
Chapter 8

Geometric problems

8.1 Projection on a set

The distance of a point x0 ∈ Rn to a closed set C ⊆ Rn, in the norm ‖ · ‖, is
defined as

dist(x0, C) = inf{‖x0 − x‖ | x ∈ C}.
The infimum here is always achieved. We refer to any point z ∈ C which is closest
to x0, i.e., satisfies ‖z − x0‖ = dist(x0, C), as a projection of x0 on C. In general
there can be more than one projection of x0 on C, i.e., several points in C closest
to x0.

In some special cases we can establish that the projection of a point on a set
is unique. For example, if C is closed and convex, and the norm is strictly convex
(e.g., the Euclidean norm), then for any x0 there is always exactly one z ∈ C which
is closest to x0. As an interesting converse, we have the following result: If for every
x0 there is a unique Euclidean projection of x0 on C, then C is closed and convex
(see exercise 8.2).

We use the notation PC : Rn → Rn to denote any function for which PC(x0)
is a projection of x0 on C, i.e., for all x0,

PC(x0) ∈ C, ‖x0 − PC(x0)‖ = dist(x0, C).

In other words, we have

PC(x0) = argmin{‖x − x0‖ | x ∈ C}.

We refer to PC as projection on C.

Example 8.1 Projection on the unit square in R2. Consider the (boundary of the)
unit square in R2, i.e., C = {x ∈ R2 | ‖x‖∞ = 1}. We take x0 = 0.

In the ℓ1-norm, the four points (1, 0), (0,−1), (−1, 0), and (0, 1) are closest to x0 = 0,
with distance 1, so we have dist(x0, C) = 1 in the ℓ1-norm. The same statement holds
for the ℓ2-norm.

In the ℓ∞-norm, all points in C lie at a distance 1 from x0, and dist(x0, C) = 1.
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Example 8.2 Projection onto rank-k matrices. Consider the set of m × n matrices
with rank less than or equal to k,

C = {X ∈ R
m×n | rankX ≤ k},

with k ≤ min{m,n}, and let X0 ∈ Rm×n. We can find a projection of X0 on
C, in the (spectral or maximum singular value) norm ‖ · ‖2, via the singular value
decomposition. Let

X0 =

r
∑

i=1

σiuiv
T
i

be the singular value decomposition of X0, where r = rankX0. Then the matrix

Y =
∑min{k,r}

i=1
σiuiv

T
i is a projection of X0 on C.

8.1.1 Projecting a point on a convex set

If C is convex, then we can compute the projection PC(x0) and the distance
dist(x0, C) by solving a convex optimization problem. We represent the set C
by a set of linear equalities and convex inequalities

Ax = b, fi(x) ≤ 0, i = 1, . . . ,m, (8.1)

and find the projection of x0 on C by solving the problem

minimize ‖x − x0‖
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b,
(8.2)

with variable x. This problem is feasible if and only if C is nonempty; when it is
feasible, its optimal value is dist(x0, C), and any optimal point is a projection of
x0 on C.

Euclidean projection on a polyhedron

The projection of x0 on a polyhedron described by linear inequalities Ax � b can
be computed by solving the QP

minimize ‖x − x0‖2
2

subject to Ax � b.

Some special cases have simple analytical solutions.

• The Euclidean projection of x0 on a hyperplane C = {x | aT x = b} is given
by

PC(x0) = x0 + (b − aT x0)a/‖a‖2
2.

• The Euclidean projection of x0 on a halfspace C = {x | aT x ≤ b} is given by

PC(x0) =

{

x0 + (b − aT x0)a/‖a‖2
2 aT x0 > b

x0 aT x0 ≤ b.
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• The Euclidean projection of x0 on a rectangle C = {x | l � x � u} (where
l ≺ u) is given by

PC(x0)k =







lk x0k ≤ lk
x0k lk ≤ x0k ≤ uk

uk x0k ≥ uk.

Euclidean projection on a proper cone

Let x = PK(x0) denote the Euclidean projection of a point x0 on a proper cone K.
The KKT conditions of

minimize ‖x − x0‖2
2

subject to x �K 0

are given by

x �K 0, x − x0 = z, z �K∗ 0, zT x = 0.

