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Outline

Problem Formulation, EDMC

Matrix Reformulation, EDMC
- Semidefinite Programming connection

SDP Relaxation of Hard Constraint Y = PPT
Facial Reduction - Reduced Problem Model

Adjoints/Duality for EDMC — R

Primal-Dual Bilinear Optimality Conditions (overdetermined)

Robust Interior-Point algorithm

- Gauss-Newton Direction, crossover, exact p-d feasibility, preconditioning

MATLAB demonstration

Concluding Remarks
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Problem

e Ad hoc wireless sensor network

e A few anchors (e.g. with GPS/bulky) have
fixed, known locations

e sensors within a given range have some
known distance measurements (approximate)

e Problem: Determine positions of all sensors

e Parameters: Radio range, # of anchors, noise
level

e Semidefinite Relaxations/Robust Algorithm
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Problem Applications

¢ health, military, home

e Natural habitat monitoring, earthquake
detection, weather/current monitoring

e random deployment in inaccessible terrains or
disaster relief operations
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Problem Example -
with Radio Range




ept.....p" €R" unknown (sensor) points
at,....a™ € R" known (anchor) points
r  embedding dimension (usually 2 or 3)

OAT L= [&1,&2,...,&m] XT = [p17p27"'7pn]

pl .= (pl,p2,...,p",al,aZ,...,am)

X .
P = ( ) rows are sensor/anchor points
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Assumption (avolds
some trivialities)

e The number of sensors and anchors, and the
embedding dimension satisfy

n>m>r Ale=0and A is full rank.

Anchored Graph Realization and Sensor Localization — p.7/4:



Definitions

e Index sets of existing values of distances d;;

between pairs of sensors, {p'}}:

N. distance values

N, upper bounds on distances

N lower bounds on distances
Similarly, the index sets (M., M,,, M;) are for
pairs from {p'}} (sensors) and {a"}7"
(anchors)

e partial EDM matrix £ of squared distances
[ di; it ij e NoUM,
0 otherwise.
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Definitions

Similarly, we define

e the (partial) matrix of (squared distances)
upper bounds
U, using ij € N, UM,

e and the (partial) matrix of (squared distances)
lower bounds
L,using 17 € N; UM,
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Weighted Least
Sguares Error

In the case E£;; have errors:
Let W,, W, be weight matrices. We minimize
the weighted least squares error. (EDMC')

AP) =Y W)i(llp' —p|I° — Eyy)’

(,7)EN,

+ > Wa)alllp’ — d*|I* — Ei)’
(i,k)eM,
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HARD (nonconvex)
Constrained LS

EDMC Problem:

min f.(P) (weighted least squares)

st p =PI < Uy G,5) €Ny (na =2
pl—a¥||? < Uy V(i k) € M, (mu
p'—p|? > Li; V(i,5) € N (nl =8
p'—a®||? > Ly Y(i,k) € M, (ml— |2 )

gn
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K(SDP)=EDM
B =PPT (SDP). B; = (p))Tp"; B;; = (p')Tp/
The squared distance

Dij = |p=pII° (EDM)
= ) + @)Y = 20
= ! ] !
= (diag (B)e! + ediag(B)! — 2B);
—- (]C(B))ij

D=K(B) change EDM D« SDP B
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Lowner Partial Order

matrix inner-product | (M, N) = trace M N |and

Frobenius norm ||| M ||? = trace M* M |
In §", n X n symmetric matrices:

B > 0 (is positive semidefinite)
=
3P with B = PP!, rank (B) = rank (P)

the positive semidefinite (Lowner) partial order is:

A=B(A=B)if A—B=0(A—B=0)
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Matrix Reformulation
of EDMC(C

_ XXt xAt
LetY = PPl = ( )

AXT  AAT
We get the equivalent EDMC

min =~ fo(Y) := 2HWO(/C( V) — B)|[3
subject to gu(Y) = Hy o (K(Y) = U)

q(Y) = Hz o (K(Y) — L)
hard constraint |Y — PPL = 0

AVARVAN
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SDP Relaxation of
Hard Constraint

_ XXt xAt
Y = PP = (AXT AAT) holds

<
}711 = X X! and 3_/21 — AXT, 3_/22 = AAT|.

