
Continuous Optimization and its Applications

Speaker: Prof. Henry Wolkowicz
Assistance by: Nathan Krislock

Contents

1 Introduction 4

2 What is Optimization? 4

3 MatLAB 8

4 MatLAB and MOSEK 11
4.1 Linear Programming . 11
4.2 Convex Quadratic Optimization 14
4.3 Conic Optimization . 16
4.4 Quadratic and Conic Optimization 18
4.5 Dual Cones . 18
4.6 Setting accuracy parameters . 18
4.7 Linear least squares and related norm 18
4.8 Mixed Integer Problems . 19
4.9 Large Scale QP . 19

5 A word on convexity 19
5.1 Large scale problems . 20

6 Convex sets 21
6.1 Introduction . 21
6.2 Polyhedra . 22
6.3 Positive semidefinite cone . 22
6.4 Preserving convexity . 24
6.5 Generalized Inequalities . 24
6.6 Separating Hyperplane Theorem 25
6.7 Basic Properties of Convex Functions 28
6.8 The “Clown Car Paradox” . 29
6.9 Patching up earlier work . 29
6.10 Back to convex functions... 29
6.11 Graphs of functions and Epigraphs 30
6.12 Jensen’s Inequality . 30
6.13 Proving convexity . 30

1

6.14 Compositions of functions . 31
6.15 Minimization . 31
6.16 Log-concave and log-convex functions 32
6.17 K-convexity . 32

7 Optimization problems 32
7.1 Standard form . 32
7.2 Convex optimization problem . 33
7.3 Optimality criterion for differentiable f0 33
7.4 Modifying the problem . 33
7.5 Piecewise linear minimization . 34
7.6 Generalized Linear Fractional Program 34
7.7 Quadratic Programming (QP) . 34
7.8 Quadratically constrained quadratic program (QCQP) 34
7.9 Second-order Cone Programming 34
7.10 Robust Linear Programming . 34
7.11 Geometric Programming . 34
7.12 Application: Minimizing the spectral radius of a nonnegative ma-

trix . 34
7.13 LP and SOCP as SDP . 35
7.14 Eigenvalue minimization . 35
7.15 Matrix norm minimization . 35
7.16 Regularized Least-Squares . 35

8 Duality 35
8.1 Linear Programming . 37
8.2 Log-barrier Problem . 38
8.3 Interior point methods on the SDP relaxation of the Max-Cut

problem . 45

9 Summary 46

10 Non-convex objectives with strong duality 50
10.1 Trust Region Subproblem . 50

11 Duality and the Rayleigh Principle 54
11.1 The Trust Region Subproblem 54

12 Robust Optimization 55

13 Geometric Problems 58
13.1 Closest point to a convex set . 58
13.2 Separating a point from a convex set 58
13.3 Distance between sets . 58
13.4 Minimum volume ellipsoids around a set 58
13.5 Maximum volume inscribed ellipsoid 58
13.6 Centering . 59

2

13.7 Linear Discrimination . 59
13.7.1 Robust Linear Discrimination 59
13.7.2 Approximate Linear Separation of Non-Separable Sets . . 59
13.7.3 Support vector classifier 59

13.8 Nonlinear Discrimination . 59
13.9 Placement and Facility Location 59

14 Unconstrained Minimization 60
14.1 Descent Methods . 60

14.1.1 Gradient Descent Method 61
14.2 Newton’s Method . 62
14.3 Filter methods in constrained optimization 62

14.3.1 A Filter Algorithm . 63
14.4 Condition Number . 63
14.5 Steepest Descent and Deflected Gradient Methods 63
14.6 Classical Convergence Analysis 64
14.7 Self-Concordance . 65
14.8 Implementing Newton’s Method 66

15 Equality Constrained Minimization 66
15.0.1 Example: Separable problems 67

15.1 Solving KKT Systems . 67
15.1.1 Example: Network Flow Optimization 67
15.1.2 Example: Ananlytic Center of Linear Matrix Inequality . 67

16 Nonlinearly Constrained Optimization 67
16.1 Sequential Quadratic Programming 69

17 Interior Point Methods 72
17.1 Central Path . 73
17.2 Interpretation using the KKT conditions 73
17.3 Force field interpretation . 73

17.3.1 Example: Linear programming 73
17.4 Generalized Inequalities . 74
17.5 Log Barrier and Central Path . 74

17.5.1 Dual points on Central Path 74
17.6 Example: Semi-Definite Programming 74

18 Student Presentation: Solutions for Infinite Dimensional Prob-
lems 75
18.1 A related problem . 75

18.1.1 Example: Orthonormal constraint functions 76
18.2 The Dual Problem . 76
18.3 The way we did it . 77

19 Portfolio Optimization 77

3

20 Student Presentation: Ill-posed Problems 79
20.1 Optimization problem . 79
20.2 Perturbed data . 80
20.3 Experiments . 81

21 Student Presentation: Quadratically Constrained Quadratic Pro-
grams (QQP) and its Semi-definite Relaxation 81

22 Student Presentation: Portfolio Diversity and Robustness 83
22.1 Robust Optimization . 84
22.2 Random Matrix Theory . 85

1 Introduction

(We had some time to kill to wait for the second bus, so...) Some commands
in MatLAB that we will see: optimtool, linprog, fminimax. Check out the
NEOS website for server-side optimization.

Have quadratic model qk, a second-order Taylor series. Newton’s Method,
quadratic convergence, iterative procedure. This procedure is “scale free”.

Quadratic Q must be PSD on the feasible set.
Let Q be any orthogonal matrix. Consider an affine transformation

x 7→ Qx+ b.

NP-hard.
MOSEK software.

2 What is Optimization?

• Two quotes from Tjalling C. Koopmans, (1975 Nobel Memorial Lecture):

– “best use of scarce resources”

– “Mathematical Methods of Organizing and Planning of Production”

• Quote from Roger Fletcher (text, 1987): ”The subject of optimization is
a fascinating blend of heuristics and rigour, of theory and experiment.”

We discuss some basic models of optimization problems.
Unconstrained optimization: The problem is

Minimize f(x)

where x ∈ Rn and and f is a continuous real valued function.
Linear programming: The basic problem of linear programming is to min-

imize a linear objective function of continuous real variables, subject to linear

4

constraints. For purposes of describin g and analyzing algorithms, the problem
is often stated in the standard form

Minimize c · x subject to Ax = b, x ≥ 0.

Linear programs are solved using George Dantzig’s simplex method or with
interior point methods.

Quadratic programming:
Semidefinite (and Second Order) Cone programming: This is an area that’s

relatively new. Falls into the class of cone programming problems. If we think
of x as being a vector, we have to change the vector space to the space of
symmetric matrices. Now we draw a big X. The variable is now a matrix, and
we are looking for a matrix that has to be PSD. The constraint Ax = b in the
linear form turns into Aopp(x) = b. The objective function in this case is to
minimize 〈C,X〉 = trace(CX).

Originally, this was studied as an extension of linear programming, but the
applications that come out are interesting. The linear transformation AoppX is
the same as a family of m equations 〈Ak, X〉 = bk.

Every linear program has a dual program. You can’t do optimization without
duality. Even unconstrained optimization, the derivative is in the dual space.
Just like in LP, there’s a dual.

We’ll talk about this dual as we go along.
There’s a class of problems called “second order cone problems”. We have

a cone

Q =

{
(x0, . . . , xn) : x2

0 ≥
n∑

i=1

x2
i

}
This cone is sometimes called an ice cream cone because of when n = 3.
One application is the “max cut” problem. Suppose we have a graph. Can

give edges weights. We want to cut the graph into two, make two sets for
the nodes, such that maximize the sum of the weights that are cut. There
are applications of this in physics and VLSI design, but also mathematically
interesting. We can model this with a quadratic objective.

Let xi correspond to +1 or −1, depending on which set the vertex goes into.
Thus, x ∈ {−1,+1}n. Note, if xi and xj are in the same sign iff they are on the
same side. So, in the sum below, we have zeroes or twos (which explains the
denominator):

t := max
x

1
2

∑
i<j

(1− xixj)

Now, we do something very silly. The feasible set here is the vertices of the
n-cube, and they’re disconnected, so it seems that calculus isn’t going to help
you. Don’t the other points seem so far away? We’ll replace the constraint
by a quadratic x2

i = 1. It doesn’t seem to do anything. But here’s where
we see Lagrange multpliers. Take the constraint and put it with a Langrange
multiplier.

5

t(λ) := max
x

xTQx+
∑

i

λi(1− x2
i)

(Here, the Laplacian Q is built off the quadratic.) But sometimes, we can’t
solve this. The Hessian looks like xT (Q−Diag(λ))x, where Diag(λ) is the n×n
diagonal matrix 

λ1

λ2

. . .
λn


The new Hessian is Q−Diag(λ). The corresponding eigenvector gives you

infinity. λ is a parameter, but each time we fix it, we get a t. If λ = 0, we get
the original problem, but we allow other values. So this problem is a relaxation.
Every time we solve this problem, we get a bound. It’s a waste of time if an
eigenvalue problem is positive. There’s a hidden semidefinite constraint. If we’re
gonna get a good upperbound, throw out positive infinity. So, our constraint is
Q−Diag(λ) ≤ 0 (negative semidefinite).

The PSD cone is a nice convex set. The faces are well-described. Each face
of a non-negative orthant corresponds to a cone in a smaller-dimensional cone.

The important thing is that λ ≤ t(λ). We can use Lagrange multiplier to
relax. Of all the λ’s, find the best one, so we minimize over λ. However, there’s
a hidden constraint. We can throw away the maximization maxx x

TQx because
of the hidden constraint.

We have an upper bound, but now we want the best upper bound. We want

t ≤ min
λ

max
x

xT (Q−Diag(λ))x+ λT e

where e = (1, 1, . . . , 1)T . We know that there’s a hidden constraint where Q −
Diag(λ) is NSD, so we might as well add it as part of the minimization criterion.
The max is now 0 at x = 0. So we can just throw it away, so, this is equal to

minλT e

subject to Diag(λ) ≥ Q (this is called the Löner partial order). Out pops an
SDP. Interior point methods can be extended from LP to SDP.

But recall, we haven’t solved the original problem. Max-cut problem is
an NP-hard problem. Goemans and Williamson proved that if you take this
problem and do a randomization process, the worst you can do is an approx 14%
error, which is amazing for a combinatorial optimization relaxation problem. In
practice, you get 97% of the optimal solution.

The idea is you take the discrete set and lift it into matrix space. Each point
on the n-cube, for example, is lifted into matrix space. This is one example
of max-cut where SDP works well. The difficulty is the lifting, where you
potentially square the number of variables.

6

As you go from LP to SDP, the number of iterations is about the same. For
LP, you can take on billions of variables. For SDP, you can go to 80000 max-cut
nodes.

General Nonlinear Programming: The problem is to minimize f(x) subject
to gk(x) ≤ bk. Can allow for equality constraints too. Mathematicians like to
use ≤ and people in computer science community like the ≥ due to the LP
duality. Another form is bound constraints on the variables: Minimize subject
to c(x) = 0, l ≤ x ≤ u.

The main thing to point out is the Lagrangian again:

L(x, y) = f(x) +
∑

i

yici(x)

Here, the Lagrange multipliers are yi instead of λi. The purpose of the La-
grange multipliers is that the original problem is too hard to solve. By putting
these multipliers together with the objective, again we have a relaxation. Any
minimum of the original problem is a stationary point of the second problem.
The condition is not sufficient: but we search for stationary points.

There are second-order conditions which provide sufficient conditions. Some
of the approaches for solving these include: sequential quadratic programming
(uses the local quadratic approximation), reduced-gradient methods, and some
interior point methods.

There are algorithms called sequential linear approximation. They use a
linearization of the constraints when the constraints are too hard to handle. We
must develop a model that we can handle. Solve an LP, and it will hopefully
give you the right search direction.

The rough idea of optimization: The functions are too complicated to han-
dle as is, so you make an approximation, usually by Taylor series. There are
subtleties to know that you are improving the objective and the constraints.

Infinite Dimensional (Control) Programming: This is an optimal contral
problem. Imagine you want the best trajectory (minimum energy) for a rocket
ship to get to the moon.

µ0 = min, J(u) =
1
2
||u(t)||2, s.t.x′(t) = A(t)x(t)+b(t)u(t), x(t0) = x0, x(t1) ≥ c.

Can use the fundamental solution matrix Φ. Every solution x(t1) can be
written as the sum of Φ(t1, t0)x(t0) and an integral operator Ku.

We now have a convex program

min J(k)s.t.Ku ≥ d

Here, d is finite-dimensional. We’re going to again to a Lagrangian relaxation.
We add the constraint using λ of same dimension as d.

µ0 = max
λ≥0

min
u
{J(u) + λT (d−Ku)}

7

As before, this finds a lower bound, so we look for a best lower bound. We have
a hidden constraint here as well. And J(u) is a quadratic, so we can explicitly
solve for u. The solution for u is

u∗(t) = λT
∗ Φ(t1, t)b(t).

u∗(t) is a critical point. Because our function is convex, we’re guaranteed that
our solution is a minimum.

The K can come to the other side as an adjoint. We end up with a simple
finite-dimensional QP:

µ0 = max
λ≥0

λTQλ+ λT d

Here, by using Lagrangian duality, we don’t need to discretize here. This is
what is done for a lot of real-life problems.

In this problem, we have a zero duality gap. When you don’t have a zero
duality gap, you won’t solve your original problem. This example is from Lu-
enberger.

3 MatLAB

Check out the video on the origins of MatLAB, with Cleve Moler.
We are going to use MOSEK, so you have to add it to your path. Find

startup.m and you can add the lines:

addpath /usr/msri/mathsw/mosek/4/toolbox/examp -end
addpath /usr/msri/mathsw/mosek/4/toolbox/r2006b -end

Create a simple vector

a = [1 2 3 4 5 6 4 3 4 5]

Can add 2 to every element of a:

b = a + 2

Plotting is easy. plot b made the line and grid on made the grid. Next is
a bar graph. There are interactive (as opposed to command-line) ways to get
many of these features to work too. Can create matrices:

A = [1 2 0; 2 5 -1; 4 10 -1]

turns into  1 2 0
2 5 −1
4 10 −1


Can take transpose, or multiply matrices together. To do point-wise multi-

plication, write

8

C = A .* B

This is called the Hadamard product. One can use a Hadamard product to
represent weights.

Finding inverses is easy:

X = inv(A)

Can find eigenvalues with eig(A). Can do an SVD decomposition of a matrix
A by running svd(A). (Aside on SVD.)

poly(A) will give the coefficients of the characteristic polynomial pA(t) of a
square matrix A.

conv produces a convolution.
Within the GUI, you can right-click on a vector to do things (such as plot)

with it. Without the GUI workspace, you can type whos. For he commands
loaded, you can type what. You can type clear to clear your workspace. You
can work with complex arithmetic. Type clear A to just get rid of A.

One of the nice things about MatLAB is solving a system of equations. Solve
by typing x = A\b. This works by Gaussian elimination. We have a demo here
and our first assignment. We examine Asolve.m. We will solve using inv, then
with the slash, then solve by LU, and also with linsolve. Running, we had

>> Asolve

Generate random data for A,x and b=Ax, with n= 2000

Solve by x = inv(A)*b:
Elapsed time is 7.466549 seconds.
residual 3.402e-09
error 8.0865e-11

Solve by x = A\b:
Elapsed time is 3.228165 seconds.
residual 1.6859e-10
error 2.2651e-11

Solve by [L,U,P]=lu(A); x=U\(L\b):
Elapsed time is 2.913590 seconds.
residual 1.6859e-10
error 2.2651e-11

linsolve with [L,U,P]=lu(A):
Elapsed time is 2.891677 seconds.
residual 1.6859e-10
error 2.2651e-11

9

We can use runAS.m, which does the same thing but starts up a profile. See
this file:

clear all
profile on
Asolve
profile report

This program helps to show the bottlenecks in your computation. Then we
have Aoneseps.m. This script will make a special matrix.

A =


1 1

1 0 1
1 1

−1
. . .

...
1


Then, we’ll shake it with a small ε:

Aeps = A + pert

Then, we’ll look at x = A\b to see ||Ax−b|| and xeps = Aeps\b and examine
||Axeps− b||.

Type

A = Aoneseps(30);

Why the discrepancy? The condition number of A was 40. Condition num-
ber 40 says that you may lose one decimal of accuracy, so this problem is well-
conditioned.

A small change to A doesn’t change the eigenvalues of A by much, so it’s
not about the condition number.

Gaussian elimination is not a stable process. Even for a 2× 2 matrix(
ε ∗
∗ L

)
Instead of pivoting on the small number, pivot on the large number.
MatLAB allows you to use Maple in MatLAB. You can use MatLAB syntax

to use Maple. Within the GUI help, see Toolboxes, then Symbolic Math.
Let’s consider the 5× 5 (ill-conditioned) Hilbert matrix.

H = sym(hilb(5))

H is exact, so there are no decimal places. You get exact determinants. You
can get the characteristic polynomial, the inverse, factor.

Can show off using a symbol t, and creating a matrix that is a function of t.
Other than pretty you can get MatLAB to give you the LaTeX of something
by typing latex of something.

10

Can type keyboard within your MatLAB script to get a new prompt K>>
where you can run commands from your code break.

Partial pivoting is not stable. Total pivoting is stable, but is too slow. Total
pivoting won’t break this problem that we have, so that’s a big hint for the
exercise. MatLAB has PCG, an iterative algorithm.

This perturbation analysis has become an entire area of research.
Discussion of Assignment 1: In the Gaussian elimination, the last column

will have the (sorted) powers of 2. The problem in partial pivoting is that
the absolute value of all of these numbers is 1. So, it doesn’t do any partial
pivoting. With the perturbation, you will be changing rows, and partial pivoting
does something, so you no longer go through the row in order.

Iterative methods work in a system Ax = b, with A sparse. Iterative methods
are based on taking a matrix-vector operation. In fact, if A is PSD, then the
iterative method (the Conjugate Gradient method) is based on:

min
x

1
2
||Ax− b||2

The iterative methods don’t try to solve the problem exactly, they just try
to make the residual small. The process of preconditioning tries to get the
eigenvalues close together.

[There will be more projects, on various topics: regularity and inverses,
dimension reduction, statistics, Euclidean distance problem and protein folding.]

4 MatLAB and MOSEK

MOSEK is free for students, and competes with CPLEX. A guided tour is
available as a link. MOSEK does not do SDP yet.

[The startup file is now called mystartup.m.]
If you add MOSEK, it will take control of several commands, so the optim

tool won’t work due to clash of keywords.
[SeDuMi is free from McMaster University. “Let SeDuMi seduce you.”]

4.1 Linear Programming

Let’s do a brief introduction to the simplex method and linear programming.
One famous problem is the “diet problem”: Suppose we have n foods and m
nutrients. For example, suppose that the foods are carrots, liver, etc. Suppose
the nutrients are Vitamin A, Vitamin B, calories, etc.

