
Problem Set-up
Solving Using SeDumi

Improving the Implementation and Results

Semidefinite relaxation of the max-cut problem

A. Dudek, K. Ghobadi, E. Kim, S. Lin, R. Spjut, J. Zhu

MSRI Workshop on Continuous Optimization and its Applications

July 17, 2007

1



Problem Set-up
Solving Using SeDumi

Improving the Implementation and Results

Outline

1 Problem Set-up
Problem Statement and Background
Reformulation and Relaxation
Setting up an Instance

2 Solving Using SeDumi
SeDumi Input Format
Basic Relaxation: Setting up the Input to SeDumi
Basic Relaxation: Numerical Results

3 Improving the Implementation and Results
Strengthening the Relaxation: Triangle Inequalities
Strengthening the Relaxation: Quadruple Equalities

2



Problem Set-up
Solving Using SeDumi

Improving the Implementation and Results

Problem Statement and Background
Reformulation and Relaxation
Setting up an Instance

Project Statement

Problem
Find the SDP relaxation of the Max-Cut problem:

1 Solve this relaxation using e.g. SeDumi with MATLAB.
2 Use randomly generated, weighted, undirected graphs,

e.g. W=sprandsym(60,.5).
3 Can you strengthen the relaxation by adding additional

constraints? (Hint: consider constraints of the type
xix2

k xj = xixj .)

Let G = (V , E) be a graph and let w : E → R be an edge
weight function on G and set n = |V |.
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A Review of Max-cut

wij :=

{
w((i , j)) if (i , j) ∈ E

0 otherwise

Let W =
(
wij
)
, the matrix whose ij-th entry is wij .

A cut is a partition of V into two sets C ⊂ V and V \ C. Its
size is

s(C) :=
∑

i∈C,j∈V\C

wij

A cut C is maximal if ∀ C̃ ∈ 2V , s(C) ≥ s(C̃)

Max-Cut Problem
For a weighted graph (V , E , w) find a maximal cut C.

Remark
The Max-Cut problem is NP-hard.
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Reformulation of Max-Cut Problem

We reforumlate the Max-Cut problem:

Problem: Reformulation of Max-Cut Problem
Given any cut C, define

x := (x1, . . . , xn)
T , xi :=

{
1 i ∈ C
−1 i 6∈ C

Maximize t = 1
2
∑

i<j wij(1− xixj)

subject to xi ∈ {−1, 1} ∀ i ∈ V .

Let e := (1, 1, . . . , 1)T , where e ∈ Rn.

L :=
1
4

(Diag(We)−W ) .
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Reformulation of Max-Cut Problem
Some Equalities for t

Skip long string of equalities for t

t =
1
2

∑
i<j

wij(1− xixj) =
1
4

2

∑
i<j

wij

− 2

∑
i<j

wijxixj


=

1
4

2

∑
i<j

wijx2
i

+

(∑
i

wii − wii

)
− 2

∑
i<j

wijxixj


=

1
4

∑
i

∑
j

wijx2
i

−

∑
i

∑
j

wijxixj


=

1
4

∑
i

∑
j

wij

 x2
i

− xT Wx

 =
1
4

((∑
i

(We)ix2
i

)
− xT Wx

)

=
1
4
(
xT Diag(We)x − xT Wx

)
= xT Lx
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Reformulation and Relaxation of Max-Cut Problem

t = xT Lx = trace(xT Lx) = trace(xT (Lx)) = trace((Lx)xT ) =

trace(LX ) = L • X , where X = xxT is a real symmetric
matrix, =⇒ X � 0.
diag(X ) = e ⇐⇒ x2

i = 1 ⇐⇒ xi ∈ {−1, 1}.

Lemma

X = X T � 0, rank(X ) = 1 ⇐⇒ X = xxT

W is the edge-weight matrix L = 1
4 (Diag(We)−W ) 

Problem: Equivalent Reformulation of Max-Cut Problem

Maximize L • X
subject to diag(X ) = e, rank(X ) = 1, and X � 0.