Relax Y = PP! to (LOwner partial order)

Yoo = AAT| PPT—Y <0 quadr convex constr

(But .... why this relaxation?)

Anchored Graph Realization and Sensor Localization — p.15/4:



Convex wrt Lowner
Partial Order

The constraint g(P,Y) = PP —Y <0is
—-convex, since each function

do(P,Y) =traceQg(P,Y) isconvex V@ > 0.
Note

trace QPP! = trace QPIP!
= vec (P)! (I ® Q) vec (P)

Hessianis I ® () = 0;
and the cone SDP is self-polar.

Anchored Graph Realization and Sensor Localization — p.16/4:



I Pt X _
Y _ — P = Yoo = AAL

Linearization of SDP

Relaxation

X),YQQAAT

<= (by Schur complement)

<= (ignore ~)

(1 X7T
X Y

\A You

AT
Y5

AAT

)

|-
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Facial Reduction

L, (1 X7 (NE 2 x 2 block)
T \X Y (Lin.Tr. but NOT onto)
THEOREM:
(1 XT AT
Z=1X Y YI |*>0
\A Yy |[AAT)
<

Zs = 0and Yy = AXT
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Facial Reduction -
Proof Outline

(compact) singular value decomposition
A=UXV! Unxr,Vrxr

(1T  XT vxyuT)
Z=Zr=| x v YL |=0
\USVT Yy USUT

choose U so that (U U) is orthogonal;

Anchored Graph Realization and Sensor Localization — p.19/4:



(VT 0
| o I

L0 0

0
0

U U

0 j ZQ .= TTZT:

)

Facial Reduction -
Proof Outline cont...

Nonsingular congruence (apply Sylvester
Lemma on inertia)

(Vo o0 )
01 0
\OO(UU)/
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Faclal Reduction -
Congruence cont...

.71 T(
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Minimal and

Conjugate Faces

Conjugate face to feasible set *, Is

SDPﬂ{

(0 0
0 0

0 \)"
0
\OOUUT)}

: Minimal face of S D P containing F, = cone F IS

(I 0 0)

01 0

\OOU/

2r+n
S—I-

(10 0\
07 0
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Minimal Face

(1 XT AT\
each givenfeasible 7= | X Y Y} | >0,
\A Yo AAT /
can be expressed as (using A = UXV1)

(roo\ /1 XT v\ [IO0O0)
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Matrix < Vector
Notation |

vector |v = vec V| IS matrix V taken columnwise

0 X7
sblk o v o] v2X | pulls out the 21 block -

the /2 is for isometry in Frobenius norm

0 X!
T = vec (Sb1k21 (X ) )) = v/2vec (X)

y :=svec(Y)| (Y =Y, isometry)
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Matrix < Vector
Notation Il

(adjoints: sblk5,(X) =

0 X'




Matrix < Vector
Notation Il

V¥ (x) = sBlk o (AMat (z)1), VY(y) = sBlk(sMat
V(w,y) = V() +V(y), |Y = sBlko(AA") + V(2

E:=Wo |E— K(sBlky(AA"))
U := H,o |K(sBlky(AAT)) - U

L:=Ho [L — K(sBlko(AAD))

The unknown matrix Y is equal to Y(x,y) (with
additional constant 2, 2 block), i.e. unknowns are
the vectors z., y.
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Equivalent Reduced
Problem Model

(EDMC —R)

min fy(z,y) = §(|W o (K(V(z,9))) - El;
s.t. gu(r,y) == Hy o K(V(z,y)) —U < 0
g(z,y) =L —HoKJY(x,y) < 0
sBlk(I) + Z4(x,y) = 0

(objective is /5 rather than /; In the literature, e.g.
H. Jin(05), A. So, Y. Ye(05), P. Biswas, T. Liang,
K. Toh, T. Wang, Y. Ye(06).)
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Problems with
Relaxation

1. {(Y,P):Y =PP'}yCc{(Y,P): PPT-Y <0}
(But, iIs Lagrangian relaxation stronger?)

