Interpretation of the May-Leonard Model of Three Species Competition as a Food Web in a Chemostat Gail S. K. Wolkowicz

Department of Mathematics and Statistics

E-mail: wolkowic@mcmaster.ca

URL: www.math.mcmaster.ca/wolkowic/wolkowic.html

Research partially supported by a grant from

Gause-Lotka-Volterra Model of Three Species Competition

$$x'_{1}(t) = r_{1}x_{1}(t)(1 - x_{1}(t) - \alpha_{1}x_{2}(t) - \beta_{1}x_{3}(t)),$$

$$x'_{2}(t) = r_{2}x_{2}(t)(1 - \beta_{2}x_{1}(t) - x_{2}(t) - \alpha_{2}x_{3}(t)),$$

$$x'_{3}(t) = r_{3}x_{3}(t)(1 - \alpha_{3}x_{1}(t) - \beta_{3}x_{2}(t) - x_{3}(t)),$$

$$x_{1}(0) > 0, x_{2}(0) > 0, x_{3}(0) > 0,$$

where r_i, α_i, β_i i = 1, 2, 3, are all positive constants.

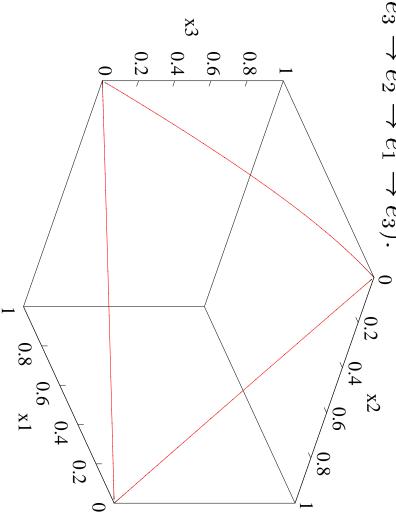
Under the additional assumption that

$$0 < \alpha_i < 1 < \beta_i, \quad i = 1, 2, 3,$$
 (2)

the model is referred to as the asymmetric May-Leonard

Heteroclinic Cycle

exists a **heterclinic cycle**, $\bar{\mathcal{O}}$, connecting the single species equilibria: $e_1 = (1,0,0,), e_2 = (0,1,0), e_3 = (0,0,1),$ on the Under the assumption that $0 < \alpha_i < 1 < \beta_i$, i = 1, 2, 3, there boundary. $(e_3 \rightarrow e_2 \rightarrow e_1 \rightarrow e_3)$. ₀



They considered the **symmetric case**: by Robert M. May and Warren J. Leonard (SIAM J Appl Math) Nonlinear Aspects of Competition between Three Species

$$\alpha_i = \alpha$$
, $\beta_i = \beta$, $r_i = r$, for all $i = 1, 2, 3$.

case that $\alpha + \beta > 2$ and $0 < \alpha < 1 < \beta$, that They argue and provide collaborating numerical simulations in the

- dimensional unstable manifold. unique interior equilibrium point $\frac{1}{1+\alpha+\beta}(1,1,1)$, and its one O attracts all solutions with positive initial conditions except the
- neighbourhood of e_3 to a neighbourhood of e_2 , back to e_1 , and so length of time the system has been running. total time spent in completing one cycle is proportional to the proportional to the total time elapsed up to that state and that the on, and the time spent in the vicinity of any one point is asymptotically, solutions move from a neighbourhood of e_1 to a

On the Asymmetric May-Leonard Model of Three Competing Species

by C-W Chi, S-B Hsu, and L-I Wu (SIAM J Appl Math) Assuming: $r_i = r$, i = 1, 2, 3.

Define $A_i = 1 - \alpha_i$, $B_i = \beta_i - 1$, i = 1, 2, 3.

