Semidefinite relaxation of the max-cut problem

A. Dudek, K. Ghobadi, E. Kim, S. Lin, R. Spjut, J. Zhu

MSRI Workshop on Continuous Optimization and its Applications

July 17, 2007

Outline

Problem Set-up

- Problem Statement and Background
- Reformulation and Relaxation
- Setting up an Instance
- 2 Solving Using SeDumi
 - SeDumi Input Format
 - Basic Relaxation: Setting up the Input to SeDumi
 - Basic Relaxation: Numerical Results

Improving the Implementation and Results

- Strengthening the Relaxation: Triangle Inequalities
- Strengthening the Relaxation: Quadruple Equalities

Problem Statement and Background Reformulation and Relaxation Setting up an Instance

Project Statement

Problem

Find the SDP relaxation of the Max-Cut problem:

- Solve this relaxation using e.g. SeDumi with MATLAB.
- Use randomly generated, weighted, undirected graphs,
 e.g. W=sprandsym(60,.5).
- Can you strengthen the relaxation by adding additional constraints? (Hint: consider constraints of the type x_ix_k²x_j = x_ix_j.)

Let G = (V, E) be a graph and let $w : E \to \mathbb{R}$ be an edge weight function on G and set n = |V|.

Problem Statement and Background Reformulation and Relaxation Setting up an Instance

Project Statement

Problem

Find the SDP relaxation of the Max-Cut problem:

- Solve this relaxation using e.g. SeDumi with MATLAB.
- Use randomly generated, weighted, undirected graphs,
 e.g. W=sprandsym(60,.5).
- Can you strengthen the relaxation by adding additional constraints? (Hint: consider constraints of the type x_ix_k²x_j = x_ix_j.)

Let G = (V, E) be a graph and let $w : E \to \mathbb{R}$ be an edge weight function on *G* and set n = |V|.

Problem Statement and Background Reformulation and Relaxation Setting up an Instance

A Review of Max-cut

$$w_{ij} := \left\{ egin{array}{cc} w((i,j)) & ext{if } (i,j) \in E \ 0 & ext{otherwise} \end{array}
ight.$$

• Let $W = (w_{ij})$, the matrix whose ij-th entry is w_{ij} .

A cut is a partition of V into two sets C ⊂ V and V \ C. Its size is

$$s(C) := \sum_{i \in C, j \in V \setminus C} w_{ij}$$

• A cut C is maximal if $\forall \ \tilde{C} \in 2^V, s(C) \ge s(\tilde{C})$

Max-Cut Problem

For a weighted graph (V, E, w) find a maximal cut C.

Remark

Problem Statement and Background Reformulation and Relaxation Setting up an Instance

A Review of Max-cut

$$w_{ij} := \left\{egin{array}{cc} w((i,j)) & ext{if } (i,j) \in E \ 0 & ext{otherwise} \end{array}
ight.$$

• Let $W = (w_{ij})$, the matrix whose ij-th entry is w_{ij} .

A cut is a partition of V into two sets C ⊂ V and V \ C. Its size is

$$s(C) := \sum_{i \in C, j \in V \setminus C} w_{ij}$$

• A cut C is maximal if $\forall \ \tilde{C} \in 2^V, s(C) \ge s(\tilde{C})$

Max-Cut Problem

For a weighted graph (V, E, w) find a maximal cut C.

Remark

Problem Statement and Background Reformulation and Relaxation Setting up an Instance

A Review of Max-cut

$$w_{ij} := \left\{egin{array}{cc} w((i,j)) & ext{if } (i,j) \in E \ 0 & ext{otherwise} \end{array}
ight.$$

• Let $W = (w_{ij})$, the matrix whose ij-th entry is w_{ij} .

A cut is a partition of V into two sets C ⊂ V and V \ C. Its size is

$$s(C) := \sum_{i \in C, j \in V \setminus C} w_{ij}$$

• A cut C is maximal if $\forall \ \tilde{C} \in 2^V, s(C) \ge s(\tilde{C})$

Max-Cut Problem

For a weighted graph (V, E, w) find a maximal cut C.

Remark

Problem Statement and Background Reformulation and Relaxation Setting up an Instance

A Review of Max-cut

$$w_{ij} := \left\{egin{array}{cc} w((i,j)) & ext{if } (i,j) \in E \ 0 & ext{otherwise} \end{array}
ight.$$

• Let $W = (w_{ij})$, the matrix whose ij-th entry is w_{ij} .

A cut is a partition of V into two sets C ⊂ V and V \ C. Its size is

$$s(C) := \sum_{i \in C, j \in V \setminus C} w_{ij}$$

• A cut C is maximal if $\forall \ \tilde{C} \in 2^V, s(C) \ge s(\tilde{C})$

Max-Cut Problem

For a weighted graph (V, E, w) find a maximal cut C.

Remark

Problem Statement and Background Reformulation and Relaxation Setting up an Instance

A Review of Max-cut

$$w_{ij} := \left\{egin{array}{cc} w((i,j)) & ext{if } (i,j) \in E \ 0 & ext{otherwise} \end{array}
ight.$$

• Let $W = (w_{ij})$, the matrix whose ij-th entry is w_{ij} .

A cut is a partition of V into two sets C ⊂ V and V \ C. Its size is

$$s(C) := \sum_{i \in C, j \in V \setminus C} w_{ij}$$

• A cut C is maximal if $\forall \ \tilde{C} \in 2^{V}, s(C) \geq s(\tilde{C})$

Max-Cut Problem

For a weighted graph (V, E, w) find a maximal cut C.

Remark

Problem Statement and Background Reformulation and Relaxation Setting up an Instance

A Review of Max-cut

$$w_{ij} := \left\{egin{array}{cc} w((i,j)) & ext{if } (i,j) \in E \ 0 & ext{otherwise} \end{array}
ight.$$

• Let $W = (w_{ij})$, the matrix whose ij-th entry is w_{ij} .

A cut is a partition of V into two sets C ⊂ V and V \ C. Its size is

$$s(C) := \sum_{i \in C, j \in V \setminus C} w_{ij}$$

• A cut C is maximal if $\forall \ \tilde{C} \in 2^{V}, s(C) \geq s(\tilde{C})$

Max-Cut Problem

For a weighted graph (V, E, w) find a maximal cut C.

