
Chapter 10

Equality constrained

minimization

10.1 Equality constrained minimization problems

In this chapter we describe methods for solving a convex optimization problem
with equality constraints,

minimize f(x)
subject to Ax = b,

(10.1)

where f : Rn → R is convex and twice continuously differentiable, and A ∈ Rp×n

with rankA = p < n. The assumptions on A mean that there are fewer equality
constraints than variables, and that the equality constraints are independent. We
will assume that an optimal solution x⋆ exists, and use p⋆ to denote the optimal
value, p⋆ = inf{f(x) | Ax = b} = f(x⋆).

Recall (from §4.2.3 or §5.5.3) that a point x⋆ ∈ dom f is optimal for (10.1) if
and only if there is a ν⋆ ∈ Rp such that

Ax⋆ = b, ∇f(x⋆) +AT ν⋆ = 0. (10.2)

Solving the equality constrained optimization problem (10.1) is therefore equivalent
to finding a solution of the KKT equations (10.2), which is a set of n+ p equations
in the n + p variables x⋆, ν⋆. The first set of equations, Ax⋆ = b, are called
the primal feasibility equations, which are linear. The second set of equations,
∇f(x⋆) + AT ν⋆ = 0, are called the dual feasibility equations, and are in general
nonlinear. As with unconstrained optimization, there are a few problems for which
we can solve these optimality conditions analytically. The most important special
case is when f is quadratic, which we examine in §10.1.1.

Any equality constrained minimization problem can be reduced to an equiv-
alent unconstrained problem by eliminating the equality constraints, after which
the methods of chapter 9 can be used to solve the problem. Another approach
is to solve the dual problem (assuming the dual function is twice differentiable)
using an unconstrained minimization method, and then recover the solution of the
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equality constrained problem (10.1) from the dual solution. The elimination and
dual methods are briefly discussed in §10.1.2 and §10.1.3, respectively.

The bulk of this chapter is devoted to extensions of Newton’s method that di-
rectly handle equality constraints. In many cases these methods are preferable to
methods that reduce an equality constrained problem to an unconstrained one. One
reason is that problem structure, such as sparsity, is often destroyed by elimination
(or forming the dual); in contrast, a method that directly handles equality con-
straints can exploit the problem structure. Another reason is conceptual: methods
that directly handle equality constraints can be thought of as methods for directly
solving the optimality conditions (10.2).

10.1.1 Equality constrained convex quadratic minimization

Consider the equality constrained convex quadratic minimization problem

minimize (1/2)xTPx+ qTx+ r
subject to Ax = b,

(10.3)

where P ∈ Sn
+ and A ∈ Rp×n. This problem is important on its own, and also

because it forms the basis for an extension of Newton’s method to equality con-
strained problems.

Here the optimality conditions (10.2) are

Ax⋆ = b, Px⋆ + q +AT ν⋆ = 0,

which we can write as
[
P AT

A 0

] [
x⋆

ν⋆

]
=

[
−q
b

]
. (10.4)

This set of n + p linear equations in the n + p variables x⋆, ν⋆ is called the KKT

system for the equality constrained quadratic optimization problem (10.3). The
coefficient matrix is called the KKT matrix.

When the KKT matrix is nonsingular, there is a unique optimal primal-dual
pair (x⋆, ν⋆). If the KKT matrix is singular, but the KKT system is solvable, any
solution yields an optimal pair (x⋆, ν⋆). If the KKT system is not solvable, the
quadratic optimization problem is unbounded below or infeasible. Indeed, in this
case there exist v ∈ Rn and w ∈ Rp such that

Pv +ATw = 0, Av = 0, −qT v + bTw > 0.

Let x̂ be any feasible point. The point x = x̂+ tv is feasible for all t and

f(x̂+ tv) = f(x̂) + t(vTP x̂+ qT v) + (1/2)t2vTPv

= f(x̂) + t(−x̂TATw + qT v) − (1/2)t2wTAv

= f(x̂) + t(−bTw + qT v),

which decreases without bound as t→ ∞.
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Nonsingularity of the KKT matrix

Recall our assumption that P ∈ Sn
+ and rankA = p < n. There are several

conditions equivalent to nonsingularity of the KKT matrix:

• N (P ) ∩N (A) = {0}, i.e., P and A have no nontrivial common nullspace.

• Ax = 0, x 6= 0 =⇒ xTPx > 0, i.e., P is positive definite on the nullspace of
A.

• FTPF ≻ 0, where F ∈ Rn×(n−p) is a matrix for which R(F ) = N (A).

(See exercise 10.1.) As an important special case, we note that if P ≻ 0, the KKT
matrix must be nonsingular.

10.1.2 Eliminating equality constraints

One general approach to solving the equality constrained problem (10.1) is to elim-
inate the equality constraints, as described in §4.2.4, and then solve the resulting
unconstrained problem using methods for unconstrained minimization. We first
find a matrix F ∈ Rn×(n−p) and vector x̂ ∈ Rn that parametrize the (affine)
feasible set:

{x | Ax = b} = {Fz + x̂ | z ∈ Rn−p}.

Here x̂ can be chosen as any particular solution of Ax = b, and F ∈ Rn×(n−p)

is any matrix whose range is the nullspace of A. We then form the reduced or
eliminated optimization problem

minimize f̃(z) = f(Fz + x̂), (10.5)

which is an unconstrained problem with variable z ∈ Rn−p. From its solution z⋆,
we can find the solution of the equality constrained problem as x⋆ = Fz⋆ + x̂.

We can also construct an optimal dual variable ν⋆ for the equality constrained
problem, as

ν⋆ = −(AAT )−1A∇f(x⋆).

To show that this expression is correct, we must verify that the dual feasibility
condition

∇f(x⋆) +AT (−(AAT )−1A∇f(x⋆)) = 0 (10.6)

holds. To show this, we note that
[
FT

A

] (
∇f(x⋆) −AT (AAT )−1A∇f(x⋆)

)
= 0,

where in the top block we use FT∇f(x⋆) = ∇f̃(z⋆) = 0 and AF = 0. Since the
matrix on the left is nonsingular, this implies (10.6).

Example 10.1 Optimal allocation with resource constraint. We consider the problem

minimize
∑n

i=1
fi(xi)

subject to
∑n

i=1
xi = b,
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where the functions fi : R → R are convex and twice differentiable, and b ∈ R is
a problem parameter. We interpret this as the problem of optimally allocating a
single resource, with a fixed total amount b (the budget) to n otherwise independent
activities.

We can eliminate xn (for example) using the parametrization

xn = b − x1 − · · · − xn−1,

which corresponds to the choices

x̂ = ben, F =

[
I

−1T

]
∈ R

n×(n−1).

The reduced problem is then

minimize fn(b − x1 − · · · − xn−1) +
∑n−1

i=1
fi(xi),

with variables x1, . . . , xn−1.

Choice of elimination matrix

There are, of course, many possible choices for the elimination matrix F , which can
be chosen as any matrix in Rn×(n−p) with R(F ) = N (A). If F is one such matrix,

and T ∈ R(n−p)×(n−p) is nonsingular, then F̃ = FT is also a suitable elimination
matrix, since

R(F̃ ) = R(F ) = N (A).

Conversely, if F and F̃ are any two suitable elimination matrices, then there is
some nonsingular T such that F̃ = FT .

If we eliminate the equality constraints using F , we solve the unconstrained
problem

minimize f(Fz + x̂),

while if F̃ is used, we solve the unconstrained problem

minimize f(F̃ z̃ + x̂) = f(F (T z̃) + x̂).

This problem is equivalent to the one above, and is simply obtained by the change
of coordinates z = T z̃. In other words, changing the elimination matrix can be
thought of as changing variables in the reduced problem.

10.1.3 Solving equality constrained problems via the dual

Another approach to solving (10.1) is to solve the dual, and then recover the optimal
primal variable x⋆, as described in §5.5.5. The dual function of (10.1) is

g(ν) = −bT ν + inf
x

(f(x) + νTAx)

= −bT ν − sup
x

(
(−AT ν)Tx− f(x)

)

= −bT ν − f∗(−AT ν),



10.2 Newton’s method with equality constraints 525

where f∗ is the conjugate of f , so the dual problem is

maximize −bT ν − f∗(−AT ν).

Since by assumption there is an optimal point, the problem is strictly feasible, so
Slater’s condition holds. Therefore strong duality holds, and the dual optimum is
attained, i.e., there exists a ν⋆ with g(ν⋆) = p⋆.

If the dual function g is twice differentiable, then the methods for unconstrained
minimization described in chapter 9 can be used to maximize g. (In general, the
dual function g need not be twice differentiable, even if f is.) Once we find an
optimal dual variable ν⋆, we reconstruct an optimal primal solution x⋆ from it.
(This is not always straightforward; see §5.5.5.)

Example 10.2 Equality constrained analytic center. We consider the problem

minimize f(x) = −
∑n

i=1
log xi

subject to Ax = b,
(10.7)

where A ∈ Rp×n, with implicit constraint x ≻ 0. Using

f∗(y) =

n∑

i=1

(−1 − log(−yi)) = −n −

n∑

i=1

log(−yi)

(with dom f∗ = −Rn
++), the dual problem is

maximize g(ν) = −bT ν + n +
∑n

i=1
log(AT ν)i, (10.8)

with implicit constraint AT ν ≻ 0. Here we can easily solve the dual feasibility
equation, i.e., find the x that minimizes L(x, ν):

∇f(x) + AT ν = −(1/x1, . . . , 1/xn) + AT ν = 0,

and so

xi(ν) = 1/(AT ν)i. (10.9)

To solve the equality constrained analytic centering problem (10.7), we solve the
(unconstrained) dual problem (10.8), and then recover the optimal solution of (10.7)
via (10.9).