- asymptotically stable with respect to the interior of R_{+}^{3} . If $A_1A_2A_3 > B_1B_2B_3$, then the interior equilibrium is globally
- the interior equilibrium and its one dimensional stable manifold. boundary attracts all orbits initiating in the interior of R_+^3 except • If $A_1A_2A_3 < B_1B_2B_3$, then the heteroclinic cycle on the
- in a family of neutrally stable periodic orbits If $A_1A_2A_3 < B_1B_2B_3$, then there is a Hopf bifurcation resulting

Hofbauer and Sigmund.) (Improved earlier results by Schuster, Sigmund and Wolf, and by

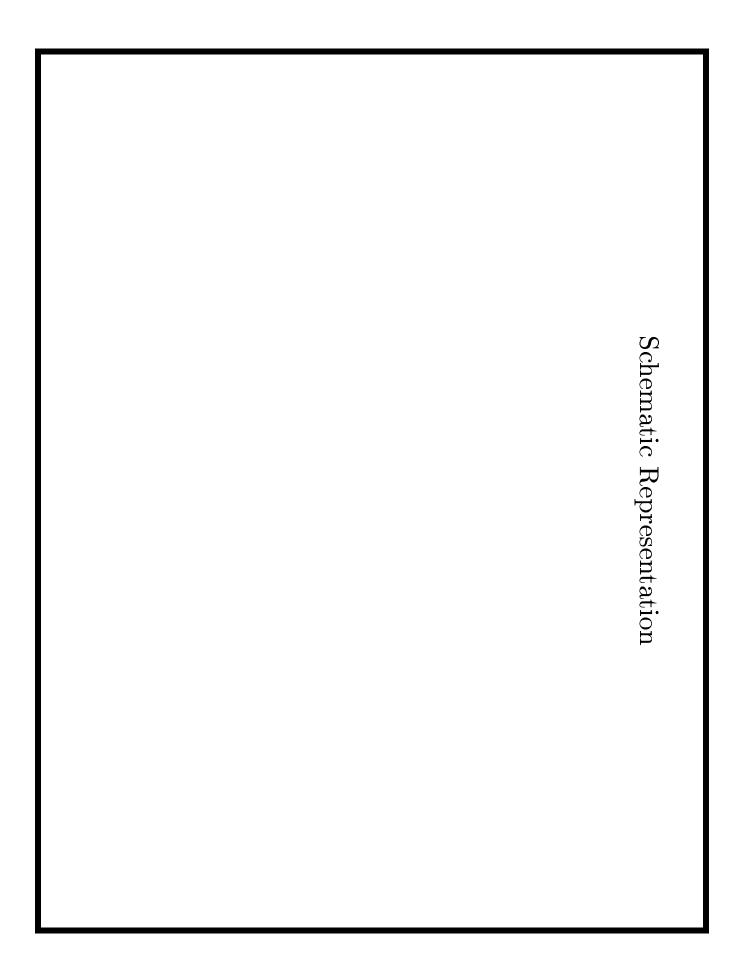
Intrinsic Growth Rates Not All Equal

i.e. r_i not all equal.

- Hopf bifurcation can occur. • J. Coste, J. Peyraud, and P. Coullet showed that nondegenerate
- M.L. Zeeman also studied Hopf bifurcation.
- extinction of two species, as well as stable coexistence of at least two species P. Van den Driessche and M.L. Zeeman - provide criteria for

Chemostat - Villefranche sur Mer

Chemostat - Villefranche sur Mer



Predator Feeding on Two Trophic Levels Food Web in a Chemostat with Spiro Daoussis

$$S'(t) = (S^{0} - S(t))D - \sum_{i=1}^{3} \frac{p_{i}(S(t))x_{i}(t)}{\eta_{i}}$$

$$x'_{1}(t) = x_{1}(t)(-D + p_{1}(S(t))) - x_{3}(t)\frac{q(x_{1}(t))}{z}$$

$$x'_{2}(t) = x_{2}(t)(-D + p_{2}(S(t)))$$

 \bigcirc

$$S(0) \ge 0$$
, $x_i(0) \ge 0$, $i = 1, 2$, $y(0) > 0$.
 $S^0 > 0$, $D > 0$, $\eta_i > 0$, $i = 1, 2, 3$, and $z > 0$.