Let Aij be the number of units of nutrient i per unit of food j. The other
data that we have is bi, which is the minimum number of units of nutrient i in
our diet. All that’s left is cj , which is the cost per unit of food j. Our decision
variable: Find xj , the number of units of food j in the optimal diet.

The primal problem (P) is to

p∗ = Minimize cTx =
∑

j

cjxj subject to Ax ≥ b, x ≥ 0.

11

Of course we want x ≥ 0, we’re not bulimic. So, there’s nothing here for
taste!

George Dantzig visited John Von Neumann at Princeton. Dantzig got to
visit and discussed this problem. Von Neumann developed game theory, C∗-
algebras, and something else. So, he explained game theory, and duality. This
led Dantzig to the simplex method.

In game theory, we have a player X. Maybe he’s a dietician, and there’s a
pay off function. And there’s a player Y . The payoff function is a Lagrangian:

L(x, y) = cTx+ yT (b−Ax)

The dietician is going to pay for the diet (cTx), but he’s also going to pay
for yT (b−Ax). b−Ax is excess nutrients. So y has to be dollars per nutrient.
(Who is player Y ?) So,

p∗ = min
x≥0

max
y≥0

L(x, y)

Why? There’s a hidden constraint: b−Ax ≤ 0. In other words,

max
y≥0

L(x, y) =
{

cTx , if Ax ≥ b
+∞ , otherwise

If you’re infeasible, it’s like having an automatic penalty, and so you want
to avoid that. The non-negative orthant is a self-dual cone. The y values are
the Lagrange multipliers. The y tell us the value of the nutrients.

What’s the dual problem? If we put the min before the max, we get this
obvious relationship (called Weak Duality):

p∗ ≥ d∗ = max
y≥0

min
x≥0

L(x, y) = bT y + xT (c−AT y)

Really, what we’re doing with transpose is an adjoint. Recall 〈y,Ax〉 =
〈A∗y, x〉.

Now, what’s the hidden constraint? Because we don’t want minL(x, y) to go
to negative infinity, no component of c−AT y can be negative. Thus, c−AT y ≥ 0.
Thus,

d∗ = max{bT y : AT f ≤ c, y ≥ 0}

This is the dual problem, and this is what led Dantzig to the simplex method.
[Player Y is a pill salesman. Let’s take a look at the units of y. Remember, it’s
a cost per nutrient. So, he has to decide how much the pills are worth. He’s
trying to give you a carrot substitute.]

For linear programming, p∗ = d∗, if feasible, and both are attained. This is
called strong duality.

The purpose of this exercise was to show you the hidden constraint, which
often appears from Lagrangian relaxation.

12

Minimize x1 + 2x2

Subject to 4 ≤ x1 + x3 ≤ 6
1 ≤ x1 + x2

0 ≤ x1, x2, x3

We can put this in a standard form:

Minimize x1 + 2x2

Subject to x1 + x3 ≤ 6
−x1 − x3 ≤ −4
−x1 − x2 ≤ −1
x ≥ 0

Now we have Ax ≤ b. Each one of the constraints in Ax ≤ b will have its
own Lagrange multiplier. The dual will look like

max{bT y : At = c, y ≥ 0}

This one here is called standard form.
The term duality gap is used in several ways: either for your specific x, y or

for x∗, y∗. The simplex method works because of duality.
The MOSEK function msklpopt has its own form that has upper and lower

bounds for Ax and for x. Input c cost and a the A matrix. Each line in the
iteration output is a step of Newton’s method. What we’re trying to do is to
get the primal and dual objective values to be equal. The number of iterations
grows very slowly. This is an interior point method. The solution is “purified”
at the end by finding the correct primal basis.

We argue that an optimum is found at a vertex. There may be a tie, but
an optimum is found at a corner point. That solution is called a basic feasible
solution. Then the program outputs the answer. sol is a new variable in our
MatLAB workspace. Find the answer in sol.bas.xx.

There are two dual variables; sol.bas.y. The dual problem is solved at the
same time.

How do we go from an infeasible point to a feasible point? There are some
equations that need to be satisfied by feasible points. As we iterate through the
equations, we force some of the equations to be satisfied.

We can try to prove complementary slackness. We can add a slack variable
z:

Ax+ z = b, z ≥ 0.

Proposition 4.1. Note that x, y is optimal if and only if Ax + z = b, z ≥ 0
(primal feasibility), AT y = c, y ≥ 0 (dual feasibility), and cT − bT y = 0 (no
gap).

13

Proof. Follow the string of equalities: 0 = cTx − bT y = cTx − (ax + z)T y =
xT (c − AT y) − zT y if and only if zT y = 0 (called complementary slackness)
which is true iff z ◦ y = 0 (Hadamard product).

We have 2m+n variables, and we can replace the “zero gap” constraint with
complementary slackness: z ◦ y = 0. There are tm + n equations. We can call
this entire system (make it homegenous in zero) a function F (x, y, z) = 0 (but
not the inequalities). Note,

F : R2m+n → R2m+n

We solve it by Newton’s method.
Can also type help sedumi. The help tells you about the standard form

that you need to put the problem in.
We can also solve using mosekopt. Let’s look at the example lo2.m.
[There are many different kinds of duals.]
In this problem, we note that x1 + 2x2 = x2 + (x1 + x2) ≥ x2 + 1, and this

gave us (in this example) a simple proof for this problem.

4.2 Convex Quadratic Optimization

In these packages, they always tell you that the Q has to be PSD. They only
have to be PSD on the feasible set.

Proposition 4.2. A matrix Q is positive definite if and only if all leading
principal minors (consider all upper-left square submatrices) are positive.

This does not extend to positive semidefinite. For PSD, you have to check
all minors. We can run the example qo1.m.

The Gershgorin circle theorem identifies a region in the complex plane that
contains all the eigenvalues of a complex square matrix.

Proposition 4.3. (Gerşgorin) The eigenvalues lie within the discs centered at
the diagonal entries aii, with radius ri, where

ri =
n∑

i 6=j

|aij |

This can be proved from diagonal dominance.
Quadratic programs have a Lagrangian dual, and it can be found the same

way as for linear programs.
The quadratic program

Minimize 1
2x

TQx+ cTx

Subj Ax = b

x ≥ 0

14

We have

p∗ = min
x≥0

max
y

1
2
xTQx+ cTx+ yT (b−Ax) = L(x, y)

And this is greater than or equal to the dual:

≥ d∗ = max
y

min
x≥0

L(x, y)

We have to do things a little bit differently.

max
y;w≥0

min
x≥0

L(x, y)− wTx

Now that we do this, we can use the hidden constraint idea. We have a
convex quadratic. There will be a minimum iff the gradient is zero. This is
called the Wolfe1 dual. We add the (hidden) constraint underneath the max:

0 = ∇xL(x, y)− w
If we have a quadratic q(x) (convex), and we have the Hessian Q � 0, then

we have

µ∗ = min q(x)

Then, µ∗ > −∞ if and only if µ∗ is attained (ie, ∃ x such that µ∗ = q(x)),
and this happens iff 0 = ∇q(x).

If our objective is q(x), what can go wrong? The gradient is just 0 = ∇q(x) =
Qx+ c. If Q � 0, then there is always an x given by

x = −Q−1c

But if Q � 0 is singular, we have to be lucky, and we need c to be in the
range of Q.

We also have qo2.m, which shows how to build things up with a MatLAB
structure. Then, we can solve using mosekopt.

Duality is hiding behind all of our optimization problems. Go back to the
idea of the dietician and the pill-maker. There are certain algorithms that don’t
work like this: they stay primal feasible and use some kind of stochastic process.

Whenever you’re dealing with a constraint, you can always penalize them in
this way using a Lagrange multiplier. That simple idea leads to a duality theory.
If you have a non-constrained problem, you don’t talk about this primal-dual
stuff.

We can look at an example using mosekopt as in the guided tour, section
7.5.3.

We go on to convex problems, and talk about the same idea. The interior
point methods are being used for general non-linear problems: it’s being used
for all problems, all models.

1Phillip Wolfe was a mathematician at IBM. He stopped doing mathematics, started clean-
ing offices, and finally got fired.

15

sprandsym will generate a random sparse symmetric matrix in MatLAB.
Use spy(A) to look at a schematic picture of the matrix.

r(1:n+1:end) = zeros(100,1); % replace diagonals of r with 0s.
nnz(r) % shows number of nonzeroes.
spy(r)

MatLAB’s original command for linear programming is linprog. MOSEK
takes this over, but the syntax is the same. There’s also quadprog: See the
syntax in the MatLAB help again. Type help optimset to change options for
this problem. You get a structure of options in your workspace.

4.3 Conic Optimization

We saw one example where the relaxation for Max-Cut gave us an SDP. SDP
are a special case of conic optimization problems. We have a set C ⊂ Rn. Then
C is a cone if λC ⊂ C for all λ > 0. Sometimes, you can include the point zero,
as most books do. This means that C contains all half rays.

A cone C is a convex cone if C + C ⊂ C. Equivalently, C is a convex set.
In three dimensions, you can have polyhedral cones or non-polyhedral cones. A
cone is polyhedral if can be written as

C = {x : Ax ≤ 0}

This is the intersection of [linear] halfspaces. An example of a polyhedral
cone that we have been working with is the non-negative orthant Rn

+. This
orthant gives us a partial order. We say x ≥ 0 element-wise iff x ∈ Rn

+. Then,
we can say that x ≥ y means x− y ≥ 0. Often, the relation has the subscript:
≥Rn

+
.

Now, if we take K to be any closed convex cone (c.c.c. for short), then we
say x ≥K 0 to mean x ∈ K, and x ≥K y means x− y ≥K 0 or x− y ∈ K.

A cone K is pointed if K ∩ −K = {0}. This seems to be a requirement for
forming a partial order. Let’s just assume that our cone is pointed for now.

We can take a general optimization problem

min f(x)
s.t. gk(x) ≤ 0 k = 1, . . . ,m

hj(x) = 0 j = 1, . . . p

we can write g(x) ≤Rm
+

and h(x) ≤{0}p 0. And these can be combined:

k(x) =
(
g(x)
h(x)

)
where K = Rm

+ ⊗ {0}p, k(x) ≤K 0.
Now, we can play this game again, with player X. We have min f(x) s.t.

g(x) ≤K 0, a K-convex function with x ∈ Ω, the convex set. Again, we have

min
x∈Ω

max
y

L(x, y) := f(x) + 〈y, g(x)〉

16

The feasible set is the set {x ∈ Ω : g(x) ≤K 0}. That is, g(x) ∈ −K.
We could have: minimize the trace of AXBXT + CXT and the constraints

are: g(X) = XTX − I ≤Sn
+

0, where Sn
+ is the cone of PSD matrices. Thus,

this is a function
g : Rn×n → Sn

The Lagrange multipliers2 are sitting in the space of symmetric matrices, so the
Lagrange multipliers are matrices!

Within the max above, where does y live? In the dual cone (or polar cone).
I like the notation K+ as opposed to K∗. This is:

K+ := {ϕ ∈ X∗ : 〈ϕ, k〉 ≥ 0 ∀ k ∈ K}
This is all vectors making angles less than 90 degrees to all vectors in the

cone K. In R2 is easiest to see. Note, we have

min
x∈Ω

max
y∈K+

f(x) + 〈y, g(x)〉

for the min-max statement.
Often in optimization problems, the collection of constraints are split up into

two kinds: the hard and easy ones. We should think of everything as infs and
sups, even in finite dimensions.

In the guided tour, we consider three kinds of cones:

• Rn
+ cones

• Quadratic cone (Lorentz “ice cream” cone)

• Rotated quadratic cone

All of these cones are self-dual:

K = K+.

They also have non-empty interior, and they are proper, closed, and convex.
Subsection 7.6.2 gives us an example problem.

min x5 + x6

s.t. x1 + x2 + x3 + x4 = 1
x1, x2, x3, x4 ≥ 0,
x5 ≥

√
x2

1 + x2
3

x6 ≥
√
x2

3 + x2
4

A function g is K-convex if

g [αx+ (1− α)y] ≤K αg(x) + (1− α)g(y)
2Lagrange multipliers are due to his supervisor Euler. Did you know that l’Hôpital bought

his rule?

17

for all 0 ≤ α ≤ 1 and for all x and y. Let’s see how this function relates to
ordinary convexity. This is the same as saying that

g [αx+ (1− α)y]− αg(x)− (1− α)g(y) ∈ −K = −K++

This is a generalization of Jensen’s inequality.
Because we are in K++, we can say: Let ϕ ∈ K+. Then define

gϕ : X → R

by the rule

gϕ(x) = 〈ϕ, g(αx+ (1− α)y)− αg(x)− (1− α)g(y)〉 ≤ 0

for all 0 ≤ α ≤ 1.
This is saying that the function gϕ(x) := 〈φ, g(x)〉 is convex for all ϕ ∈ K+.

So, we can phrase K-convexity in terms of ordinary convexity. So instead of
writing g(x) ≤K 0 with the constraint: gϕ(x) ≤ 0 for all ϕ ∈ K+.

Let’s follow the example cqo1.m. A linear objective function will find a
solution on the boundary, so we saw that this solution has optimum on the
boundary of the cone. The only other possible place was on the non-negative
orthant.

4.4 Quadratic and Conic Optimization

MOSEK can handle quadratic constraints. The constraints are conic. Most of
these, you can replace these by a conic. cqo2.m is an example problem.

4.5 Dual Cones

Now, we can see the role of the dual cone C∗. Examples of the dual cones are
on the self-guided tour.

4.6 Setting accuracy parameters

You can set these options using MatLAB commands.

4.7 Linear least squares and related norm

Can use the QP solver to solve the linear least squares problem on the || · ||2-
norm. In the examples, we look at the ∞-norm.

In the 1-norm, you’ll get lots of zeroes. Often times you want that. In
portfolios, you want the exact opposite of this behavior. They’re trying to
avoid the effects of the 1-norm by adding other constraints. But, they can’t
avoid this because they’re using CPLEX.

18

4.8 Mixed Integer Problems

We can take a look mixed-integer constraints. If you build airplanes, you can’t
build have an airplane. Integer problems are very important, but very hard
to solve. Typically involve branch-and-bound methods, and cutting planes.
Typically they start with an LP relaxation.

We have an example program milo1.m. These are very hard. You can find
problems with 15 variables that you can’t solve.

One of the interesting problems in this area is the quadratic assignment
problem. Suppose you had to build a university, but you don’t know where you
should build the buildings. There’s a cost in terms of building separation. It’s
quadratic because it’s number of people times a distance!

The NEOS site has problems up to size 9. Up until 1980, no one could solve
anything beyond 15 facilities and 15 locations. In 1980, someone did n = 16,
and three or four years ago, n = 30 was solved, related to VLSI design. This
problem is also related to chip design.

One n = 30 was solved on the system CONDOR in Minnesota. CONDOR
steals cycles around the world. They farmed out these jobs to thousands and
thousands of computers around the world. It was a combination of theory, and
it was SDP relaxation that provided a stronger bound. The bound was the big
problem in these branch-and-bound processes.

All 37 of us should send our QAP problem to NEOS. Maybe I’ll get an e-mail
from them complaining.

4.9 Large Scale QP

In spqp.m, Let’s take blocks, and generate a random problem. We’ll solve this
using quadprog.

5 A word on convexity

A function h is convex if for all 0 ≤ α ≤ 1,

h(αx+ (1− α)y ≤ αh(x) + (1− α)h(y)

The nice thing about convexity is that we can just deal with a single parameter
t. If we draw the secant line, then we have that the function lives below the
secant line. In calculus, we call these concave up.

Another thing about convex functions: If we look at a level curve. The set

Lβ = {x : h(x) ≤ β}

is a convex set.
For convex functions, the directions of decrease have derivative less than

zero.
Note, there are functions called pseudoconvex, and function that are quasi-

convex. These don’t have as nice of a property in terms of the calculus. Their

19

preimages are still convex. Puesdoconvex functions come up a lot in economics
(e.g., the sharp ratio). Quasiconvex functions also come up in economics.

Then, if we go to the generalization with K-convex:

G(x) ≤K 0

Then, these have the same properties. It’s just that you have to use the ap-
propriate inner product. We also are careful with what kinds of objects our
Lagrange multipliers are.

If g(x) is a vector, we just have yT g(x). So, we have yT g ≥ 0 for all y ≥ 0.
The set of convex functions forms a convex cone.

In the setting with G, the set

{x|G(x) ≤K 0} = {x|〈ϕ,G(x)〉 ≤ 0 ∀ ϕ ∈ K+} =
⋂

ϕ∈K+

{x|〈ϕ,G(x)〉 ≥ 0}

Suppose you have a quadratic q(x) = 1
2x

TQx + bTx. Then q is convex iff
Q � 0. Then, we take a look at XTX − I ≤Sn

+
0. It is not obvious at all that

this is K-convex. We’ll leave this as an exercise to assign at the end of this
week.

Another project I’m going to add: If you remember, I wrote down an infinite-
dimensional example. Due to convexity, the infinite-dimensional problem was
changed into a very nice finite-dimensional problem. So, I’ll record the details
of this, but those of you who may be interested should talk to me afterwards.
The question is that we have some interpolation conditions and we want to find
a function x(t) on some interval, say, [0, 1]. x should satisfy some interpolation
conditions, e.g.: ∫ 1

0

x(t)ψi(t)dt = bi, i = 1, . . . , n

for given ψi(t). We also want that x(t) is convex. This is called best convex
interpolant. We want to find a function, but we only have a finite number of
constraints.

I’ll provide some details, but in the end, you’re going to end up with the
best cubic spline, the convex interpolant for this problem. It’s very easy to
work with the dual for this problem, and easy to get a solution from Newton’s
method, of course. Note that x ∈ L2[0, 1] must hold. In the end, by doing a
best-interpolation, we’re going to be minimizing the norm ||x(t)||, subject to
some appropriate details.

5.1 Large scale problems

We’re going to modify spqp.m. From the GUI, we can remove MOSEK from
the path. To check if MOSEK is in the path, we can try to run mosekopt. Now,
quadprog is taken over by MatLAB. Even a small problem (which took no time
on MOSEK) took 1.644 seconds. At k = 10, t = 40, the program embedded in
MatLAB had no trouble. Let’s try larger k and t.

20

MatLAB runs this on an “active set” method. This is akin to the simplex
method traversing from vertex to vertex. MatLAB has optimtool which starts
up a GUI interface to the optimization tools.

MatLAB does automatic differentiation. Maple does symbolic differentia-
tion. Automatic differentiation: If you have a black box (a file with computer
code), the function differentiates your software, and it does it efficiently.

You can download the automatic differentiation tools. They’re available
online as public domain. People made errors entering the differentiations.

6 Convex sets

Convex analysis is a beautiful area, studied independently. This is in the core
of our interior point revolution.

6.1 Introduction

The simplest kind of set is an affine set. An affine set contains the line through
any two distinct points in the set. This affine combination is an unbounded
version of a convex combination. Our familiar example is the solution set of
linear equations. In fact, every affine set can be described this way.

