) 7
Met 2.3 6 20 14 5 (4) 10 11 5 4 (1) 6
Phe 4.1 4 24 18 3 (2) 6 21 15 3 (1) 5
Pro 5.0 1 17 12 1 (1) 3 17 12 1 (1) 3
Ser 7.4 4 12 6 3 (2) 6 8 2 2 (1) 4
Thr 5.8 5 15 9 4 (3) 8 11 5 2 (2) 5
Trp 1.3 4 25 19 3 (2) 6 22 16 3 (1) 5
Tyr 3.3 5 25 19 4 (2) 7 21 15 3 (1) 5
Val 6.5 5 19 13 4 (4) 9 13 7 2 (1) 5

w.a. - 4.5 18.2 12.2 3.6 (3.0) 7.6 12.8 6.8 2.7 (1.3) 5.0
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Table 4. Cliques in the simplified side chains of amino acids. If S(i), 2 ≤ i < s′ (s′ is the number of cliques in the
simplified side chain) is not listed, it is the same as Lys. 2D cliques are marked by an ’∗’.

A.A. s′ Side Chain Cliques

Ala 1 S(1) = {N,CA,HA,CB,QB,C}

Arg 5 S(4) = {CG,CD,NE}∗
S(5) = {CD,CE,HE,CZ,NH1,HH11,HH12}∗

Asn 3 S(3) = {CB,CG,OD1,ND2,HD21,HD22,QD2}∗

Asp 3 S(3) = {CB,CG,OD1,OD2}∗

Cys 2 S(2) = {CA,CB, SG}∗

Glu 4 S(4) = {CG,CD,OE1,OE2}∗

Gln 4 S(4) = {CG,CD,OE1,NE2,HE21,HE22,QE2}∗

Gly 1 S(1) = {N,CA,HA2,HA3,QA,C}

His 3 S(3) = {CB,CG,ND1,HD1,CD2,HD2,CE1,HE1,NE2}∗

Ile 3 S(2) = {CA,CB,HB,CG1,CG2,QG2}
S(3) = {CB,CG1,CD1,QD1}∗

Leu 3 S(3) = {CB,CG,HG,CD1,CD2,QD1,QD2,QQD}

Lys 5 S(1) = {N,CA,HA,CB,C}
S(2) = {CA,CB,CG}∗
S(3) = {CB,CG,CD}∗
S(4) = {CG,CD,CE}∗
S(5) = {CD,CE,NZ,QZ}∗

Met 4 S(3) = {CB,CG, SD}∗
S(4) = {CG, SD,CEQE}*

Phe 3 S(3) = {CB,CG,CD1,HD1,CE1,HE1,CZ,HZ,CE2,HE2,CD2,HD2,QD,
QE,QR}∗

Pro 1 S(1) = {N,CD,CA,HA,CB,HB2,HB3,QB,CG,HG2,HG3,QG,HD2,HD3,
QD,C}

Ser 2 S(2) = {CA,CB,OG}∗

Thr 2 S(2) = {CA,CB,HB,OG1,CG2,QG2}

Trp 3 S(3) = {CB,CG,CD1,HD1,CD2,CE2,CE3,HE3,NE1,HE1,CZ2,HZ2,CZ3,
HZ3,CH2,HH2}∗

Tyr 3 S(3) = {CB,CG,CD1,HD1,CE1,HE1,CE2,HE2,CD2,HD2,CZ,OH,QD,
QE,QR}∗

Val 2 S(2) = {CA,CB,HB,CG1,CG2,QG1,QG2,QQG}



Determining Protein Structures by Semidefinite Programming 29

Appendix C: Efficient Subspace Intersection Algorithm

Algorithm 1: Hierarchical bottom-up intersection

input : Set of cliques {Cl} and their matrices {Ul}, l = 1, . . . , q
output: Matrix U such that range(U) =

⋂q

l=1 range(Ul)

// Initialization

for i← 1 to q do

Q
(1)
l = Ul // Q

(i)
j : U of the subtree rooted at the node j, level i

A(1)
l = Cl // A

(i)
j : points in the subtree rooted at the node j, level i

end
v ← ⌊log(q)⌋+ 1 // number of levels in the tree

p← q // number of cliques in the current level

p′ ← p // number of cliques in the lower level

for i← 2 to v do
p← ⌈p′/2⌉
for j ← 1 to p do

ℓ1 ← 2(j − 1) + 1

A(i)
j ← A

(i−1)
ℓ1

Q
(i)
j ← Q

(i−1)
ℓ1

if ℓ1 < p′ then
ℓ2 ← ℓ1 + 1

A(i)
j ← A

(i)
j ∪A

(i−1)
ℓ2

Q
(i)
j ← Intersect(Q

(i)
j , Q

(i−1)
ℓ2

)

end

end
p′ ← p

end

U ← Q
(v)
1 // For the root A

(v)
1 = 1:n
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Appendix D: SPROS Flow Chart

Upper bounds &

TA restraints

Sample a

random structure

Simplify side chains

Form the cliques,

and the Ǔ matrix

Solve the SDP problem

Project onto R
3

& run BFGS

Fix chiralities

& run BFGS

Reconstruct side chains

& run BFGS

Dihedral improvement

& water refinement

Final structure

Fig. 2. SPROS method flowchart.