 $x_3'(t)$

 $= x_3(t)(-D+p_3(S(t)))+x_3(t)q(x_1(t))$

Notation

 x_1, x_2, x_3 consume S.

 x_3 also consumes x_1 .

Mass action interactions: $p_i(S) = m_i S$, i = 1, 2, 3, $q(x_1) = n_1 x_1$.

Define break-even concentrations:

$$\lambda_i \ni p_i(\lambda_i) = D, i = 1, 2, 3, \text{ and } \delta \ni q(\delta) = D.$$

i.e. $p_i(S) = \frac{D}{\lambda_i} S$ and $q(x_1) = \frac{D}{\delta} x_1$.

on the boundary. (1)-(2), the asymetric May-Leonard model with a heteroclinic cycle model (3), the food web in a chemostat, into a model of the form Perform a series of substitutions and transformations that convert

First, let

$$\bar{t} = tD; \quad \bar{S} = \frac{S}{S^0}; \quad \bar{x}_i = \frac{x_i}{\eta_i S^0}, \quad i = 1, 2; \quad \bar{x}_3 = \frac{x_3}{\eta_1 S^0 z};$$

$$\bar{p}_i(\bar{S}) = \frac{p_i(S)}{D}, \quad i = 1, 2, 3; \quad \bar{q}(\bar{x}_1) = \frac{q(x_1)}{D}; \quad \gamma = \frac{\eta_3}{\eta_1 z};$$

$$\lambda_i = \frac{D}{m_i}, \quad i = 1, 2, 3; \quad \delta = \frac{D}{n}.$$

and assume that $\gamma = 1$.

version of the chemostat model (3): To obtain (omitting the bars to simplify notation), the scaled

on of the chemostat model (3):
$$S' = (1-S) - x_1 \frac{S}{\lambda_1} - x_2 \frac{S}{\lambda_2} - x_3 \frac{S}{\lambda_3},$$

$$x_1' = x_1(-1 + \frac{S}{\lambda_1} - \frac{x_3}{\delta}),$$

$$x_2' = x_2(-1 + \frac{S}{\lambda_2}),$$

$$x_3' = x_3(-1 + \frac{S}{\lambda_3} + \frac{x_1}{\delta}),$$

$$S(0) > 0, x_1(0) > 0, x_2(0) > 0, x_3(0) > 0.$$

(4)

Globally Attracting Symplex

Adding the four equations in (4), it follows that

$$(S + \sum_{i=1}^{3} x_i)'(t) = 1 - (S + \sum_{i=1}^{3} x_i)(t).$$

Therefore,

$$(S + \sum_{i=1}^{3} x_i)(t) = e^{-t}(-1 + S(0) + \sum_{i=1}^{3} x_i(0)) + 1.$$

invariant, and so it follows that the simplex It is clear that for model (4), the positive cone is positively

$$\mathcal{S} \equiv \{(S,x_1,x_2,x_3): S+\sum_{i=1}^3 x_i=1, x_i\geq 0, \ i=1,2,3, \}$$

is globally attracting.

Set $S(t) = 1 - \sum_{i=1}^{3} x_i(t)$, to eliminate the S' equation in (4) to obtain:

n:

$$x'_{1} = x_{1}\left(\frac{1-\lambda_{1}}{\lambda_{1}} - \frac{x_{1}}{\lambda_{1}} - \frac{x_{2}}{\lambda_{1}} - \left(\frac{1}{\lambda_{1}} + \frac{1}{\delta}\right)x_{3}\right),$$

$$x'_{2} = x_{2}\left(\frac{1-\lambda_{2}}{\lambda_{2}} - \frac{x_{1}}{\lambda_{2}} - \frac{x_{2}}{\lambda_{2}} - \frac{x_{3}}{\lambda_{2}}\right),$$

$$x'_{3} = x_{3}\left(\frac{1-\lambda_{3}}{\lambda_{3}} - \left(\frac{1}{\lambda_{3}} - \frac{1}{\delta}\right)x_{1} - \frac{x_{2}}{\lambda_{2}} - \frac{x_{3}}{\lambda_{3}}\right),$$