7
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Setting up an Instance

We setup an instance of the Max-Cut problem in MATLAB with
the following code:

% Fix the dimension (number of vertices in graph)
n=60;

% Generate a weighted graph
W=sprandsym(n,.5); W(1:n+1:n^2)=zeros(1,n);

% Calculate the Laplacian
L=1/4 * (diag(W*ones(n,1))-W);
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Interfacing with SeDumi

To be consistent with the notation of SeDumi’s documentation
and interface, substitute “x” for “z”. The SeDumi primal form is

Minimize cT z
subject to Az = b, for z ∈ K

where c, z, b ∈ Rp, and A is a p × p matrix. In MATLAB,

c=-L(:); % Format the Laplacian to vector form

% Translate constraint diag(X)=e into vector format:
A=sparse(1:n,1:n+1:n^2,ones(1,n),n,n^2);
b=ones(n,1);

% Tell SeDumi that X must be positive semidefinite
K.s=[n];

[X,Y,INFO] = sedumi(A,b,c,K) % Run SeDumi

9
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Interfacing with SeDumi
A visual summary of Az = b

4 Solving using SeDumi

To be consistent with the notation of SeDumi’s documentation and interface, substitute “x” for “z” in our analysis here. The
SeDumi primal form is

minimize cT z
subject to Az = b, for z ∈ K

where c, z, b ∈ Rp, and A is a p× p matrix.
Input 5.2 into the SeDumi primal form as follows:

% Format the Laplacian to vector form:
c=-L(:);

% Translate constraint diag(X)=e into vector format:
A=sparse(1:n,1:n+1:n^2,ones(1,n),n,n^2);
b=ones(n,1);

% Tell SeDumi that X must be positive semidefinite
K.s=[n];

% Run SeDumi
[X,Y,INFO] = sedumi(A,b,c,K)

It may help to visualize the constraint:
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Numerical Results: Basic Relaxation G
(
n, 1

2

)
n Ratio

50 6.292239e-01
60 6.202113e-01
70 6.067923e-01
80 6.074731e-01
90 5.980219e-01

100 5.894269e-01
110 5.849831e-01
120 5.837704e-01
130 5.793048e-01
140 5.777026e-01
150 5.749815e-01
160 5.715093e-01
170 5.702395e-01
180 5.686022e-01
190 5.675917e-01
200 5.654331e-01
250 5.591398e-01
300 5.538571e-01
350 5.506719e-01
400 5.472742e-01
450 5.441005e-01
500 5.422019e-01
600 5.390324e-01
700 5.359528e-01
800 5.337012e-01
900 5.320470e-01

1000 5.303538e-01
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Triangle Inequalities

An idea proposed by Poljak and Rendl (1995), and further
developed by Helmberg, Rendl, Vanderbei and Wolkowicz
(1996):

For each triple, xi , xj , xk ∈ {−1, 1} we have

xij + xjk + xki ≥ −1 (1)
xij − xjk − xki ≥ −1 (2)

−xij + xjk − xki ≥ −1 (3)
−xij − xjk + xki ≥ −1. (4)

With (1)-(4), we have the strengthened SDP relaxation:

Problem: Strengthened Relaxation of Max-Cut Problem

Maximize L • X
subject to diag(X ) = e, X � 0, and (1)− (4).
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Triangle Inequalities
Replacing Inequalities (1)-(4) with Equalities for SeDumi’s Input Format

Introduce slack variables sijk` ≥ 0 to get equalities for SeDumi.

xij + xjk + xki − sijk1 = −1
xij − xjk − xki − sijk2 = −1

−xij + xjk − xki − sijk3 = −1
−xij − xjk + xki − sijk4 = −1

Considering (1)-(4) when a pair of i , j , k are the same is
redundant.
So we are concerned with “only” N := 2n(n − 1)(n − 2)/3
slack variables.
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Triangle Inequalities
A visual summary of Az = b

It may help to visualize the constraint:
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5.1.1 Justification

5.2 Quadruple equality

Notice that for each quadruple xi, xj , xj , xk ∈ {−1, 1} we have the following equality:

xixjxjxk = xix
2
jxk = xixk.