10.2 Newton’s method with equality constraints

In this section we describe an extension of Newton’s method to include equality
constraints. The method is almost the same as Newton’s method without con-
straints, except for two differences: The initial point must be feasible (i.e., satisfy
x ∈ dom f and Ax = b), and the definition of Newton step is modified to take
the equality constraints into account. In particular, we make sure that the Newton
step ∆xnt is a feasible direction, i.e., A∆xnt = 0.
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10.2.1 The Newton step

Definition via second-order approximation

To derive the Newton step ∆xnt for the equality constrained problem

minimize f(x)
subject to Ax = b,

at the feasible point x, we replace the objective with its second-order Taylor ap-
proximation near x, to form the problem

minimize f̂(x+ v) = f(x) + ∇f(x)T v + (1/2)vT∇2f(x)v
subject to A(x+ v) = b,

(10.10)

with variable v. This is a (convex) quadratic minimization problem with equality
constraints, and can be solved analytically. We define ∆xnt, the Newton step at x,
as the solution of the convex quadratic problem (10.10), assuming the associated
KKT matrix is nonsingular. In other words, the Newton step ∆xnt is what must
be added to x to solve the problem when the quadratic approximation is used in
place of f .

From our analysis in §10.1.1 of the equality constrained quadratic problem, the
Newton step ∆xnt is characterized by

[
∇2f(x) AT

A 0

] [
∆xnt

w

]
=

[
−∇f(x)

0

]
, (10.11)

where w is the associated optimal dual variable for the quadratic problem. The
Newton step is defined only at points for which the KKT matrix is nonsingular.

As in Newton’s method for unconstrained problems, we observe that when the
objective f is exactly quadratic, the Newton update x + ∆xnt exactly solves the
equality constrained minimization problem, and in this case the vector w is the op-
timal dual variable for the original problem. This suggests, as in the unconstrained
case, that when f is nearly quadratic, x+ ∆xnt should be a very good estimate of
the solution x⋆, and w should be a good estimate of the optimal dual variable ν⋆.

Solution of linearized optimality conditions

We can interpret the Newton step ∆xnt, and the associated vector w, as the solu-
tions of a linearized approximation of the optimality conditions

Ax⋆ = b, ∇f(x⋆) +AT ν⋆ = 0.

We substitute x+ ∆xnt for x⋆ and w for ν⋆, and replace the gradient term in the
second equation by its linearized approximation near x, to obtain the equations

A(x+ ∆xnt) = b, ∇f(x+ ∆xnt) +ATw ≈ ∇f(x) + ∇2f(x)∆xnt +ATw = 0.

Using Ax = b, these become

A∆xnt = 0, ∇2f(x)∆xnt +ATw = −∇f(x),

which are precisely the equations (10.11) that define the Newton step.
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The Newton decrement

We define the Newton decrement for the equality constrained problem as

λ(x) = (∆xT
nt∇

2f(x)∆xnt)
1/2. (10.12)

This is exactly the same expression as (9.29), used in the unconstrained case, and
the same interpretations hold. For example, λ(x) is the norm of the Newton step,
in the norm determined by the Hessian.

Let
f̂(x+ v) = f(x) + ∇f(x)T v + (1/2)vT∇2f(x)v

be the second-order Taylor approximation of f at x. The difference between f(x)
and the minimum of the second-order model satisfies

f(x) − inf{f̂(x+ v) | A(x+ v) = b} = λ(x)2/2, (10.13)

exactly as in the unconstrained case (see exercise 10.6). This means that, as in the
unconstrained case, λ(x)2/2 gives an estimate of f(x)− p⋆, based on the quadratic
model at x, and also that λ(x) (or a multiple of λ(x)2) serves as the basis of a good
stopping criterion.

The Newton decrement comes up in the line search as well, since the directional
derivative of f in the direction ∆xnt is

d

dt
f(x+ t∆xnt)

∣∣∣∣
t=0

= ∇f(x)T ∆xnt = −λ(x)2, (10.14)

as in the unconstrained case.

Feasible descent direction

Suppose that Ax = b. We say that v ∈ Rn is a feasible direction if Av = 0. In this
case, every point of the form x+ tv is also feasible, i.e., A(x+ tv) = b. We say that
v is a descent direction for f at x, if for small t > 0, f(x+ tv) < f(x).

The Newton step is always a feasible descent direction (except when x is opti-
mal, in which case ∆xnt = 0). Indeed, the second set of equations that define ∆xnt

are A∆xnt = 0, which shows it is a feasible direction; that it is a descent direction
follows from (10.14).

Affine invariance

Like the Newton step and decrement for unconstrained optimization, the New-
ton step and decrement for equality constrained optimization are affine invariant.
Suppose T ∈ Rn×n is nonsingular, and define f̄(y) = f(Ty). We have

∇f̄(y) = TT∇f(Ty), ∇2f̄(y) = TT∇2f(Ty)T,

and the equality constraint Ax = b becomes ATy = b.
Now consider the problem of minimizing f̄(y), subject to ATy = b. The Newton

step ∆ynt at y is given by the solution of
[
TT∇2f(Ty)T TTAT

AT 0

] [
∆ynt

w̄

]
=

[
−TT∇f(Ty)

0

]
.
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Comparing with the Newton step ∆xnt for f at x = Ty, given in (10.11), we see
that

T∆ynt = ∆xnt

(and w = w̄), i.e., the Newton steps at y and x are related by the same change of
coordinates as Ty = x.

10.2.2 Newton’s method with equality constraints

The outline of Newton’s method with equality constraints is exactly the same as
for unconstrained problems.

Algorithm 10.1 Newton’s method for equality constrained minimization.

given starting point x ∈ dom f with Ax = b, tolerance ǫ > 0.

repeat

1. Compute the Newton step and decrement ∆xnt, λ(x).
2. Stopping criterion. quit if λ2/2 ≤ ǫ.
3. Line search. Choose step size t by backtracking line search.
4. Update. x := x + t∆xnt.

The method is called a feasible descent method, since all the iterates are feasi-
ble, with f(x(k+1)) < f(x(k)) (unless x(k) is optimal). Newton’s method requires
that the KKT matrix be invertible at each x; we will be more precise about the
assumptions required for convergence in §10.2.4.

10.2.3 Newton’s method and elimination

We now show that the iterates in Newton’s method for the equality constrained
problem (10.1) coincide with the iterates in Newton’s method applied to the re-
duced problem (10.5). Suppose F satisfies R(F ) = N (A) and rankF = n − p,
and x̂ satisfies Ax̂ = b. The gradient and Hessian of the reduced objective function
f̃(z) = f(Fz + x̂) are

∇f̃(z) = FT∇f(Fz + x̂), ∇2f̃(z) = FT∇2f(Fz + x̂)F.

From the Hessian expression, we see that the Newton step for the equality con-
strained problem is defined, i.e., the KKT matrix

[
∇2f(x) AT

A 0

]

is invertible, if and only if the Newton step for the reduced problem is defined, i.e.,
∇2f̃(z) is invertible.

The Newton step for the reduced problem is

∆znt = −∇2f̃(z)−1∇f̃(z) = −(FT∇2f(x)F )−1FT∇f(x), (10.15)
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where x = Fz + x̂. This search direction for the reduced problem corresponds to
the direction

F∆znt = −F (FT∇2f(x)F )−1FT∇f(x)

for the original, equality constrained problem. We claim this is precisely the same
as the Newton direction ∆xnt for the original problem, defined in (10.11).

To show this, we take ∆xnt = F∆znt, choose

w = −(AAT )−1A(∇f(x) + ∇2f(x)∆xnt),

and verify that the equations defining the Newton step,

∇2f(x)∆xnt +ATw + ∇f(x) = 0, A∆xnt = 0, (10.16)

hold. The second equation, A∆xnt = 0, is satisfied because AF = 0. To verify the
first equation, we observe that

[
FT

A

] (
∇2f(x)∆xnt +ATw + ∇f(x)

)

=

[
FT∇2f(x)∆xnt + FTATw + FT∇f(x)
A∇2f(x)∆xnt +AATw +A∇f(x)

]

= 0.

Since the matrix on the left of the first line is nonsingular, we conclude that (10.16)
holds.

In a similar way, the Newton decrement λ̃(z) of f̃ at z and the Newton decrement
of f at x turn out to be equal:

λ̃(z)2 = ∆zT
nt∇

2f̃(z)∆znt

= ∆zT
ntF

T∇2f(x)F∆znt

= ∆xT
nt∇

2f(x)∆xnt

= λ(x)2.

10.2.4 Convergence analysis

We saw above that applying Newton’s method with equality constraints is ex-
actly the same as applying Newton’s method to the reduced problem obtained by
eliminating the equality constraints. Everything we know about the convergence
of Newton’s method for unconstrained problems therefore transfers to Newton’s
method for equality constrained constrained problems. In particular, the practical
performance of Newton’s method with equality constraints is exactly like the per-
formance of Newton’s method for unconstrained problems. Once x(k) is near x⋆,
convergence is extremely rapid, with a very high accuracy obtained in only a few
iterations.

Assumptions

We make the following assumptions.
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• The sublevel set S = {x | x ∈ dom f, f(x) ≤ f(x(0)), Ax = b} is closed,
where x(0) ∈ dom f satisfies Ax(0) = b. This is the case if f is closed
(see §A.3.3).

• On the set S, we have ∇2f(x) �MI, and

∥∥∥∥∥

[
∇2f(x) AT

A 0

]
−1
∥∥∥∥∥

2

≤ K, (10.17)

i.e., the inverse of the KKT matrix is bounded on S. (Of course the inverse
must exist in order for the Newton step to be defined at each point in S.)

• For x, x̃ ∈ S, ∇2f satisfies the Lipschitz condition ‖∇2f(x) − ∇2f(x̃)‖2 ≤
L‖x− x̃‖2.

Bounded inverse KKT matrix assumption

The condition (10.17) plays the role of the strong convexity assumption in the
standard Newton method (§9.5.3, page 488). When there are no equality con-
straints, (10.17) reduces to the condition ‖∇2f(x)−1‖2 ≤ K on S, so we can take
K = 1/m, if ∇f(x)2 � mI on S, where m > 0. With equality constraints, the
condition is not as simple as a positive lower bound on the minimum eigenvalue.
Since the KKT matrix is symmetric, the condition (10.17) is that its eigenvalues,
n of which are positive, and p of which are negative, are bounded away from zero.