$$x_{1}(0) > 0, x_{2}(0) > 0, x_{3}(0) > 0, S(t) = 1 - \sum_{i=1}^{3} x_{i}(t).$$

$$(5)$$

In order to obtain the same form as (1), let

$$\hat{x}_i = \frac{x_i}{1 - \lambda_i}, \quad i = 1, 2, 3,$$

Omit the hats for convenience of notation, and factor

$$r_i = \frac{1 - \lambda_i}{\lambda_i} > 0, \quad i = 1, 2, 3,$$
 (6)

from the ith equation, to obtain:

$$x'_{1} = r_{1}x_{1}(1 - x_{1} - \frac{1 - \lambda_{2}}{1 - \lambda_{1}}x_{2} - \frac{(1 - \lambda_{3})(\lambda_{1} + \delta)}{\delta(1 - \lambda_{1})}x_{3}),$$

$$x'_{2} = r_{2}x_{2}(1 - \frac{1 - \lambda_{1}}{1 - \lambda_{2}}x_{1} - x_{2} - \frac{1 - \lambda_{3}}{1 - \lambda_{2}}x_{3}),$$

$$x'_{3} = r_{3}x_{3}(1 - \frac{(1 - \lambda_{1})(\delta - \lambda_{3})}{\delta(1 - \lambda_{3})}x_{1} - \frac{1 - \lambda_{2}}{1 - \lambda_{3}}x_{2} - x_{3}),$$

$$x_{1}(0) > 0, x_{2}(0) > 0, x_{3}(0) > 0, S(t) = 1 - \sum_{i=1}^{3} (1 - \lambda_{i})x_{i}(t).$$

assumptions in order to control the sign and relative magnitudes of the coefficients. Assume that the species are labelled so that This is a classical Lotka-Volterra model. However, we need more

$$0 < \lambda_1 < \lambda_2 < \lambda_3 < 1. \tag{8}$$

so x_3 is the *weakest* competitor for resource S the absence of x_1, x_2 would survive and drive x_3 to extinction, and x_3 . In this sense x_1 is the *strongest* competitor for resource S. In be the sole survivor in a contest against x_2 or against both x_2 and does not consume x_1 , but instead consumes only S, then x_1 would Under this assumption, Butler and Wolkowicz, prove that if x_3

If in addition, we assume that

$$\delta > \lambda_3,$$
 (

model of three species competition, model (1), where so that $\alpha_3 > 0$, then model (5) is the asymmetric, Lotka-Volterra

$$\alpha_1 = \frac{1 - \lambda_2}{1 - \lambda_1}, \quad \alpha_2 = \frac{1 - \lambda_3}{1 - \lambda_2}, \quad \alpha_3 = \frac{(1 - \lambda_1)(\delta - \lambda_3)}{\delta(1 - \lambda_3)},$$

$$\beta_1 = \frac{(1-\lambda_3)(\lambda_1+\delta)}{\delta(1-\lambda_1)}, \quad \beta_2 = \frac{1-\lambda_1}{1-\lambda_2}, \quad \beta_3 = \frac{1-\lambda_2}{1-\lambda_3}, \quad (1-\lambda_1)$$

with $\alpha_i > 0$ and $\beta_i > 0$, i = 1, 2, 3.

Since $\lambda_1 < \lambda_2 < \lambda_3 < 1$, clearly $\alpha_i < 1$, $i = 1, 2, \beta_i > 1, i = 2, 3$.