Remark

Problem Statement and Background Reformulation and Relaxation Setting up an Instance

Reformulation of Max-Cut Problem

We reforumlate the Max-Cut problem:

blem: Reformulation of Max-Cut Problem ven any cut *C*, define $x := (x_1, \dots, x_n)^T, \ x_i := \begin{cases} 1 & i \in C \\ -1 & i \notin C \end{cases}$

> Maximize $t = \frac{1}{2} \sum_{i < j} w_{ij} (1 - x_i x_j)$ subject to $x_i \in \{-1, 1\} \forall i \in V.$

Let $e := (1, 1, \ldots, 1)^T$, where $e \in \mathbb{R}^n$.

$$L:=\frac{1}{4}\left(\text{Diag}(\text{We})-\text{W}\right).$$

Problem Statement and Background Reformulation and Relaxation Setting up an Instance

Reformulation of Max-Cut Problem

We reforumlate the Max-Cut problem:

Problem: Reformulation of Max-Cut Problem

Given any cut C, define

$$x := (x_1, \ldots, x_n)^T, \quad x_i := \begin{cases} 1 & i \in C \\ -1 & i \notin C \end{cases}$$

Maximize $t = \frac{1}{2} \sum_{i < j} w_{ij} (1 - x_i x_j)$ subject to $x_i \in \{-1, 1\} \quad \forall i \in V.$

Let $e := (1, 1, ..., 1)^T$, where $e \in \mathbb{R}^n$.

$$L:=\frac{1}{4}\left(\text{Diag}(\text{We})-\text{W}\right).$$

Problem Statement and Background Reformulation and Relaxation Setting up an Instance

Reformulation of Max-Cut Problem

We reforumlate the Max-Cut problem:

Problem: Reformulation of Max-Cut Problem

Given any cut C, define

$$x := (x_1, \ldots, x_n)^T, \quad x_i := \begin{cases} 1 & i \in C \\ -1 & i \notin C \end{cases}$$

Maximize
$$t = \frac{1}{2} \sum_{i < j} w_{ij} (1 - x_i x_j)$$

subject to $x_i \in \{-1, 1\} \forall i \in V$.

Let $e := (1, 1, ..., 1)^T$, where $e \in \mathbb{R}^n$.

$$L:=\frac{1}{4}\left(\text{Diag}(\text{We})-\text{W}\right).$$

Problem Statement and Background Reformulation and Relaxation Setting up an Instance

Reformulation of Max-Cut Problem

We reforumlate the Max-Cut problem:

Problem: Reformulation of Max-Cut Problem

Given any cut C, define

$$x := (x_1, \ldots, x_n)^T, \quad x_i := \begin{cases} 1 & i \in C \\ -1 & i \notin C \end{cases}$$

Maximize
$$t = \frac{1}{2} \sum_{i < j} w_{ij}(1 - x_i x_j)$$

subject to $x_i \in \{-1, 1\} \quad \forall i \in V.$

Let $\boldsymbol{e} := (1, 1, \dots, 1)^T$, where $\boldsymbol{e} \in \mathbb{R}^n$.

$$L:=\frac{1}{4}\left(\text{Diag}(\text{We})-\text{W}\right).$$

Problem Statement and Background Reformulation and Relaxation Setting up an Instance

Reformulation of Max-Cut Problem

We reforumlate the Max-Cut problem:

Problem: Reformulation of Max-Cut Problem

Given any cut C, define

$$x := (x_1, \ldots, x_n)^T, \quad x_i := \begin{cases} 1 & i \in C \\ -1 & i \notin C \end{cases}$$

Maximize
$$t = \frac{1}{2} \sum_{i < j} w_{ij}(1 - x_i x_j)$$

subject to $x_i \in \{-1, 1\} \quad \forall i \in V.$

Let $\boldsymbol{e} := (1, 1, \dots, 1)^T$, where $\boldsymbol{e} \in \mathbb{R}^n$.

$$L:=rac{1}{4}\left(\textit{Diag}(\textit{We})-\textit{W}
ight) .$$

Problem Statement and Background Reformulation and Relaxation Setting up an Instance

Reformulation of Max-Cut Problem Some Equalities for t

$$t = \frac{1}{2} \sum_{i < j} w_{ij} (1 - x_i x_j) = \frac{1}{4} \left(2 \left(\sum_{i < j} w_{ij} \right) - 2 \left(\sum_{i < j} w_{ij} x_i x_j \right) \right)$$

$$= \frac{1}{4} \left(2 \left(\sum_{i < j} w_{ij} x_i^2 \right) + \left(\sum_i w_{ii} - w_{ii} \right) - 2 \left(\sum_{i < j} w_{ij} x_i x_j \right) \right)$$

$$= \frac{1}{4} \left(\left(\sum_i \sum_j w_{ij} x_i^2 \right) - \left(\sum_i \sum_j w_{ij} x_i x_j \right) \right)$$

$$= \frac{1}{4} \left(\left(\sum_i \left(\sum_i w_{ij} \right) x_i^2 \right) - x^T W x \right) = \frac{1}{4} \left(\left(\sum_i (We)_i x_i^2 \right) - x^T W x \right)$$

$$= \frac{1}{4} \left(x^T Diag(We) x - x^T W x \right) = x^T L x$$

Problem Statement and Background Reformulation and Relaxation Setting up an Instance

Reformulation of Max-Cut Problem Some Equalities for t

$$t = \frac{1}{2} \sum_{i < j} w_{ij} (1 - x_i x_j) = \frac{1}{4} \left(2 \left(\sum_{i < j} w_{ij} \right) - 2 \left(\sum_{i < j} w_{ij} x_i x_j \right) \right)$$

$$= \frac{1}{4} \left(2 \left(\sum_{i < j} w_{ij} x_i^2 \right) + \left(\sum_i w_{ii} - w_{ii} \right) - 2 \left(\sum_{i < j} w_{ij} x_i x_j \right) \right)$$

$$= \frac{1}{4} \left(\left(\sum_i \sum_j w_{ij} x_i^2 \right) - \left(\sum_i \sum_j w_{ij} x_i x_j \right) \right)$$

$$= \frac{1}{4} \left(\left(\sum_i \left(\sum_i w_{ij} \right) x_i^2 \right) - x^T W x \right) = \frac{1}{4} \left(\left(\sum_i (We)_i x_i^2 \right) - x^T W x \right)$$

$$= \frac{1}{4} \left(x^T Diag(We) x - x^T W x \right) = x^T L x$$

Problem Statement and Background Reformulation and Relaxation Setting up an Instance