A convex set contains all line segments. For the points x1, . . . , xk, a convex
combination is the set of all points

x = θ1x1 + θ2x2 + · · ·+ θkxk

where
∑
θi = 1, θi ≥ 0. The convex hull of the set S is the smallest convex

set containing S. A convex hull does not have to be a closed set. Consider a
polygon, for example, missing an edge.

We can look at convex cones. Here, we allow the scalars to be any non-
negative, and we don’t worry about summing to 1.

A hyperplane is a set of the form

{x|aTx = b}(a 6= 0)

A halfspace is a set of the form

{x|aTx ≤ b}(a 6= 0)

A hyperplane is the boundary of a halfspace. Halfspaces come with a normal
vector (that we will label a). Hyperplanes are affine and convex. Halfspaces are
convex.

The (Euclidean) ball with center xc and radius r can be written in two ways:

B(xc, r) = {x | ||x− xc||2 ≤ r} = {xc + ru | ||u||2 ≤ 1}

An ellipsoid is a set of the form

{x | (x− xc)TP−1(x− xc) ≤ 1}

21

with P ∈ Sn
++ (ie, P is symmetric positive definite).

If WTW � 0 if and only if W is non-singular. We’re really looking at
||u||2W = ||Wu||2 = uT (WTW)u. Here, we set P−1 = WTW . The other
representation is

{xc +Au | ||u||2 ≤ 1}

where A is square and non-singular. (The A is the scale.)
A norm ball with center xc and radius r is {x : ||x−xc|| ≤ r}. A norm cone

is {(x, t) : ||x|| ≤ t}. This is the second-order cone when the Euclidean norm is
used. MOSEK can handle these cones.

6.2 Polyhedra

A polyhedral set is the intersection of a finite number of halfspaces.

6.3 Positive semidefinite cone

• Sn is the set of symmetric n× n matrices.

• Sn
+ is the positive semidefinite matrices. This is a convex cone.

• Sn
++ is the positive definite matrices.

For 2 × 2 matrices, this looks like an ice cream cone. This can be seen by
the definition for positive semidefinite matrices using the inner product with I.

The symmetric 2× 2 matrix (
x z
z y

)
is positive semidefinite under what conditions? 〈X, I〉 = tr(XI) = tr(X) =
x+ y. Thus,

cos θX,I =
〈X, I〉
||X|| ||I||

.

⇒ X � 0 iff xy − z2 ≥ 0. We have here all matrices that make an angle of less
that 45 degrees with I. This is why this cone is self-dual/polar.

Why can’t we use this argument in higher dimensions? We still have the
angle conditions, don’t we? It doesn’t characterize positive semidefiniteness in
higher dimension.

What can we say if θX,I ≤ 45 degrees? That is tr(X) ≥ 0 and the cosine
angle formula gives 〈X,I〉

||X||||I|| ≥
1√
2
. Squaring both sides, we get

(tr(X)2) ≥ (tr(X2))tr(I)
2

What does it mean that the trace of X is greater than or equal to zero?

(tr(X))2 ≥ ||X||2||I||2 = (trX2)n

22

This is the same as saying that

(tr(X)2)
n2

≥ tr(X2)
n

Can we prove that the semidefinite cone is self-polar? Sn
+ is the cone of

positive semidefinite matrices. Now,

(Sn
+)+ = {Y ∈ Sn : 〈X,Y 〉 = tr(XTY) = tr(XY) ≥ 0 ∀ X � 0}

Let’s show that this is equal to Sn
+. Let’s start with a matrix Y � 0 and X � 0.

Then, tr(XY) =?. You can always do a Cholesky decomposition X = LLT .
Y ≥ 0 iff xTY x ≥ 0∀x. Thus, yTLTFLy) = (Ly)TY (Ly) ≥ 0. So, Sn

+ ⊂
(Sn

+)+.
To show (Sn

+)+ ⊂ Sn
+, let Y ∈ (Sn

+)+, that is, tr(Y X) ≥ 0 for all X ≥ 0. By
contradiction, suppose Y = PDY P

T and

DY =

 λ1

. . .
λn


And suppose that the smallest eigenvalue λn < 0.
Let

X = P

 λ1

. . .
λn

PT ≥ 0

Then tr(Y X) = tr(PDY P
TP)[0; 1]PT = tr(DY)[0; 1] = λn < 0, which is a

contradiction.
Is this still self-dual if you change the inner product?
In the boundary of the 2 × 2 cone, each ray corresponds to (the multiples

of) a matrix of rank 1. we can see this by the equality we set. Indeed, if our
matrix is (

a b
b c

)
then we have the equation (as opposed to inequality) ac = b2 and a ≥ 0,

and c ≥ 0. Then we have the set{
α

(
1 1
1 1

)
: α ≥ 0

}
which is a one-dimensional cone. So, we can write this set as[

1√
2

1√
2

]
α

[
1√
2

1√
2

]T

for α ∈ S+, and we can do this in general. So F is a “face” of Sn
+ if and only if

F = R(Sr
+)RT where r is equal to the rank of any matrix X ∈ relint(F) and

23

R are the eigenvectors (orthogonal) corresponding to non-zero eigenvalues. (If
a problem has zero eigenvalues, we can go down into a lower dimension.) So,
every face of the non-negative orthant is the cone of a smaller dimensional cone.
For many problems (graph partitioning, etc.) you have to use this property.

6.4 Preserving convexity

What are the operations that preserve convexity. The intersection of two convex
sets is convex. Affine functions: taking the affine image of a convex set preserves
convexity.

Also, more surprisingly, perspective functions and linear fractional functions
preserve convexity.

The image of a convex set S under f = Ax + b is convex. Inverse images
are also convex. Examples include scaling, translation, and projection. The
solution set of linear matrix inequalities are convex sets. They hyperbolic cone
{x | xTPx ≤ (cTx)2, cTx ≥ 0} (with P ∈ Sn

+).
Then, there are perspective functions:

P : Rn+1 → Rn

by
P (x, t) =

x

t
Images and inverse images of convex sets under perspective are convex. The
same is true for linear-fractional functions f : Rn → Rm defined as

f(x) =
Ax+ b

cTx+ d

The images and inverse images of convex sets are convex. As an aside, we think
of the epigraphs of pseudo-convex sets.

6.5 Generalized Inequalities

A convex cone K is proper if it is closed, solid (non-empty interior), and pointed.
The non-negative polynomials on [0, 1]

K = {x ∈ Rn : x1 + x2t+ x3t
2 + ... ≥ 0}

is an example, as are the nonnegative orthant, the PSD cone, and the second-
order cone.

We have generalized inequalities with respect to the cone K as x ≤K y ⇔
y − x ∈ K. Similiarly,

x <K y ⇐⇒ y − x ∈ int(K)

Some examples include componentwise inequality and matrix inequality (Y −
X is PSD). The standard linear-addition property holds.

This is not a linear ordering: there are incomparables in general. x ∈ S is
the minimum element of S if y ∈ S =⇒ x ≤K y. x ∈ S is a minimal element of
S if y ∈ S, y ≤ x =⇒ y = x.

24

6.6 Separating Hyperplane Theorem

In functional analysis this is called the Mazure theorem, and it’s a geometric
version of the Hahn-Banach theorem. The observation is that if you have two
disjoint convex sets C and D, (and say at least one is compact), then there is a
hyperplane {x|aTx = b} separating the two. That is, aTx ≤ b for all x ∈ C and
aTx ≥ b for all x ∈ D. Strict separating requires additional assumsptions (such
as C is closed and D is a singleton).

How do we prove this special case? Take a point d ∈ D and consider the
ball centered at c the singleton of radius d(d, c). Consider the intersection of
the ball of the circle with D, and call this E. Then

min
c∈C
||c− e||

then f is convex on Rn. Then, in fact, f is locally Lipschitz. Then Wierstrauss
says that there is a solution, that is, a closest point d exists. Then the trick is
to choose the normal a in the direction of cd and let your fixed point be the
midpoint of c and d.

Now, you have the proof in the special case, and there’s a way of extending
this to proving it for two arbitrary convex sets.

There’s a famous argumnent called the supporting hyperplane theorem. A
supporting hyperplane to a set C at the boundary point x0 is

{x|aTx = aTx0}

where a 6= 0 and aTx ≤ aTx0 for all x ∈ C. This proves Nathan’s claim for
yesterday about intersections of hyperplanes.

Proposition 6.1. (Supporting Hyperplane Theorem) If C is convex, then there
exists a supporting hyperplane at every boundary point of C.

Historically, Farkas was the way duality was proved. This was proved around
1900, and it took three times to prove it. Now, there’s essentially a three-line
proof. If you don’t know how to do something, try using it as a Hail Mary pass.

The polar/dual of a cone is given as

K∗ = {y| yTx ≥ 0 ∀ x ∈ K}

As note, the norm-duality comes into play in the definition of our norm
cones.

Challenge: prove the lemma.

Proposition 6.2. K = K++ if and only if K is a closed convex cone.

Let’s do this as a HW. So, the hint is to use the separating hyperplane
theorem.

Proof. Suppose K = K++ = (K+)+. Note that (K+)+ is⋂
φ∈K+

{y | 〈y ∈ φ〉 ≥ 0}

25

This is an intersection of closed and bounded sets, so it’s a closed and bounded
set.

Now suppose K is a closed convex cone. If k ∈ K and φ ∈ K+, then
〈φ, k〉 ≥ 0. That is, 〈k, φ〉 ≥ 0 ∀ φ ∈ K+, thus k ∈ (K+)+.

We wish to show K++ ⊂ K. Suppose not. Then, there is y ∈ K++ but
y 6∈ K. Then, be strict separation, ∃ a, α such that

〈y, a〉 < α < 〈k, a〉, ∀ k ∈ K

Since 0 ∈ K, we get α < 0, so 〈y, a〉 < α < 0. None that

〈k, a〉 ≥ 0 for all k ∈ K (1)

since K is a cone. Note that (1) implies a ∈ K+. But y ∈ K++ and

〈y, a〉 < α < 0,

a contradiction.

We can use this to give an easy proof of the Farkas lemma.

Lemma 6.3. (Farkas’ Lemma) 0 = min{bT y : AT y ≥ 0} if and only if Aλ = b
is consistent for some λ ≥ 0.

To prove this, you do need to know something about the cone that we’re
talking about here. Let’s do this as an assignment also.

What about the second problem: Derive necessary and sufficient conditions
for positive semidefinitieness of X in Sn based on the angle between X and I.

Given X = XT , X � 0 iff λi(X) ≥ 0 for all i. Let’s take

Y = P

 λ1

. . .
λn

PT

Let’s consider the angle θ between X and I.

(cos θ)2 =
(
〈X, I〉
||X|| ||I||

)2

=
(tr(PDPT))2

(tr(PDPTPDPT))(n)
=

(
∑
λi)2

n(
∑
λ2

i)

So, we’re taking a look at moments here. We know constant M1 =
∑
λi,

M2 =
∑
λ2

i . Let’s look at:

min λ1

s.t.
∑
λi = M1∑
λ2

i = M2

How do we solve this problem? Apply Lagrange multipliers. This satisfies
a constraint qualification. For now, let’s just assume this holds. You have to

26

guarantee linear independence of the constraints. So the Lagrangian is (let’s
use y for the Lagrange multipliers)

L(λ, y) = λ1 + yi(
∑

(λi −M1) + y2(
∑

λ2
i −M2)

If λ∗ is optimal, then

0 = ∇λ(L, y) =


1
0
0
...
0

+ y1


1
1
1
...
1

+ 2y2


λ1

λ2

λ3

...
λn


y2 = 0 ⇒ y1 = 0, a contradiction, so y2 6= 0. So λ2 = λ3 = · · · = λn.

Substitute into the constraints. We get

λ1 + (n− 1)λ = M1 , λ = λ2 = · · · = λn

λ2
1 + (n− 1)λ=M2

Let m = M1
n =

P
λi

n . Then let s2 = M2
n −m

2, so now we have the mean and
the variance. So λ = m+

√
n− 1s or λ = m− 1√

n−1
s. So we get m− 1√

n−1
s ≤

λ ≤ m+
√
n− 1s

Now, we have a sufficient condition: m − s√
n−1

≥ 0 =⇒ X � 0. We can
write

√
n− 1m ≥ s

(n− 1)m2 ≥ s2

(n− 1)
(∑

λi

n

)2

≥ (
∑
λi)2

n
−
(∑

λi

n

)2

n

(∑
λi

n

)2

≥ (
∑
λi)2

n

But this last condition holds

⇐⇒ (
∑

λi)2 ≥
∑

λ2
i

⇐⇒ (tr(X))2 ≥ (tr(X2))

⇐⇒ (cos θ)2 =
(tr(X))2

||X||2n
≥ 1
n

So, if we want to guarantee that a matrix is PSD, the angle with I has to
get smaller and smaller as n gets bigger.

Is there a big circle that contains all PSD matrices? Can we do another
optimization problem? We just solved

max θ

s.t. X � 0

27

If X � 0, then (cos θ)2 ≥ ?
So, we found a lower bound for the smallest eigenvalue of the matrix. The

smallest eigenvalue is going to be bounded below by m− 1√
n−1

s.

6.7 Basic Properties of Convex Functions

We already saw the property that any chord between two points in a convex
function lies above the graph.

Some examples of convex functions on (subsets of) R:

• affine

• exponential (eax)

• powers xα

• powers of absolute value: |x|p for p ≥ 1

• negative entropy x log x on R++

Some concave functions:

• affine

• powers

• logarithms

If f is both convex and concave, then f is affine.
On Rn, we have affine functions f(X) = tr(ATX) + b and norms (||x||p, for

p ≥ 1, including ∞). Examples on convex functions on m× n real matrices in-
clude affine functions and the spectral (maximum singular value) norm function
f(X) = ||X||2. The spectral radius ρ(X) is not a valid norm.

We can always use a “restriction to a line” trick for convexity. We can check
convexity by just checking a function of one variable. One important example:
Let f : Sn → R with f(X) = log detX, with dom(X) = Sn

++.
We’ll have an exercise related to this. Recall that if X = PDPT , then√

X = P
√
DPT . Note that X = (

√
X)2.

Question: Does every matrix have a square root? For a symmetric, you have
to use complex numbers. Just go to the 1× 1 matrix [−1]. Does[

0 1
0 0

]
have a square root?

How would you prove that a convex function has to be continuous, or locally
Lipschitz continuous?

Another approach to optimization to give ultimate penalties to certain indi-
cator functions:

δc(x) =
{

0 if x ∈ C
+∞ otherwise

28

So, we can “replace” the Lagrangian with

f(x) + δRm
+

(Ax− b)

There is a first-order condition for convexity: it says that a tangent line lies
under the graph of the function. This can be proved using a limit of the Jensen
inequality. So, the first-order approximation (the Taylor series T1 approxima-
tion) is always a global under-estimator of f .

And, the second-order condition is: We need that the Hessian ∇2f(x) � 0.
This is if and only if. If you only have ∇2f(x) � 0 for all x ∈ dom(f), then f
is strictly convex. The converse is not true (consider f(x) = x4 at x = 0).

6.8 The “Clown Car Paradox”

Here’s a question for you: In Rn, place unit spheres A1, . . . , A2n centered at all
points of the form

(±1,±1, . . . ,±1).

Let Cn be the inscribed sphere (Cn is centered at the origin and tangent to all
of the Ai). Let Bn be the (Cartesian) rectangular box [−2, 2]n. Then, as n goes
to ∞, what happens to

vol(Cn)
vol(Bn)

This ratio is going to +∞ as n→∞. Seemingly paradoxically, when n ≥ 5 Cn

is not contained in the box Bn.

6.9 Patching up earlier work

We have the condition:

m−
√
n− 1s ≤ λmin(X) ≤ m− s√

n− 1
≤ 0

Notice that when n = 2, the bounds on both sides of λmin(X) are the same.

6.10 Back to convex functions...

Some examples are quadratic functions:

f(x) = (1/2)xTPx+ qTx+ r

and the least-squares objective function f(x) = ||Ax−b||22. The constraints here
are as well, so LS is a convex program.

Interestingly, a quadratic over a linear f(x, y)x2/y is convex for y > 0.
Another example: log-sum-exp f(x) = log (

∑n
k=1 exp(xk)) is a convex func-

tion. Use the Cauchy-Schwarz inequality to prove this.
The geometric mean f(x) = (

∏n
k=1 xk)1/n on Rn

++ is concave. The proof
here is similar.

29

6.11 Graphs of functions and Epigraphs

The epigraph of f : Rn → R is a set in one dimension higher, consisting of the
graph and all points above.

6.12 Jensen’s Inequality

If f is convex, then for 0 ≤ θ ≤ 1,

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

As an extension to probability,

f(Ex) ≤ E(f(x))

6.13 Proving convexity

Here are typical tools for proving that a function f is convex:

1. Verify the definition (often by restricting to a line)

2. For twice differentiable functions, show ∇2f(x) � 0

3. Show that f is obtained from simpler convex functions by operations that
preserve convexity:

• non-negative weighted sum

• composition with affine function

• point-wise maximum and minimum: If f(x, y) is convex in x for each
y ∈ A, then

g(x) = sup
y∈A

f(x, y)

is convex.

• composition

• minimization

• perspective

An example is f(x) = ||Ax+ b||.
The function λmax(X) : Sn → R is a convex function on the space of sym-

metric matrices.
Suppose X = XT . Let’s consider max yTXy such that yT y = 1. The

constraint qualification holds because the gradient is 2y: {∇gi(y∗)} is linearly
independent. So, the Lagrangian here is:

L(y, λ) = yTXy + λ(1− yT y)

Then, we set equal to zero:

0 = ∇L(y, λ) = Xy − λy = 0

30

So, Xy = λy, and yTXy = λyT y = λ, and we’re trying to maximize this.
Using this kind of technique, how do we find the second-largest eigenvalue? We
know from linear algebra that we have orthogonal complements for symmetric
matrices. Thus, we can jut add in the constraint yT

1 y = 0, where y1 was optimal
for the previous problem. Now, we’re going to modify L for this problem as:

L(y, λ) = yTXy + λ(1− yT y) + µyT
1 y

When we differentiate, we get

0 = ∇L(y, λ) + µy1

If we multiply through by yT
1 , we get

yT
1 Xy − λyT

1 y + µyT
1 y1

Now, the second term cancels from orthogonality, and the first term cancels
because of the eigenvalue. So, we have one remaining term, and we get that
µ = 0. So, again, we get

Xy = λy.

This is a nice proof of the spectral theorem. Of course, we’re using the power of
optimization and Lagrange multipliers, but this is usually a complicated theorem
in linear algebra too.

The smallest eigenvalue λmin(X) is a concave function, and we can efficiently
maximize this. If you want to build a bridge, you have to try to guarantee that
all the real parts of all the eigenvalues are bounded away from zero. So, you
want to push away the maximum real part for the smallest eigenvalue to be far
away from zero. So, our λmax is important, and comes up in many applications.

6.14 Compositions of functions

The composition h ◦ g is convex under certain compositions.
There are similar statements for vector functions.