 $\beta_1 > 1$, if, and only if, we also assume that

$$0<\delta<\frac{\lambda_1(1-\lambda_3)}{\lambda_3-\lambda_1},$$

(12)

 $\alpha_3 < 1$, if, and only if, in addition to $\lambda_1 < \lambda_2 < \lambda_3 < 1$, we assume

$$0 < \delta < \frac{\lambda_3(1 - \lambda_1)}{\lambda_3 - \lambda_1}. (1)$$

Note that if $\lambda_1 < \lambda_2 < \lambda_3 < 1$ holds, then (12) implies (13).

and e_3 . Thus we have shown that if $\gamma = \frac{\eta_3}{\eta_1 z} = 1$, then we have competition. asymmetric May-Leonard model (1)-(2) of three species transformed the foodweb in a chemostat model (3) into the boundary, connecting the three singles species equilibria, e_1 , e_2 , then (2) also holds and there is a heteroclinic cycle on the Therefore, model (7) is precisely model (1) and if (8)-(12) hold,

competition, x_1 and x_2 compete, but x_3 predates on x_1 . classical interpretation would be that instead of three species (7) is of the same form as model (1), but β_3 is negative. The On the other hand, if the inequality in (9) is reversed, then model

Dynamics of the Model of a Foodweb in a Chemostat

Let the equilibria of model (4) be denoted:

$$E_0 \equiv (1,0,0,0);$$

$$E_{\lambda_1} \equiv (\lambda_1, 1 - \lambda_1, 0, 0); \quad E_{\lambda_2} \equiv (\lambda_2, 0, 1 - \lambda_2, 0); \quad E_{\lambda_3} \equiv (\lambda_3, 0, 0, 1 - \lambda_3);$$

$$E^* \equiv (S^*, x_1^*, 0, x_3^*); \quad \tilde{E} \equiv (\lambda_2, \tilde{x}_1, \tilde{x}_2, \tilde{x}_3),$$

where

$$S^* = \frac{\lambda_1 \lambda_3}{\lambda_1 \lambda_3 + \delta(\lambda_3 - \lambda_1)}; \ x_1^* = \delta(1 - \frac{S^*}{\lambda_3}); \ x_3^* = \delta(-1 + \frac{S^*}{\lambda_1});$$
$$\tilde{x}_1 = \delta(1 - \frac{\lambda_2}{\lambda_3}); \ \tilde{x}_2 = 1 - \lambda_2 - \delta\lambda_2(\frac{\lambda_3 - \lambda_1}{\lambda_3 \lambda_1}); \ \tilde{x}_3 = \delta(-1 + \frac{\lambda_2}{\lambda_1}).$$

whenever it exists	$\lambda_1 < \lambda_2 < \lambda_3 \text{ and } S^* > \lambda_2$	$ ilde{E}$
$\lambda_1 < S^* < \lambda_2$	$\lambda_1 < S^* < \lambda_3$	E^*
never	$\lambda_3 < 1$	E_{λ_3}
never	$\lambda_2 < 1$	E_{λ_2}
$S^* < \lambda_1$	$\lambda_1 < 1$	E_{λ_1}
$\lambda_i \ge 1, \ i = 1, 2, 3$	always	E_0
(assuming the equilibrium exists)		
Globally Asymptotically Stable [‡]	${ m Existence}^{\dagger}$	
(assuming $\lambda_1 < \lambda_j, \ j = 2, 3$)	$({ m assuming} \; \lambda_1$	
Existence and Stability	Table 1: Equilibria - Existence	, 7

[†] An equilibrium is assumed to exist if, and only if, all of its components are nonnegative.

Note that under the assumption that $\lambda_1 < \lambda_j$, j = 1, 2, that of the LaSalle Extension theorem. functions summarized in Table 2 and the slightly modified version asymptotically stable. This can be proved using the Liapunov $0 < S^* < 1$, and one of the equilibria, E_0 , E_{λ_1} , E^* , or E is globally