Analysis via the eliminated problem

The assumptions above imply that the eliminated objective function f̃ , together
with the associated initial point z(0) = x̂+Fx(0), satisfy the assumptions required
in the convergence analysis of Newton’s method for unconstrained problems, given
in §9.5.3 (with different constants m̃, M̃ , and L̃). It follows that Newton’s method
with equality constraints converges to x⋆ (and ν⋆ as well).

To show that the assumptions above imply that the eliminated problem satisfies
the assumptions for the unconstrained Newton method is mostly straightforward
(see exercise 10.4). Here we show the one implication that is tricky: that the
bounded inverse KKT condition, together with the upper bound ∇2f(x) � MI,
implies that ∇2f̃(z) � mI for some positive constant m. More specifically we will
show that this inequality holds for

m =
σmin(F )2

K2M
, (10.18)

which is positive, since F is full rank.
We show this by contradiction. Suppose that FTHF 6� mI, whereH = ∇2f(x).

Then we can find u, with ‖u‖2 = 1, such that uTFTHFu < m, i.e., ‖H1/2Fu‖2 <
m1/2. Using AF = 0, we have

[
H AT

A 0

] [
Fu
0

]
=

[
HFu

0

]
,
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and so

∥∥∥∥∥

[
H AT

A 0

]
−1
∥∥∥∥∥

2

≥

∥∥∥∥

[
Fu
0

]∥∥∥∥
2∥∥∥∥

[
HFu

0

]∥∥∥∥
2

=
‖Fu‖2

‖HFu‖2
.

Using ‖Fu‖2 ≥ σmin(F ) and

‖HFu‖2 ≤ ‖H1/2‖2‖H
1/2Fu‖2 < M1/2m1/2,

we conclude
∥∥∥∥∥

[
H AT

A 0

]
−1
∥∥∥∥∥

2

≥
‖Fu‖2

‖HFu‖2
>

σmin(F )

M1/2m1/2
= K,

using our expression for m given in (10.18).

Convergence analysis for self-concordant functions

If f is self-concordant, then so is f̃(z) = f(Fx + x̂). It follows that if f is self-
concordant, we have the exact same complexity estimate as for unconstrained prob-
lems: the number of iterations required to produce a solution within an accuracy
ǫ is no more than

20 − 8α

αβ(1 − 2α)2
(f(x(0)) − p⋆) + log2 log2(1/ǫ),

where α and β are the backtracking parameters (see (9.56)).

10.3 Infeasible start Newton method

Newton’s method, as described in §10.2, is a feasible descent method. In this
section we describe a generalization of Newton’s method that works with initial
points, and iterates, that are not feasible.

10.3.1 Newton step at infeasible points

As in Newton’s method, we start with the optimality conditions for the equality
constrained minimization problem:

Ax⋆ = b, ∇f(x⋆) +AT ν⋆ = 0.

Let x denote the current point, which we do not assume to be feasible, but we do
assume satisfies x ∈ dom f . Our goal is to find a step ∆x so that x+ ∆x satisfies
(at least approximately) the optimality conditions, i.e., x + ∆x ≈ x⋆. To do this
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we substitute x+ ∆x for x⋆ and w for ν⋆ in the optimality conditions, and use the
first-order approximation

∇f(x+ ∆x) ≈ ∇f(x) + ∇2f(x)∆x

for the gradient to obtain

A(x+ ∆x) = b, ∇f(x) + ∇2f(x)∆x+ATw = 0.

This is a set of linear equations for ∆x and w,

[
∇2f(x) AT

A 0

] [
∆x
w

]
= −

[
∇f(x)
Ax− b

]
. (10.19)

The equations are the same as the equations (10.11) that define the Newton step
at a feasible point x, with one difference: the second block component of the
righthand side contains Ax− b, which is the residual vector for the linear equality
constraints. When x is feasible, the residual vanishes, and the equations (10.19)
reduce to the equations (10.11) that define the standard Newton step at a feasible
point x. Thus, if x is feasible, the step ∆x defined by (10.19) coincides with the
Newton step described above (but defined only when x is feasible). For this reason
we use the notation ∆xnt for the step ∆x defined by (10.19), and refer to it as the
Newton step at x, with no confusion.

Interpretation as primal-dual Newton step

We can give an interpretation of the equations (10.19) in terms of a primal-dual

method for the equality constrained problem. By a primal-dual method, we mean
one in which we update both the primal variable x, and the dual variable ν, in
order to (approximately) satisfy the optimality conditions.

We express the optimality conditions as r(x⋆, ν⋆) = 0, where r : Rn × Rp →
Rn × Rp is defined as

r(x, ν) = (rdual(x, ν), rpri(x, ν)).

Here
rdual(x, ν) = ∇f(x) +AT ν, rpri(x, ν) = Ax− b

are the dual residual and primal residual, respectively. The first-order Taylor ap-
proximation of r, near our current estimate y, is

r(y + z) ≈ r̂(y + z) = r(y) +Dr(y)z,

where Dr(y) ∈ R(n+p)×(n+p) is the derivative of r, evaluated at y (see §A.4.1).
We define the primal-dual Newton step ∆ypd as the step z for which the Taylor
approximation r̂(y + z) vanishes, i.e.,

Dr(y)∆ypd = −r(y). (10.20)

Note that here we consider both x and ν as variables; ∆ypd = (∆xpd,∆νpd) gives
both a primal and a dual step.
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Evaluating the derivative of r, we can express (10.20) as
[

∇2f(x) AT

A 0

] [
∆xpd

∆νpd

]
= −

[
rdual

rpri

]
= −

[
∇f(x) +AT ν

Ax− b

]
. (10.21)

Writing ν + ∆νpd as ν+, we can express this as
[

∇2f(x) AT

A 0

] [
∆xpd

ν+

]
= −

[
∇f(x)
Ax− b

]
, (10.22)

which is exactly the same set of equations as (10.19). The solutions of (10.19),
(10.21), and (10.22) are therefore related as

∆xnt = ∆xpd, w = ν+ = ν + ∆νpd.

This shows that the (infeasible) Newton step is the same as the primal part of
the primal-dual step, and the associated dual vector w is the updated primal-dual
variable ν+ = ν + ∆νpd.

The two expressions for the Newton step and dual variable (or dual step), given
by (10.21) and (10.22), are of course equivalent, but each reveals a different feature
of the Newton step. The equation (10.21) shows that the Newton step and the
associated dual step are obtained by solving a set of equations, with the primal
and dual residuals as the righthand side. The equation (10.22), which is how we
originally defined the Newton step, gives the Newton step and the updated dual
variable, and shows that the current value of the dual variable is not needed to
compute the primal step, or the updated value of the dual variable.

Residual norm reduction property

The Newton direction, at an infeasible point, is not necessarily a descent direction
for f . From (10.21), we note that

d

dt
f(x+ t∆x)

∣∣∣∣
t=0

= ∇f(x)T ∆x

= −∆xT
(
∇2f(x)∆x+ATw

)

= −∆xT∇2f(x)∆x+ (Ax− b)Tw,

which is not necessarily negative (unless, of course, x is feasible, i.e., Ax = b). The
primal-dual interpretation, however, shows that the norm of the residual decreases
in the Newton direction, i.e.,

d

dt
‖r(y + t∆ypd)‖2

2

∣∣∣∣
t=0

= 2r(y)TDr(y)∆ypd = −2r(y)T r(y).

Taking the derivative of the square, we obtain

d

dt
‖r(y + t∆ypd)‖2

∣∣∣∣
t=0

= −‖r(y)‖2. (10.23)

This allows us to use ‖r‖2 to measure the progress of the infeasible start Newton
method, for example, in the line search. (For the standard Newton method, we use
the function value f to measure progress of the algorithm, at least until quadratic
convergence is attained.)
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Full step feasibility property

The Newton step ∆xnt defined by (10.19) has the property (by construction) that

A(x+ ∆xnt) = b. (10.24)

It follows that, if a step length of one is taken using the Newton step ∆xnt, the
following iterate will be feasible. Once x is feasible, the Newton step becomes a
feasible direction, so all future iterates will be feasible, regardless of the step sizes
taken.

More generally, we can analyze the effect of a damped step on the equality
constraint residual rpri. With a step length t ∈ [0, 1], the next iterate is x+ =
x+ t∆xnt, so the equality constraint residual at the next iterate is

r+pri = A(x+ ∆xntt) − b = (1 − t)(Ax− b) = (1 − t)rpri,

using (10.24). Thus, a damped step, with length t, causes the residual to be scaled

down by a factor 1 − t. Now suppose that we have x(i+1) = x(i) + t(i)∆x
(i)
nt , for

i = 0, . . . , k − 1, where ∆x
(i)
nt is the Newton step at the point x(i) ∈ dom f , and

t(i) ∈ [0, 1]. Then we have

r(k) =

(
k−1∏

i=0

(1 − t(i))

)
r(0),

where r(i) = Ax(i) − b is the residual of x(i). This formula shows that the primal
residual at each step is in the direction of the initial primal residual, and is scaled
down at each step. It also shows that once a full step is taken, all future iterates
are primal feasible.

10.3.2 Infeasible start Newton method

We can develop an extension of Newton’s method, using the Newton step ∆xnt

defined by (10.19), with x(0) ∈ dom f , but not necessarily satisfying Ax(0) = b.
We also use the dual part of the Newton step: ∆νnt = w − ν in the notation
of (10.19), or equivalently, ∆νnt = ∆νpd in the notation of (10.21).

Algorithm 10.2 Infeasible start Newton method.

given starting point x ∈ dom f , ν, tolerance ǫ > 0, α ∈ (0, 1/2), β ∈ (0, 1).

repeat

1. Compute primal and dual Newton steps ∆xnt, ∆νnt.
2. Backtracking line search on ‖r‖2.

t := 1.
while ‖r(x + t∆xnt, ν + t∆νnt)‖2 > (1 − αt)‖r(x, ν)‖2, t := βt.