6.15 Minimization

If f(x, y) is convex in (x, y) and C is a convex set, then

g(x) = inf
y∈C

f(x, y)

is convex.
Thus, if we have a linear program P (ε) = minimize cTx such that Ax =

b+ ε, x ≥ 0, we can apply this.
One example: f(x, y) = xTAx+ 2x6TBy + xTCy with[

A B
BT C

]
� 0, C � 0

31

g(x) = infy f(x, y) is convex, so ...
The distance from a point x to a set S

dist(x, S) = inf
y∈S
||x− y||

is convex if S is convex.
The conjugate

f∗(y) = sup
x∈dom(f)

(fTx− f(x))

is function, even if f is not. This leads to the theory of Fenschel duality (as
opposed to Lagrangian duality).

The quasiconvex functions are the ones where the sublevel sets are convex.
These and pseudoconvex functions come up a lot in economics.

There is a modified Jensen inequality for quasiconvexity. There are first-
order conditions for quasiconvexity.

6.16 Log-concave and log-convex functions

A positive function f is log-concave if log f is concave:

f(θx+ (1− θ)y) ≥ f(x)θf(y)1−θ for 0 ≤ θ ≤ 1

f is log-convex if log f is convex.
The function − log det(X) is strictly concave X � 0. This function goes to

+∞ as X becomes singular (that is, goes to the boundary of positive definite
matrices).

6.17 K-convexity

Example f : Sm → Sm given by X 7→ X2 is Sm
+ -convex (on Sm).

Exercise: Show XTX − I (X ∈ Rn×n) is K-convex.
We say that G(X) is K-covex iff 〈ϕ,G(X)〉 is convex for all ϕ ∈ K.

7 Optimization problems

7.1 Standard form

An optimization problem in standard form is to minimize f0(x) subject to
fi(x) ≤ 0, (i = 1, . . . ,m) and hi(x) = 0, (i = 1, . . . , p).

We should be clear that by minimum, we really mean infimum: the greatest
lower bound! Mainly, we will be interested in finding locally optimal solutions.

We have a typical example in f0(x) = x3−3x. Then, p∗ = −∞, but we have
a local optimum at x = 1. This is a local optimum by looking at the derivative
and second derivative of f at the point x = 1. Local to x = 1, we have a strictly
convex function.

32

The standard form has an implicit constraint. We take the intersection of
all the domains of the functions fi and hi.

We can study the feasibility problem by trying to minimize a constant func-
tion.

7.2 Convex optimization problem

A convex optimization problem: It’s in standard form where the fi are convex
and the equality constraints are all affine.

More generally, the problem is quasiconvex if the f0 is quasiconvex and fi

(for i > 0) are convex.
For convex problems, a solution is a local optimum if and only if it is a

global optimum. It is possible to have multiple global optima: We can just
picture a function that is flat for a while.

7.3 Optimality criterion for differentiable f0

x is optimal if and only if it is feasible and

∇f0(x)T (y − x) ≥ 0

for all feasible y.

Theorem 7.1. (Fermat’s Theorem) x ∈ argmin(f(x)) =⇒ ∇f(x) = 0.

Proof. If∇f(x) 6= 0, then set d = −∇f(x). Then f(x+αd) ∼ f(x)+α∇(fx)T d.
Now, for x ∈ X. Suppose that d = −∇f(x). Again, if we were to move a

little bit again, we’d have a contradiction. If we can take any direction from x,
we could end up inside the set.
∇f(x)T d ≥ 0 for all d ∈ X − x. That is, ∇f(x) ∈ (X − x)+.

This is called Rockaffelar-Pshenichnyi.
So, this turns into a very nice optimality characterization when minimizing

a convex function.
If we are minimizing f(x) over x ∈ Rn

+, that is, say f is convex. Then,

x ∈ arg min
x∈Rn

+

f(x)

if and only if ∇f(x) ∈ (Rn
+ − x)+.

7.4 Modifying the problem

All inequalities can be converted to equality constraints (with slack variables).
One can introduce equality constraints.

Another useful thing: Instead of minimizing f(x), you minimize t subject to
f(x) ≤ t. A lot of times you’ll see this little trick being done.

33

7.5 Piecewise linear minimization

This is a generalization of linear programming where your objective is to mini-
mize the maximum of a finite collection of affine linear functionals.

This is equivalent to an LP.
One can find the Chebyshev center of a polyhedron by a linear program.

7.6 Generalized Linear Fractional Program

The objective function is a rational linear function.

7.7 Quadratic Programming (QP)

7.8 Quadratically constrained quadratic program (QCQP)

7.9 Second-order Cone Programming

These are more general than QCQPs.

7.10 Robust Linear Programming

There may be uncertainty (say in an LP) in the ci, bi, aij . If you want to
guarantee that things don’t go wrong, there are two common approaches to
handling uncertainty.

One can have a deterministic model, where the constraints (that we state)
must hold for all ai ∈ Ei, that is, for all possible values for ai. You will have an
infinite number of constraints if Ei is infinite.

Another approach is probabilistic.

7.11 Geometric Programming

A posynomial is a sum of monomials

f(x) =
K∑

k=1

ckx
a1k
1 xa2k

2 · · ·xank
n

7.12 Application: Minimizing the spectral radius of a non-
negative matrix

Theorem 7.2. (The Perron-Frobenius Theorem)

This is how Google started. We’ll use a Markov matrix (a special type of
positive matrix). We’ll study the random processes and see this Markov matrix.
Then, it finds the eigenvector corresponding to this positive matrix. And this
vector gives you the rankings of the positive nodes. There’s an article by Clete
Moler.

Every month, Google would solve the eigenvector for the largest eigenvalue
for a very large matrix. The largest eigenvalue was found by the power method.

34

Proposition 7.3. (Vandergraff, Elsner, ...) Let K be a closed convex cone. Let
A be a linear operator such that A(K) ⊂ int(K). Then there is an eigenvector
v ∈ K.

7.13 LP and SOCP as SDP

A linear program is a semi-definite program. The problem:
(LP) minimize cTx subject to Ax ≤ b can be rewritten as
Minimize cTx subject to diag(Ax− b) ≤ 0.

7.14 Eigenvalue minimization

Suppose we wish to minimize λmax(A(x)) where A(x) = A0+x1A1+· · ·+xnAn,
where the Ai are symmetric k×k matrices. We reformulate this as an equivalent
SDP:

Minimize t subject to A(x) � tI where the variables are x ∈ Rn and t ∈ R.
This follows from

λmax(A) ≤ t⇐⇒ A � tI.

7.15 Matrix norm minimization

If we want to minimize ||A(x)||2 where A(x) = A0 + x1A1 + · · ·+ xnAn, where
the Ai are symmetric p× q matrices.

We can reformulate this as: Minimize t subject to[
tI A(x)

A(x)T tI

]
� 0

The variables here are x ∈ Rn and t ∈ R. The constraint follows from

||A||2 ≤ t ⇐⇒ ATA � t2I, t ≥ 0 ⇐⇒
[

tI A(x)
A(x)T tI

]
� 0.

7.16 Regularized Least-Squares

Instead of minimizing ||Ax− b||22, minimize (||Ax− b||22, ||x||22) ∈ R2
+.

Aside on CAT scans, and accuracy.

8 Duality

We need to understand the general duality theory before looking at interior
point methods. We’ll see how to derive an interior point algorithm based on
duality. Maybe you can figure out how to develop one for your problem in a
similar way. For simplicity, let’s look at the convex case.

35

Suppose we have a program:

min f(x)
s.t. gk(x) ≤ 0, k = 1, . . . ,m

f, gk are convex on Rn

The level sets are convex, so the feasible set F = {x | gk(x) ≤ 0 ∀ k} is a
convex set. So x is optimal if and only if ∇f(x) ∈ (F−x)+. So this works all the
time: it’s a very geometric approach. If we want to do things computationally,
we have to use gradients.

So, we have the algebraic formulation of this geometric idea:

∇f(x) = −
∑

k∈A(x)

λk∇gk(x), λk ≥ 0

∇f(x) +
∑

k∈A(x)

λk∇gk(x) = 0

∇f(x) +
∑

k

λk∇gk(x) = 0 and λkgk(x) = 0 ∀ k

This last condition λkgk(x) = 0∀k is called complementary slackness: at
least one of these has to be zero. Here we see the idea of active constraints.

We examine a case where the gradients of g1 and g2 do not match. Here,
the algebra and geometry do not match. To avoid this, we need a constraint
qualification (CQ). For convex programs, we will use Slater’s condition (strict
feasibility).

Slater’s Condition: There exists an x̂ such that each ? in F satisfies strict
feasibility on all constraints. But we can do this more generally:

Suppose we have a convex problem, and assume that p∗ is finite:

p∗ = inf{f(x) : G(x) �K 0, x ∈ Ω}

where f(x) is convex on Ω, G is K-convex on Ω, K is a proper closed convex
cone, and Ω is a convex set.

Slater’s constraint qualification for this is:

∃ x̂ ∈ Ω such that G(x̂) ≺K 0

Then, we can say that under this condition, ∃ λ∗ ∈ K+ such that

p∗ = inf
x∈Ω

f(x) + 〈λ∗, G(x)〉

This is strong duality (the existence of λ∗). If this inf is attained at x∗ feasible,
then

〈λ∗, G(x∗)〉 = 0 (complementary slackness)

All we’ve talked about are necessary conditions (necessary conditions are
what give us algorithms).

36

Necessity requires the constraint qualification. Sufficiency holds without the
constraint qualification (in the convex case). I.e., if

∃ λ∗ �K+ 0 (2)

and

d∗ = inf
x∈Ω

L(x, λ∗)

= F (x) + 〈λ∗, G(x)〉, x feasible

and 〈λ∗, G(x) = 0, then x is optimal. So we have dual feasibility (condition (2)
and ∇L(x, λ∗) ∈ (Ω− x)+).

So, we have primal feasibility and dual feasibility.
So, say we have a problem, and we have

L(x, λ, 0)

We have the Karush3-Kuhn-Tucker optimality conditions (these are necessary).
Need a CQ.

Suppose we have x a feasible solution, and we want to see if it’s optimal.
The most famous condition in this area is called the Mangasarian-Fromovitz4

CQ. This condition says that at x, ∃ d such that ∇fi(x)T < 0 for all i with
fi(x) = 0 and also we have ∇hi(x)T d = 0 for all i ∈ A(x). Finally, we also have
{∇hi(x : ∀i} must be linearly independent. If you remember from calculus,
the Lagrange multipliers fail if you don’t have linear independence. Our small
example earlier shows this.

8.1 Linear Programming

Let’s apply this to linear programming and develop an interior point method.
Let’s look at the instance LP.

The primal program is

min cTx

s.t. Ax = b

x ≥ 0

and the dual is

max bT y

s.t. AT y ≤ c
AT y + z = c

z ≥ 0
3A masters student at the University of Chicago who wrote about this in his thesis. He

did this before 1945, probably somewhere around 1939.
4I visited the University of Maryland for a semester, and I saw the name Fromovitz on the

door. When I asked him if he was the one whose name is on the CQ, he said, “Yes, I am, but
don’t ask me about it.”

37

We all know Dantzig’s simplex method (1948).
What are the optimality conditions within our framework? We’ll always

have x ≥ 0, z ≥ 0. Let’s look at dual feasibility first: AT y+ z− c = 0. Then we
also have primal feasibility: Ax− b = 0. For the complementary slackness, I’m
going to write

ZXe = 0

where Z = Diag(z), X = Diag(x), and e is the vector of all ones.
The primal simplex method maintains primal feasibility and complementary

slackness. It’s moving from vertex to vertex until you get to dual feasibility.
This is the data in the bottom row of your tableau. The dual simplex method
works by starting with dual feasibility and complementary slackness.

In the 1960s, Klee and Minty came up with a polytope that takes exponen-
tial time. Khachian then came up with a polynomial time (ellipsoid method)
algorithm (1979) for linear programming, but the algorithm is very inefficient
in practice. The simplex method (on average) solves problems in linear time
(Schneil (sp?)). The Hirsch Conjecture is a conjectured bound on the diameter
of a polyhedron. Karmarkar developed an interior point method that was much
faster5.

8.2 Log-barrier Problem

We will apply log-barrier to (D). So we have

bT y + xT (c−AT y − z)

So instead of solving (D), we’ll look at this. We’ll use a barrier to capture the
idea of z ≥ 0. So, we have: Maximize:

Bµ(x, y, z) = bT y + xT (c−AT y − z) + µ
∑

log zi (3)

If we differentiate d
dx , we have

c−AT y − z = 0

the statement of dual feasibility. If we differentiate with respect to y, we get

b−Ax = 0

and out pops primal feasibility. If we differentiate with respect to z, we get

X − µZ−1 = 0

If we write this out slowly,

d

dzi
= −xi + µ

1
zi

= 0 (µ > 0) (4)

5Karmarkar got a job with AT&T. He claimed that he could beat the simplex method by
a constant factor. Like for Khachian, there was a big big fuss. He signed a non-disclosure
agreement, so he couldn’t tell anybody how the algorithm worked.

38

So, we bring the xi over and move the zi out: Thus, µ − xizi∀i. This was
originaally never tried on linear programming. Now, we send µ down to zero,
and we’ll get closer and closer to the boundary. So, as µ goes to zero, we are
getting our complementary slackness. So, we are converging to the optimal.

You want to solve this with Newton’s method, but the inverse matrix is
highly non-linear. So, we change this last line by multiplying through by Z,
and then we might as well multiply by e, and so we can rewrite (4) as

−ZXe+ µe = 0.

Each time we solve these equations for µ > 0, we’re solving the problem (3).
The central path (a path that is a function of µ) is the solutions to the problem
(3) for each µ. The solution is a unique point (xµ, yµ, zµ) in primal-dual space
{(x, y, z)}.

One can ask, why can’t you just set µ equal to zero right away? There are
some approaches of this kind. But the basic problem (for us at this point) is
that we might not have convergence, because there are other stationary points
that you can converge to. So, the idea is to stay within a neighborhood of the
central path (since actually staying in the path might be too much work). You
reduce µ and you stay in these region, and you converge to optimality. This is
called the central path method.

There’s still many questions: How do you solve each of these problems? How
do you do the iteration? How do you decrease µ? (You might even increase µ.
It’s a dynamic process.)

You could start, say, at x and z are all ones.
The central path is analytic (smooth), but it’s not necessarily

Theorem 8.1. (Karush-Kuhn-Tucker) Let x be optimal, and suppose that the
Mangasarian-Fromovitz conditions hold at x. Then ∃ λ∗ ≥ 0, ν∗ such that
0 = ∇L(x, λ∗, ν∗), λ∗i fi(x) = 0 ∀ i.

Back to the LP. Let’s see how we develop an algorithm for this. Let’s write
down the equations. Let

Fµ(x, y, z) =

 AT y + z − c
Ax− b

ZXe− µe

 = 0

Given current estimates x
y
z

 ≡ S, x > 0, z > 0

How should we choose the parameter µ? This is a good time to choose
µ. We want ZXe = µe, so if we just take the transpose on both sides, =⇒
eTZXe = µeT e = nµ. What is eTZXe? This is just zTx = nµ, so this is just
µ = zT x

n .

39

Recall that if x and z are feasible, then the numerator here zTx is our duality
gap. So, we want µ to be 1

n times to duality gap. So this shows us in a different
way that decreasing µ leads to a convergence to optimality. But, we want to be
more aggressive in choosing µ. In practice, µ = zT x

10n . In SDP, the 10 is replaced
by a 2. These things are just observations through numerical evidence.

Now, we have these equations. How do we solve these equations? With
Newton’s Method!

We want to use Newton’s method to solve Fµ(S) = 0. This is based on a
linearization. We simply have

Fµ(S) ≈ Fµ(S) + F ′(S)(dS) = 0

where F ′(S) is the Jacobian. We solve the Newton equation:

F ′µ(s)dS = −Fµ(S)

So, let’s recall what happens when we learned it in calculus (geometrically).
We can pictorally see how quickly this method is going to converge. Similarly,
you can see how quickly you can diverge if you start at a bad initial point. So,
we need to differentiate this function Fµ(S). We’re going to differentiation with
respect to x, y, and z. The respective derivatives are 0 AT I

A 0 0
Z 0 X


So, we have

F ′µ(S)

 dx
dy
dz

 =

 0 AT I
A 0 0
Z 0 X

 dx
dy
dz

 = −Fµ(S) =

 −rd−rp
−rc


One of the interesting things about this Jacobian is all these zeroes. We can

exploit this by using block Gaussian elimination. This is very stable and very
fast (with a Cholesky factorization).

To make things a little bit easier for ourselves, let’s just assume that we have
primal/dual feasible.

In our block elimination, eliminate dz, then dx, then isolate dy. Our first step
is to isolate dz, by using equation 1. For simplicity, we assume that rd = rp = 0,
so we have a feasible start. (The great thing about Newton’s method is that
you always retain the linear relations, even if you don’t go a full step.) So, let’s
use equation 1. Because rd is zero, we have

dz = −AT dy

so now I’ve eliminated equation number 1. I want to substitute this into equation
3. Equation 3 has

Z dx−XAT dy = −ZXe+ µe

40

The advantage of starting interior and staying interior is that the inverse always
exists, so we left-multiply by it:

dx = Z−1XAT dy −Xe+ µZ−1e

So now we substitute into equation 2. Here, we get

A(Z−1XAT dy −Xe+ µZ−1e) = 0.

By expanding this, we have:

AZ−1XAT dy = b− µAZ−1e

So AZ−1XAT is an m × m square matrix, and our right hand side vector is
b−µAZ−1e. So, we solve for dy in this linear system. Note that AZ−1XAT � 0.
Why? S = Z−1X is diagonal and positive, so we can take a square root:

AS
1
2S

1
2AT = (AS

1
2)(AS

1
2)T

and this is always �. It is � iff AS
1
2 is full row rank. In CPLEX, they check

this and get rid of redundant rows. You never start an LP until you have full
row rank. (A book by Gilbert Strang shows that matrices of this kind come up
in mathematical physics.) It’s positive definite, so we solve this using “sparse”
Cholesky factorization:

P = LLT

(In the above, replace µ with τ , and set τ = σµ.)
If we have τ = σµ, and Fτ (x, y, z) = 0, then setting σ = 1, you would

move closer to the central path, but not improving (significantly) your objective
distance. If you set σ = 0, that would be the affine scaling direction, and that’s
aiming for the optimal direction right away. But if you’re too far away, it’s too
hard to get a good aim at. So, σ ∈ [0, 1]. So, in these problems, you’ll modify
σ based on the type of problem you have.

If µ decreases a lot, you just made a really good step. Sometimes in an SDP,
you can take σ > 1. Then, you’re concerned about centering yourself before
improving any more. (Factorization is a big area, and you can find a lot of
webinars.)

41

So the algorithm. We have an algorithm:

Algorithm

1. (a) x0 > 0, z0 > 0. Initiate µ = xT
0 z0
n . Then set your τ (as above, say).

(b) Find Newton direction, i.e., find dy using the “normal equations.”