Table 2: Summary of Liapunov functions for (4) $V = V(S, x_1, \underline{x_2, x_3})$

$$E_{0} \quad V = S - 1 - \ln(S) + x_{1} + x_{2} + x_{3}$$

$$\dot{V} = -\frac{(S-1)^{2}}{S} + \sum_{i=1}^{3} x_{i} (\frac{1-\lambda_{i}}{\lambda_{i}})$$

$$E_{\lambda_{1}} \quad V = S - \lambda_{1} - \lambda_{1} \ln(\frac{S}{\lambda_{1}}) + x_{1} - (1 - \lambda_{1}) - (1 - \lambda_{1}) \ln\frac{x_{1}}{1-\lambda_{1}}$$

$$\dot{V} = -\frac{(S-\lambda_{1})^{2}}{\lambda_{1}S} - x_{2} (\frac{\lambda_{2}-\lambda_{1}}{\lambda_{2}}) + x_{3} (-1 + \frac{\lambda_{1}}{\lambda_{3}} + \frac{1-\lambda_{1}}{\delta})$$

$$E^{*} \quad V = S - S^{*} - S^{*} \ln(\frac{S}{S^{*}}) + \sum_{i=1,3} (x_{i} - x_{i}^{*} - x_{i}^{*} \ln(\frac{x_{i}}{x_{i}^{*}})) + x_{2}$$

$$\dot{V} = -\frac{(S-S^{*})^{2}}{SS^{*}} + x_{2} (\frac{S^{*}-\lambda_{2}}{\lambda_{2}})$$

$$\dot{V} = -\frac{1}{S\lambda_{2}} (S - \lambda_{2})^{2}$$

solutions with positive initial conditions globally asymptotically stable equilibrium point that attracts all asymptotically stable, or that if $\lambda_3 < \lambda_j$, j = 1, 2 and $\lambda_3 < 1$, then very simple dynamics. In particular, there is always a single, E_{λ_3} is globally asymptotically stable. Hence, model (4) only admits that $\lambda_2 < \lambda_j$, j = 1, 3 and $\lambda_2 < 1$, then E_{λ_2} is globally **REMARK:** In fact, one can also prove that if instead, we assume

 α_i , i = 1, 2, 3 and β_1 , we obtain the unique solution: Solving (10)-(11) for the λ_i , i = 1, 2, 3, and δ in terms of

Fing (10)-(11) for the
$$\lambda_i$$
, $i = 1, 2, 3$, and σ in terms of $i = 1, 2, 3$ and β_1 , we obtain the unique solution:
$$\lambda_1 = \frac{(\beta_1 - \alpha_1 \alpha_2)(1 - \alpha_2 \alpha_1)}{\alpha_1 \alpha_2 (1 - \beta_1 - \alpha_2 \alpha_1 \alpha_3 + \alpha_1 \alpha_2)},$$

$$\lambda_2 = \frac{\beta_1 - 2\alpha_2 \alpha_1 - \alpha_1 \alpha_2^2 \alpha_3 + \alpha_2 - \alpha_2 \beta_1 + \alpha_2^2 \alpha_1 + \alpha_2^2 \alpha_1^2 \alpha_3}{\alpha_1 (1 - \beta_1 - \alpha_2 \alpha_1 \alpha_3 + \alpha_1 \alpha_2)},$$

$$\lambda_3 = \frac{(1 - \alpha_1 \alpha_2 \alpha_3)(1 - \alpha_2 \alpha_1)}{1 - \beta_1 - \alpha_2 \alpha_1 \alpha_3 + \alpha_1 \alpha_2},$$

$$\delta = \frac{1 - \alpha_2 \alpha_1}{1 - \beta_1 - \alpha_2 \alpha_1 \alpha_3 + \alpha_1 \alpha_2}.$$

equilibrium $e^* \equiv (x_1^*, 0, x_2^*)$, and E corresponds to the equilibrium $e_0 \equiv (0,0,0), E^*$ corresponds to the two species survival corresponds to the single species survival equilibria, e_i , i = 1, 2, 3, equilibrium is globally asymptotically stable, use Table 1 and the even if some or all of the r_i, α_i, β_i are negative. To determine which attracts all solutions with positive initial conditions. This is true, there is always a globally asymptotically stable equilibrium that previous section applies, and so model (1) has simple dynamics, i.e. Provided α_i , and β_i , i = 1, 2, 3, are chosen so that with all three components positive, $\tilde{e} \equiv (\tilde{x}_1, \tilde{x}_2, \tilde{x}_3)$. for system (1), E_0 corresponds to the washout equilibrium, Remark at the end of the previous section, and note that E_{λ_i} in (4) $\beta_2 = \frac{1}{\alpha_1}$, $\beta_3 = \frac{1}{\alpha_2}$, $\lambda_i > 0$, i = 1, 2, 3, and $\delta > 0$, the analysis in the