3. Update. x := x + t∆xnt, ν := ν + t∆νnt.
until Ax = b and ‖r(x, ν)‖2 ≤ ǫ.
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This algorithm is very similar to the standard Newton method with feasible start-
ing point, with a few exceptions. First, the search directions include the extra
correction terms that depend on the primal residual. Second, the line search is
carried out using the norm of the residual, instead of the function value f . Finally,
the algorithm terminates when primal feasibility has been achieved, and the norm
of the (dual) residual is small.

The line search in step 2 deserves some comment. Using the norm of the residual
in the line search can increase the cost, compared to a line search based on the
function value, but the increase is usually negligible. Also, we note that the line
search must terminate in a finite number of steps, since (10.23) shows that the line
search exit condition is satisfied for small t.

The equation (10.24) shows that if at some iteration the step length is chosen to
be one, the next iterate will be feasible. Thereafter, all iterates will be feasible, and
therefore the search direction for the infeasible start Newton method coincides, once
a feasible iterate is obtained, with the search direction for the (feasible) Newton
method described in §10.2.

There are many variations on the infeasible start Newton method. For example,
we can switch to the (feasible) Newton method described in §10.2 once feasibility
is achieved. (In other words, we change the line search to one based on f , and
terminate when λ(x)2/2 ≤ ǫ.) Once feasibility is achieved, the infeasible start and
the standard (feasible) Newton method differ only in the backtracking and exit
conditions, and have very similar performance.

Using infeasible start Newton method to simplify initialization

The main advantage of the infeasible start Newton method is in the initialization
required. If dom f = Rn, then initializing the (feasible) Newton method simply
requires computing a solution to Ax = b, and there is no particular advantage,
other than convenience, in using the infeasible start Newton method.

When dom f is not all of Rn, finding a point in dom f that satisfies Ax = b
can itself be a challenge. One general approach, probably the best when dom f is
complex and not known to intersect {z | Az = b}, is to use a phase I method (de-
scribed in §11.4) to compute such a point (or verify that dom f does not intersect
{z | Az = b}). But when dom f is relatively simple, and known to contain a point
satisfying Ax = b, the infeasible start Newton method gives a simple alternative.

One common example occurs when dom f = Rn
++, as in the equality con-

strained analytic centering problem described in example 10.2. To initialize New-
ton’s method for the problem

minimize −
∑n

i=1 log xi

subject to Ax = b,
(10.25)

requires finding a point x(0) ≻ 0 with Ax = b, which is equivalent to solving a stan-
dard form LP feasibility problem. This can be carried out using a phase I method,
or alternatively, using the infeasible start Newton method, with any positive initial
point, e.g., x(0) = 1.

The same trick can be used to initialize unconstrained problems where a starting
point in dom f is not known. As an example, we consider the dual of the equality
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constrained analytic centering problem (10.25),

maximize g(ν) = −bT ν + n+
∑n

i=1 log(AT ν)i.

To initialize this problem for the (feasible start) Newton method, we must find a
point ν(0) that satisfies AT ν(0) ≻ 0, i.e., we must solve a set of linear inequalities.
This can be done using a phase I method, or using an infeasible start Newton
method, after reformulating the problem. We first express it as an equality con-
strained problem,

maximize −bT ν + n+
∑n

i=1 log yi

subject to y = AT ν,

with new variable y ∈ Rn. We can now use the infeasible start Newton method,
starting with any positive y(0) (and any ν(0)).

The disadvantage of using the infeasible start Newton method to initialize prob-
lems for which a strictly feasible starting point is not known is that there is no clear
way to detect that there exists no strictly feasible point; the norm of the residual
will simply converge, slowly, to some positive value. (Phase I methods, in contrast,
can determine this fact unambiguously.) In addition, the convergence of the infea-
sible start Newton method, before feasibility is achieved, can be slow; see §11.4.2.

10.3.3 Convergence analysis

In this section we show that the infeasible start Newton method converges to the
optimal point, provided certain assumptions hold. The convergence proof is very
similar to those for the standard Newton method, or the standard Newton method
with equality constraints. We show that once the norm of the residual is small
enough, the algorithm takes full steps (which implies that feasibility is achieved),
and convergence is subsequently quadratic. We also show that the norm of the
residual is reduced by at least a fixed amount in each iteration before the region
of quadratic convergence is reached. Since the norm of the residual cannot be
negative, this shows that within a finite number of steps, the residual will be small
enough to guarantee full steps, and quadratic convergence.

Assumptions

We make the following assumptions.

• The sublevel set

S = {(x, ν) | x ∈ dom f, ‖r(x, ν)‖2 ≤ ‖r(x(0), ν(0))‖2} (10.26)

is closed. If f is closed, then ‖r‖2 is a closed function, and therefore this con-
dition is satisfied for any x(0) ∈ dom f and any ν(0) ∈ Rp (see exercise 10.7).

• On the set S, we have

‖Dr(x, ν)−1‖2 =

∥∥∥∥∥

[
∇2f(x) AT

A 0

]
−1
∥∥∥∥∥

2

≤ K, (10.27)
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for some K.

• For (x, ν), (x̃, ν̃) ∈ S, Dr satisfies the Lipschitz condition

‖Dr(x, ν) −Dr(x̃, ν̃)‖2 ≤ L‖(x, ν) − (x̃, ν̃)‖2.

(This is equivalent to ∇2f(x) satisfying a Lipschitz condition; see exer-
cise 10.7.)

As we will see below, these assumptions imply that dom f and {z | Az = b}
intersect, and that there is an optimal point (x⋆, ν⋆).

Comparison with standard Newton method

The assumptions above are very similar to the ones made in §10.2.4 (page 529)
for the analysis of the standard Newton method. The second and third assump-
tions, the bounded inverse KKT matrix and Lipschitz condition, are essentially the
same. The sublevel set condition (10.26) for the infeasible start Newton method
is, however, more general than the sublevel set condition made in §10.2.4.

As an example, consider the equality constrained maximum entropy problem

minimize f(x) =
∑n

i=1 xi log xi

subject to Ax = b,

with dom f = Rn
++. The objective f is not closed; it has sublevel sets that are not

closed, so the assumptions made in the standard Newton method may not hold,
at least for some initial points. The problem here is that the negative entropy
function does not converge to ∞ as xi → 0. On the other hand the sublevel set
condition (10.26) for the infeasible start Newton method does hold for this problem,
since the norm of the gradient of the negative entropy function does converge to
∞ as xi → 0. Thus, the infeasible start Newton method is guaranteed to solve the
equality constrained maximum entropy problem. (We do not know whether the
standard Newton method can fail for this problem; we are only observing here that
our convergence analysis does not hold.) Note that if the initial point satisfies the
equality constraints, the only difference between the standard and infeasible start
Newton methods is in the line searches, which differ only during the damped stage.

A basic inequality

We start by deriving a basic inequality. Let y = (x, ν) ∈ S with ‖r(y)‖2 6= 0, and
let ∆ynt = (∆xnt,∆νnt) be the Newton step at y. Define

tmax = inf{t > 0 | y + t∆ynt 6∈ S}.

If y+ t∆ynt ∈ S for all t ≥ 0, we follow the usual convention and define tmax = ∞.
Otherwise, tmax is the smallest positive value of t such that ‖r(y + t∆ynt)‖2 =
‖r(y(0))‖2. In particular, it follows that y + t∆ynt ∈ S for 0 ≤ t ≤ tmax.

We will show that

‖r(y + t∆ynt)‖2 ≤ (1 − t)‖r(y)‖2 + (K2L/2)t2‖r(y)‖2
2 (10.28)
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for 0 ≤ t ≤ min{1, tmax}.
We have

r(y + t∆ynt) = r(y) +

∫ 1

0

Dr(y + τt∆ynt)t∆ynt dτ

= r(y) + tDr(y)∆ynt +

∫ 1

0

(Dr(y + τt∆ynt) −Dr(y))t∆ynt dτ

= r(y) + tDr(y)∆ynt + e

= (1 − t)r(y) + e,

using Dr(y)∆ynt = −r(y), and defining

e =

∫ 1

0

(Dr(y + τt∆ynt) −Dr(y))t∆ynt dτ.

Now suppose 0 ≤ t ≤ tmax, so y + τt∆ynt ∈ S for 0 ≤ τ ≤ 1. We can bound ‖e‖2

as follows:

‖e‖2 ≤ ‖t∆ynt‖2

∫ 1

0

‖Dr(y + τt∆ynt) −Dr(y)‖2 dτ

≤ ‖t∆ynt‖2

∫ 1

0

L‖τt∆ynt‖2 dτ

= (L/2)t2‖∆ynt‖
2
2

= (L/2)t2‖Dr(y)−1r(y)‖2
2

≤ (K2L/2)t2‖r(y)‖2
2,

using the Lipschitz condition on the second line, and the bound ‖Dr(y)−1‖2 ≤ K
on the last. Now we can derive the bound (10.28): For 0 ≤ t ≤ min{1, tmax},

‖r(y + t∆ynt)‖2 = ‖(1 − t)r(y) + e‖2

≤ (1 − t)‖r(y)‖2 + ‖e‖2

≤ (1 − t)‖r(y)‖2 + (K2L/2)t2‖r(y)‖2
2.

Damped Newton phase

We first show that if ‖r(y)‖2 > 1/(K2L), one iteration of the infeasible start
Newton method reduces ‖r‖2 by at least a certain minimum amount.

The righthand side of the basic inequality (10.28) is quadratic in t, and mono-
tonically decreasing between t = 0 and its minimizer

t̄ =
1

K2L‖r(y)‖2
< 1.

We must have tmax > t̄, because the opposite would imply ‖r(y + tmax∆ynt)‖2 <
‖r(y)‖2, which is false. The basic inequality is therefore valid at t = t̄, and therefore

‖r(y + t̄∆ynt)‖2 ≤ ‖r(y)‖2 − 1/(2K2L)

≤ ‖r(y)‖2 − α/(K2L)

= (1 − αt̄)‖r(y)‖2,
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which shows that the step length t̄ satisfies the line search exit condition. Therefore
we have t ≥ βt̄, where t is the step length chosen by the backtracking algorithm.
From t ≥ βt̄ we have (from the exit condition in the backtracking line search)

‖r(y + t∆ynt)‖2 ≤ (1 − αt)‖r(y)‖2

≤ (1 − αβt̄)‖r(y)‖2

=

(
1 −

αβ

K2L‖r(y)‖2

)
‖r(y)‖2

= ‖r(y)‖2 −
αβ

K2L
.