2. linearization (using Schur complement)
results in a constraint that is NOT onto, I.e.
two relaxations NOT numerically equivalent

3. Least squares problem is (usually)
underdetermined.
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Lagrangian of
EDMC — R

L(x,y, Ay, i, A) =
SIW o K(V(x,y) — Bl
_|_<Au,Hu_o K (z,y) —U)
4 <Al7 L —H;o /C(y(xay))>
— <A,SBH{1([) + Zs(x7y)> )

| where0< A, 0<A €S™" 0=<AeSmn

Ay Ay T
A = A B)Y =1t A" B.
(A21 A2) , (A, B) race
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Matrix < Vector Dual
Variable Notation

A = svec (Ay), A :=svec(/A),
h, := svec (H,), h;:=svec(H)),
A:=svec(A), A :=svec(Ay),

Ao :=svec (Ag), Agp := vecsblko(A).
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Adjoints

To differentiate the Lagrangian, we need the
adjoints of the various linear transformations, e.g.
part of /C:

D.(B) = diag(B)el + ediag(B)!
D:(D) = 2Diag(De)
(D.(B),D) = trace(diag (B)e! D + ediag (B)!' D

trace (De(diag B)! + De(diag B)!
2trace (diag B)T (De)
~ (B,D}(D)) D, B
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Primal-Dual Optimal.
Conditions 1

THEOREM: The primal-dual variables x, vy, A, A, A
are optimal for EDMC — Rif and only If:

1. Primal Feasibllity:
The slack variables satisfy
S,=U—H,o(K(Y(x,y))), s, =svecS, >0

S;=Ho(K(Y(x,y))) — L, s =svecS; >0
and

Zs

sBlk(7) + sBlk ossMat (y) 4 sBlk o1 Mat
0

Yl
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Primal-Dual Optimal.
Conditions 2a

2a. Dual Feasibility:
The stationarity equations (= exact p-d feas.)

(ZH)*(A) = Xop  (eliminated)
= [Wo (KY)]" (WeoK(V(z,y)) —
+[Hy o (KY)]" (Ay)
— [Hyo (KY*)]" (A1)
(Z9)*(N) Ao (eliminated)

(Wo (KV)]" (WoK(V(z,y)) —
+[Hy o (KYY)]" (Ay)
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Primal-Dual Optimal.
Conditions 2b

2b. Dual Feasibllity:
Nonnegativity
A = sBlkisMat (A1) + sBlk osMat (\o)
+sBlk o1 Mat (A1) = 0;

)\u207>\120

A=A,z y, Ay, \) (from stationarity)
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Primal-Dual Optimal.
Conditions 3 (C.S.)

3. Complementary Slackness:

A, 08, = 0
)\l O 5y
Az, = 0 (equivalently trace AZ, = 0)

|
-
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Perturbed Compl.
Slack. Conditions

/)\u O Sy — ,Uue\
FM(ZE, Y, )\UJ )\h )\1) = )\l O S — e — 07

\| AZ; — pl )

. where s, = s,(z,y), 1 = si(z,y),
AN=AM,z,y, i, N), Zs = Zg(x,y)
an |overdetermined | bilinear system with
(1m0 + 1) + (my +my) + (n + r)? equations
nr—+t(n) + (my + ny) + (my + ny) + t(r) variables.
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Gauss-Newton
Search Direction
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Notation - Compos.
of Lin. Tr.
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GN: Three blocks of
Equations

1. M\yosvec Ky (Ax, Ay) + 5,0 AN, = pye — Ay 0 8y
2. )\ o svec /CHZ(/\ZIZ, /\y) + 510 AN = e — A\j o s
3.

AZ,(Ax, Ay) + [sBlkq (sMat (A\))