With this constraint, we have the following semi-definite relaxation of the max-cut problem:

Problem 5.2 (Strengthened Relaxation of Max-Cut Problem) Given G,

maximize L • X
subject to diag(X) = e,X # 0, andxijxjk = xik.

insert commented code here

5.2.1 Justification

6
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Numerical Results: Triangle Relaxation G
(
n, 1

2

)
n Ratio 1 Ratio 2
5 7.142857e-01 7.142857e-01
6 7.500000e-01 7.500000e-01
7 7.177745e-01 6.875000e-01
8 7.417858e-01 7.368421e-01
9 7.570369e-01 7.272727e-01
10 6.978259e-01 6.709667e-01
11 7.433614e-01 7.241379e-01
12 6.845083e-01 6.808511e-01
13 6.986989e-01 6.862745e-01
14 6.655176e-01 6.615384e-01
15 6.613215e-01 6.433655e-01

15



Problem Set-up
Solving Using SeDumi

Improving the Implementation and Results

Strengthening the Relaxation: Triangle Inequalities
Strengthening the Relaxation: Quadruple Equalities

Quadruple Equalities

An idea of Goemans developed by Anjos and Wolkowicz
(2002):

For each quadruple xi , xj , xj , xk ∈ {−1, 1} we have:

xixjxjxk = xix2
j xk = xixk . (5)

With (5), we have the SDP formulation:

Problem: An Equivalent Formulation of Max-Cut Problem

Maximize L • X
subject to diag(X ) = e, X � 0, and xijxjk = xik .
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Second lifting/relaxation

After lifting

Y =
[

y yT
]
, where y = vec(X )

We have the max-cut problem:

Maximize
[

L 0
0 0

]
• Y = L • Y11

subject to diag(Y ) = e (S1)
Y � 0 (S2)
Y11 = Yii ∀i = 2, . . . , n (S3)
diag(Yij) = Y (i,j)

ii e (S4)
Yijej = Y11ei ∀j = 2, . . . n, i < j (S5)
rank(Y ) = 1. (S6)

Theorem
The second lifting relaxation provides a tighter upper bound.
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Tighter Upper Bound Theorem

Suppose that X ∗ is an optimal solution to the first lifting
relaxation.

If Rank(X ∗) = 1, then we have the optimal solution to the
original max-cut problem.
If Rank(X ∗) > 1, we will show that after lifting X ∗ to
Y = (yyT ), where y = vec X ∗, Y is not feasible to the
second relaxation.

By contradiction, we assume that Y is feasible to the second
relaxation, then it satisfies (S4) and (S5), which implies that
X∗

ik X∗
kj = X∗

ij for all i, j, k .
Hence, X∗ = xxT , where x = (X∗

1k , X∗
2k , · · · , X∗

nk ), which
contradicts Rank X∗ > 1.
Therefore, Y is not feasible to the second lifting relaxation.

On the other hand, if Y is feasible to the second lifting
relaxation, by (S1) and (S2), diag(Y11) = e and Y11 � 0.
Then, Y11 is feasible to the first lifting relaxation. �
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Numerical Results: Comparison of Algorithms

Comparison of Algorithm Performance

relaxation n=4 n = 6 n = 8 n = 10
SDP 2.00000000 6.43225787 9.52050490 17.0875592
TRI 1.99999999 5.99999995 8.99999986 16.9999998
QUAD 1.99999999 5.99999988 8.99999900 16.9999996

19



Problem Set-up
Solving Using SeDumi

Improving the Implementation and Results

Strengthening the Relaxation: Triangle Inequalities
Strengthening the Relaxation: Quadruple Equalities

Thanks!!

Thanks for your attention!

Semidefinite relaxation of the max-cut problem

A. Dudek, K. Ghobadi, E. Kim, S. Lin, R. Spjut, J. Zhu

MSRI Workshop on Continuous Optimization and its Applications

July 17, 2007
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