Introducing the notation x+ = x and x− = z, we can express these conditions as

x0 = x+ − x−, x+ �K 0, x− �K∗ 0, xT
+x− = 0.

In other words, by projecting x0 on the cone K, we decompose it into the difference
of two orthogonal elements: one nonnegative with respect to K (and which is the
projection of x0 on K), and the other nonnegative with respect to K∗.

Some specific examples:

• For K = Rn
+, we have PK(x0)k = max{x0k, 0}. The Euclidean projection

of a vector onto the nonnegative orthant is found by replacing each negative
component with 0.

• For K = Sn
+, and the Euclidean (or Frobenius) norm ‖·‖F , we have PK(X0) =

∑n
i=1 max{0, λi}viv

T
i , where X0 =

∑n
i=1 λiviv

T
i is the eigenvalue decomposi-

tion of X0. To project a symmetric matrix onto the positive semidefinite cone,
we form its eigenvalue expansion and drop terms associated with negative
eigenvalues. This matrix is also the projection onto the positive semidefinite
cone in the ℓ2-, or spectral norm.

8.1.2 Separating a point and a convex set

Suppose C is a closed convex set described by the equalities and inequalities (8.1).
If x0 ∈ C, then dist(x0, C) = 0, and the optimal point for the problem (8.2) is
x0. If x0 6∈ C then dist(x0, C) > 0, and the optimal value of the problem (8.2) is
positive. In this case we will see that any dual optimal point provides a separating
hyperplane between the point x0 and the set C.

The link between projecting a point on a convex set and finding a hyperplane
that separates them (when the point is not in the set) should not be surprising.
Indeed, our proof of the separating hyperplane theorem, given in §2.5.1, relies on
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C

x0

PC(x0)

Figure 8.1 A point x0 and its Euclidean projection PC(x0) on a convex set C.
The hyperplane midway between the two, with normal vector PC(x0) − x0,
strictly separates the point and the set. This property does not hold for
general norms; see exercise 8.4.

finding the Euclidean distance between the sets. If PC(x0) denotes the Euclidean
projection of x0 on C, where x0 6∈ C, then the hyperplane

(PC(x0) − x0)
T (x − (1/2)(x0 + PC(x0))) = 0

(strictly) separates x0 from C, as illustrated in figure 8.1. In other norms, however,
the clearest link between the projection problem and the separating hyperplane
problem is via Lagrange duality.

We first express (8.2) as

minimize ‖y‖
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b
x0 − x = y

with variables x and y. The Lagrangian of this problem is

L(x, y, λ, µ, ν) = ‖y‖ +

m
∑

i=1

λifi(x) + νT (Ax − b) + µT (x0 − x − y)

and the dual function is

g(λ, µ, ν) =

{

infx

(
∑m

i=1 λifi(x) + νT (Ax − b) + µT (x0 − x)
)

‖µ‖∗ ≤ 1
−∞ otherwise,

so we obtain the dual problem

maximize µT x0 + infx

(
∑m

i=1 λifi(x) + νT (Ax − b) − µT x
)

subject to λ � 0
‖µ‖∗ ≤ 1,

with variables λ, µ, ν. We can interpret the dual problem as follows. Suppose λ,
µ, ν are dual feasible with a positive dual objective value, i.e., λ � 0, ‖µ‖∗ ≤ 1,
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and

µT x0 − µT x +

m
∑

i=1

λifi(x) + νT (Ax − b) > 0

for all x. This implies that µT x0 > µT x for x ∈ C, and therefore µ defines a
strictly separating hyperplane. In particular, suppose (8.2) is strictly feasible, so
strong duality holds. If x0 6∈ C, the optimal value is positive, and any dual optimal
solution defines a strictly separating hyperplane.

Note that this construction of a separating hyperplane, via duality, works for
any norm. In contrast, the simple construction described above only works for the
Euclidean norm.

Separating a point from a polyhedron

The dual problem of
minimize ‖y‖
subject to Ax � b

x0 − x = y

is
maximize µT x0 − bT λ
subject to AT λ = µ

‖µ‖∗ ≤ 1
λ � 0

which can be further simplified as

maximize (Ax0 − b)T λ
subject to ‖AT λ‖∗ ≤ 1

λ � 0.