Thus, as long as we have ‖r(y)‖2 > 1/(K2L), we obtain a minimum decrease in
‖r‖2, per iteration, of αβ/(K2L). It follows that a maximum of

‖r(y(0))‖2K
2L

αβ

iterations can be taken before we have ‖r(y(k))‖2 ≤ 1/(K2L).

Quadratically convergent phase

Now suppose ‖r(y)‖2 ≤ 1/(K2L). The basic inequality gives

‖r(y + t∆ynt)‖2 ≤ (1 − t+ (1/2)t2)‖r(y)‖2 (10.29)

for 0 ≤ t ≤ min{1, tmax}. We must have tmax > 1, because otherwise it would follow
from (10.29) that ‖r(y + tmax∆ynt)‖2 < ‖r(y)‖2, which contradicts the definition
of tmax. The inequality (10.29) therefore holds with t = 1, i.e., we have

‖r(y + ∆ynt)‖2 ≤ (1/2)‖r(y)‖2 ≤ (1 − α)‖r(y)‖2.

This shows that the backtracking line search exit criterion is satisfied for t = 1,
so a full step will be taken. Moreover, for all future iterations we have ‖r(y)‖2 ≤
1/(K2L), so a full step will be taken for all following iterations.

We can write the inequality (10.28) (for t = 1) as

K2L‖r(y+)‖2

2
≤

(
K2L‖r(y)‖2

2

)2

,

where y+ = y + ∆ynt. Therefore, if r(y+k) denotes the residual k steps after an
iteration in which ‖r(y)‖2 ≤ 1/K2L, we have

K2L‖r(y+k)‖2

2
≤

(
K2L‖r(y)‖2

2

)2k

≤

(
1

2

)2k

,

i.e., we have quadratic convergence of ‖r(y)‖2 to zero.
To show that the sequence of iterates converges, we will show that it is a Cauchy

sequence. Suppose y is an iterate satisfying ‖r(y)‖2 ≤ 1/(K2L), and y+k denotes
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the kth iterate after y. Since these iterates are in the region of quadratic conver-
gence, the step size is one, so we have

‖y+k − y‖2 ≤ ‖y+k − y+(k−1)‖2 + · · · + ‖y+ − y‖2

= ‖Dr(y+(k−1))−1r(y+(k−1))‖2 + · · · + ‖Dr(y)−1r(y)‖2

≤ K
(
‖r(y+(k−1))‖2 + · · · + ‖r(y)‖2

)

≤ K‖r(y)‖2

k−1∑

i=0

(
K2L‖r(y)‖2

2

)2i
−1

≤ K‖r(y)‖2

k−1∑

i=0

(
1

2

)2i
−1

≤ 2K‖r(y)‖2

where in the third line we use the assumption that ‖Dr−1‖2 ≤ K for all iterates.
Since ‖r(y(k))‖2 converges to zero, we conclude y(k) is a Cauchy sequence, and
therefore converges. By continuity of r, the limit point y⋆ satisfies r(y⋆) = 0. This
establishes our earlier claim that the assumptions at the beginning of this section
imply that there is an optimal point (x⋆, ν⋆).

10.3.4 Convex-concave games

The proof of convergence for the infeasible start Newton method reveals that the
method can be used for a larger class of problems than equality constrained convex
optimization problems. Suppose r : Rn → Rn is differentiable, its derivative
satisfies a Lipschitz condition on S, and ‖Dr(x)−1‖2 is bounded on S, where

S = {x ∈ dom r | ‖r(x)‖2 ≤ ‖r(x(0))‖2}

is a closed set. Then the infeasible start Newton method, started at x(0), converges
to a solution of r(x) = 0 in S. In the infeasible start Newton method, we apply
this to the specific case in which r is the residual for the equality constrained
convex optimization problem. But it applies in several other interesting cases. One
interesting example is solving a convex-concave game. (See §5.4.3 and exercise 5.25
for discussion of other, related games).

An unconstrained (zero-sum, two-player) game on Rp × Rq is defined by its
payoff function f : Rp+q → R. The meaning is that player 1 chooses a value (or
move) u ∈ Rp, and player 2 chooses a value (or move) v ∈ Rq; based on these
choices, player 1 makes a payment to player 2, in the amount f(u, v). The goal of
player 1 is to minimize this payment, while the goal of player 2 is to maximize it.

If player 1 makes his choice u first, and player 2 knows the choice, then player 2
will choose v to maximize f(u, v), which results in a payoff of supv f(u, v) (assuming
the supremum is achieved). If player 1 assumes that player 2 will make this choice,
he should choose u to minimize supv f(u, v). The resulting payoff, from player 1
to player 2, will then be

inf
u

sup
v
f(u, v) (10.30)
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(assuming that the supremum is achieved). On the other hand if player 2 makes
the first choice, the strategies are reversed, and the resulting payoff from player 1
to player 2 is

sup
v

inf
u
f(u, v). (10.31)

The payoff (10.30) is always greater than or equal to the payoff (10.31); the dif-
ference between the two payoffs can be interpreted as the advantage afforded the
player who makes the second move, with knowledge of the other player’s move. We
say that (u⋆, v⋆) is a solution of the game, or a saddle-point for the game, if for all
u, v,

f(u⋆, v) ≤ f(u⋆, v⋆) ≤ f(u, v⋆).

When a solution exists, there is no advantage to making the second move; f(u⋆, v⋆)
is the common value of both payoffs (10.30) and (10.31). (See exercise 3.14.)

The game is called convex-concave if for each v, f(u, v) is a convex function of
u, and for each u, f(u, v) is a concave function of v. When f is differentiable (and
convex-concave), a saddle-point for the game is characterized by ∇f(u⋆, v⋆) = 0.

Solution via infeasible start Newton method

We can use the infeasible start Newton method to compute a solution of a convex-
concave game with twice differentiable payoff function. We define the residual as

r(u, v) = ∇f(u, v) =

[
∇uf(u, v)
∇vf(u, v)

]
,

and apply the infeasible start Newton method. In the context of games, the infea-
sible start Newton method is simply called Newton’s method (for convex-concave
games).

We can guarantee convergence of the (infeasible start) Newton method provided
Dr = ∇2f has bounded inverse, and satisfies a Lipschitz condition on the sublevel
set

S = {(u, v) ∈ dom f | ‖r(u, v)‖2 ≤ ‖r(u(0), v(0))‖2},

where u(0), v(0) are the starting players’ choices.
There is a simple analog of the strong convexity condition in an unconstrained

minimization problem. We say the game with payoff function f is strongly convex-
concave if for some m > 0, we have ∇2

uuf(u, v) � mI and ∇2
vvf(u, v) � −mI, for

all (u, v) ∈ S. Not surprisingly, this strong convex-concave assumption implies the
bounded inverse condition (exercise 10.10).

10.3.5 Examples

A simple example

We illustrate the infeasible start Newton method on the equality constrained an-
alytic center problem (10.25). Our first example is an instance with dimensions
n = 100 and m = 50, generated randomly, for which the problem is feasible and
bounded below. The infeasible start Newton method is used, with initial primal
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and dual points x(0) = 1, ν(0) = 0, and backtracking parameters α = 0.01 and
β = 0.5. The plot in figure 10.1 shows the norms of the primal and dual residu-
als separately, versus iteration number, and the plot in figure 10.2 shows the step
lengths. A full Newton step is taken in iteration 8, so the primal residual becomes
(almost) zero, and remains (almost) zero. After around iteration 9 or so, the (dual)
residual converges quadratically to zero.

An infeasible example

We also consider a problem instance, of the same dimensions as the example above,
for which dom f does not intersect {z | Az = b}, i.e., the problem is infeasible.
(This violates the basic assumption in the chapter that problem (10.1) is solvable, as
well as the assumptions made in §10.2.4; the example is meant only to show what
happens to the infeasible start Newton method when dom f does not intersect
{z | Az = b}.) The norm of the residual for this example is shown in figure 10.3,
and the step length in figure 10.4. Here, of course, the step lengths are never one,
and the residual does not converge to zero.

A convex-concave game

Our final example involves a convex-concave game on R100 × R100, with payoff
function

f(u, v) = uTAv + bTu+ cT v − log(1 − uTu) + log(1 − vT v), (10.32)

defined on
dom f = {(u, v) | uTu < 1, vT v < 1}.

The problem data A, b, and c were randomly generated. The progress of the
(infeasible start) Newton method, started at u(0) = v(0) = 0, with backtracking
parameters α = 0.01 and β = 0.5, is shown in figure 10.5.

10.4 Implementation

10.4.1 Elimination

To implement the elimination method, we have to calculate a full rank matrix F
and an x̂ such that

{x | Ax = b} = {Fz + x̂ | z ∈ Rn−p}.

Several methods for this are described in §C.5.

10.4.2 Solving KKT systems

In this section we describe methods that can be used to compute the Newton step
or infeasible Newton step, both of which involve solving a set of linear equations
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Figure 10.1 Progress of infeasible start Newton method on an equality con-
strained analytic centering problem with 100 variables and 50 constraints.
The figure shows ‖rpri‖2 (solid line), and ‖rdual‖2 (dashed line). Note that
feasibility is achieved (and maintained) after 8 iterations, and convergence
is quadratic, starting from iteration 9 or so.
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Figure 10.2 Step length versus iteration number for the same example prob-
lem. A full step is taken in iteration 8, which results in feasibility from
iteration 8 on.
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Figure 10.3 Progress of infeasible start Newton method on an equality con-
strained analytic centering problem with 100 variables and 50 constraints,
for which dom f = R100

++ does not intersect {z | Az = b}. The figure shows
‖rpri‖2 (solid line), and ‖rdual‖2 (dashed line). In this case, the residuals do
not converge to zero.
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Figure 10.4 Step length versus iteration number for the infeasible example
problem. No full steps are taken, and the step lengths converge to zero.
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Figure 10.5 Progress of (infeasible start) Newton method on a convex-
concave game. Quadratic convergence becomes apparent after about 5 iter-
ations.

with KKT form [
H AT

A 0

] [
v
w

]
= −

[
g
h

]
. (10.33)

Here we assume H ∈ Sn
+, and A ∈ Rp×n with rankA = p < n. Similar methods

can be used to compute the Newton step for a convex-concave game, in which
the bottom right entry of the coefficient matrix is negative semidefinite (see exer-
cise 10.13).