Reformulation of Max-Cut Problem Some Equalities for t

$$\begin{aligned} t &= \frac{1}{2} \sum_{i < j} w_{ij} (1 - x_i x_j) = \frac{1}{4} \left(2 \left(\sum_{i < j} w_{ij} \right) - 2 \left(\sum_{i < j} w_{ij} x_i x_j \right) \right) \\ &= \frac{1}{4} \left(2 \left(\sum_{i < j} w_{ij} x_i^2 \right) + \left(\sum_i w_{ii} - w_{ii} \right) - 2 \left(\sum_{i < j} w_{ij} x_i x_j \right) \right) \\ &= \frac{1}{4} \left(\left(\sum_i \sum_j w_{ij} x_i^2 \right) - \left(\sum_i \sum_j w_{ij} x_i x_j \right) \right) \\ &= \frac{1}{4} \left(\left(\sum_i \left(\sum_i w_{ij} \right) x_i^2 \right) - x^T W x \right) = \frac{1}{4} \left(\left(\sum_i (We)_i x_i^2 \right) - x^T W x \right) \\ &= \frac{1}{4} \left(x^T Diag(We) x - x^T W x \right) = x^T L x \end{aligned}$$

Problem Statement and Background Reformulation and Relaxation Setting up an Instance

Reformulation of Max-Cut Problem Some Equalities for t

$$t = \frac{1}{2} \sum_{i < j} w_{ij} (1 - x_i x_j) = \frac{1}{4} \left(2 \left(\sum_{i < j} w_{ij} \right) - 2 \left(\sum_{i < j} w_{ij} x_i x_j \right) \right)$$

$$= \frac{1}{4} \left(2 \left(\sum_{i < j} w_{ij} x_i^2 \right) + \left(\sum_i w_{ii} - w_{ii} \right) - 2 \left(\sum_{i < j} w_{ij} x_i x_j \right) \right)$$

$$= \frac{1}{4} \left(\left(\sum_i \sum_j w_{ij} x_i^2 \right) - \left(\sum_i \sum_j w_{ij} x_i x_j \right) \right)$$

$$= \frac{1}{4} \left(\left(\sum_i \left(\sum_i w_{ij} \right) x_i^2 \right) - x^T W x \right) = \frac{1}{4} \left(\left(\sum_i (We)_i x_i^2 \right) - x^T W x \right)$$

$$= \frac{1}{4} \left(x^T Diag(We) x - x^T W x \right) = x^T L x$$

Problem Set-up Improving the Implementation and Results Problem Statement and Background Reformulation and Relaxation Setting up an Instance

Reformulation of Max-Cut Problem Some Equalities for t

$$\begin{aligned} t &= \frac{1}{2} \sum_{i < j} w_{ij} (1 - x_i x_j) = \frac{1}{4} \left(2 \left(\sum_{i < j} w_{ij} \right) - 2 \left(\sum_{i < j} w_{ij} x_i x_j \right) \right) \\ &= \frac{1}{4} \left(2 \left(\sum_{i < j} w_{ij} x_i^2 \right) + \left(\sum_i w_{ii} - w_{ii} \right) - 2 \left(\sum_{i < j} w_{ij} x_i x_j \right) \right) \\ &= \frac{1}{4} \left(\left(\sum_i \sum_j w_{ij} x_i^2 \right) - \left(\sum_i \sum_j w_{ij} x_i x_j \right) \right) \\ &= \frac{1}{4} \left(\left(\sum_i \left(\sum_i w_{ij} \right) x_i^2 \right) - x^T W x \right) = \frac{1}{4} \left(\left(\sum_i (We)_i x_i^2 \right) - x^T W x \right) \\ &= \frac{1}{4} \left(x^T Diag(We) x - x^T W x \right) = x^T L x \end{aligned}$$

Problem Statement and Background Reformulation and Relaxation Setting up an Instance

Reformulation of Max-Cut Problem Some Equalities for t

Skip long string of equalities for t

$$\begin{aligned} \frac{1}{2} &= \frac{1}{2} \sum_{i < j} w_{ij} (1 - x_i x_j) = \frac{1}{4} \left(2 \left(\sum_{i < j} w_{ij} \right) - 2 \left(\sum_{i < j} w_{ij} x_i x_j \right) \right) \\ &= \frac{1}{4} \left(2 \left(\sum_{i < j} w_{ij} x_i^2 \right) + \left(\sum_i w_{ii} - w_{ii} \right) - 2 \left(\sum_{i < j} w_{ij} x_i x_j \right) \right) \\ &= \frac{1}{4} \left(\left(\sum_i \sum_j w_{ij} x_i^2 \right) - \left(\sum_i \sum_j w_{ij} x_i x_j \right) \right) \\ &= \frac{1}{4} \left(\left(\sum_i \left(\sum_j w_{ij} \right) x_i^2 \right) - x^T W x \right) = \frac{1}{4} \left(\left(\sum_i (We)_i x_i^2 \right) - x^T W x \right) \end{aligned}$$

 $= \frac{1}{4} \left(x^T Diag(We) x - x^T Wx \right)_{\mathbf{6}} = x^T Lx$

Problem Statement and Background Reformulation and Relaxation Setting up an Instance

Reformulation of Max-Cut Problem Some Equalities for t

$$\begin{aligned} \dot{\mathbf{x}} &= \frac{1}{2} \sum_{i < j} w_{ij} (1 - x_i x_j) = \frac{1}{4} \left(2 \left(\sum_{i < j} w_{ij} \right) - 2 \left(\sum_{i < j} w_{ij} x_i x_j \right) \right) \\ &= \frac{1}{4} \left(2 \left(\sum_{i < j} w_{ij} x_i^2 \right) + \left(\sum_i w_{ii} - w_{ii} \right) - 2 \left(\sum_{i < j} w_{ij} x_i x_j \right) \right) \\ &= \frac{1}{4} \left(\left(\sum_i \sum_j w_{ij} x_i^2 \right) - \left(\sum_i \sum_j w_{ij} x_i x_j \right) \right) \\ &= \frac{1}{4} \left(\left(\sum_i \left(\sum_i w_{ij} \right) x_i^2 \right) - x^T W x \right) = \frac{1}{4} \left(\left(\sum_i (We)_i x_i^2 \right) - x^T W x \right) \\ &= \frac{1}{4} \left(x^T Diag(We) x - x^T W x \right)_6 = x^T L x \end{aligned}$$