It is easily verified that if the dual objective is positive, then AT λ is the normal
vector to a separating hyperplane: If Ax � b, then

(AT λ)T x = λT (Ax) ≤ λT b < λT Ax0,

so µ = AT λ defines a separating hyperplane.

8.1.3 Projection and separation via indicator and support functions

The ideas described above in §8.1.1 and §8.1.2 can be expressed in a compact form
in terms of the indicator function IC and the support function SC of the set C,
defined as

SC(x) = sup
y∈C

xT y, IC(x) =

{

0 x ∈ C
+∞ x 6∈ C.

The problem of projecting x0 on a closed convex set C can be expressed compactly
as

minimize ‖x − x0‖
subject to IC(x) ≤ 0,



402 8 Geometric problems

or, equivalently, as

minimize ‖y‖
subject to IC(x) ≤ 0

x0 − x = y

where the variables are x and y. The dual function of this problem is

g(z, λ) = inf
x,y

(

‖y‖ + λIC(x) + zT (x0 − x − y)
)

=

{

zT x0 + infx

(

−zT x + IC(x)
)

‖z‖∗ ≤ 1, λ ≥ 0
−∞ otherwise

=

{

zT x0 − SC(z) ‖z‖∗ ≤ 1, λ ≥ 0
−∞ otherwise

so we obtain the dual problem

maximize zT x0 − SC(z)
subject to ‖z‖∗ ≤ 1.

If z is dual optimal with a positive objective value, then zT x0 > zT x for all x ∈ C,
i.e., z defines a separating hyperplane.

8.2 Distance between sets

The distance between two sets C and D, in a norm ‖ · ‖, is defined as

dist(C,D) = inf{‖x − y‖ | x ∈ C, y ∈ D}.

The two sets C and D do not intersect if dist(C,D) > 0. They intersect if
dist(C,D) = 0 and the infimum in the definition is attained (which is the case, for
example, if the sets are closed and one of the sets is bounded).

The distance between sets can be expressed in terms of the distance between a
point and a set,

dist(C,D) = dist(0,D − C),

so the results of the previous section can be applied. In this section, however, we
derive results specifically for problems involving distance between sets. This allows
us to exploit the structure of the set C − D, and makes the interpretation easier.

8.2.1 Computing the distance between convex sets

Suppose C and D are described by two sets of convex inequalities

C = {x | fi(x) ≤ 0, i = 1, . . . ,m}, D = {x | gi(x) ≤ 0, i = 1, . . . , p}.
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C

D

Figure 8.2 Euclidean distance between polyhedra C and D. The dashed line
connects the two points in C and D, respectively, that are closest to each
other in Euclidean norm. These points can be found by solving a QP.

(We can include linear equalities, but exclude them here for simplicity.) We can
find dist(C,D) by solving the convex optimization problem

minimize ‖x − y‖
subject to fi(x) ≤ 0, i = 1, . . . ,m

gi(y) ≤ 0, i = 1, . . . , p.
(8.3)

Euclidean distance between polyhedra

Let C and D be two polyhedra described by the sets of linear inequalities A1x � b1

and A2x � b2, respectively. The distance between C and D is the distance between
the closest pair of points, one in C and the other in D, as illustrated in figure 8.2.
The distance between them is the optimal value of the problem

minimize ‖x − y‖2

subject to A1x � b1

A2y � b2.
(8.4)

We can square the objective to obtain an equivalent QP.

8.2.2 Separating convex sets

The dual of the problem (8.3) of finding the distance between two convex sets has
an interesting geometric interpretation in terms of separating hyperplanes between
the sets. We first express the problem in the following equivalent form:

minimize ‖w‖
subject to fi(x) ≤ 0, i = 1, . . . ,m

gi(y) ≤ 0, i = 1, . . . , p
x − y = w.