(
+ sBlk 5 (sMat {(/C}},) Kw (Az, Ay)+
(/C?;{u)* (sMat (AN,)) — (K%h)* (sMat (A)\l))})
+(K% )" (sMat (AN,)) — (K% )™ (sMat (AN))
= u.d — ANZ,
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Initial Str. Feas. Start
Heuristic

If the graph Is connected, we can use the
stationarity equations and get a strictly feasible
primal-dual starting point and maintain exact
numerical primal-dual feasibility throughout the
iterations.
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Diagonal
Preconditioning

Given A €¢ M"™" m > n full rank matrix; and
using condition number of K > 0:

w(K) = tgij‘z[(f;)/@", the optimal diagonal scaling

minw ((AD)' (AD)), D" = Diag (1/||4.])

(cite Dennis-W.) Therefore, need to evaluate columns of
I (-) (can be done explicitly/efficiently)

(Partial block Cholesky precondioning)
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dens: W .75,L .8;
NnNil15 mb5,r2

nf optvalue relaxation cond.number sv(FIQ)
0.0000e+000 | 3.9909e-009 | 1.1248e-005 | 3.8547e+006 15 19
5.0000e-002 | 7.5156e-004 | 4.4637e-002 | 1.0244e+011 6 27
1.0000e-001 | 3.7103e-003 | 1.1286e-001 | 1.9989e+010 5 25
1.5000e-001 | 6.2623e-003 | 1.3125e-001 | 1.0065e+010 6 14
2.0000e-001 | 1.3735e-002 | 1.3073e-001 | 6.8833e+009 7 12
2.5000e-001 | 2.3426e-002 | 2.4828e-001 | 2.4823e+010 8 6
3.0000e-001 | 6.0509e-002 | 2.3677e-001 | 3.4795e+010 7 7
3.5000e-001 | 5.5367e-002 | 3.7260e-001 | 2.3340e+008 6 4
4.0000e-001 | 7.6703e-002 | 3.6343e-001 | 8.9745e+010 8 3
4.5000e-001 | 1.2493e-001 | 6.9625e-001 | 3.2590e+010 6 9
5.0000e-001 | 1.3913e-001 | 3.9052e-001 | 2.2870e+005 8 0
5.5000e-001 | 8.8552e-002 | 3.8742e-001 | 5.8879e+007 8 2
6.0000e-001 | 4.2425e-001 | 4.1399e-001 | 4.9251e+012 8 4

Aemrdamrad = el
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dens: W .75,L .8;
NnNil15 mb5,r2

nf optvalue relaxation cond.number | sv(Zs) | sv(F),)
0.0000e+000 | 3.9909e-009 | 1.1248e-005 | 3.8547e+006 15 19
5.0000e-002 | 7.5156e-004 | 4.4637e-002 | 1.0244e+011 6 27
5.5000e-001 | 8.8552e-002 | 3.8742e-001 | 5.8879e+007 8 2
6.0000e-001 | 4.2425e-001 | 4.1399e-001 | 4.9251e+012 8 4
6.5000e-001 | 2.0414e-001 | 6.6054e-001 | 2.4221e+010 7 4
7.0000e-001 | 1.2028e-001 | 3.4328e-001 | 1.9402e+010 7 6
7.5000e-001 | 2.6590e-001 | 7.9316e-001 | 1.3643e+011 7 4
8.0000e-001 | 4.7155e-001 | 3.7822e-001 | 6.6910e+009 8 2
8.5000e-001 | 1.8951e-001 | 5.8652e-001 | 1.4185e+011 6 7
9.0000e-001 | 2.1741e-001 | 9.8757e-001 | 2.9077e+005 8 0
9.5000e-001 | 4.4698e-001 | 4.6648e-001 | 2.7013e+006 9 2
Table 1: Robust Algorithm for lll-posed Problem
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