(c) Back-solve for dx and dz.

2. Take a step to the boundary. (If you want polynomial time, you go all the
way to the boundary and backtrack just a little bit.) But, let’s just take
care of the algorithm is practice (this is what OB1 does). We do

x0 + αmax dx ≥ 0

Find the biggest α. Then, we back-track to stay interior (by multiplying
by 0.9997.) For example, let α = min{0.9997 · αmax, 1}. Then assign

x1 = x0 + α dx

Similarly, for z,
z1 = z0 + β dz

where β = min{0.9997 · βmax, 1}, and finally,

y1 = y0 + β dy

(We choose the same scaling β to maintain feasibility.)

3. Repeat (at step 1).

The only thing now is just deciding when to stop. We need a criterion (for
what we will consider optimality). Typically, we can only get about 8 decimals
of accuracy. In the above, the Z−1 is done in the code. As you can see, this
should be very easy to code up!!

[The next thing to do: What happens to semi-definite programming? We
should look at the Gauss-Newton method, not the Newton method.] Here, we
have ZX was a diagonal times a diagonal. In SDP, if Z and X are symmetric,
ZX might note be, so we have a map

Sn × Sn → GLn.

We have to figure out what we’re going to do about that.
Define

F (λ) = A(A∗λ)+ − b = 0

In general, this is not differentiable, but in finite dimension, you can do every-
thing: each piece of the composition is differentiable and you have the chain
rule.

42

Given the Lagrange function L(x, λ, ν), we have the Lagrangian dual funci-
ton

g(λ, ν) = inf
x∈D

L(x, λ, ν)

We can consider the minimization version of the max-cut problem, and we
call this two-way partitioning.

min xTWx

subj. x2
i = 1, i = 1, . . . , n

Recall the SDP relaxation of max-cut was

max xTLx

subj. x2
i = 1, i = 1, . . . , n

We could also write xTLx = tr(xTLx)tr(LxxT). So the relaxation would be to
relax the rank = 1 constraint. So, instead, we maximize tr(LX) subject to the
constraint

diag(X) = e,X � 0

If we set
p∗ = max tr(LX) s.t. diag(X) = e,X � 0

then we can compute

d∗ = min
y

max
X�0

tr(LX) + yT (e− diag(X)

As with LP, we just move things around. We have

d∗ = min
y

max
X�0
〈L,X〉 − 〈y, diag(X)〉+ yT e

d∗ = min
y

max
X�0
〈L,X〉 − 〈Diag(y), X〉+ yT e

The adjoint for Diag is diag:

diag = Diag∗

So,
d∗ = min

y
max
X�0
〈L−Diag(y), X〉+ yT e

So the hidden constraint is that

L−Diag(y) � 0

Now, we have a primal-dual pair: With the hidden constraint, the optimum
is at X = 0, so the max and the first term disappears, and the dual problem
(D) is:

min yT e

s.t. Diag(y) � L
Diag(y)− Z = L

Z � 0

43

The statement of compentary slackness for (P) and (D) is

〈Z,X〉0 ⇐⇒ ZX = 0

¨̂

We are looking for an X,Z, Y that satisfies these conditions, and then we
will have optimality:

Diag(y)− Z − L = 0, Z � 0 (5)
diag(X)− e = 0, X � 0 (6)

XZ = 0 (7)

What is the derivative of µ log detX? It’s µX−1.
So, we can differentiate

Bµ(X, y) = max
X
〈X,L〉+ yT (−diag(X) + e) + µ log detX

to get
∇xBµ(X, y) = L−Diag(y) + µX−1 = 0

and
∇yBµ(X, y) = e− diag(X) = 0

We can define
Z = µX−1

to make these equations look like the three equations (5), (6), and (7).
So we want to differentiate Fµ(X, y, Z) = 0 in order to find a Newton direc-

tion.
So look at

F ′µ(X, y, Z)

 ∆X
∆Y
∆Z

 = −Fµ(X, y, Z)

Computing F ′µ, Diag(∆y)−∆Z
diag(∆X)
Z∆X +∆ZX

 =

 −Rd

−rp
−Rc


So we have  0 Diag(·) −I(·)

diag(·) 0 0
Z(·) 0 (·)X

 ∆X
∆Y
∆Z

 = RHS

MatLAB will use a Cholesky decomposition on a symmetric matrix, even if
you didn’t ask for it.

44

8.3 Interior point methods on the SDP relaxation of the
Max-Cut problem

function [phi, X, y] = maxcut(L);
% solves: max trace(LX) s.t. X psd, diag(X) = b; b = ones(n,1)/4
% min b’y s.t. Diag(y) - L psd, y unconstrained,
% input: L ... symmetric matrix
% output: phi ... optimal value of primal, phi =trace(LX)
% X ... optimal primal matrix
% y ... optimal dual vector
% call: [phi, X, y] = psd_ip(L);

digits = 6; % 6 significant digits of phi
[n, n1] = size(L); % problem size
b = ones(n,1) / 4; % any b>0 works just as well
X = diag(b); % initial primal matrix is pos. def.
y = sum(abs(L))’ * 1.1; % initial y is chosen so that
Z = diag(y) - L; % initial dual slack Z is pos. def.
phi = b’*y; % initial dual
psi = L(:)’ * X(:); % and primal costs
mu = Z(:)’ * X(:)/(2*n); % initial complementarity
iter=0; % iteration count

disp([’ iter alphap alphad gap lower upper’]);

while phi-psi > max([1,abs(phi)]) * 10^(-digits)

iter = iter + 1; % start a new iteration
Zi = inv(Z); % inv(Z) is needed explicitly
Zi = (Zi + Zi’)/2;
dy = (Zi.*X) \ (mu * diag(Zi) - b); % solve for dy
dX = - Zi * diag(dy) * X + mu * Zi - X; % back substitute for dX
dX = (dX + dX’)/2; % symmetrize

% line search on primal
alphap = 2; % initial steplength changed to 2

% alphap = 1; % initial steplength
[dummy,posdef] = chol(X + alphap * dX); % test if pos.def
while posdef > 0,

alphap = alphap * .8;
[dummy,posdef] = chol(X + alphap * dX);
end;

alphap = alphap * .95; % stay away from boundary
% line search on dual; dZ is handled implicitly: dZ = diag(dy);
% alphad = 1;

alphad = 2; % initial steplength changed to 2
[dummy,posdef] = chol(Z + alphad * diag(dy));

45

while posdef > 0;
alphad = alphad * .8;
[dummy,posdef] = chol(Z + alphad * diag(dy));
end;

alphad = alphad * .95;
% update

X = X + alphap * dX;
y = y + alphad * dy;
Z = Z + alphad * diag(dy);
mu = X(:)’ * Z(:) / (2*n);
if alphap + alphad > 1.8, mu = mu/2; end; % speed up for long steps
phi = b’ * y; psi = L(:)’ * X(:);

% display current iteration
disp([iter alphap alphad (phi-psi) psi phi]);

end; % end of main loop

9 Summary

Let’s run through quickly a small review of what we’ve done last week. The
main theme has been convexity. We looked at things related to convex sets. In
particular, we studied convex cones. One of the important results we looked at
was the hyperplane separation theorem (and also the support theorem). One of
the interesting lemmas that we got from this was

K = K++ if and only if K is a closed convex cone.

Then, we went into convex functions. We looked at a generalized convex
function

G(λx+ (1− λ)y) �K λG(x) + (1− λ)G(y) ∀ 0 ≤ λ ≤ 1 ∀ x, y in domain

For example, we had the special case K = Rm
+ (G : Rn → Rm). We had that

f : Rm → R is a convex on Ω (convex) if ∇f(x)T (y−x) ≤ f(y)−f(x) ∀ x, y ∈ Ω.
This formula it talking about the supporting tangent hyperplanes on the graph
of f . We had the zeroth-order and first-order conditions. The second-order
condition is: f : Rn → R is convex on Ω if ∇2f(x) � 0 ∀x ∈ Ω. If f : Rn → R
is convex, Ω is a convex set, x ∈ argminx∈Ωf(x) iff ∇f(x) ∈ (Ω− x)+.

Let T = T (Ω, x) denote the tangent cone of Ω at x. T consists of those
directions d one can travel in from x. d = lim dk. This second-order statement
basically says that the inner product against any feasible direction has to be
greater than zero.

As an aside, this can be extended for the non-smooth function case as well.
For convex functions, there’s a nice smooth calculus. We can talk about the
subgradient:

∂f(x) = {ϕ ∈ Rn : ϕT (y − x) ≤ f(y)− f(x), ∀ y}

46

The pictorial idea is the same: instead of having one gradient, you have multiple
gradients. For example, if f(x) = |x|, we know what the derivative of f at x = 1
is (say), so ∂f(1) = {1} and ∂f(0) = [−1, 1]. We still have tangent cones for
nonconvex sets S at x. We look at dk = xkx, xk ∈ F . Define

d = lim
xk 6=x

xk − x
||xk − x||

, xk ∈ F

Then x ∈ argmin(f(x)), where f is a non-convex set. Then, we get the forward
direction

=⇒ ∇f(x) ∈ (T (S, x))T

The next thing that we did was convex programing. We looked at

p∗ = min f(x)
s.t. G(x) �K 0

x ∈ Ω

where f is convex on Ω, K is a proper closed convex cone, Ω is a convex set,
and G is K-convex on Ω. We used the Lagrangian

L(x, λ) = f(x)〈λ,G(x)〉, λ �K+ 0

Why? Because of the dual functional

ϕ(λ) = min
x∈Ω

L(x, λ), ∀λ �K+ 0

This minimum will always be a lower bound for our problem:

p∗ ≥ ϕ(λ)

So, now we get our dual problem is:

max
λ�K+0

ϕ(λ)

We can also write this with the hidden constraints explicitly written in.

g(x̂) ≺K 0 for some x̂ ∈ K (8)

We have some theorems in this are: If P ∗ is finite and Slater’s Constraints
Qualification (equation (8)) holds, then

p∗ = ϕ(λ∗) for some λ∗ �K+ 0

This is our necessary condition. So, this gives us something useful for an algo-
rithm. In the convex case, we have sufficiency as well: if ϕ(λ∗) = L(x, λ∗) and
x is feasible, then 〈λ∗, G(x) = 0.

47

A primal-feasible and complementary slackness proveable sufficient condition
for optimality:

∇L(x, λ∗) ∈ (Ω− x)+, λ∗ �K+ 0 (Dual feasibility)

x ∈ Ω, G(x) �K 0 (Primal feasibility)

〈λ∗, G(x) = 0 (complementary slackness)

So x, λ∗) is an optimal pair if and only if these conditions hold.
If x is feasible and λ∗ is feasible,

f(x) ≥ f(x) + 〈λ∗, G(x)〉
≥ min

x∈Ω
L(x, λ∗) = ϕ(λ∗)

In LP, λT (b−AX) =
∑
λi(b−Ax)i = 0 (note, λi ≥ 0 and (b−Ax)i ≥ 0. These

KKT conditions always have a physical interpretation: Remember the example
of the diet problem and the pill salesman. These other prices are called shadow
prices. If you have a positive shadow price, you’re using all of that resource.
These shadow prices tell you how your objective value will change with respect
to changes in your constraints. You can look at

∂p∗

∂bi
≈ λi (9)

So, now that you’ve modeled and solved your problem, you have to interpret
your solution. So, more than just knowing the optimum, you want to know
about what happens to equations of the form (9). Why? You want to be able
to tell your boss what happened since that change between when you solved the
problem and now.

Convexity takes this local condition and makes it a global condition.
We can finish off by looking at the non-convex case. Again, our problem is

min f(x)
s.t. g(x) ≤ 0

h(x) = 0

Here, we have g(x) = (gi(x)) : Rn → Rm (for each active i ∈ I), and
h(x) = (hi(x)) : Rn → Rp (for each active i ∈ E).

At x feasible, we need a constraint qualification, such as the Mangararran-
Fromowitz condition. We look at the active constraints I(x) = {i : gi(x) = 0}.
Then the M-F CQ says

∃ a direction d 3 ∇gi(x)T d < 0 ∀ i ∈ I(x), ∇hi(x)T d = 0 ∀ i ∈ E

where the constraints {∇hi(x)} are linearly independent. (In the convex case,
you can easily throw these away.) The M-F condition is equivalent to the gen-
eralized Slater CQ in the convex case.

48

If x is a local optimum, and the M-F CQ holds, then

0 = ∇L(x, λ∗, µ∗), λ∗ ≥ 0, µ∗ free (Dual feasibility)

g(x ≤ 0, h(x) = 0 (Primal feasibility)

λ∗T g(x) = 0 (Complementary slackness) (10)

These are necessary, but not sufficient. And they need a CQ, so they don’t
always work. The interior point methods will do things we’ve seen: The g(x) ≤ 0
conditions will be turned into equations with a slack variable. For algorithms,
this gets changed into λ∗i gi(x) = 0 ∀ i. The reason for this is for the central
path. This gives you a nice central path, where as for (10), I don’t see how.

For non-convex,

min
λ

f(x)

We know x ∈ argmin(f(x)) (or even local min) =⇒∇f(x) = 0 and∇2f(x) � 0.
And, if we go the other way, ∇f(x) = 0,∇2f(x) > 0 =⇒ x ∈ argmin(f(x)).

Question: Can we know how many optimal values there are? Is this easy?
No. This is hard as finding zeroes of functions. Perhaps somebody who knows
something about differential geometry might be able to say a word or two?

If we had a bound on the Lipschitz constant, then we’d know what size our
neighborhoods would have to be to see that our stationary point is focused on.
This is what global optimization does: it takes bounds on the derivatives, and
discretizes the region, and it will go finer and finer. At some point, it knows it’s
done, because there’s no way to get more wiggle than this.[

∇g1 ∇g2 · · ·
]
λ = −∇f(·) ≡ h (11)

is inconsistent (for λ ≥ 0) iff (this was not finished on the chalkboard!!).
Equation (11) is a kind of Farkas’ lemma. Recall:

Aλ = b, λ ≥ 0 is infeasible⇔ AT d ≤ 0, bT d > 0 is feasible.

(That is, d is a “good” search direction.) x is the current point. Then, you look
at x(t) = x+ td (Make improvement in the direction d, for small t).

If d = −∇f(x) 6= 0, then dT∇f(x) = −||∇f(x)|| < 0.
If you have a non-convex problem, all kinds of crazy things are going to break

out. There might be any feasible direction. The extension from convex to
non-convex is very hard. It’s almost impossible. But, here’s a very
special case. It’s called a trust region subproblem:

min q0(x) = xTAx+ 2bTx
s.t. ||x|| ≤ δ

If we like we can just square the last line. A is symmetric, but not necessarily
PSD. The level sets for this could look like hyperbolas of two sheets. Now, you

49

can ask: “Where’s the minimum?” This problem is not convex, but its dual is
(well, the dual always is convex), but there’s a ZERO duality gap, that is, strong
duality holds. So, this is a hidden convex problem. It sits on the boundary of
convex and non-convex problems.

Let’s look at this problem and the duality of this problem, and look at
regularization.

A =
[
−∇g1 −∇g2 · · · −∇gk

]
, b = ∇f(x0)

b = Aλ, λ ≥ 0⇔ b ∈ cone{∇gk}ki=1

K is a closed convex cone, so K = K++. So b ∈ K iff d ∈ K+ =⇒ bT d ≥ 0 iff
∇gT

i d ≥ 0 =⇒ bT d ≥ 0 iff ∇gT d ≤ 0 =⇒ ∇fT d ≤ 0.
For an LP, we’d have minimize bT d subject to AT d ≥ c.
Aλ = b, λ ≥ 0 is infeasible ⇐⇒ ∃ d such that ∇ig

T
i d ≤ 0,∇fT d < 0.

So, we have our first constrained algorithm. We just use LP, e.g.,

min ∇fT d

s.t. ∇gT
i d ≤ 0 ∀ i

||d||∞ ≤ 1 (−1 ≤ di ≤ 1)

But instead of minimize, we can say

z∗ = min t

s.t. ∇fT d ≤ t
∇gT

i d ≤ t ∀ i
||d||∞ ≤ 1 (−1 ≤ di ≤ 1)

Under Slater’s condition, you can prove that z∗ = 0 iff the current point x
is optimal. If your gradient is zero, you’re done. If not, keep going. It gives you
a search direction d. z∗ < 0 iff d∗ is a good search direction.

Let’s go back to the trust region sub problem.

10 Non-convex objectives with strong duality

10.1 Trust Region Subproblem

This is an example of a quadratically constrained quadratic program (a QQP).
Suppose you had

min q0(x)
s.t. qi(x) ≤ 0, i = 1, . . . ,m(i ∈ I)

(= 0 as well if desired)

And we should write each qi(x) in the form

qi =
1
2
xTQix+ bTi x+ αi, i = 0, 1, . . . ,m

50

The Lagrangian here is

L(x, λ) = q0(x) +
m∑

i=1

λiqi(x)

There are many problems that fall into this category. One example is the
max-cut problem. We turned xi ∈ {−1, 1} to x2

i = 1. Similarly, we can take
xi ∈ {0, 1} as x2

i − xi = 0. It is powerful how semidefinite relaxation works for
these. The Lagrangian dual will be

d∗ = max
λ≥0

min
x
L(x, λ) =

1
2
xTQ0x+ bT0 x+ xT

m∑
i=1

λiQix+
∑

λib
T
i x+

∑
λiαi

Now, there’s a little trick that works. We add the constraint x2
0 = 1.

d∗ = max
λ≥0

min
x
L(x, λ) =

1
2
xTQ0x+bT0 xx0+xT

m∑
i=1

λiQix+
∑

λib
T
i xx0+

∑
λiαix

2
0

These really are the same. If x0 = −1 in the optimal ,then x0 is assigned 1 and
x is assigned −x, and nothing changes. Now, we take this constraint and add
in a term t(x2

0 − 1), and we add t under the max.
Now we minimize an unconstrained quadratic (homogeneous). We have a

hidden constraint. If

f =
(
x0

x

)
then we can rewrite the inner min above:

min
1
2
yT∇2L(y, λ)y + const

and ∇2L(y, λ) � 0 with this constraint, the min is zero. So

d∗ = max
λ≥0,∇2L(y,λ)≥0

m∑
i=1

λiαit

Now we just have to check what the Hessian will be:

∇2L ≡
[

2t
∑
λib

T
i∑

λibi Q0 +
∑
λiQi

]
Equivalently, we have[

−2t −
∑
λib

T
i

−
∑
λibi −

∑
λiQi

]
�
[

0 bT0
b0 Q0

]
This is a special case of SDP:

max bTw

s.t. A∗w � c ∈ S

51

In our case,

c =
[

0 0
0 Q0

]
Note that A∗ : Rm+1 → Sn is defined as being w 7→ w0A0 + w1A1 + w2A2 +
· · · + wm+1Am+1, so it’s a linear combination of symmetric matrices Ai. This
is exactly what we have above. For example, our first matrix would look like

A0 =
[
−2 0
0 0

]
and

A1 =
[

0 −bT1
−b1 −Q1

]
What is the dual of this SDP? We can play the game theory problem again.