Problem Statement and Background Reformulation and Relaxation Setting up an Instance

Reformulation of Max-Cut Problem Some Equalities for t

$$\begin{aligned} f &= \frac{1}{2} \sum_{i < j} w_{ij} (1 - x_i x_j) = \frac{1}{4} \left(2 \left(\sum_{i < j} w_{ij} \right) - 2 \left(\sum_{i < j} w_{ij} x_i x_j \right) \right) \\ &= \frac{1}{4} \left(2 \left(\sum_{i < j} w_{ij} x_i^2 \right) + \left(\sum_i w_{ii} - w_{ii} \right) - 2 \left(\sum_{i < j} w_{ij} x_i x_j \right) \right) \\ &= \frac{1}{4} \left(\left(\sum_i \sum_j w_{ij} x_i^2 \right) - \left(\sum_i \sum_j w_{ij} x_i x_j \right) \right) \\ &= \frac{1}{4} \left(\left(\sum_i \left(\sum_i w_{ij} \right) x_i^2 \right) - x^T W x \right) = \frac{1}{4} \left(\left(\sum_i (We)_i x_i^2 \right) - x^T W x \right) \\ &= \frac{1}{4} \left(x^T Diag(We) x - x^T W x \right) = x^T L x \end{aligned}$$

Reformulation and Relaxation of Max-Cut Problem

- t = x^TLx = trace(x^TLx) = trace(x^T(Lx)) = trace((Lx)x^T) = trace(LX) = L X, where X = xx^T is a real symmetric matrix, ⇒ X ≥ 0.
- $diag(X) = e \iff x_i^2 = 1 \iff x_i \in \{-1, 1\}.$

_emma

$$X = X^T \succeq 0$$
, rank $(X) = 1 \iff X = xx^T$

W is the edge-weight matrix $\rightsquigarrow L = \frac{1}{4} (Diag(We) - W) \rightsquigarrow$

Problem: Equivalent Reformulation of Max-Cut Problem

Reformulation and Relaxation of Max-Cut Problem

- $t = x^T L x = trace(x^T L x) = trace(x^T (L x)) = trace((L x)x^T) = trace(L X) = L \cdot X$, where $X = xx^T$ is a real symmetric matrix, $\Longrightarrow X \succeq 0$.
- $diag(X) = e \iff x_i^2 = 1 \iff x_i \in \{-1, 1\}.$

_emma

$$X = X^T \succeq 0$$
, rank $(X) = 1 \iff X = xx^T$

W is the edge-weight matrix $\rightsquigarrow L = \frac{1}{4} (Diag(We) - W) \rightsquigarrow$

Problem: Equivalent Reformulation of Max-Cut Problem

Reformulation and Relaxation of Max-Cut Problem

• $t = x^T L x = trace(x^T L x) = trace(x^T (L x)) = trace((L x)x^T) = trace(L X) = L \bullet X$, where $X = xx^T$ is a real symmetric matrix, $\Longrightarrow X \succeq 0$.

• $diag(X) = e \iff x_i^2 = 1 \iff x_i \in \{-1, 1\}.$

_emma

$$X = X^T \succeq 0$$
, rank $(X) = 1 \iff X = xx^T$

W is the edge-weight matrix $\rightsquigarrow L = \frac{1}{4} (Diag(We) - W) \rightsquigarrow$

Problem: Equivalent Reformulation of Max-Cut Problem

Reformulation and Relaxation of Max-Cut Problem

•
$$t = x^T Lx = trace(x^T Lx) = trace(x^T (Lx)) = trace((Lx)x^T) = trace(LX) = L \bullet X$$
, where $X = xx^T$ is a real symmetric matrix, $\Longrightarrow X \succeq 0$.

• $diag(X) = e \iff x_i^2 = 1 \iff x_i \in \{-1, 1\}.$

_emma

$$X = X^T \succeq 0$$
, rank $(X) = 1 \iff X = xx^T$

W is the edge-weight matrix $\rightsquigarrow L = \frac{1}{4} (Diag(We) - W) \rightsquigarrow$

Problem: Equivalent Reformulation of Max-Cut Problem

Reformulation and Relaxation of Max-Cut Problem

•
$$t = x^T Lx = trace(x^T Lx) = trace(x^T (Lx)) = trace((Lx)x^T) = trace(LX) = L \bullet X$$
, where $X = xx^T$ is a real symmetric matrix, $\Longrightarrow X \succeq 0$.

• $diag(X) = e \iff x_i^2 = 1 \iff x_i \in \{-1, 1\}.$

Lemma

$$X = X^T \succeq 0$$
, rank $(X) = 1 \iff X = xx^T$

W is the edge-weight matrix $\rightsquigarrow L = \frac{1}{4} (Diag(We) - W) \rightsquigarrow$

Problem: Equivalent Reformulation of Max-Cut Problem

Reformulation and Relaxation of Max-Cut Problem

•
$$t = x^T Lx = trace(x^T Lx) = trace(x^T (Lx)) = trace((Lx)x^T) = trace(LX) = L \bullet X$$
, where $X = xx^T$ is a real symmetric matrix, $\Longrightarrow X \succeq 0$.

• $diag(X) = e \iff x_i^2 = 1 \iff x_i \in \{-1, 1\}.$

Lemma

$$X = X^T \succeq 0$$
, rank $(X) = 1 \iff X = xx^T$

W is the edge-weight matrix $\rightsquigarrow L = \frac{1}{4} (Diag(We) - W) \rightsquigarrow$

Problem: Equivalent Reformulation of Max-Cut Problem

Reformulation and Relaxation of Max-Cut Problem

•
$$t = x^T Lx = trace(x^T Lx) = trace(x^T (Lx)) = trace((Lx)x^T) = trace(LX) = L \bullet X$$
, where $X = xx^T$ is a real symmetric matrix, $\Longrightarrow X \succeq 0$.