Solving full KKT system

One straightforward approach is to simply solve the KKT system (10.33), which is
a set of n + p linear equations in n + p variables. The KKT matrix is symmetric,
but not positive definite, so a good way to do this is to use an LDLT factorization
(see §C.3.3). If no structure of the matrix is exploited, the cost is (1/3)(n + p)3

flops. This can be a reasonable approach when the problem is small (i.e., n and p
are not too large), or when A and H are sparse.

Solving KKT system via elimination

A method that is often better than directly solving the full KKT system is based
on eliminating the variable v (see §C.4). We start by describing the simplest case,
in which H ≻ 0. Starting from the first of the KKT equations

Hv +ATw = −g, Av = −h,

we solve for v to obtain

v = −H−1(g +ATw).
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Substituting this into the second KKT equation yields AH−1(g+ATw) = h, so we
have

w = (AH−1AT )−1(h−AH−1g).

These formulas give us a method for computing v and w.
The matrix appearing in the formula for w is the Schur complement S of H in

the KKT matrix:
S = −AH−1AT .

Because of the special structure of the KKT matrix, and our assumption that A
has rank p, the matrix S is negative definite.

Algorithm 10.3 Solving KKT system by block elimination.

given KKT system with H ≻ 0.

1. Form H−1AT and H−1g.
2. Form Schur complement S = −AH−1AT .
3. Determine w by solving Sw = AH−1g − h.
4. Determine v by solving Hv = −AT w − g.

Step 1 can be done by a Cholesky factorization of H, followed by p+ 1 solves,
which costs f + (p + 1)s, where f is the cost of factoring H and s is the cost of
an associated solve. Step 2 requires a p× n by n× p matrix multiplication. If we
exploit no structure in this calculation, the cost is p2n flops. (Since the result is
symmetric, we only need to compute the upper triangular part of S.) In some cases
special structure in A and H can be exploited to carry out step 2 more efficiently.
Step 3 can be carried out by Cholesky factorization of −S, which costs (1/3)p3

flops if no further structure of S is exploited. Step 4 can be carried out using the
factorization of H already calculated in step 1, so the cost is 2np + s flops. The
total flop count, assuming that no structure is exploited in forming or factoring the
Schur complement, is

f + ps+ p2n+ (1/3)p3

flops (keeping only dominant terms). If we exploit structure in forming or factoring
S, the last two terms are even smaller.

If H can be factored efficiently, then block elimination gives us a flop count
advantage over directly solving the KKT system using an LDLT factorization. For
example, if H is diagonal (which corresponds to a separable objective function),
we have f = 0 and s = n, so the total cost is p2n+(1/3)p3 flops, which grows only
linearly with n. If H is banded with bandwidth k ≪ n, then f = nk2, s = 4nk, so
the total cost is around nk2 + 4nkp+ p2n+ (1/3)p3 which still grows only linearly
with n. Other structures of H that can be exploited are block diagonal (which
corresponds to block separable objective function), sparse, or diagonal plus low
rank; see appendix C and §9.7 for more details and examples.

Example 10.3 Equality constrained analytic center. We consider the problem

minimize −
∑n

i=1
log xi

subject to Ax = b.
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Here the objective is separable, so the Hessian at x is diagonal:

H = diag(x−2
1 , . . . , x−2

n ).

If we compute the Newton direction using a generic method such as an LDLT factor-
ization of the KKT matrix, the cost is (1/3)(n + p)3 flops.

If we compute the Newton step using block elimination, the cost is np2 + (1/3)p3

flops. This is much smaller than the cost of the generic method.

In fact this cost is the same as that of computing the Newton step for the dual prob-
lem, described in example 10.2 on page 525. For the (unconstrained) dual problem,
the Hessian is

Hdual = −ADAT ,

where D is diagonal, with Dii = (AT ν)−2
i . Forming this matrix costs np2 flops, and

solving for the Newton step by a Cholesky factorization of −Hdual costs (1/3)p3 flops.

Example 10.4 Minimum length piecewise-linear curve subject to equality constraints.

We consider a piecewise-linear curve in R2 with knot points (0, 0), (1, x1), . . . , (n, xn).
To find the minimum length curve that satisfies the equality constraints Ax = b, we
form the problem

minimize
(
1 + x2

1

)1/2
+
∑n−1

i=1

(
1 + (xi+1 − xi)

2
)1/2

subject to Ax = b,

with variable x ∈ Rn, and A ∈ Rp×n. In this problem, the objective is a sum of
functions of pairs of adjacent variables, so the Hessian H is tridiagonal. Using block
elimination, we can compute the Newton step in around p2n + (1/3)p3 flops.

Elimination with singular H

The block elimination method described above obviously does not work when H
is singular, but a simple variation on the method can be used in this more general
case. The more general method is based on the following result: The KKT matrix is
nonsingular if and onlyH+ATQA ≻ 0 for some Q � 0, in which case, H+ATQA ≻
0 for all Q ≻ 0. (See exercise 10.1.) We conclude, for example, that if the KKT
matrix is nonsingular, then H +ATA ≻ 0.

Let Q � 0 be a matrix for which H+ATQA ≻ 0. Then the KKT system (10.33)
is equivalent to

[
H +ATQA AT

A 0

] [
v
w

]
= −

[
g +ATQh

h

]
,

which can be solved using elimination since H +ATQA ≻ 0.

10.4.3 Examples

In this section we describe some longer examples, showing how structure can be
exploited to efficiently compute the Newton step. We also include some numerical
results.
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Equality constrained analytic centering

We consider the equality constrained analytic centering problem

minimize f(x) = −
∑n

i=1 log xi

subject to Ax = b.

(See examples 10.2 and 10.3.) We compare three methods, for a problem of size
p = 100, n = 500.

The first method is Newton’s method with equality constraints (§10.2). The
Newton step ∆xnt is defined by the KKT system (10.11):

[
H AT

A 0

] [
∆xnt

w

]
=

[
−g
0

]
,

where H = diag(1/x2
1, . . . , 1/x

2
n), and g = −(1/x1, . . . , 1/xn). As explained in

example 10.3, page 546, the KKT system can be efficiently solved by elimination,
i.e., by solving

AH−1ATw = −AH−1g,

and setting ∆xnt = −H−1(ATw + g). In other words,

∆xnt = −diag(x)2ATw + x,

where w is the solution of
Adiag(x)2ATw = b. (10.34)

Figure 10.6 shows the error versus iteration. The different curves correspond to
four different starting points. We use a backtracking line search with α = 0.1,
β = 0.5.

The second method is Newton’s method applied to the dual

maximize g(ν) = −bT ν +
∑n

i=1 log(AT ν)i + n

(see example 10.2, page 525). Here the Newton step is obtained from solving

Adiag(y)2AT ∆νnt = −b+Ay (10.35)

where y = (1/(AT ν)1, . . . , 1/(A
T ν)n). Comparing (10.35) and (10.34) we see that

both methods have the same complexity. In figure 10.7 we show the error for four
different starting points. We use a backtracking line search with α = 0.1, β = 0.5.

The third method is the infeasible start Newton method of §10.3, applied to
the optimality conditions

∇f(x⋆) +AT ν⋆ = 0, Ax⋆ = b.

The Newton step is obtained by solving

[
H AT

A 0

] [
∆xnt

∆νnt

]
= −

[
g +AT ν
Ax− b

]
,
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Figure 10.6 Error f(x(k)) − p⋆ in Newton’s method, applied to an equality
constrained analytic centering problem of size p = 100, n = 500. The
different curves correspond to four different starting points. Final quadratic
convergence is clearly evident.
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Figure 10.7 Error |g(ν(k)) − p⋆| in Newton’s method, applied to the dual of
the equality constrained analytic centering problem.
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Figure 10.8 Residual ‖r(x(k), ν(k))‖2 in the infeasible start Newton method,
applied to the equality constrained analytic centering problem.

where H = diag(1/x2
1, . . . , 1/x

2
n), and g = −(1/x1, . . . , 1/xn). This KKT system

can be efficiently solved by elimination, at the same cost as (10.34) or (10.35). For
example, if we first solve

Adiag(x)2ATw = 2Ax− b,

then ∆νnt and ∆xnt follow from

∆νnt = w − ν, ∆xnt = x− diag(x)2ATw.

Figure 10.8 shows the norm of the residual

r(x, ν) = (∇f(x) +AT ν,Ax− b)

versus iteration, for four different starting points. We use a backtracking line search
with α = 0.1, β = 0.5.

The figures show that for this problem, the dual method appears to be faster,
but only by a factor of two or three. It takes about six iterations to reach the
region of quadratic convergence, as opposed to 12–15 in the primal method and
10–20 in the infeasible start Newton method.

The methods also differ in the initialization they require. The primal method
requires knowledge of a primal feasible point, i.e., satisfying Ax(0) = b, x(0) ≻ 0.
The dual method requires a dual feasible point, i.e., AT ν(0) ≻ 0. Depending on
the problem, one or the other might be more readily available. The infeasible start
Newton method requires no initialization; the only requirement is that x(0) ≻ 0.

Optimal network flow

We consider a connected directed graph or network with n edges and p+ 1 nodes.
We let xj denote the flow or traffic on arc j, with xj > 0 meaning flow in the
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direction of the arc, and xj < 0 meaning flow in the direction opposite the arc.
There is also a given external source (or sink) flow si that enters (if si > 0) or
leaves (if si < 0) node i. The flow must satisfy a conservation equation, which
states that at each node, the total flow entering the node, including the external
sources and sinks, is zero. This conservation equation can be expressed as Ãx = s
where Ã ∈ R(p+1)×n is the node incidence matrix of the graph,

Ãij =






1 arc j leaves node i
−1 arc j enters node i

0 otherwise.