We have the W player. The Lagrangian is

L(w,X) = bTw + 〈X, c−A∗w〉

The dual problem, therefore, (the X player) has the minimization problem

min
X�0

max
w

L(w,X)

The trick is to move the adjoint around, as in linear:

min
X�0

max
w
〈c,X〉+ 〈w, b−AX〉 (12)

We want to find the map A : Sn+1 → Rm+1 that satisfies

〈X,A∗w〉 = 〈AX,w〉

If you run through the details, it turns out to be

A(X) =

 〈A0, X〉
...

〈Am, X〉


Because w is free in (12), we have the hidden constraint b − AX = 0 that

we can add under the min:

min
X�0,b−AX=0

max
w
〈c,X〉+ 〈w, b−AX〉 (13)

Then, we get for the dual player:

min tr(CX)
s.t. AX = b

X � 0

52

And this looks just like the “star” for our LP.
For example, what is A0X?

〈C,X〉 = trace

([
0 bT0
b0 Q0

])
X (14)

Typically in this kind of problem, we’re doing a lifting from Rn+1 to Sn+1:

X =
(
x0

x

)(
x0

x

)T

This multiplication is rank 1, and this holds iff X � 0 is rank 1. So then

tr(CX) = trC

(
x0

x

)(
x0

x

)T

=
(
xT

0

x

)
C

(
x0

x

)
= q0(X) if x2

0 = 1

Then (14) is equal to
xTQ0x+ 2bT0 xx0

We have this 〈A0, X〉 = 0, and AX ≤ b 〈A1, X〉
...

〈Am, X〉

 ≤ []

And 〈A0, X〉 = −2x00 where

X =


x00 x10 · · · xm0

x10 x11 · · · xm1

...
...

. . .
...

xm0 xm1 · · · xm0

 =
[
x0

x

] [
x0

x

]T

=
[

x2
0 x0x

T

x0x xxT

]

We seem to have an error with the freeness of w, and there are
probably some errors in the above for things that we left uncorrected
on the chalkboard for this section of the notes.

So what happens to the trust region subproblem? We can think about the
problem

min q0(x)
s.t. q1(x) ≤ 0

Both of these functions could be non-convex. Look at the SDP relaxation. The
surprising thing is that the gap is tight. Many ways to prove this. One way
is to use Pataki-?. It’s a condition on rank. You just count the number of
constraints and variables you have. If you have a solution with rank 1, you can
go backwards.

See if you can think of a way to reduce the rank. If you don’t have a unique
solution, there are some obvious things that you can do.

53

11 Duality and the Rayleigh Principle

Suppose we have a symmetric matrix A and we want to minimize

min xTAx

s.t. xTx = 1

These points on a circle S1 are definitiely not a convex set. We know that the
anwer to this is λmin(A).

We do the usual:

λmin(A) ≥ min
x
L(x, y) = xTAx+ λ(1− xTx)

If we look at the dual,

λmin(A) ≥ d∗ = max
λ

min
x
L(x, λ)

λmin(A) ≥ d∗ = max
λ,A−λI�0

min
x
L(x, λ)

Then, we get the min at x = 0. So we get that the above is equal to

maxλ s.t. A � λI = λmin(A)

So d∗ = p∗, strong duality.

11.1 The Trust Region Subproblem

Let’s look at a more general problem. We’ll examine

min q0(x) = xTAx+ 2xTx

s.t. ‖x‖2 ≤ δ2

If A � 0 and we have a convex program, then Slater’s condition holds (e.g.
x̂ = 0), so we have strong duality. Without loss of generality, assume λmin(A) <
0. Then

p∗ = min
‖x‖2≤δ2

xTAx+ 2bTx

The minimum is going to be on the boundary, so we can rewrite this with an
equal:

p∗ = min
‖x‖2=δ2

xTAx+ 2bTx

We can also write

p∗ = min
‖x‖2≤δ2

xT (A− γI)x+ 2bTx+ γxTx

where γ = λmin(A) < 0. By doing this, we have that this is PSD. Replacing
with the equality,

p∗ = min
‖x‖2=δ2

xT (A− γI)x+ 2bTx+ γ‖x‖2

54

since γ < 0.
Recall when you have an unconstrained problem, x ∈ argmin(f(x)) implies

∇f(x) = 0 and ∇2f(x) � 0. The Hessian is constant for a quadratic, so we’ll
find our minimum on the boundary. Our earlier expression is equal to

p∗ = min
‖x‖2=δ2

xT (A− γI)x+ 2bTx+ γδ2

Now, replace back the other way

p∗ = min
‖x‖2≤δ2

xT (A− γI)x+ 2bTx+ γδ2

Because A−γI is singular, we can move towards the boundary without changing
the quadratic. I can go in both directions (of the null space) and just move in
the negative direction of the linear term bTx. A− γI � 0. So we’ve changed a
non-convex problem to a convex problem. Because Slater’s condition holds, we
have strong duality. So, let’s write down what the strong dual is:

max
λ≥0

min
x
xT (A− γI)x+ 2bTx+ γδ2 + λ(xTx− δ2)

= max
λ≥0

min
x
xTAx+ 2bTx+ (λ− γ)(xTx− δ2)

≤ max
λ≥γ

min
x
xT (A− γI)x+ 2bTx+ γδ2 + λ(xTx− δ2), γ < 0

= d∗ ≤ p∗

So p∗ ≤ p∗ thus all inequalities here are tight: we have a zero duality gap. Does
this prove attainment for d∗? I think we should get attainment here as well. I’ll
leave that as open, since I didn’t think of that in advance.

So this problem can be solved by SDP, though there are more efficient ways
to solve this that use sparse eigenvalue techniques. A lot of robust optimization
works on this idea.

12 Robust Optimization

Robust optimization is a planning for the worst case. You can write such as
a min-max problem. But if you can write the max as a min in the dual, then
you just have a min problem, and that can be solved easily. Let’s look at some
examples.6

Our problem is minimize ‖Ax − b‖ with uncertain A. One approach is to
assume A is random at minimize the expectation of ‖Ax − b‖. Another is by
worst-case, minimize

sup
A∈A
‖Ax− b‖

If you could write this problem as a strong duality using minimization, then
you’d just have a min-min. This has been the hottest area in the last three

6This comes from Lecture II slides from the webpage. There are also citations to the book’s
pages.

55

years. One application is to robust LP, and trust topology in building bridges.
It really started a lot of excitement in this area. Bridges are a lot more robust,
and the big thing is that you can solve these problems.

As an example, take your uncertainty set to be A(u) = A0 + uA1. First, we
minimize ‖A0x− b‖22. Use the minimizer xnorm. x is fixed. As u changes,

r(u) = ‖A(u)xnorm − b‖2

changes. We can do the same with an xstoch. Finally, we have xwc for the
worst-case approach.

In the stochastic approach, we have A = A+ U , and we want to minimize

E‖(A+ U)x− b‖22

In the worst case least squares, we take p matrices and we say that A varies
by considering

A = {A+ u1A1 + · · ·upAp | ‖u‖2 ≤ 1}

Then, we want to minimize

sup
A∈A
‖Ax− b‖22 = sup

‖u‖2≤1

‖P (x)u+ q(x)‖22

In this problem, robust LP is equivalent to SDP.
A long time ago, before you were born, people use to heat rooms with radi-

ators. Then came along the bang-bang principle.
Recall the trust region subproblem:

p∗ = min xTAx+ 2xTx

s.t. xTx ≤ δ2

We can add a new variable x0

p∗ = min xTAx+ 2xTxx0

s.t. xTx ≤ δ2

x2
0 = 1

and we haven’t changed anything, but everything is quadtratic. So, if we have
a

y =
[
x0

x

]
=
[

1
x

]
then a solution y for the second problem projects to a solution x for the first
problem.

Let’s look at the objective.

min
[
x0

x

]T [0 bT

b A

] [
x0

x

]

56

And we look at the constraint:[
x0

x

]T [0 0
0 I

] [
x0

x

]
≤ δ2, x2

0 = 1

So, we’ve just rewritten it. Everything is the same. Let’s look at the La-
grangian. We’ll examine the Lagrange dual dSDP to be:

max
λ≥0;t

min
x0,x

»
x0

x

–T »
0 bT

b A

– »
x0

x

–
+λ

 »
x0

x

–T »
0 0
0 I

– »
x0

x

–
− δ2

!
+t(x2

0−1)

= max
λ≥0;t

min
x0;x

[
x0

x

]T [
t bT

b A+ λI

] [
x0

x

]
− δ2λ− t

So, what we have here is an SDP: Maximize −δ2λ− t subject to[
t bT

b A+ λI

]
� 0, λ ≥ 0 (15)

Now, let’s look at p∗SDP , the primal SDP. First, let me just rewrite the
constraint (15) a little bit:

t

[
−1 0
0 0

]
+ λ

[
0 0
0 I

]
�
[

0 bT

b A

]
So,

p∗SDP = min
〈[

0 bT

b A

]
, X

〉
such that 〈[

−1 0
0 0

]
, X

〉
= −1〈[

0 0
0 I

]
, X

〉
≥ −δ2

X � 0

So we have strong duality

p∗ ≥ d∗SDP = p∗SDP

For more general programming, we have strict inequality! So, if X is of the
form

X =
[
x0

x

] [
x0

x

]T

(that is, rank(X) = 1), then we have the original problem.

57

13 Geometric Problems

I’d like to go through these quickly. Book pages and slides are available. There
are several additional problems in the book pages.

13.1 Closest point to a convex set

One of the interesting things about this projection problem: This is an inter-
esting way of interpreting duality. In the primal problem, the optimum is the
closest point x ∈ C from a point x0 6∈ C outside the set C. The dual problem
is interesting algebraically and geometrically:

If you take any hyperplane H separating C from x0, and say we call dH the
distance from the point x0 to H, then the dual problem is to maximmize dH .

The optimal distance d∗H corresponds to the nearest point x∗ ∈ C.

13.2 Separating a point from a convex set

All you have to do is find the closest point (see Section 13.1).

13.3 Distance between sets

This is a generalization of the problem in Section 13.1 (from a set and a point
to a set and a set).

13.4 Minimum volume ellipsoids around a set

The Löwner-John ellipsoid of a set C is the minimum value ellipsoid E such
that C ⊆ E . We parameterize E as E = {v | ‖Av + b‖2 ≤ 1}. Without loss
of generality, we assume that A ∈ Sn

++. The volume of E is proportional to
detA−1. To compute the minimum volume ellipsoid: Minimize log detA−1

subject to
sup
v∈C
‖Av + b‖2 ≤ 1

For a finite set C = {x1, . . . , xn}, this is computable.

13.5 Maximum volume inscribed ellipsoid

We parameterize E as E = {Bu + d | ‖u‖2 ≤ 1}. Again, we can assume that
B ∈ Sn

++. We can compute by solving:

max log detB
s.t. sup‖u‖2≤1 IC(Bu+ d) ≤ 0

If f(B) = log detB,B � 0, then

∂f(B)
∂B

=
(

1
detB

)(
∂

∂B
detB

)
= B−1,

58

with the last equality coming from Cramer’s rule. That is the matrix of cofactors
(other books call it an adjoint). So, ∂

∂Bij
is the ij-cofactor (expand along the

row).
How do we find

∂B−1

∂B
?

The trick is to use BB−1 = I and use the product rule.

13.6 Centering

One centering approach is to find the “Chebyshev center.” Another approach
is the center of ellipsoids. We can also look for an analytic center.

13.7 Linear Discrimination

Suppose you want to separate tow sets of points X = {x1, . . . , xN} and Y =
{y1, . . . , yM} by a hyperplane H so that the points on X lie on one side of H
and the points of Y lie on the opposite side.

13.7.1 Robust Linear Discrimination

Instead of just finding some separator, you want to find the one in the middle
that separates as best as possible, so we want to maximize the norm of the
separator. This problem is a QP.

13.7.2 Approximate Linear Separation of Non-Separable Sets

Sometimes you can’t separate, so we want to minimize the error. This problem
allows us to do an approximate linear separation. This is a heuristic.

13.7.3 Support vector classifier

13.8 Nonlinear Discrimination

Linear models are the easiest to use, but nowadays, we can try to use nonlinear
separators. There are a family F = (F1, . . . , Fk) : Rn → Rk that serve as the
basis functions.

13.9 Placement and Facility Location

We mentioned the flow problem. This is simpler than the quadratic assignment
problem because of a specialize flow cost.7

7A group is going to present this afternoon. Please come and support “the machine.” Are
people interested in making T-shirts?

59

14 Unconstrained Minimization

If you were taking a detailed class in constrained optimization, typically they
start with linear programming, then do the non-linear case (starting with un-
constrained problems).

We have the problem
Minimize f(x)

The best problems are when f is convex and in C2. For these types of problems,
we assume that the optimal value

p∗ = inf
x
f(x)

is attained and is finite. The methods:

• Produce a sequence of points ∈ dom(f)

• Iterate

We require a starting point x(0), and the sublevel set of x(0) is closed.
Something that helps is the notion of strong convexity, namely,

There exists an m > 0 such that ∇2f(x) � mI for all x ∈ S

A classic book on unconstrained optimization is by Dennin-Schnabel. This
text includes a very careful analysis on stopping criteria. These are subtle
things: you want your stopping criteria to be scale-free.

14.1 Descent Methods

Many of the algorithms in the literature are called descent methods. You have
your current point x(k). Somehow, you find a search direction ∆x(k), then you
find your step length t(k). Now modern (1960’s) optimization says that you
want to have a good search direction (and spend your time working hard in
finding the search direction), then, the step length needs to be relatively cheap.
This because step-length involves a lot of function evaluations. Most of your
time in interior methods is in finding this search direction. (Then you change
µ, meaning your trying to improve on that search direction.)

The other things mentioned on this slide is the descent direction: you want
to ensure your objective is decreasing, that is,

∇f(x)T ∆x < 0.

If g(t) = f(x + t∆x) then g′(t) = ∇f(x + t∆x)T ∆x and in particular,
g′(0) = ∇f(x)T ∆x < 0.

We want to guarantee that we get sufficient decrease in an iteration. we
want to go to a point that is sufficiently less steep.

A new development is something that’s called filter methods. These do not
guarantee decrease, so this is a strange phenomenon. They mostly come up in

60

constrained optimization, so I won’t discuss it now: we’ll talk about them more
later. There are certain methods that work well that allow an increase once in
a while. This has been an important idea in the last couple of years, and it has
changed some of how we look at unconstrained optimization.

14.1.1 Gradient Descent Method

This is also called Cauchy’s descent method. We simply go in the search di-
rection ∆x := −∇f(x). If you want to find this steepest descent, we’re really
solving this minimization

min dT∇f(xk) (+ f(xk))

This is a linear model. The optimal d here is? We need some kind of bound on
this, because it’s unbounded. How about we amend this to:

min
1
2‖d‖2≤1

dT∇f(xk) (+ f(xk))

d = 1 is a Slater point, so Slater’s condition holds. The Lagrangian for this
problem is

L(d, λ) := dT∇f(xk) +
λ

2
(‖d‖2 − 1) (16)

0 = ∇L ≡ ∇f(xk) + λd

So λ ≥ 0, so =⇒ d = −1
λ ∇f(xk). Thus, λ = ‖∇f(xk)‖.

MatLAB has a very nice demonstration of this, called the banana function:

f(x) = 100(x2 − x2
1)

2 + (1− x1)2

After turning off MOSEK, we can use steepest descent. Steepest descent goes
across the valley.

The basic idea for the simplex method (it’s non-differentiable: it just uses
function values) is:

• Evaluate f at each vertex of simplex

• Find largest value v0

• Reflect on the link of v0.

• Check the new point and act like a trust-region problem (if it does not do
well, then shrink.)

So it’s basically trying to improve the worst value of the simplex. So as you
move along, you have the property that the worst value of the simplex gets
better and better. This is becoming hot because it may be too expensive (or

61

impossible) to do gradients. Look for papers by Nelder-Mead. IBM has some
people who are working on this, and they have some production code.

There’s some very nice results on the convergence for steepest descent. The
number of “wiggles” are based on something called the Kantorovich lemma.

Now, if you were to change the norm in (16), you would change the search
direction. So, scaling is very important for the steepest descent method. What’s
the best norm? Which is the best p to choose? Note, you can also change which
p you use in the course of the algorithm.

14.2 Newton’s Method

Newton’s method is based on a quadratic model:

min dT∇f(xk) + 1
2d

T∇f(xk)d (+ f(xk))

We set the derivative equal to zero for a stationary point, we get

∇2f(xk)d+∇f(xk) = 0

Note that the d here is jut ∆Xnt in the slides. It’s the best quadratic polynomial
f̂ fitting f at x. Finding a min of this quadratic polynomial f̂ is as simple as
finding a zero of f̂ ′, a linear function.

If ∇2f(x) � 0, then

g′(0) = ∇f(x)T ∆xnt

= −∇f(x)T∇2f(x)−1∇f(x) < 0

What is the best p? The best p is just the Hessian. The thing to think
about is, “What does a scaling mean? What is the best scaling?” This gives
you Newton’s method. Moreover, it shows that it’s scale invariant (since you
can’t do any better).

14.3 Filter methods in constrained optimization

Suppose you have a non-linear least squares problem: you have some sort of
non-linear functions that you want to fit to the data. Then you are looking

min
∑n

i=1(ri(x))
2 , m objectives

Another thing you might consider is putting weights wi on the sum

min
∑n

i=1 wi(ri(x))2 , m objectives

Some of you may have heard of multi-criteria optimization. You may want
to treat this as a multi-criteria problem. You want to find points which are not
dominated by other points.

62

14.3.1 A Filter Algorithm

Here’s how we could look at solving this. We ask in

xk+1 = xk + ∆xk

when is xk+1 is better than xk? The vector yk+1 =
(
ri(xk+1)2

)
is better than

(or dominates) the vector yk =
(
ri(xk)2

)
if ri(xk+1)2 < ri(xk)2 for all i.

The basic idea is to build a numerical method where non-dominated points
are accepted.

14.4 Condition Number

The condition number of a positive definite matrix Q is

λmax(Q)
λmin(Q)

≥ 1

The identity I is the best that you can do. If you’re on a circle, steepest
descent means that you’re going to converge in one iteration. How do you take
a quadratic that looks like

1
2
xTQx+ xTx

You scale the problem with x ← Sy + d. What happens when you make this
substitution for x? You’re going to get a quadratic

1
2
yTSTQSy + · · ·

What’s the best S that you can choose? We want the Hessian to be the
identity, so the best scaling is S = Q−

1
2 .

14.5 Steepest Descent and Deflected Gradient Methods

∆xk = −B∇f(xk) is called a deflected gradient.