• $diag(X) = e \iff x_i^2 = 1 \iff x_i \in \{-1, 1\}.$

Lemma

$$X = X^T \succeq 0$$
, rank $(X) = 1 \iff X = xx^T$

W is the edge-weight matrix $\rightsquigarrow L = \frac{1}{4} (Diag(We) - W) \rightsquigarrow$

Problem: Equivalent Reformulation of Max-Cut Problem

Reformulation and Relaxation of Max-Cut Problem

•
$$t = x^T Lx = trace(x^T Lx) = trace(x^T (Lx)) = trace((Lx)x^T) = trace(LX) = L \bullet X$$
, where $X = xx^T$ is a real symmetric matrix, $\Longrightarrow X \succeq 0$.

• $diag(X) = e \iff x_i^2 = 1 \iff x_i \in \{-1, 1\}.$

Lemma

$$X = X^T \succeq 0$$
, rank $(X) = 1 \iff X = xx^T$

W is the edge-weight matrix $\rightsquigarrow L = \frac{1}{4} (Diag(We) - W) \rightsquigarrow$

Problem: Equivalent Reformulation of Max-Cut Problem

Reformulation and Relaxation of Max-Cut Problem

•
$$t = x^T Lx = trace(x^T Lx) = trace(x^T (Lx)) = trace((Lx)x^T) = trace(LX) = L \bullet X$$
, where $X = xx^T$ is a real symmetric matrix, $\Longrightarrow X \succeq 0$.

• $diag(X) = e \iff x_i^2 = 1 \iff x_i \in \{-1, 1\}.$

Lemma

$$X = X^T \succeq 0$$
, rank $(X) = 1 \iff X = xx^T$

W is the edge-weight matrix $\rightsquigarrow L = \frac{1}{4} (Diag(We) - W) \rightsquigarrow$

Problem: Equivalent Reformulation of Max-Cut Problem

Reformulation and Relaxation of Max-Cut Problem

•
$$t = x^T Lx = trace(x^T Lx) = trace(x^T (Lx)) = trace((Lx)x^T) = trace(LX) = L \bullet X$$
, where $X = xx^T$ is a real symmetric matrix, $\Longrightarrow X \succeq 0$.

• $diag(X) = e \iff x_i^2 = 1 \iff x_i \in \{-1, 1\}.$

Lemma

$$X = X^T \succeq 0$$
, rank $(X) = 1 \iff X = xx^T$

W is the edge-weight matrix $\rightsquigarrow L = \frac{1}{4} (Diag(We) - W) \rightsquigarrow$

Problem: SDP Relaxation of Max-Cut Problem

Maximize $L \bullet X$ subject to diag(X) = e and $X \succeq 0$.

Problem Statement and Background Reformulation and Relaxation Setting up an Instance

Setting up an Instance

We setup an instance of the Max-Cut problem in MATLAB with the following code:

% Fix the dimension (number of vertices in graph) n=60;

% Generate a weighted graph W=sprandsym(n,.5); W(1:n+1:n^2)=zeros(1,n);

% Calculate the Laplacian L=1/4 * (diag(W*ones(n,1))-W);

SeDumi Input Format Basic Relaxation: Setting up the Input to SeDumi Basic Relaxation: Numerical Results

Interfacing with SeDumi

To be consistent with the notation of SeDumi's documentation and interface, substitute "x" for "z". The SeDumi primal form is

 $\begin{array}{ll} \mbox{Minimize} & c^T z \\ \mbox{subject to} & Az = b, \mbox{ for } z \in \mathcal{K} \end{array}$

where $c, z, b \in \mathbb{R}^{p}$, and A is a $p \times p$ matrix. In MATLAB,

c=-L(:); % Format the Laplacian to vector form

% Translate constraint diag(X) =e into vector format: A=sparse(1:n,1:n+1:n^2,ones(1,n),n,n^2); b=ones(n,1);

% Tell SeDumi that X must be positive semidefinite
K.s=[n];

[X,Y,INFO] = sedumi(A,b,c,K) % Run SeDumi

SeDumi Input Format Basic Relaxation: Setting up the Input to SeDumi Basic Relaxation: Numerical Results

Interfacing with SeDumi A visual summary of Az = b

SeDumi Input Format Basic Relaxation: Setting up the Input to SeDumi Basic Relaxation: Numerical Results

Numerical Results: Basic Relaxation $G(n, \frac{1}{2})$

n	Ratio
50	6.292239e-01
60	6.202113e-01
70	6.067923e-01
80	6.074731e-01
90	5.980219e-01
100	5.894269e-01
110	5.849831e-01
120	5.837704e-01
130	5.793048e-01
140	5.777026e-01
150	5.749815e-01
160	5.715093e-01
170	5.702395e-01
180	5.686022e-01
190	5.675917e-01
200	5.654331e-01
250	5.591398e-01
300	5.538571e-01
350	5.506719e-01
400	5.472742e-01
450	5.441005e-01
500	5.422019e-01
600	5.390324e-01
700	5.359528e-01
800	5.337012e-01
900	5.320470e-01
1000	5.303538e-01

Strengthening the Relaxation: Triangle Inequalities Strengthening the Relaxation: Quadruple Equalities

Triangle Inequalities

An idea proposed by Poljak and Rendl (1995), and further developed by Helmberg, Rendl, Vanderbei and Wolkowicz (1996):

For each triple, $x_i, x_j, x_k \in \{-1, 1\}$ we have

$$x_{ij} + x_{jk} + x_{ki} \geq -1 \tag{1}$$

$$x_{ij}-x_{jk}-x_{ki} \geq -1 \tag{2}$$

$$-x_{ij}+x_{jk}-x_{ki} \geq -1 \tag{3}$$

$$-x_{ij}-x_{jk}+x_{ki} \geq -1.$$
 (4)

With (1)-(4), we have the strengthened SDP relaxation:

Problem: Strengthened Relaxation of Max-Cut Problem

Maximize $L \bullet X$ subject to $diag(X) = e, X \succeq 0$, and (1) - (4).

