In this report we see why solving the complementary slackness condition by
affine scaling direction (ie solve for X S+ X d$ + dX S = 0 instead of

XS+ XdS+dX S=ul)is, in the limit, equivalent to solving an ODE with
the central path as the stable manifold.

Suppose we start out with some distance from the central path:
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affine scaling direction with (infinitesimal) step length dt gives
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The last equation ﬂd%l = —u comes from the previous knowledge that
p(t) = —Kel=9)

Write out the third equation explicitly:

@S+ X[G@]=-X5

subtract ﬂd%l from both sides
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remembering that ﬂd%l = —pu , we obtain
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The LHS can be written as a perfect derivative
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we get
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in other words, the deviation from the central path decays exponentially.
Therefore, we conclude that the central path is a stable manifold. This shows
that the affine scaling direction is more than a heuristic.