(∆xk)T∇f(xk) = −∇f(xk)TB∇f(xk)
< 0 if B � 0

One way of deriving Newton’s method is to say, “I want the best local
scaling.” Newton’s method gives you the best local scaling. In particular,
if you scale it again, nothing’s going to change. Thus, it’s scale free: Many
optimization problems (like linear programming) say you’re working with units
of cars/airplanes, and the price is on the order of millions, the change of scale
causes magnitude problems. If you do steepest descent, you’re going to zig-zag
forever. But in Newton’s method, you’re going to be essentially doing the same
thing. You choose B to be the inverse of the Hessian.

63

Steepest descent gives us linear convergence: ‖xk+1 − xk‖ ≤ γ‖xk − xk−1‖
for 0 ≤ γ < 1. Newton’s method gives us quadratic convergence. Quadratic
convergence means ‖xk+1 − xk‖ ≤ γ2‖xk − xk−1‖ for 0 ≤ γ < 1. Convergence
analysis is a very interesting area.

When I was a graduate student, we didn’t have the web. I was looking for
a paper in Math Programming in the library. I found a paper there published
by “Anonymous”. It was submitted by Phillip Wolfe. The problem is finding a
minimum without any assumptions. One of the algorithms it goes through is to
use a countable dense subset. There’s a difference between proving convergence
and proving convergence for an algorithm on a computer.

Steepest descent in the local Hessian norm is one way of deriving Newton’s
method. Locally, you have just circles. We have a strong lower bound on the
smallest eigenvalue.

Algorithm (Newton’s Method)
Given a starting point x ∈ dom(f) and tolerance ε > 0,

1. Compute the Newton step and decrement:

∆nt := −∇2f(x); λ2 := ∇f(x)T∇2f(x)−1∇f(x)

2. Stopping criterion: quit if λ2/2 ≤ ε

3. Line search: Choose step size t by backtracking line search

4. Update: x := x+ t∆xnt.

Inexact Newton’s Method means to solve Bk∆xk = −∇f(xk) approximately.
You have to decide what approximately means.

Super linear convergence means ‖xk+1−xk‖ ≤ γk‖xk−xk−1‖ for 0 ≤ γk < 1,
and γk → 0. You want to get at least this, as quadratic convergence may be
too much to ask for. These “quasi-Newton methods” use finite differences.

Newton’s method is affine invariant (that is, it is independent of linear
changes of coordinates.)

14.6 Classical Convergence Analysis

This is due to Kantorovich8. With some error estimates, you can prove quadratic
convergence:

L

2m2
‖∇f(x(k+1))‖2 ≤

(
L

2m2
‖∇f(x(k))‖2

)
8Khachian (Kantorovich’s student) visited Waterloo (while he was still alive). Kantorovich

said that we was approached by the KGB with a transportation problem. They approached
him a second year. They wanted something better than optimal. There is a moral here: How
do you satisfy the manager? You don’t give them the optimal solution.

64

There’s a damped Newton method. If you do this, you’ll lose quadratic con-
vergence.

In conclusion, you get (locally) quadratic convergence in Newton’s method,
and quadratic convergence is very fast.

Far from the solution you want a combination of Newton’s Method and
Steepest Descent. So, this is the trust region problem. Newton’s Method doesn’t
know the difference between a min and a max.

There are some strong convergence results for strictly convex functions and
you need the smallest eigenvalue of the Hessian. (If the Hessian isn’t invertible
at your point, you do a steepest descent.)

The exact line search has a step length of 1, asymptotically. You lose
quadratic convergence unless you have a step length of 1 asymptotically.

This started a few years ago. Many of us have joined the NLF (Newton
Liberation Front). Don’t hold Newton back. Because we have a strongly convex
function, we have a nice positive definite Hessian at the optimum, and we have a
nice Taylor series at that point. So, this provides us the second-order sufficient
condition for optimality.

Even though Newton’s method is scale-free, a local region is not scale-free.
So, there is a problem: The difficulty is you create quadratic convergence, but
you don’t know that region. So, what can you do about that? There is a break
through that coincided with the interior point revolution:

14.7 Self-Concordance

This came about in the late 1980s from Nesterov and Nemirovski. Nesterov,
one of the developers on this, is one of the people who worked on the ellipsoid
method.

The idea is to deal with this problem in Newton’s method. Can we enlarge
this region of local quadratic convergence somehow? Each line in a Russian
paper takes an hour to understand. This is one of those lines: A function
f : R→ R is self-concordant if

|f ′′′(x)| ≤ 2f ′′(x)3/2 for all x ∈ dom(f)

This says that the second derivative can’t change very much. It avoids the
problem of needing this smallest eigenvalue. There are many examples of self-
concordant functions:

• linear and quadratic functions

• negative logarithmic functions

For a good resource on this, pick up the text by James Renegar.
Interior point methods use barrier functions. If we just look at self-concordant

barrier functions, the best one is the log-barrier one that we use. The book by
Nesterov and Nemirovski give the answer why.

Usually, the theory is quite different from the practice. For example, our
upper bounds on number of iterations is usually very far from being tight.

65

14.8 Implementing Newton’s Method

In numerical analysis, you never invert. You solve a system of equations

H∆x = g.

You do a Cholesky factorization. There’s so much on Cholesky factorization
that you can solve surprising large problems. MatLAB can tell you if your
matrix is PSD.

15 Equality Constrained Minimization

We started with unconstrained, then we move from unconstrained to equality
constraints (and eventually to inequalities).

Consider f is a convex, twice differentiable function and

min f(x)
sub.to Ax = b

We assume that p∗ is finite and attained, and that A is a full-rank ma-
trix. Complementary slackness still holds. Our optimality conditions are: x∗ is
optimal iff there is a ν∗ such that

∇f(x∗) +AT ν∗ = 0, Ax∗ = b

Because we have a convex problem, we can combine the two conditions:

min 1
2x

TPx+ qTx+ r

sub.to Ax = b

with optimality condition[
P AT

A 0

] [
q∗

ν∗

]
=
[
−q
b

]
The coefficient matrix is called the KKT matrix. It is non singular iff Ax =
0, x 6= 0 =⇒ xTPx > 0.

Another way of approaching this problem is to use null space techniques.
You find a basis for the null space F and rewrite the solution set of Ax = b as

{x|Ax = b} = {x̂+ Fz : z ∈ Rn−p}

Here, x̂ is a particular solution. So, can you do this efficiently?
Sometimes it’s very useful to work with the dual simplex method for LP.

What happens very often is that you have an LP and you solve it and you
get an optimal solution. Sometimes, as mentioned, your data changes a bit.
Your resources change (that is, your right hand side b changes). So you have
dual feasibility, and you’ve lost primal feasibility. You still have complementary
slackness. Why not work with what you have and recover? Now, we minimize
f(Fz + x̂). From the solution z∗, we obtain x∗ and ν∗ as

x∗ = Fx∗ + x̂ v∗ = −(AAT)−1A∇f(x∗)

66

15.0.1 Example: Separable problems

A problem is separable if it is of the form

min f1(x1) + f2(x2) + · · ·+ fn(xn)
s.t. x1 + x2 + · · ·+ xn = b

We have the Newton decrement9

λ(x) =
(
∆xT

m∇2f(x)∆xn

)1/2

Algorithm (Newton’s Method with Equality Constraints)
Given a starting point x ∈ dom(f) with Ax = b and tolerance ε > 0,

1. Compute the Newton step and decrement: ∆xnt, λ(x)

2. Stopping criterion: quit if λ2/2 ≤ ε

3. Line search: Choose step size t by backtracking line search

4. Update: x := x+ t∆xnt.

15.1 Solving KKT Systems

Start with a system [
H AT

A 0

] [
v
w

]
= −

[
g
h

]
We can solve this by LDLT factorization, elimination (if H is nonsingular), or
a special elimination if H is singular.

The complexity per iteration of each of the three methods is identical. You
might choose one method over the other, say, based on the number of primal
versus dual variables.

15.1.1 Example: Network Flow Optimization

(Why do we always throw away the last row in these matrices?)

15.1.2 Example: Ananlytic Center of Linear Matrix Inequality

16 Nonlinearly Constrained Optimization

The basic tool that we’re going to use is Lagrange multipliers:

L(x, λ) = f(x) +
∑

i∈I∪E
λici(x).

9sounds like an insult

67

We have the notation here that

A∗ = {i ∈ I : ci(x∗) = 0} ∪ E

Complementary slackness says that λ∗i ci(x
∗) = 0 ∀ i ∈ E , which says that

either the inequality is zero, or the constraint is zero. That is, either λ∗i = 0 or
ci is active at x∗. For the interior point methods, we add these complementary
slackness, because it gives us the right number of equations.

For these methods, it’s better work with the active set. We require the strong
constraint qualification, which asks for linear independence. It says that this set
of multipliers is going to be unique at the optimum. This is stronger than the
Magnasarian-Fromovitz conditions. In this weaker setting, we don’t have that
the Lagrange multipliers are unique. If the mulitpliers are unique, you have (in
some sense) a robust problem.

If you have a system of equations

Ax = b

then the classical definition of an ill-posed problem is when this solution x is not
unique. It is a well-posed problem when this solution is unique. For example,
all sorts of problems can arise when you’re working with a singular matrix A.
What do you do, you typically add a constraint like ‖x‖ ≤ δ. But now, your
set of solution lies in a compact set. This is called regularization. Now that
you have a compact set, you can say something better about the solution. This
has come up in things like CAT scans. A CAT scan is an infinite-dimensional
problem. It has a compact linear operator∫

x(t)ψ(t) = b

It’s a Fredholm operator of the first kind working an a compact operator K(x) =
b. So we perturb the right side a bit∫

x(t)ψ(t) = b+ ε

Because the inverse is unbounded, this should blow up. The other problem is,
the Lagrange multiplier may not exist.

Constraint qualifications are very important. You probably saw Lagrange
multpliers and then quickly forgot about it. One thing that we didn’t see be-
fore are the second order conditions. The sufficient second-order condition for
constrained optimization is

wT∇2
xxL(x∗, λ∗)w � 0 (17)

It makes sense that if you’re just looking at x ∈ argmin(f(x)), then you have
∇f(x) = 0 and ∇2f(x) � 0. And you can go back the other way: ∇f(x) = 0
and ∇2f(x) � 0 imply x ∈ argmin(f), and this is strict-local. So, when we

68

were minimizing f(x) = x4, the Hessian was not PSD at x = 0. Here, the
necessary conditions hold, but the second-order sufficient conditions don’t hold,
so we lose quadratic convergence. Why? ∇2f(0) 6� 0. Equation (17) must hold
on the feasible set.

Strict complementarity says that λ∗i − ci(x∗) > 0 for all i. So, one of these is
not going to be 0. If we don’t have strict complementary slackness, you’ll have
some redundancy. We can look at an example from linear programming: This
means that a vertex is not simply determined. You can have multiple optimal
solutions and multiple bases for a vertex. It is a theorem of Hoffman and
Goldman (or maybe Tucker?) that there always exists a solution that satisfies
strict complementarity. This is what makes interior point methods work so
well for linear programming. For semi-definite programming, this is not true.
You can actually construct problems where strict complementarity fails, and
you can see the problem when you try interior point methods on these: loss of
numerical accuracy, etc. Why? It’s because the Jacobian is singular there. Gale
(a well-known economist) has said that the Lagrange multipliers are one of the
important tools in economics10.

16.1 Sequential Quadratic Programming

We’re going to do something that’s very much like Newton’s method. At a cur-
rent point xk and a current estimate for the Lagrange multipliers, we can from
the Lagrange multpliers formulate our next step strangely: we take the gradient
of the objective and the Hessian of the Lagrangian instead of the gradient of
the Lagrangian.

qk(d) = ∇f(xk)T +
1
2
dT∇2

xxL(xk, λk)d

Why should we possibly want to do this? Then, we replace the constraint func-
tion by linear approximations. When you for the Lagrangian of this problem,
you have Lagrangian multipliers on the values of the gradient.

The step dk can be found by solving this quadratic:

min{ci(xk) +∇ci(xk)T d ≤ 0, i ∈ I ci(xk) +∇ci(xk)T d = 0, i ∈ E}

What are the optimality conditions for this quadratic? We have the Lagrangian:

L(d, µ) = q(d) +
∑

i∈I∪E
µi(ci(x) +∇ci(x)T d)

∇L(d, µ) = ∇q(d) +
∑

i∈I∪E
µi∇ci(x) = 0

Let’s just pretend that we have equality constraints, because it’ll just make our
lives easier. Then we don’t have to deal with extra notation that will just cause

10Does anybody do economics here? No? Okay, then I can tell you whatever I want!

69

a headache. Pretend I = ∅:

L(d, µ) = q(d) +
∑
i∈E

µi(ci(x) +∇ci(x)T d)

∇L(d, µ) = ∇q(d) +
∑
i∈E

µi∇ci(x) = 0 Dual Feasibility

ci(x) +∇ci(x)T d = 0, ∀ i Primal feasibility

So we have

∇f(x) +∇2
xxxL(x, λ)d+

∑
i∈E

µi∇ci(x) = 0

∇f(x) +

[
∇2f(x) +

∑
i

λi∇2ci(x)

]
d+

∑
i∈E

µi∇ci(x) = 0

∇L(x, λ) = ∇f(x) +
∑
i∈E

λi∇ci(x) = 0 ci(x) = 0∀i (18)

thus,
F (x, λ) = 0. (19)

So, we apply Newton, and we get (asymptotic) quadratic convergence, that is

F ′(x, λ)d = F (x, λ)

If we diffferentiated again, we’d get the same thing. All we have to do is go
redo this with the case that we have a mix of equality and inequality constraints.

So, we have

F ′(x, λ) =
[
∇2d(x) +

∑
i∈E λi∇2ci(x) ∇c(x)T

∇c(x) 0

]
where c : Rn → Rm. The only difference is

d ≡ ∆x
µ ≡ ∆λ, µ = λ+ ∆λ

So, we can take

F ′(x, λ)
[

∆x
∆λ

]
= F (x, λ)

and we rewrite. We’ll get exactly the same thing except...
In order to analyze Newton’s with SQP, all we’re doing is trying to solve the

equation (19).
In solving the BFGS, there’s what’s called a rank 2 ... and in updating the

matrices Bk by
Bk+1 = Bk − · · · (20)

we maintain positive semi-definiteness.

70

B does not exactly approximate the Hessian ∇2f(x). So, it approximates
the behavior of the Hessian (on the important points). But it doesn’t converge
to the Hessian. There’s also a way to make sure that the update of B is not too
hard. So the formula (20) is not too hard to implement. In practice, the BFGS
is empirically better than the DFP.

What are the convergence properties of the basic SQP? Far away from the
optimum, you have to do a line search. You can’t just take steps of lengths one.
A line search is what? You have to satisfy the constraints as well in finding a
direction. The constraints can be very strange as well. You might just have “two
whiskers.” There’s no way that you’re going to stay feasible. Especially because
of equality, we use what’s called a merit function. In constrained optimization,
you have the objective and some other functions.

One of the things that these algorithms suffer from is called the Maratos
effect. What could happen is that your feasible set might be on some convex
set, and you might start (at x0) not on the optimal set. Suppose you have a
lot of constraints, and they are penalized a lot compared to your objective, but
you don’t know the scaling. You may have this property that you get closer and
closer to the feasible set, and eventually you get around to x∗, but what happens
on many of these methods with exterior penalty functions, they only get feasible
in the end. We get “close to feasible” too soon. It follows the feasible boundary,
and it takes forever to get to the optimal solution.

There are many merit functions that you can use. A natural one you might
think of is the augmented Lagrangian. One of them might be something like

f(x) + w

[∑
i∈E

c2i (x) +
∑
i∈I

max 2(0, ci(x))

]
.

We’re taking an `2-norm on the violation of the constraints. We say that w is
a penalty. It’s very hard to decide which to do first: do you want to get close
to feasible first or head towards the true objective f(x) first?

There is an `1 merit function

f(x) + w

[∑
i∈E
|ci(x)|+

∑
i∈I

max (0, ci(x))

]
.

You can prove that you only get feasible in the limit with these types of func-
tions.

SQP beats interior point methods. For convex problems, the interior point
methods become superior. Besides the Meritos effect, there’s another difficulty:
The original subproblem (the QP subproblem) may be bounded below. One of
the ways of handling that is by the trust region subproblem:

‖d‖ ≤ δk.

This looks good: you get the best of both worlds: The Lagrangian will be � 0.
But, does anybody see a difficulty? You fix one thing, and something else comes

71

out. The problem may become infeasbile (these c(xk)’s are constant). You may
have made your ball small enough that it doesn’t intersect the feasible set to
our auxilliary problem!! What do people do then? You have to be careful what
you change, or you may lose a lot. One of the things that people do (again,
let’s just look at the equality case) is they replace those equality constraints by
a new constraint ∑(

ci(xk) +∇ci(xk)T d
)2 ≤ something.

In other words, they want to get a least squares solution. You have several
quadratic constraints and a quadratic objective. This is called the CDT problem.
So, now you have the two-trust region subproblem (2TRS). We’re starting to
get from a nice motivation and a nice picture to all sorts of complications. We
took a quadratic approximation of the Lagrangian but a linear approximation
of the constraints. We worry about unboundedness, infeasibility, and so on. So,
people keep trying to fix all of these problems. There is one simple fix for all of
these difficulties.

The simple fix is to consider the problem:

min q0(d) ≈ f(xk + d)
s.t. qi(d) ≈ ci(xk + d)

(QCQP) or (QQP). We have all quadratics. The qi are all ≤ 0 or = 0. We add
‖d‖2 ≤ δ2k. Now, all our problems are fixed. No Meritos effect, no infeasibility.
But, there’s still a problem! This problem is too hard to solve: this is NP-hard
in general. So, we use a Lagrangian relaxation, that is, an SDP!

So, that was a quick hour-and-a-half on non-linear programming. We’ll finish
off with the interior point method for the convex case, just to look at that again.

17 Interior Point Methods

We reformulate our problem via an indicator function

min f0(x) +
∑m

i=1 I−(fi(x))
s.t. Ax = b

We have our nice convex logarithmic barrier function

φ(x) = −
m∑

i=1

log(−fi(x)).

φ is twice continuously-differentiable, and it has a very nice second derivative.
Fiacco11 and McCormick developed the SUMT. If you have inequality con-

11When I was a grad student, we were given a very hard problem to solve. The memory
available was about 100K. If you begged, then you were able to use whatbig, which used 150K
of memory. I couldn’t solve this problem so I sent Fiacco a letter, and he sent me the code
as a package in the mail (consisting of 500 computer cards). His code worked. It was like a
sledgehammer. His code was actually polynomial time on linear programming problems.

72

straints, you use this log-barrier to keep you feasible. Why did this lose popu-
larity so quickly?

In the second derivative, we have rank one matrix, so ∇2φ is going to be
singular. You’re trying to solve a system of linear equations where the matrix
is very ill-conditioned. Fiacco and McCormick did something else in their code
which avoided this problem. But, we’ve cycled back! Now, people are using this
to solve convex and non-convex problems.

17.1 Central Path

What do we do? For t > 0, define x∗(t) as the solution of

min tf0(x) + φ(x)
s.t. Ax = b

Then, the central path is {x∗(t) : t > 0}. We can also look at dual points
on the central path. We can look at a weak-duality type of argument

p∗ ≥ g(λ∗(t), ν∗(t)).