Strengthening the Relaxation: Triangle Inequalities Strengthening the Relaxation: Quadruple Equalities

Triangle Inequalities

An idea proposed by Poljak and Rendl (1995), and further developed by Helmberg, Rendl, Vanderbei and Wolkowicz (1996):

For each triple, $x_i, x_j, x_k \in \{-1, 1\}$ we have

$$x_{ij} + x_{jk} + x_{ki} \geq -1 \tag{1}$$

$$x_{ij}-x_{jk}-x_{ki} \geq -1 \tag{2}$$

$$-x_{ij}+x_{jk}-x_{ki} \geq -1 \tag{3}$$

$$-x_{ij}-x_{jk}+x_{ki} \geq -1.$$
 (4)

With (1)-(4), we have the strengthened SDP relaxation:

Problem: Strengthened Relaxation of Max-Cut Problem

Maximize $L \bullet X$ subject to $diag(X) = e, X \succeq 0$, and (1) - (4).

Strengthening the Relaxation: Triangle Inequalities Strengthening the Relaxation: Quadruple Equalities

Triangle Inequalities Replacing Inequalities (1)-(4) with Equalities for SeDumi's Input Format

Introduce slack variables $s_{ijk\ell} \ge 0$ to get equalities for SeDumi.

$$\begin{aligned} x_{ij} + x_{jk} + x_{ki} - s_{ijk1} &= -1 \\ x_{ij} - x_{jk} - x_{ki} - s_{ijk2} &= -1 \\ -x_{ij} + x_{jk} - x_{ki} - s_{ijk3} &= -1 \\ -x_{ij} - x_{jk} + x_{ki} - s_{ijk4} &= -1 \end{aligned}$$

- Considering (1)-(4) when a pair of *i*, *j*, *k* are the same is redundant.
- So we are concerned with "only" N := 2n(n-1)(n-2)/3 slack variables.

Strengthening the Relaxation: Triangle Inequalities Strengthening the Relaxation: Quadruple Equalities

Triangle Inequalities Replacing Inequalities (1)-(4) with Equalities for SeDumi's Input Format

Introduce slack variables $s_{ijk\ell} \ge 0$ to get equalities for SeDumi.

$$\begin{aligned} x_{ij} + x_{jk} + x_{ki} - s_{ijk1} &= -1 \\ x_{ij} - x_{jk} - x_{ki} - s_{ijk2} &= -1 \\ -x_{ij} + x_{jk} - x_{ki} - s_{ijk3} &= -1 \\ -x_{ij} - x_{jk} + x_{ki} - s_{ijk4} &= -1 \end{aligned}$$

- Considering (1)-(4) when a pair of *i*, *j*, *k* are the same is redundant.
- So we are concerned with "only" N := 2n(n-1)(n-2)/3 slack variables.

Strengthening the Relaxation: Triangle Inequalities Strengthening the Relaxation: Quadruple Equalities

Triangle Inequalities Replacing Inequalities (1)-(4) with Equalities for SeDumi's Input Format

Introduce slack variables $s_{ijk\ell} \ge 0$ to get equalities for SeDumi.

$$\begin{aligned} x_{ij} + x_{jk} + x_{ki} - s_{ijk1} &= -1 \\ x_{ij} - x_{jk} - x_{ki} - s_{ijk2} &= -1 \\ -x_{ij} + x_{jk} - x_{ki} - s_{ijk3} &= -1 \\ -x_{ij} - x_{jk} + x_{ki} - s_{ijk4} &= -1 \end{aligned}$$

- Considering (1)-(4) when a pair of *i*, *j*, *k* are the same is redundant.
- So we are concerned with "only" N := 2n(n − 1)(n − 2)/3 slack variables.

Problem Set-up Improving the Implementation and Results

Strengthening the Relaxation: Triangle Inequalities Strengthening the Relaxation: Quadruple Equalities

Triangle Inequalities A visual summary of Az = b

14

Strengthening the Relaxation: Triangle Inequalities Strengthening the Relaxation: Quadruple Equalities

Numerical Results: Triangle Relaxation $G(n, \frac{1}{2})$

n	Ratio 1	Ratio 2
5	7.142857e-01	7.142857e-01
6	7.500000e-01	7.500000e-01
7	7.177745e-01	6.875000e-01
8	7.417858e-01	7.368421e-01
9	7.570369e-01	7.272727e-01
10	6.978259e-01	6.709667e-01
11	7.433614e-01	7.241379e-01
12	6.845083e-01	6.808511e-01
13	6.986989e-01	6.862745e-01
14	6.655176e-01	6.615384e-01
15	6.613215e-01	6.433655e-01

Strengthening the Relaxation: Triangle Inequalities Strengthening the Relaxation: Quadruple Equalities

Quadruple Equalities

An idea of Goemans developed by Anjos and Wolkowicz (2002):

For each quadruple $x_i, x_j, x_j, x_k \in \{-1, 1\}$ we have:

$$x_i x_j x_j x_k = x_i x_j^2 x_k = x_i x_k.$$
(5)

With (5), we have the SDP formulation:

Problem: An Equivalent Formulation of Max-Cut Problem

Maximize $L \bullet X$ subject to $diag(X) = e, X \succeq 0$, and $x_{ij}x_{jk} = x_{ik}$.

Strengthening the Relaxation: Triangle Inequalities Strengthening the Relaxation: Quadruple Equalities

Quadruple Equalities

An idea of Goemans developed by Anjos and Wolkowicz (2002):

For each quadruple $x_i, x_j, x_j, x_k \in \{-1, 1\}$ we have:

$$x_i x_j x_j x_k = x_i x_j^2 x_k = x_i x_k.$$
(5)

With (5), we have the SDP formulation:

Problem: An Equivalent Formulation of Max-Cut Problem Maximize $L \bullet X$ subject to $diag(X) = e, X \succeq 0$, and $x_{ij}x_{jk} = x_{ik}$.

