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Gause-Lotka-Volterra
Model of Three Species Competition
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where r;, a5, 8; 1 = 1,2, 3, are all positive constants.

Under the additional assumption that
O<oa; <1<B;, 1=1,2,3,

the model is referred to as the asymmetric May-Leonard

model.




Heteroclinic Cycle

Under the assumption that 0 < a; <1< 5;, 2 =1,2,3, there
exists a heterclinic cycle, O, connecting the single species
equilibria: e; = (1,0,0,), es = (0,1,0), e3 = (0,0,1), on the
boundary. (e3 = ex = e1 —e3). g
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Nonlinear Aspects of Competition between Three Species

by Robert M. May and Warren J. Leonard (SIAM J Appl Math)

They considered the symmetric case:
o, =«, B; =06, r;=r, forallt=1,2,3.

They argue and provide collaborating numerical simulations in the
case that a + 8 > 2 and 0 < aa < 1 < 3, that

e O attracts all solutions with positive initial conditions except the

unique interior equilibrium point %ﬁu 1,1), and its one

dimensional unstable manifold.

e asymptotically, solutions move from a neighbourhood of e; to a
neighbourhood of e3 to a neighbourhood of es, back to e;, and so
on, and the time spent in the vicinity of any one point is
proportional to the total time elapsed up to that state and that the
total time spent in completing one cycle is proportional to the
length of time the system has been running.




On the Asymmetric May-Leonard Model of Three
Competing Species
by C-W Chi, S-B Hsu, and L-1 Wu (STAM J Appl Math)
Assuming: r;, =r, 1=1,2,3.
Define \r =1 — Oy, ms HQS - Hg 1= Huwuw.
o If AjAs A3 > BB B3, then the interior equilibrium is globally

. . . . Mw
asymptotically stable with respect to the interior of R .

o If Aj Ay A3 < B1BsyBj3, then the heteroclinic cycle on the

boundary attracts all orbits initiating in the interior of R3 except

the interior equilibrium and its one dimensional stable manifold.

o If AjAs A3 < B1BsBj3, then there is a Hopf bifurcation resulting
in a family of neutrally stable periodic orbits.

(Improved earlier results by Schuster, Sigmund and Wolf, and by
Hofbauer and Sigmund.)




Intrinsic Growth Rates Not All Equal
i.e. r; not all equal.

e J. Coste, J. Peyraud, and P. Coullet showed that nondegenerate

Hopf bifurcation can occur.
e M.L. Zeeman also studied Hopf bifurcation.

e P. Van den Driessche and M.L. Zeeman - provide criteria for

extinction of two species, as well as stable coexistence of at least

two species.
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Schematic Representation




Food Web in a Chemostat
Predator Feeding on Two Trophic Levels

with

S°>0,D>0,n>0,i=1,2,3, and z > 0.




Notation

X1, T2, x3 consume S.
x3 also consumes .
Mass action interactions: p;(S) =m;S, i =1,2,3, q(x1) = n1x;.

Define break-even concentrations:

X O pilA)=D, i=1,2,3, andd > ¢(d) = D.

i.e. p;(S) = mm and q(z1) = 2.




Perform a series of substitutions and transformations that convert

model (3), the food web in a chemostat, into a model of the form

(1)-(2), the asymetric May-Leonard model with a heteroclinic cycle
on the boundary.

First, let

and assume that v = 1.




To obtain (omitting the bars to simplify notation), the scaled
version of the chemostat model (3):
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Globally Attracting Symplex

Adding the four equations in (4), it follows that

(S + .Muﬁvé —1—(S+ Muﬁ.v@

Therefore,

(S+ Y z)(t) =e " (~1+ S(0 +MU§

It is clear that for model (4), the positive cone is positively
invariant, and so it follows that the simplex

3
S = AAM‘“&.T&.NQ&.WV . W+MU&S = Hu&.s. VOu 1= Huwgwuw

1=1

is globally attracting.




Set S(t) =1 — MUWHH z;(t), to eliminate the S’ equation in (4) to
obtain:
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In order to obtain the same form as (1), let
1=\

Omit the hats for convenience of notation, and factor

X; &HHuMgwu

1— A\ .
2% 50 i=1,23,

ri

A
from the 7th equation, to obtain:
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This is a classical Lotka-Volterra model. However, we need more
assumptions in order to control the sign and relative magnitudes of
the coefficients. Assume that the species are labelled so that

O< A <A< A3<Ll (8)

Under this assumption, Butler and Wolkowicz, prove that if z3
does not consume x1, but instead consumes only S, then x; would
be the sole survivor in a contest against xo or against both xs and
x3. In this sense x; is the strongest competitor for resource S. In
the absence of x1, x5 would survive and drive x3 to extinction, and

so x3 is the weakest competitor for resource S.




If in addition, we assume that
J > A3, va

so that a3 > 0, then model (5) is the asymmetric, Lotka-Volterra
model of three species competition, model (1), where

L= (=A@ =)
11— ’ 5(1 — X3)

(1= A3)(A1 +9)

6(1—X)

with a; >0 and §; >0, + =1, 2, 3.

(10)
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Since A\{ < Ay < A3 <1, clearly a; <1, 1 =1,2, 5; > 1,1 =2,3.

B1 > 1, if, and only if, we also assume that

(12)

(13)

Note that if A\; < A2 < A3 < 1 holds, then (12) implies (13).