(8.5)

The dual function is

g(λ, z, µ) = inf
x,y,w

(

‖w‖ +

m
∑

i=1

λifi(x) +

p
∑

i=1

µigi(y) + zT (x − y − w)

)
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=

{

infx

(
∑m

i=1 λifi(x) + zT x
)

+ infy

(
∑p

i=1 µigi(y) − zT y
)

‖z‖∗ ≤ 1
−∞ otherwise,

which results in the dual problem

maximize infx

(
∑m

i=1 λifi(x) + zT x
)

+ infy

(
∑p

i=1 µigi(y) − zT y
)

subject to ‖z‖∗ ≤ 1
λ � 0, µ � 0.

(8.6)

We can interpret this geometrically as follows. If λ, µ are dual feasible with a
positive objective value, then

m
∑

i=1

λifi(x) + zT x +

p
∑

i=1

µigi(y) − zT y > 0

for all x and y. In particular, for x ∈ C and y ∈ D, we have zT x − zT y > 0, so we
see that z defines a hyperplane that strictly separates C and D.

Therefore, if strong duality holds between the two problems (8.5) and (8.6)
(which is the case when (8.5) is strictly feasible), we can make the following con-
clusion. If the distance between the two sets is positive, then they can be strictly
separated by a hyperplane.

Separating polyhedra

Applying these duality results to sets defined by linear inequalities A1x � b1 and
A2x � b2, we find the dual problem

maximize −bT
1 λ − bT

2 µ
subject to AT

1 λ + z = 0
AT

2 µ − z = 0
‖z‖∗ ≤ 1
λ � 0, µ � 0.

If λ, µ, and z are dual feasible, then for all x ∈ C, y ∈ D,

zT x = −λT A1x ≥ −λT b1, zT y = µT A2x ≤ µT b2,

and, if the dual objective value is positive,

zT x − zT y ≥ −λT b1 − µT b2 > 0,

i.e., z defines a separating hyperplane.

8.2.3 Distance and separation via indicator and support functions

The ideas described above in §8.2.1 and §8.2.2 can be expressed in a compact form
using indicator and support functions. The problem of finding the distance between
two convex sets can be posed as the convex problem

minimize ‖x − y‖
subject to IC(x) ≤ 0

ID(y) ≤ 0,
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which is equivalent to
minimize ‖w‖
subject to IC(x) ≤ 0

ID(y) ≤ 0
x − y = w.

The dual of this problem is

maximize −SC(−z) − SD(z)
subject to ‖z‖∗ ≤ 1.

If z is dual feasible with a positive objective value, then SD(z) < −SC(−z), i.e.,

sup
x∈D

zT x < inf
x∈C

zT x.

In other words, z defines a hyperplane that strictly separates C and D.

8.3 Euclidean distance and angle problems

Suppose a1, . . . , an is a set of vectors in Rn, which we assume (for now) have known
Euclidean lengths

l1 = ‖a1‖2, . . . , ln = ‖an‖2.

We will refer to the set of vectors as a configuration, or, when they are indepen-
dent, a basis. In this section we consider optimization problems involving various
geometric properties of the configuration, such as the Euclidean distances between
pairs of the vectors, the angles between pairs of the vectors, and various geometric
measures of the conditioning of the basis.

8.3.1 Gram matrix and realizability

The lengths, distances, and angles can be expressed in terms of the Gram matrix

associated with the vectors a1, . . . , an, given by

G = AT A, A =
[

a1 · · · an

]

,

so that Gij = aT
i aj . The diagonal entries of G are given by

Gii = l2i , i = 1, . . . , n,

which (for now) we assume are known and fixed. The distance dij between ai and
aj is

dij = ‖ai − aj‖2

= (l2i + l2j − 2aT
i aj)

1/2

= (l2i + l2j − 2Gij)
1/2.
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Conversely, we can express Gij in terms of dij as

Gij =
l2i + l2j − d2

ij

2
,

which we note, for future reference, is an affine function of d2
ij .

The correlation coefficient ρij between (nonzero) ai and aj is given by

ρij =
aT

i aj

‖ai‖2‖aj‖2
=

Gij

lilj
,

so that Gij = liljρij is a linear function of ρij . The angle θij between (nonzero) ai

and aj is given by
θij = cos−1 ρij = cos−1(Gij/(lilj)),

where we take cos−1 ρ ∈ [0, π]. Thus, we have Gij = lilj cos θij .
The lengths, distances, and angles are invariant under orthogonal transforma-

tions: If Q ∈ Rn×n is orthogonal, then the set of vectors Qai, . . . , Qan has the
same Gram matrix, and therefore the same lengths, distances, and angles.