Strengthening the Relaxation: Triangle Inequalities Strengthening the Relaxation: Quadruple Equalities

Second lifting/relaxation

After lifting

$$Y = \begin{bmatrix} y & y^T \end{bmatrix}$$
, where $y = \text{vec}(X)$

We have the max-cut problem:

$$\begin{array}{ll} \text{Maximize} & \begin{bmatrix} L & 0 \\ 0 & 0 \end{bmatrix} \bullet Y = L \bullet Y_{11} \\ \text{subject to} & diag(Y) = e & (S1) \\ Y \succeq 0 & (S2) \\ Y_{11} = Y_{ii} \ \forall i = 2, \dots, n & (S3) \\ diag(Y_{ij}) = Y_{ii}^{(i,j)}e & (S4) \\ Y_{ij}e_j = Y_{11}e_i \ \forall j = 2, \dots n, \ i < j & (S5) \\ rank(Y) = 1. & (S6) \end{array}$$

Theorem

Strengthening the Relaxation: Triangle Inequalities Strengthening the Relaxation: Quadruple Equalities

Second lifting/relaxation

After lifting

$$Y = \begin{bmatrix} y & y^T \end{bmatrix}$$
, where $y = \operatorname{vec}(X)$

We have the max-cut problem:

$$\begin{array}{lll} \text{Maximize} & \begin{bmatrix} L & 0 \\ 0 & 0 \end{bmatrix} \bullet Y = L \bullet Y_{11} \\ \text{subject to} & diag(Y) = e & (S1) \\ Y \succeq 0 & (S2) \\ Y_{11} = Y_{ii} \ \forall i = 2, \dots, n & (S3) \\ diag(Y_{ij}) = Y_{ii}^{(i,j)}e & (S4) \\ Y_{ij}e_j = Y_{11}e_i \ \forall j = 2, \dots n, \ i < j & (S5) \\ rank(Y) = 1. & (S6) \end{array}$$

Theorem

Strengthening the Relaxation: Triangle Inequalities Strengthening the Relaxation: Quadruple Equalities

Second lifting/relaxation

After lifting

$$Y = \begin{bmatrix} y & y^T \end{bmatrix}$$
, where $y = \operatorname{vec}(X)$

We have the max-cut problem:

$$\begin{array}{ll} \text{Maximize} & \begin{bmatrix} L & 0 \\ 0 & 0 \end{bmatrix} \bullet Y = L \bullet Y_{11} \\ \text{subject to} & diag(Y) = e & (S1) \\ Y \succeq 0 & (S2) \\ Y_{11} = Y_{ii} \ \forall i = 2, \dots, n & (S3) \\ diag(Y_{ij}) = Y_{ii}^{(i,j)}e & (S4) \\ Y_{ij}e_j = Y_{11}e_i \ \forall j = 2, \dots n, \ i < j & (S5) \\ rank(Y) = 1. & (S6) \end{array}$$

Theorem

Strengthening the Relaxation: Triangle Inequalities Strengthening the Relaxation: Quadruple Equalities

Second lifting/relaxation

After lifting

$$Y = \begin{bmatrix} y & y^T \end{bmatrix}$$
, where $y = \operatorname{vec}(X)$

We have the max-cut relaxation:

$$\begin{array}{lll} \text{Maximize} & \begin{bmatrix} L & 0 \\ 0 & 0 \end{bmatrix} \bullet Y = L \bullet Y_{11} \\ \text{subject to} & diag(Y) = e & (S1) \\ Y \succeq 0 & (S2) \\ Y_{11} = Y_{ii} \ \forall i = 2, \dots, n & (S3) \\ diag(Y_{ij}) = Y_{ii}^{(i,j)} e & (S4) \\ Y_{ij}e_i = Y_{11}e_i \ \forall j = 2, \dots n, \ i < j & (S5) \end{array}$$

Theorem

Strengthening the Relaxation: Triangle Inequalities Strengthening the Relaxation: Quadruple Equalities

Second lifting/relaxation

After lifting

$$Y = \begin{bmatrix} y & y^T \end{bmatrix}$$
, where $y = \operatorname{vec}(X)$

We have the max-cut relaxation:

$$\begin{array}{lll} \text{Maximize} & \begin{bmatrix} L & 0 \\ 0 & 0 \end{bmatrix} \bullet Y = L \bullet Y_{11} \\ \text{subject to} & diag(Y) = e & (S1) \\ Y \succeq 0 & (S2) \\ Y_{11} = Y_{ii} \ \forall i = 2, \dots, n & (S3) \\ diag(Y_{ij}) = Y_{ii}^{(i,j)} e & (S4) \\ Y_{ij}e_{i} = Y_{11}e_{i} \ \forall j = 2, \dots n, \ i < j & (S5) \end{array}$$

Theorem

Strengthening the Relaxation: Triangle Inequalities Strengthening the Relaxation: Quadruple Equalities

- Suppose that *X*^{*} is an optimal solution to the first lifting relaxation.
 - If *Rank*(*X**) = 1, then we have the optimal solution to the original max-cut problem.
 - - By contradiction, we assume that Y is feasible to the second relaxation, then it satisfies (S4) and (S5), which implies that X^{*}_{ik}X^{*}_{ki} = X^{*}_{ii} for all *i*, *j*, *k*.
 - Hence, $X^* = xx^T$, where $x = (X_{1k}^*, X_{2k}^*, \cdots, X_{nk}^*)$, which contradicts Rank $X^* > 1$.
 - Therefore, \overline{Y} is not feasible to the second lifting relaxation.
- On the other hand, if Y is feasible to the second lifting relaxation, by (S1) and (S2), diag(Y₁₁) = e and Y₁₁ ≥ 0.
- Then, Y_{11} is feasible to the first lifting relaxation.

- Suppose that *X*^{*} is an optimal solution to the first lifting relaxation.
 - If Rank(X*) = 1, then we have the optimal solution to the original max-cut problem.
 - - By contradiction, we assume that \overline{Y} is feasible to the second relaxation, then it satisfies (S4) and (S5), which implies that $X_{ik}^* X_{kj}^* = X_{ij}^*$ for all *i*, *j*, *k*.
 - Hence, $X^* = xx^T$, where $x = (X_{1k}^*, X_{2k}^*, \dots, X_{nk}^*)$, which contradicts Rank $X^* > 1$.
 - Therefore, \overline{Y} is not feasible to the second lifting relaxation.
- On the other hand, if Y is feasible to the second lifting relaxation, by (S1) and (S2), diag(Y₁₁) = e and Y₁₁ ≥ 0.
- Then, Y_{11} is feasible to the first lifting relaxation.