The flow conservation equation Ãx = s is inconsistent unless 1T s = 0, which we
assume is the case. (In other words, the total of the source flows must equal the
total of the sink flows.) The flow conservation equations Ãx = s are also redundant,
since 1T Ã = 0. To obtain an independent set of equations we can delete any one
equation, to obtain Ax = b, where A ∈ Rp×n is the reduced node incidence matrix

of the graph (i.e., the node incidence matrix with one row removed) and b ∈ Rp is
reduced source vector (i.e., s with the associated entry removed).

In summary, flow conservation is given by Ax = b, where A is the reduced node
incidence matrix of the graph and b is the reduced source vector. The matrix A is
very sparse, since each column has at most two nonzero entries (which can only be
+1 or −1).

We will take traffic flows x as the variables, and the sources as given. We
introduce the objective function

f(x) =

n∑

i=1

φi(xi),

where φi : R → R is the flow cost function for arc i. We assume that the flow cost
functions are strictly convex and twice differentiable.

The problem of choosing the best flow, that satisfies the flow conservation re-
quirement, is

minimize
∑n

i=1 φi(xi)
subject to Ax = b.

(10.36)

Here the Hessian H is diagonal, since the objective is separable.
We have several choices for computing the Newton step for the optimal network

flow problem (10.36). The most straightforward is to solve the full KKT system,
using a sparse LDLT factorization.

For this problem it is probably better to compute the Newton step using block
elimination. We can characterize the sparsity pattern of the Schur complement
S = −AH−1AT in terms of the graph: We have Sij 6= 0 if and only if node i and
node j are connected by an arc. It follows that if the network is sparse, i.e., if each
node is connected by an arc to only a few other nodes, then the Schur complement
S is sparse. In this case, we can exploit sparsity in forming S, and in the associated
factorization and solve steps, as well. We can expect the computational complexity
of computing the Newton step to grow approximately linearly with the number of
arcs (which is the number of variables).
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Optimal control

We consider the problem

minimize
∑N

t=1 φt(z(t)) +
∑N−1

t=0 ψt(u(t))
subject to z(t+ 1) = Atz(t) +Btu(t), t = 0, . . . , N − 1.

Here

• z(t) ∈ Rk is the system state at time t

• u(t) ∈ Rl is the input or control action at time t

• φt : Rk → R is the state cost function

• ψt : Rl → R is the input cost function

• N is called the time horizon for the problem.

We assume that the input and state cost functions are strictly convex and twice dif-
ferentiable. The variables in the problem are u(0), . . . , u(N−1), and z(1), . . . , z(N).
The initial state z(0) is given. The linear equality constraints are called the state

equations or dynamic evolution equations. We define the overall optimization vari-
able x as

x = (u(0), z(1), u(1), . . . , u(N − 1), z(N)) ∈ RN(k+l).

Since the objective is block separable (i.e., a sum of functions of z(t) and u(t)),
the Hessian is block diagonal:

H = diag(R0, Q1, . . . , RN−1, QN ),

where

Rt = ∇2ψt(u(t)), t = 0, . . . , N − 1, Qt = ∇2φt(z(t)), t = 1, . . . , N.

We can collect all the equality constraints (i.e., the state equations) and express
them as Ax = b where

A =





−B0 I 0 0 0 · · · 0 0 0
0 −A1 −B1 I 0 · · · 0 0 0
0 0 0 −A2 −B2 · · · 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 0 · · · I 0 0
0 0 0 0 0 · · · −AN−1 −BN−1 I





b =





A0z(0)
0
0
...
0
0





.
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The number of rows of A (i.e., equality constraints) is Nk.
Directly solving the KKT system for the Newton step, using a dense LDLT

factorization, would cost

(1/3)(2Nk +Nl)3 = (1/3)N3(2k + l)3

flops. Using a sparse LDLT factorization would give a large improvement, since
the method would exploit the many zero entries in A and H.

In fact we can do better by exploiting the special block structure of H and
A, using block elimination to compute the Newton step. The Schur complement
S = −AH−1AT turns out to be block tridiagonal, with k × k blocks:

S = −AH−1AT

=





S11 Q−1
1 AT

1 0 · · · 0 0
A1Q

−1
1 S22 Q−1

2 AT
2 · · · 0 0

0 A2Q
−1
2 S33 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · SN−1,N−1 Q−1
N−1A

T
N−1

0 0 0 · · · AN−1Q
−1
N−1 SNN





where

S11 = −B0R
−1
0 BT

0 −Q−1
1 ,

Sii = −Ai−1Q
−1
i−1A

T
i−1 −Bi−1R

−1
i−1B

T
i−1 −Q−1

i , i = 2, . . . , N.

In particular, S is banded, with bandwidth 2k − 1, so we can factor it in order
k3N flops. Therefore we can compute the Newton step in order k3N flops, assuming
k ≪ N . Note that this grows linearly with the time horizonN , whereas for a generic
method, the flop count grows like N3.

For this problem we could go one step further and exploit the block tridiagonal
structure of S. Applying a standard block tridiagonal factorization method would
result in the classic Riccati recursion for solving a quadratic optimal control prob-
lem. Still, using only the banded nature of S yields an algorithm that is the same
order.

Analytic center of a linear matrix inequality

We consider the problem

minimize f(X) = − log detX
subject to tr(AiX) = bi, i = 1, . . . , p,

(10.37)

where X ∈ Sn is the variable, Ai ∈ Sn, bi ∈ R, and dom f = Sn
++. The KKT

conditions for this problem are

−X⋆−1 +

m∑

i=1

ν⋆
i Ai = 0, tr(AiX

⋆) = bi, i = 1, . . . , p. (10.38)

The dimension of the variable X is n(n + 1)/2. We could simply ignore the

special matrix structure of X, and consider it as (vector) variable x ∈ Rn(n+1)/2,
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and solve the problem (10.37) using a generic method for a problem with n(n+1)/2
variables and p equality constraints. The cost for computing a Newton step would
then be at least

(1/3)(n(n+ 1)/2 + p)3

flops, which is order n6 in n. We will see that there are a number of far more
attractive alternatives.

A first option is to solve the dual problem. The conjugate of f is

f∗(Y ) = log det(−Y )−1 − n

with dom f∗ = −Sn
++ (see example 3.23, page 92), so the dual problem is

maximize −bT ν + log det(
∑p

i=1 νiAi) + n, (10.39)

with domain {ν |
∑p

i=1 νiAi ≻ 0}. This is an unconstrained problem with variable
ν ∈ Rp. The optimal X⋆ can be recovered from the optimal ν⋆ by solving the first

(dual feasibility) equation in (10.38), i.e., X⋆ = (
∑p

i=1 ν
⋆
i Ai)

−1
.

Let us work out the cost of computing the Newton step for the dual prob-
lem (10.39). We have to form the gradient and Hessian of g, and then solve for the
Newton step. The gradient and Hessian are given by

∇2g(ν)ij = − tr(A−1AiA
−1Aj), i, j = 1, . . . , p,

∇g(ν)i = tr(A−1Ai) − bi, i = 1 . . . , p,

where A =
∑p

i=1 νiAi. To form ∇2g(ν) and ∇g(ν) we proceed as follows. We
first form A (pn2 flops), and A−1Aj for each j (2pn3 flops). Then we form the
matrix ∇2g(ν). Each of the p(p + 1)/2 entries of ∇2g(ν) is the inner product of
two matrices in Sn, each of which costs n(n + 1) flops, so the total is (dropping
dominated terms) (1/2)p2n2 flops. Forming ∇g(ν) is cheap since we already have
the matrices A−1Ai. Finally, we solve for the Newton step −∇2g(ν)−1∇g(ν), which
costs (1/3)p3 flops. All together, and keeping only the leading terms, the total cost
of computing the Newton step is 2pn3 + (1/2)p2n2 + (1/3)p3. Note that this is
order n3 in n, which is far better than the simple primal method described above,
which is order n6.

We can also solve the primal problem more efficiently, by exploiting its special
matrix structure. To derive the KKT system for the Newton step ∆Xnt at a feasible
X, we replace X⋆ in the KKT conditions by X + ∆Xnt and ν⋆ by w, and linearize
the first equation using the first-order approximation

(X + ∆Xnt)
−1 ≈ X−1 −X−1∆XntX

−1.

This gives the KKT system

−X−1 +X−1∆XntX
−1 +

p∑

i=1

wiAi = 0, tr(Ai∆Xnt) = 0, i = 1, . . . , p.

(10.40)
This is a set of n(n + 1)/2 + p linear equations in the variables ∆Xnt ∈ Sn and
w ∈ Rp. If we solved these equations using a generic method, the cost would be
order n6.
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We can use block elimination to solve the KKT system (10.40) far more effi-
ciently. We eliminate the variable ∆Xnt, by solving the first equation to get

∆Xnt = X −X

(
p∑

i=1

wiAi

)
X = X −

p∑

i=1

wiXAiX. (10.41)

Substituting this expression for ∆Xnt into the other equation gives

tr(Aj∆Xnt) = tr(AjX) −

p∑

i=1

wi tr(AjXAiX) = 0, j = 1, . . . , p.

This is a set of p linear equations in w:

Cw = d

where Cij = tr(AiXAjX), di = tr(AiX). The coefficient matrix C is symmetric
and positive definite, so a Cholesky factorization can be used to find w. Once we
have w, we can compute ∆Xnt from (10.41).