provided that in addition, boundary of the positive cone, select $0 < \alpha_i < 1$, i = 1, 2, 3. Then, In order to have a globally attracting equilibrium in the interior of the positive cone with a repelling heteroclinic cycle on the

$$\beta_1 < 1 + \alpha_1 \alpha_2 (1 - \alpha_3) \equiv \beta_M, \tag{14}$$

in the expression for λ_2 above is also positive, i.e., so that the denominators are all positive, it follows that $\lambda_1 > 0$ and $0 < \lambda_3 < \delta$. For $\lambda_2 > 0$, one must also assume that the numerator

$$\beta_1 > \frac{\alpha_2(2\alpha_1 + \alpha_1\alpha_2\alpha_3 - 1 - \alpha_1\alpha_2 - \alpha_1^2\alpha_2\alpha_3)}{1 - \alpha_2} \equiv \beta_m.$$
(15)

Note that,

$$\beta_M > 1$$
 and $\beta_M - \beta_m = (1 - \alpha_1 \alpha_2)(1 - \alpha_1 \alpha_2 \alpha_3) > 0$,

select β_i , i = 1, 2, 3, so that $\beta_2 = \frac{1}{\alpha_1}$, $\beta_3 = \frac{1}{\alpha_2}$, and provided $\alpha_i > 0$, i = 1, 2, 3. In this case it is always possible to $\max(1, \beta_m) < \beta_1 < \beta_M$, so that (2) holds.

If $\beta_1 = \alpha_1 \alpha_2 (2 - \alpha_1 \alpha_2 \alpha_3) \equiv \beta_{crit}$, then, $\lambda_1 = \lambda_2 = \lambda_3 = S^* = 1$, and if, $\beta_1 < \beta_{crit}$

Note that, $\beta_{crit} - \beta_m = \alpha_2 \frac{(1-\alpha_1\alpha_2)(1-\alpha_1\alpha_2\alpha_3)}{1-\alpha_2} > 0$, then, $\lambda_1 < \lambda_2 < \lambda_3 < S^* < 1$.

so that $\beta_m < \beta_{crit} < \beta_M$. Also, $\beta_M - \beta_{crit} = (1 - \alpha_1 \alpha_2)(1 - \alpha_2 \alpha_2 \alpha_3) > 0$

Note also, that if $\frac{1}{\alpha_1 \alpha_2} - \alpha_1 \alpha_2 \alpha_3 < 2$, then $\beta_{crit} > 1$.

equilibrium in the interior of the positive cone with a repelling (1)-(2) and the chemostat model (4), have a globally attracting 2, and $\max(1, \beta_m) < \beta_1 < \beta_{crit}$, both the May-Leonard model heteroclinic cycle on the boundary of the positive cone Therefore, if we select $0 < \alpha_i < 1$, i = 1, 2, 3, $\frac{1}{\alpha_1 \alpha_2} - \alpha_1 \alpha_2 \alpha_3 < 1$

Example

Taking

$$\alpha_1 = \frac{9}{10}, \ \alpha_2 = \frac{8}{9}, \ \alpha_3 = \frac{5}{12}, \ \beta_1 = \frac{6}{5}, \ \beta_2 = \frac{10}{9}, \ \beta_3 = \frac{9}{8},$$

$$r_1 = \frac{5}{3}, \ r_2 = \frac{9}{7}, \ r_3 = 1.$$

corresponds to taking

$$\lambda_1 = \frac{3}{8}, \ \lambda_2 = \frac{7}{16}, \ \lambda_3 = \frac{1}{2}, \ \delta = \frac{3}{4}, \ S^* = \frac{2}{3}.$$

cone. and a globally attracting equilibrium in the interior of the positive Both models have a repelling heteroclinic cycle on the boundary