Therefore, model (7) is precisely model (1) and if (8)-(12) hold,
then (2) also holds and there is a heteroclinic cycle on the
boundary, connecting the three singles species equilibria, e, e,
and e3. Thus we have shown that if v = QN|W = 1, then we have
transformed the foodweb in a chemostat model (3) into the
asymmetric May-Leonard model (1)-(2) of three species

competition.

On the other hand, if the inequality in (9) is reversed, then model

(7) is of the same form as model (1), but (3 is negative. The
classical interpretation would be that instead of three species

competition, £; and x5 compete, but x3 predates on x;.




Dynamics of the Model of a Foodweb in a Chemostat

Let the equilibria of model (4) be denoted:

mo = AH_J Ou Ou Ovu
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E* = (5",21,0,23); E = (Ao, Z1,%2,73),
where
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Table 1: Equilibria - Existence and Stability

(assuming A; < A;, j = 2,3)

Existence! Globally Asymptotically Stable*
(assuming the equilibrium exists )
Ey always N>l 1=1,2.3
m\/H A <1 S*T <\
myw Ay < 1 never
m\/w A3 <1 never
E* A < S* < A3 A < 5% < Ao
E | M1 <A< Azgand S* > A whenever it exists

T An equilibrium is assumed to exist if, and only if, all of its components
are nonnegative.




Note that under the assumption that Ay < A;, 7 = 1,2, that
0 < S* < 1, and one of the equilibria, Fy, Ey,, E*, or E is globally

asymptotically stable. This can be proved using the Liapunov
functions summarized in Table 2 and the slightly modified version
of the LaSalle Extension theorem.




Table 2: Summary of Liapunov functions for (4)

V= A\Amu&rgmu&wv

Ey <|m|H|_imv+§+§+§
V=T A Y a5
m\/H V=5- >H|>H_5A V+RH|AH|>HV|AH|>HV
V= A (a0 414 3+ 15N
E* <Hmlm*Im*_bA%v._.MUT;AMSI& —z} In(Z vv._.&w
. M|m*w 0
V= -Ugid + () 3
B | V=5- »ﬁ»iiymim&n;ﬁi i — & In(%))

V= (S — Xo)?

myw




REMARK: In fact, one can also prove that if instead, we assume
that Ao < Aj, 7 =1,3 and A2 < 1, then E,, is globally

asymptotically stable, or that if A3 < A;, 7 =1,2 and A3 < 1, then
B
very simple dynamics. In particular, there is always a single,

is globally asymptotically stable. Hence, model (4) only admits

3

globally asymptotically stable equilibrium point that attracts all

solutions with positive initial conditions.




Solving (10)-(11) for the \;, ¢ =1,2,3, and § in terms of
a;,t = 1,2,3 and 81, we obtain the unique solution:
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Provided «;, and 5;, 1 = 1,2, 3, are chosen so that

By = QFT B3 = QFM“ Ai>0,1=1,2,3, and d > 0, the analysis in the
previous section applies, and so model (1) has simple dynamics, i.e.
there is always a globally asymptotically stable equilibrium that
attracts all solutions with positive initial conditions. This is true,
even if some or all of the r;, ;, 8; are negative. To determine which
equilibrium is globally asymptotically stable, use Table 1 and the
Remark at the end of the previous section, and note that E), in (4)
corresponds to the single species survival equilibria, e;, 1 =1, 2, 3,
for system (1), Ey corresponds to the washout equilibrium,

eo = (0,0,0), E* corresponds to the two species survival

equilibrium e* = (z*,0, %), and E corresponds to the equilibrium

with all three components positive, € = (1, T2, T3).




In order to have a globally attracting equilibrium in the interior of
the positive cone with a repelling heteroclinic cycle on the
boundary of the positive cone, select 0 < «; < 1, 2 = 1,2, 3. Then,
provided that in addition,

B1 <1+ oaras(l—a3) =P, (14)

so that the denominators are all positive, it follows that A; > 0 and
0 < A3 < 9. For Ay > 0, one must also assume that the numerator
in the expression for Ay above is also positive, i.e.,

as (201 + ajasaz — 1 — ajas — adasas

B > = B,,. (15)
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Note that,

Bv >1 and By — B = (1 — a1a2)(1 — anasas) > 0,

provided a; > 0, 2 = 1,2, 3. In this case it is always possible to
select f3;, i =1,2,3, sothat By = -, (3= - and

a1’ oo’

max(1, B,) < 61 < By, so that (2) holds.




If 1 = (2 — ara0s) = Berit,
then, A\; = Ay = Ay = §* = 1,
and if, 81 < Berit

then, A < Ay < A3 < S* < 1.

Note that, Berit — Bm = 2 C|S§HVMH|EQM§V > 0,

a2

Also, Bar — Berit = (1 — a1a2)(1 — avasag) > 0

so that Qg < QQ&M < Qi

Note also, that if —— — ajasas < 2, then B > 1.

142

Therefore, if we select 0 < a; < 1, 12 =1,2, 3, SHS — ajaoag <

2, and max(1,B,) < B1 < Berit, both the May-Leonard model
(1)-(2) and the chemostat model (4), have a globally attracting
equilibrium in the interior of the positive cone with a repelling
heteroclinic cycle on the boundary of the positive cone.




Example

7 1 3 y
o= — A3=-, =2, §* =2,
16 2 4 3

Both models have a repelling heteroclinic cycle on the boundary

and a globally attracting equilibrium in the interior of the positive

cone.
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Figure 1: (a) Foodweb in a chemostat; (b) Lotka-Volterra competi-

tion.