The cost of this method is as follows. We form the products AiX (2pn3 flops),
and then form the matrix C. Each of the p(p + 1)/2 entries of C is the inner
product of two matrices in Rn×n, so forming C costs p2n2 flops. Then we solve
for w = C−1d, which costs (1/3)p3. Finally we compute ∆Xnt. If we use the
first expression in (10.41), i.e., first compute the sum and then pre- and post-
multiply with X, the cost is approximately pn2 + 3n3. All together, the total cost
is 2pn3 + p2n2 + (1/3)p3 flops to form the Newton step for the primal problem,
using block elimination. This is far better than the simple method, which is order
n6. Note also that the cost is the same as that of computing the Newton step for
the dual problem.
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Exercises

Equality constrained minimization

10.1 Nonsingularity of the KKT matrix. Consider the KKT matrix

[
P AT

A 0

]
,

where P ∈ Sn
+, A ∈ Rp×n, and rankA = p < n.

(a) Show that each of the following statements is equivalent to nonsingularity of the
KKT matrix.

• N (P ) ∩N (A) = {0}.

• Ax = 0, x 6= 0 =⇒ xT Px > 0.

• F T PF ≻ 0, where F ∈ Rn×(n−p) is a matrix for which R(F ) = N (A).

• P + AT QA ≻ 0 for some Q � 0.

(b) Show that if the KKT matrix is nonsingular, then it has exactly n positive and p
negative eigenvalues.

10.2 Projected gradient method. In this problem we explore an extension of the gradient method
to equality constrained minimization problems. Suppose f is convex and differentiable,
and x ∈ dom f satisfies Ax = b, where A ∈ Rp×n with rankA = p < n. The Euclidean
projection of the negative gradient −∇f(x) on N (A) is given by

∆xpg = argmin
Au=0

‖−∇f(x) − u‖2.

(a) Let (v, w) be the unique solution of

[
I AT

A 0

][
v
w

]
=

[
−∇f(x)

0

]
.

Show that v = ∆xpg and w = argminy ‖∇f(x) + AT y‖2.

(b) What is the relation between the projected negative gradient ∆xpg and the negative
gradient of the reduced problem (10.5), assuming F T F = I?

(c) The projected gradient method for solving an equality constrained minimization
problem uses the step ∆xpg, and a backtracking line search on f . Use the re-
sults of part (b) to give some conditions under which the projected gradient method

converges to the optimal solution, when started from a point x(0) ∈ dom f with
Ax(0) = b.

Newton’s method with equality constraints

10.3 Dual Newton method. In this problem we explore Newton’s method for solving the dual
of the equality constrained minimization problem (10.1). We assume that f is twice
differentiable, ∇2f(x) ≻ 0 for all x ∈ dom f , and that for each ν ∈ Rp, the Lagrangian
L(x, ν) = f(x) + νT (Ax − b) has a unique minimizer, which we denote x(ν).

(a) Show that the dual function g is twice differentiable. Find an expression for the
Newton step for the dual function g, evaluated at ν, in terms of f , ∇f , and ∇2f ,
evaluated at x = x(ν). You can use the results of exercise 3.40.



558 10 Equality constrained minimization

(b) Suppose there exists a K such that
∥∥∥∥∥

[
∇2f(x) AT

A 0

]
−1
∥∥∥∥∥

2

≤ K

for all x ∈ dom f . Show that g is strongly concave, with ∇2g(ν) � −(1/K)I.

10.4 Strong convexity and Lipschitz constant of the reduced problem. Suppose f satisfies the
assumptions given on page 529. Show that the reduced objective function f̃(z) = f(Fz+x̂)
is strongly convex, and that its Hessian is Lipschitz continuous (on the associated sublevel

set S̃). Express the strong convexity and Lipschitz constants of f̃ in terms of K, M , L,
and the maximum and minimum singular values of F .

10.5 Adding a quadratic term to the objective. Suppose Q � 0. The problem

minimize f(x) + (Ax − b)T Q(Ax − b)
subject to Ax = b

is equivalent to the original equality constrained optimization problem (10.1). Is the
Newton step for this problem the same as the Newton step for the original problem?

10.6 The Newton decrement. Show that (10.13) holds, i.e.,

f(x) − inf{f̂(x + v) | A(x + v) = b} = λ(x)2/2.

Infeasible start Newton method

10.7 Assumptions for infeasible start Newton method. Consider the set of assumptions given
on page 536.

(a) Suppose that the function f is closed. Show that this implies that the norm of the
residual, ‖r(x, ν)‖2, is closed.

(b) Show that Dr satisfies a Lipschitz condition if and only if ∇2f does.

10.8 Infeasible start Newton method and initially satisfied equality constraints. Suppose we use
the infeasible start Newton method to minimize f(x) subject to aT

i x = bi, i = 1, . . . , p.

(a) Suppose the initial point x(0) satisfies the linear equality aT
i x = bi. Show that the

linear equality will remain satisfied for future iterates, i.e., if aT
i x(k) = bi for all k.

(b) Suppose that one of the equality constraints becomes satisfied at iteration k, i.e.,

we have aT
i x(k−1) 6= bi, aT

i x(k) = bi. Show that at iteration k, all the equality
constraints are satisfied.

10.9 Equality constrained entropy maximization. Consider the equality constrained entropy
maximization problem

minimize f(x) =
∑n

i=1
xi log xi

subject to Ax = b,
(10.42)

with dom f = Rn
++ and A ∈ Rp×n. We assume the problem is feasible and that rankA =

p < n.

(a) Show that the problem has a unique optimal solution x⋆.

(b) Find A, b, and feasible x(0) for which the sublevel set

{x ∈ R
n
++ | Ax = b, f(x) ≤ f(x(0))}

is not closed. Thus, the assumptions listed in §10.2.4, page 529, are not satisfied for
some feasible initial points.
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(c) Show that the problem (10.42) satisfies the assumptions for the infeasible start
Newton method listed in §10.3.3, page 536, for any feasible starting point.

(d) Derive the Lagrange dual of (10.42), and explain how to find the optimal solution
of (10.42) from the optimal solution of the dual problem. Show that the dual problem
satisfies the assumptions listed in §10.2.4, page 529, for any starting point.

The results of part (b), (c), and (d) do not mean the standard Newton method will fail,
or that the infeasible start Newton method or dual method will work better in practice.
It only means our convergence analysis for the standard Newton method does not apply,
while our convergence analysis does apply to the infeasible start and dual methods. (See
exercise 10.15.)

10.10 Bounded inverse derivative condition for strongly convex-concave game. Consider a convex-
concave game with payoff function f (see page 541). Suppose ∇2

uuf(u, v) � mI and
∇2

vvf(u, v) � −mI, for all (u, v) ∈ dom f . Show that

‖Dr(u, v)−1‖2 = ‖∇2f(u, v)−1‖2 ≤ 1/m.

Implementation

10.11 Consider the resource allocation problem described in example 10.1. You can assume the
fi are strongly convex, i.e., f ′′

i (z) ≥ m > 0 for all z.

(a) Find the computational effort required to compute a Newton step for the reduced
problem. Be sure to exploit the special structure of the Newton equations.

(b) Explain how to solve the problem via the dual. You can assume that the conjugate
functions f∗

i , and their derivatives, are readily computable, and that the equation
f ′

i(x) = ν is readily solved for x, given ν. What is the computational complexity of
finding a Newton step for the dual problem?

(c) What is the computational complexity of computing a Newton step for the resource
allocation problem? Be sure to exploit the special structure of the KKT equations.

10.12 Describe an efficient way to compute the Newton step for the problem

minimize tr(X−1)
subject to tr(AiX) = bi, i = 1, . . . , p

with domain Sn
++, assuming p and n have the same order of magnitude. Also derive the

Lagrange dual problem and give the complexity of finding the Newton step for the dual
problem.

10.13 Elimination method for computing Newton step for convex-concave game. Consider a
convex-concave game with payoff function f : Rp × Rq → R (see page 541). We assume
that f is strongly convex-concave, i.e., for all (u, v) ∈ dom f and some m > 0, we have
∇2

uuf(u, v) � mI and ∇2
vvf(u, v) � −mI.

(a) Show how to compute the Newton step using Cholesky factorizations of ∇2
uuf(u, v)

and −∇2fvv(u, v). Compare the cost of this method with the cost of using an LDLT

factorization of ∇f(u, v), assuming ∇2f(u, v) is dense.

(b) Show how you can exploit diagonal or block diagonal structure in ∇2
uuf(u, v) and/or

∇2
vvf(u, v). How much do you save, if you assume ∇2

uvf(u, v) is dense?

Numerical experiments

10.14 Log-optimal investment. Consider the log-optimal investment problem described in ex-
ercise 4.60. Use Newton’s method to compute the solution, with the following problem
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data: there are n = 3 assets, and m = 4 scenarios, with returns

p1 =

[
2

1.3
1

]
, p2 =

[
2

0.5
1

]
, p3 =

[
0.5
1.3
1

]
, p4 =

[
0.5
0.5
1

]
.

The probabilities of the four scenarios are given by π = (1/3, 1/6, 1/3, 1/6).

10.15 Equality constrained entropy maximization. Consider the equality constrained entropy
maximization problem

minimize f(x) =
∑n

i=1
xi log xi

subject to Ax = b,

with dom f = Rn
++ and A ∈ Rp×n, with p < n. (See exercise 10.9 for some relevant

analysis.)

Generate a problem instance with n = 100 and p = 30 by choosing A randomly (checking
that it has full rank), choosing x̂ as a random positive vector (e.g., with entries uniformly
distributed on [0, 1]) and then setting b = Ax̂. (Thus, x̂ is feasible.)

Compute the solution of the problem using the following methods.

(a) Standard Newton method. You can use initial point x(0) = x̂.

(b) Infeasible start Newton method. You can use initial point x(0) = x̂ (to compare with

the standard Newton method), and also the initial point x(0) = 1.

(c) Dual Newton method, i.e., the standard Newton method applied to the dual problem.

Verify that the three methods compute the same optimal point (and Lagrange multiplier).
Compare the computational effort per step for the three methods, assuming relevant
structure is exploited. (Your implementation, however, does not need to exploit structure
to compute the Newton step.)

10.16 Convex-concave game. Use the infeasible start Newton method to solve convex-concave
games of the form (10.32), with randomly generated data. Plot the norm of the residual
and step length versus iteration. Experiment with the line search parameters and initial
point (which must satisfy ‖u‖2 < 1, ‖v‖2 < 1, however).