- Suppose that *X*^{*} is an optimal solution to the first lifting relaxation.
 - If *Rank*(*X*^{*}) = 1, then we have the optimal solution to the original max-cut problem.
 - If $Rank(X^*) > 1$, we will show that after lifting X^* to $\overline{Y} = (yy^T)$, where $y = \text{vec } X^*$, \overline{Y} is not feasible to the second relaxation.
 - By contradiction, we assume that Y is feasible to the second relaxation, then it satisfies (S4) and (S5), which implies that X^{*}_{ik}X^{*}_{kj} = X^{*}_{ij} for all *i*, *j*, *k*.
 - Hence, $X^* = xx^T$, where $x = (X_{1k}^*, X_{2k}^*, \cdots, X_{nk}^*)$, which contradicts Rank $X^* > 1$.
 - Therefore, \overline{Y} is not feasible to the second lifting relaxation.
- On the other hand, if Y is feasible to the second lifting relaxation, by (S1) and (S2), diag(Y₁₁) = e and Y₁₁ ≥ 0.
- Then, Y_{11} is feasible to the first lifting relaxation.

- Suppose that X* is an optimal solution to the first lifting relaxation.
 - If *Rank*(*X*^{*}) = 1, then we have the optimal solution to the original max-cut problem.
 - - By contradiction, we assume that \overline{Y} is feasible to the second relaxation, then it satisfies (S4) and (S5), which implies that $X_{ik}^* X_{kj}^* = X_{ij}^*$ for all *i*, *j*, *k*.
 - Hence, $X^* = xx^T$, where $x = (X_{1k}^*, X_{2k}^*, \cdots, X_{nk}^*)$, which contradicts Rank $X^* > 1$.
 - Therefore, \overline{Y} is not feasible to the second lifting relaxation.
- On the other hand, if Y is feasible to the second lifting relaxation, by (S1) and (S2), diag(Y₁₁) = e and Y₁₁ ≥ 0.
- Then, Y_{11} is feasible to the first lifting relaxation.

- Suppose that X* is an optimal solution to the first lifting relaxation.
 - If *Rank*(*X*^{*}) = 1, then we have the optimal solution to the original max-cut problem.
 - - By contradiction, we assume that \overline{Y} is feasible to the second relaxation, then it satisfies (S4) and (S5), which implies that $X_{ik}^* X_{kj}^* = X_{ij}^*$ for all *i*, *j*, *k*.
 - Hence, $X^* = xx^T$, where $x = (X^*_{1k}, X^*_{2k}, \cdots, X^*_{nk})$, which contradicts Rank $X^* > 1$.
 - Therefore, \overline{Y} is not feasible to the second lifting relaxation.
- On the other hand, if Y is feasible to the second lifting relaxation, by (S1) and (S2), diag(Y₁₁) = e and Y₁₁ ≥ 0.
- Then, Y_{11} is feasible to the first lifting relaxation.

- Suppose that *X*^{*} is an optimal solution to the first lifting relaxation.
 - If *Rank*(*X*^{*}) = 1, then we have the optimal solution to the original max-cut problem.
 - - By contradiction, we assume that \overline{Y} is feasible to the second relaxation, then it satisfies (S4) and (S5), which implies that $X_{ik}^* X_{kj}^* = X_{ij}^*$ for all *i*, *j*, *k*.
 - Hence, $X^* = xx^T$, where $x = (X_{1k}^*, X_{2k}^*, \dots, X_{nk}^*)$, which contradicts Rank $X^* > 1$.
 - Therefore, \overline{Y} is not feasible to the second lifting relaxation.
- On the other hand, if Y is feasible to the second lifting relaxation, by (S1) and (S2), diag(Y₁₁) = e and Y₁₁ ≥ 0.
- Then, Y_{11} is feasible to the first lifting relaxation.

- Suppose that *X*^{*} is an optimal solution to the first lifting relaxation.
 - If *Rank*(*X*^{*}) = 1, then we have the optimal solution to the original max-cut problem.
 - - By contradiction, we assume that \overline{Y} is feasible to the second relaxation, then it satisfies (S4) and (S5), which implies that $X_{ik}^* X_{kj}^* = X_{ij}^*$ for all *i*, *j*, *k*.
 - Hence, $X^* = xx^T$, where $x = (X_{1k}^*, X_{2k}^*, \dots, X_{nk}^*)$, which contradicts Rank $X^* > 1$.
 - Therefore, \overline{Y} is not feasible to the second lifting relaxation.
- On the other hand, if Y is feasible to the second lifting relaxation, by (S1) and (S2), diag(Y₁₁) = e and Y₁₁ ≥ 0.
- Then, Y_{11} is feasible to the first lifting relaxation.

- Suppose that X* is an optimal solution to the first lifting relaxation.
 - If *Rank*(*X*^{*}) = 1, then we have the optimal solution to the original max-cut problem.
 - - By contradiction, we assume that \overline{Y} is feasible to the second relaxation, then it satisfies (S4) and (S5), which implies that $X_{ik}^* X_{kj}^* = X_{ij}^*$ for all *i*, *j*, *k*.
 - Hence, $X^* = xx^T$, where $x = (X_{1k}^*, X_{2k}^*, \dots, X_{nk}^*)$, which contradicts Rank $X^* > 1$.
 - Therefore, \overline{Y} is not feasible to the second lifting relaxation.
- On the other hand, if Y is feasible to the second lifting relaxation, by (S1) and (S2), diag(Y₁₁) = e and Y₁₁ ≥ 0.
- Then, Y_{11} is feasible to the first lifting relaxation.

Strengthening the Relaxation: Triangle Inequalities Strengthening the Relaxation: Quadruple Equalities

Numerical Results: Comparison of Algorithms

Comparison of Algorithm Performance

relaxation	n=4	n = 6	n = 8	n = 10
SDP	2.00000000	6.43225787	9.52050490	17.0875592
TRI	1.99999999	5.99999995	8.99999986	16.9999998
QUAD	1.99999999	5.99999988	8.99999900	16.9999996

Thanks!!

Strengthening the Relaxation: Triangle Inequalities Strengthening the Relaxation: Quadruple Equalities

Thanks for your attention!

Semidefinite relaxation of the max-cut problem

A. Dudek, K. Ghobadi, E. Kim, S. Lin, R. Spjut, J. Zhu

MSRI Workshop on Continuous Optimization and its Applications

July 17, 2007