What happens is that some of the terms go away. We’re assuming that we
have feasibility Ax = b. So, we have this 1

t because of how they defined the λi.

17.2 Interpretation using the KKT conditions

We differentiate the log-barrier problem, either the primal or the dual. So
condition 3 (in slides) replaces the complementary slackness λifi(x) = 0 with

−λif(x) =
1
t
.

17.3 Force field interpretation

We have the centering problem, and the force field interpretation is that the
first term is a potential of force field F1.

17.3.1 Example: Linear programming

There are forces that are forcing the current point x that are pulling it. Some are
pulling it towards optimality, and some are pulling towards the interior regions.
These things simply all cancel where x∗ is. So the sum of all of those forces
F0(x) = −tc and the constraint forces

Fi(x) =
−ai

bi − aT
i x

should all cancel out at optimality.
Here, we have the barrier method:

73

Algorithm (Barrier Method)

Given strictly feasibly x, t := t(0) > 0, µ > 1 and a tolerance ε > 0, repeat:

1. Centering step. Compute x∗(t) by minimizing tf0 + φ subject to Ax = b.

2. Update. x := x∗(t).

3. Stopping criterion. QUIT if m/t < ε.

4. Increase t. t := µt.

If I pick σ = 1, I’m heading towards the central path (with zero duality gap).
If I pick σ = 0, I’m heading towards the optimum (with zero duality gap). But
another thing you can do is try the predictor-corrector method, where you keep
alternating your σ between 1 and 0. There is a way to matrix factor to do both
steps at once. You can solve DE’s using predictor-corrector12.

The number of iterations for interior point methods is (largely) independent
of dimension. This is very different if you use dual methods: the cost of iteration
is much less, but the number of iterations grows.

17.4 Generalized Inequalities

We assume that we have a family fi(x) �K 0 of K-convex functions.

17.5 Log Barrier and Central Path

17.5.1 Dual points on Central Path

17.6 Example: Semi-Definite Programming

In the constraints

F (x) =
n∑

i=1

xiFi +G � 0

the portion
∑n

i=1 xiFi is our A∗(x). So ,w ehave C = −G, and we can rewrite
it in the form

A∗(x) � C.

So, I would look at log det(C − A∗(x)). Differentiating is a little more compli-
cated.

Our central path: x∗(t) minimize tcTx− log det(−F (x)), hence

tci − tr(F − iF (x∗(t))−1) = 0, i = 1, . . . , n

The duality gap on the central path:

cTx∗(t)− tr(GZ∗(t)) = p/t.

12I’m tiring out. I usually tire out when people aren’t listening to me.

74

Algorithm (Barrier Method for SDP)

Given strictly feasibly x, t := t(0) > 0, µ > 1 and a tolerance ε > 0, repeat:

1. Centering step. Compute x∗(t) by minimizing tf0 + φ subject to Ax = b.

2. Update. x := x∗(t).

3. Stopping criterion. QUIT if (
∑

i θi) /t < ε.

4. Increase t. t := µt.

The only difference is the stopping criteria.

18 Student Presentation: Solutions for Infinite
Dimensional Problems

Our problem is the best convex interpolation problem, which is an infinite di-
mensional problem. In our problem,

f : X → R

defined by

x 7→ 1
2
〈x, x〉

is our objective. We have ψi ∈ X = L2[0, 1] are the constraint functions.
Given x̂ ∈ S and ψ1, . . . , ψn, we want to find an element x∗ ∈ S such that

〈x∗, ψi〉 = 〈x̂, ψi〉, and x � 0. This lets us write Ax = b and x ∈ S. Our
minimization problem is

min f(x)
s.t. Ax = b, x ∈ S

We have Q = {x ∈ X : Ax = b} is a closed affine variety, hence convex. S is
a closed convex cone. S has empty interior (if we take a non-negative function
in L2 and we take an ε-interval of it, by shrinking this interval, we can get these
two functions as close as we wish), and f is convex. Thus , Q ∩ S is a closed
convex set, and F attains its minimum at a unique x.

18.1 A related problem

First what we did was we looked at this problem where we drop the non-
negativity constraint:

Minimize

f(x) =
1
2

∫ 1

0

x2(t)dt

over the class of functions Q (x is not neccessarily positive). So, then we have
the theorem:

75

Theorem 18.1. Suppose that the Gram matrix Y of the constraint functions ψi

given by F = {〈ψi, ψj〉}ni,j=1 is nonsingular. Then there is a unique minimizer
x(t) =

∑n
i=1 λiψi(t) of the functional f in the admissible set Q, where the

constant vector λ = (λ1, . . . , λn)T is given by the formula

λ = Y −1b

The minimal value of ...

In the proof, we use the methods of calculus of varations.

Proof. Assume that x is the minimizer of f . Construct a variation x + τv +
y1(τ)ψ1 + · · ·+ yn(τ)ψn ∈ Q of the minimizer x.

The problem is that A of the variation x+ εv will not be b anymore.
We derive a necessary condition on x using the equality

d

dτ
f(...)|τ=0 = 0

From the necessary condition, find x and λ.

Remark: If x(t) turns out to be nonnegative almost everywhere, then it mini-
mizes f over the set Q ∩ S.

Now, what if we don’t drop this non-negativity constraint?

Lemma 18.2. Consider the optimization problem

min f(x)

s.t. x ∈ Q+ =
{
x ∈ L2[0, 1] :

∫ 1

0
ψ(t)x(t) dt = b, x ≥ 0

}
with 0 6= ψ ...

18.1.1 Example: Orthonormal constraint functions

18.2 The Dual Problem

From this part, we need a constraint qualification, which is a different than the
one we’ve seen lately. Why? Our cone’s interior is empty. There are several
possibilities for our CQ, one is the Borwein-Lewis CQ. In our problem, this
condition is translated to asxing for a feasible x where x > 0 ...

The Lagrangian L : X × Rn × S → R is

L(x, λ, w) =
1
2
〈x, x〉+ 〈λ,Ax− b〉 − 〈w, x〉

Then, our primal problem becomes

p∗ = min
u

max
λ;w∈S

L(u, λ, w)

76

The dual problem is
d∗ = max

λ;w∈S
min

u
L(u, λ, w)

Differentiating by x, we have

∇xL(x, λ, w) = x−A∗λ− w = 0

We will derive KKT-type equations. First, primal feasibility is

x = A∗λ+ w,w ∈ S

From dual feasibility
Ax = b, x ∈ S

and complementary slackness is

〈w, x〉 = 0.

Then, 〈x − A∗λ, x〉 = 0 therefore x = (A∗λ)+ is the unique solution to the
problem, where A

(
(A∗λ)+

)
= b.

18.3 The way we did it

We looked at the Lagrangian

L(x, λ) =
∫ 1

0

(
1
2
|x(t)|2 − x(t)

n∑
i=1

λiψi(t)

)
dt+

n∑
i=1

λibi, x ∈ S

Now our dual problem is

d∗ = max
λ

g(λ)

So our optimality condition is

∇xL(x, λ) ∈ (S − x)+

where A+ denotes the polar set of A. Equivalently,

〈∇xL(x, λ), y − x〉 ≥ 0, ∀ y ∈ S.

Our candidate for w will be x−A∗λ. Then, I need to show that w ∈ S and
that 〈w, x〉 = 0.

19 Portfolio Optimization

We have the problem:

min xTSx variance / rank of portfolio

77

0 ≤ x ∈ Rn. Let xi represent the percent of the budget that goes into asset
i. We have eTx = 1 and pTx ≥ rmin (the lower bound on the expected return).

Let x[i] be the ordered vector by magnitude. Let

fr(x) =
r∑

i=1

x[i] 1 ≤ r ≤ n sum of r largest values.

The constraint fr(x) ≤ α is a convex constraint since it is equivalent to the
set of constraints

r∑
k=1

xik
≤ α, ∀ 1 < i1 < i2 < · · · < ir ≤ n.

If we sum up these, we have a nice collection of linear constraints, so we have a
polyhedral region. In particular, this gives a convex set.

These are a lot of constraints, and we really don’t want to write them all
down. So we want to see if we can do something else. We consider the knapsack
problem. If I have a vector x, and somebody says “Find the largest r compo-
nents”, we can think of these things with weights, and you have a knapsack.
We have to decide how many of these things (up to r of them) can fit in our
knapsack. We can think of the xi’s as being a value for each package:

• Consider xi as a value for package i.

• Choose r packages to go into the knapsack.

• We want to maximize the value:

max xT y (value in knapsack)
s.t. eT y = r

y ≤ e
y ≥ 0

If y ends up being a 0/1 variable, then we’ve solved this problem. This is a
linear program. Complementary slackness tells you that each y coordinate has
to be either 0 or 1 (the inequalities must hold with equality at a vertex point).
Another way to see this is that the matrix defining the polyhedron is totally
unimodular. Because each invertible determinant is ±1, this is what we divide
by in our inverse matrix problem to find the coordinates of our vertex. Thus,
every vertex is integral.

Let’s cal this problem the primal LP. Then, the dual coefficients are going
to come from the right hand side. We’re going to get a minimization problem.
(The dual variable to the first constraints will be t (free) and the dual variable
to the second constraints will be u ≥ 0.) The dual problem is:

min rt+ eTu

s.t. te+ Iu ≥ x
u ≥ 0
t free

78

To set our α, we simply do

min rt+ eTu ≤ α
s.t. te+ Iu ≥ x

u ≥ 0
t free

20 Student Presentation: Ill-posed Problems

Our goal is to recover the function

xexact(t) =
{

atnohueaont
aeouaotnehunah

With the kernel function

20.1 Optimization problem

We look for the solution of Gx = d with iminimal norm N(x) = 1
2‖x‖

2.
From the Lagrangian

L(x, λ) =
1
2
‖x‖2 + λT (d−Gx)

we get the optimality conditions:
These conditions are satisfied by

GG∗λ = d

and

x = G∗λ =
m∑

k=1

λkgk

where
GG∗ : Rm → Rm.

We have reduced the inifinite dimensional optimization problem to solving
a system of m linear equations:

GG∗λ = d.

Because the gk are linearly independent, the GG∗ is invertible and we get
the unique solution x = G+d. GG∗ is the m × m Gram matrix for the inner
product 〈·, ·〉 of the gi’s. Here,

〈gi, gj〉 = · · · .

If we choose m = 9 and c = 1, we get a certain reconstruction x∗, and
‖xexact‖2 = 0.25 and ‖x∗‖2 = 0.22.

79

20.2 Perturbed data

What if we have noise in our data? We assume we have measurement noise. In
real experiments, the measurements d are usually contaminated with noise:

d̂k =
∫ 1

0

gk(t)xexact(t) dt+ nk, k = 1, . . . ,m

where we assume the nk to be independent Gaussians.
Using the noisy data, we get a solution where ‖x∗‖2 = 2372.9, compared to

‖x∗‖2 = 0.22. This is not a very good solution, and this approach does not work
with noise in our data. We have to come up with some kind of regularization
so that we can still come up with some kind of reasonable solution to this data.

The reason for the bad reconstruction is due to the condition number of GG∗,
specifically, 3.5176× 1011. This ill-conditioning results from the fact thatG is a
compact integral operator and has unbounded inverse.

Let’s assume we have a linear operator G : X → Y and we want to find a
solution x to the problem

Gx = d.

Since we don’t have the exact data, we’re solving the problem

Gx = d̃.

Because of infeasibility, we’re really going to look at the least squares

‖Gx− d‖

We look at the Moore-Penrose Inverse x = G+d. We look for the solution
of Gx = d̃ with minimum norm. We have the singular value decomposition
{σi, Ui, Vi} of G where σi are the eigenvalues of GG∗ (or G∗G). Ui is the
orthonormal system of eigen vectors of G∗G and Vi is the orthonormal system
of eigenvecotrs for GG∗. Then,

x =
∑
〈d̃, vi〉ui

σi

=
∑
〈d, vi〉ui

σi
+
∑
〈n, vi〉ui

σi

We look at the Tikhonov Regularization:

x =
σi

∑
〈d̃, vi〉ui

σ2
i

xα =
σi

∑
〈d̃, vi〉ui

σ2
i + α2

80

In this case, α = 1
µ .

We want to minimize

min
1
2
‖x‖+µ

2
‖Gx− d̂‖2S−1

where
S = diag(· · ·).

20.3 Experiments

We solved this for several parameter values µ. How do we choose an optimal
value of µ? For different µ, we either put more weight on decreasing the residue
or decreasing ‖x‖.

To understand the influence of the regularization parameter µ on the solu-
tion, we can plot a tradeoff curve

(E(xµ), N(xµ)) .

How do we find the best µ? Let’s minimize

min
µ≥0

E(xµ)2 +N(xµ)2

We computed the optimal µ to be µopt = 1.5442. This is the best we can do
with our limited information. If you had a priori information, then maybe we
could do more. But in our case, we don’t know about the noise, so this is the
best that we can do.

21 Student Presentation: Quadratically Constrained
Quadratic Programs (QQP) and its Semi-
definite Relaxation

The problem is

min g0(x) = 1
2x

TQ0x+ bT0 x

s.t. 1
2x

TQix+ bTi x+ αi ≤ 0, i = 1, . . . , n

If we have Q0 � 0 and Qi � 0, (i = 1, . . . , n) then we know what to do.
What happens when we don’t have these conditions? We will form an SDP
relaxation and find a lower bound to the original problem.

To reach the relaxation, we apply a trick here. Add x0:

min g0(x) = 1
2x

TQ0x+ bT0 xx0

s.t. 1
2x

TQix+ bTi xx0 + αi ≤ 0, i = 1, . . . , n
x2

0 = 1

81

and a new constraint x2
0 = 1. So, this has not changed anything. This is what

we call the modified original problem. We can write this in matrices as follows:

min
[
x0

x

]T [0 1
2b

T
0

1
2b0

1
2Q0

] [
x0

x

]
with the constraint:

min
[
x0

x

]T [
αi

1
2b

T
i

1
2bi

1
2Qi

] [
x0

x

]
� 0 (21)

and

min
[
x0

x

]T [1 0
0 0

] [
x0

x

]
= 1 (22)

I will set up multipliers λi for (21) and t for (22). Then, we have the
Lagrangian:

L(x, λ, t) = λTB0X +
∑

λiX
TBiX + t(xTMX − 1), (23)

where

B0 =
[

0 1
2b

T
0

1
2b0

1
2Q0

]
Bi =

[
αi

1
2b

T
i

1
2bi

1
2Qi

]
(i = 1, . . . , n)

M =
[

1 0
0 0

]
Thus,

d∗ = max
λ;t

min
x

(
XT

(
B0 +

∑
λiBI + tM

)
X
)
− t

So, our hidden constraint is B0 +
∑
λiBI + tM � 0.

We have

d∗SDP = max
λ≥0;t

−t : B0 +
∑

λiBi + tM � 0, X ∈ Sn

So

p∗SDP = min〈B0, X〉 : 〈M,X〉 = 1, 〈Bi, X〉 � 0, (i = 1, . . . , n), X � 0

We also know that
p∗ ≥ d∗SDP = p∗SDP (24)

So, we have strong duality as long as we have a feasible point. In the first
inequality of (24), we will have strong duality in the case of convexity if we have
a constraint qualification.

When we have a convex program, MOSEK will give us p∗ and SeDuMi will
give us p∗SDP , and they will be the same. When we don’t have convexity, we
don’t get an answer from MOSEK, but we get p∗SDP , a lower bound for the
original problem.

82

22 Student Presentation: Portfolio Diversity and
Robustness

Let S be the covariance matrix and r a return vector. Then, the classic model
is

min xTSx

s.t. x ≥ 0, 1Tx = 1, rTx ≥ rmin

We can solve this via the KKT conditions.
Recall the efficient frontier. Recall that we want to minimize the risky assets.

If we fix our stdev, we want to maximize our mean.
Like in the Markowitz model, we talked about extensions. One of our ex-

tensions is diversity. We added diversity via a constraint. What we addressed
in our project is to change that constraint into an `1 or an `2 model.

Why is diversity important? We want to diversify our risk. If we want to
talk about idosyncratic risk, we think about an Enron situation. Everybody
thought, because it was a blue chip stock, all employees put their money in
there. But look what happened: they lost all that they have. Maybe I don’t
want to put all of my eggs in one basket. We want to diversify placement of our
assets.

Most of our project was to look at robustness. This requires looking at the
objective function.

Our estimator is not perfect.
Another issue is that even with a perfect estimator, why is that useful in-

formation? We’re not allowed to invest in the past. How’s to say that this is
representative of what happens moving forward?

min xTSx

s.t. x ≥ 0,
1Tx = 1,
rTx ≥ rmin∑0.1n

i=1 x[i] ≤ α

Now, we think of adding an `2-norm constraint:

min xTSx

s.t. x ≥ 0,
1Tx = 1,
rTx ≥ rmin∑0.1n

i=1 x[i] ≤ α
‖x‖2 ≤ u

83

After you add `2-norm constraints, there are more coordinates that jump
away from zero. This will increase the diversity of your portfolio. For different
u, we can look at the number of non-zero weightings in our optimal solution.
As u increases, this number decreases. After u = 0.32, this number is quite
stationary. This is because beyond this, the ‖x‖2 ≤ u condition is essentially
inactive. Conversely, when you decrease u, this number increases, increasing
the diversity. Thus `2-norm can help us increase the diversity.

Here, we can also look at on `1-norm constraint:

min xTSx

s.t. −1 ≤ q ≤ 1
rTx ≥ rmin∑0.1n

i=1 x[i] ≤ α
‖x‖1 ≤ u

You might think that you’d get similar results to `2, but this is not the case.
In fact, you have the exact opposite: as you increase u, the number of nonzero
weightings increases, (but stabilizes to 25 after u = 3.

22.1 Robust Optimization

The classic model again is

min xTSx

s.t. x ≥ 0,
1Tx = 1,
rTx ≥ rmin

In robust optimization, we want to let r vary (i.e., adding infinitely many
constraints). The value r is going to vary in the set E. For what kind of convex
sets E can we solve this problem? If E is an ellipsoid, then we can reformulate
it by this robust model:

min xTSx

s.t. x ≥ 0,
1Tx = 1,
rTx ≥ rmin

r ∈ E = {r + Pu : ‖u‖2 ≤ 1}

where E is an ellipsoid.
We look at the family of constraints:

rTx ≥ rmin, r ∈ E = {r + Pu : ‖u‖2 ≤ 1}

We can get a new robust model.
Recall that we have our two representations for ellipsoids.

84

22.2 Random Matrix Theory

RMT is based on principal component analysis. The idea is to find the direction
of the largest eigenvalue: this λ is interpreted as the broad market effect on the
estimated S.

Our eigenvalue information is wrought from spectral decomposition. We
perturb only the largest eigenvector: After we decompose S into eigenvalues
and eigenvectors, we recompose S, and we take the stress matrix. We can give
a random matrix reformulation.

85