Realizability

The Gram matrix G = AT A is, of course, symmetric and positive semidefinite. The
converse is a basic result of linear algebra: A matrix G ∈ Sn is the Gram matrix
of a set of vectors a1, . . . , an if and only if G � 0. When G � 0, we can construct
a configuration with Gram matrix G by finding a matrix A with AT A = G. One
solution of this equation is the symmetric squareroot A = G1/2. When G ≻ 0, we
can find a solution via the Cholesky factorization of G: If LLT = G, then we can
take A = LT . Moreover, we can construct all configurations with the given Gram
matrix G, given any one solution A, by orthogonal transformation: If ÃT Ã = G is
any solution, then Ã = QA for some orthogonal matrix Q.

Thus, a set of lengths, distances, and angles (or correlation coefficients) is real-

izable, i.e., those of some configuration, if and only if the associated Gram matrix
G is positive semidefinite, and has diagonal elements l21, . . . , l

2
n.

We can use this fact to express several geometric problems as convex optimiza-
tion problems, with G ∈ Sn as the optimization variable. Realizability imposes
the constraint G � 0 and Gii = l2i , i = 1, . . . , n; we list below several other convex
constraints and objectives.

Angle and distance constraints

We can fix an angle to have a certain value, θij = α, via the linear equality
constraint Gij = lilj cos α. More generally, we can impose a lower and upper
bound on an angle, α ≤ θij ≤ β, by the constraint

lilj cos α ≥ Gij ≥ lilj cos β,

which is a pair of linear inequalities on G. (Here we use the fact that cos−1 is
monotone decreasing.) We can maximize or minimize a particular angle θij , by
minimizing or maximizing Gij (again using monotonicity of cos−1).
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In a similar way we can impose constraints on the distances. To require that
dij lies in an interval, we use

dmin ≤ dij ≤ dmax ⇐⇒ d2
min ≤ d2

ij ≤ d2
max

⇐⇒ d2
min ≤ l2i + l2j − 2Gij ≤ d2

max,

which is a pair of linear inequalities on G. We can minimize or maximize a distance,
by minimizing or maximizing its square, which is an affine function of G.

As a simple example, suppose we are given ranges (i.e., an interval of possible
values) for some of the angles and some of the distances. We can then find the
minimum and maximum possible value of some other angle, or some other distance,
over all configurations, by solving two SDPs. We can reconstruct the two extreme
configurations by factoring the resulting optimal Gram matrices.

Singular value and condition number constraints

The singular values of A, σ1 ≥ · · · ≥ σn, are the squareroots of the eigenvalues
λ1 ≥ · · · ≥ λn of G. Therefore σ2

1 is a convex function of G, and σ2
n is a concave

function of G. Thus we can impose an upper bound on the maximum singular value
of A, or minimize it; we can impose a lower bound on the minimum singular value,
or maximize it. The condition number of A, σ1/σn, is a quasiconvex function of G,
so we can impose a maximum allowable value, or minimize it over all configurations
that satisfy the other geometric constraints, by quasiconvex optimization.

Roughly speaking, the constraints we can impose as convex constraints on G
are those that require a1, . . . , an to be a well conditioned basis.

Dual basis

When G ≻ 0, a1, . . . , an form a basis for Rn. The associated dual basis is b1, . . . , bn,
where

bT
i aj =

{

1 i = j
0 i 6= j.

The dual basis vectors b1, . . . , bn are simply the rows of the matrix A−1. As a
result, the Gram matrix associated with the dual basis is G−1.

We can express several geometric conditions on the dual basis as convex con-
straints on G. The (squared) lengths of the dual basis vectors,

‖bi‖2
2 = eT

i G−1ei,

are convex functions of G, and so can be minimized. The trace of G−1, another
convex function of G, gives the sum of the squares of the lengths of the dual basis
vectors (and is another measure of a well conditioned basis).

Ellipsoid and simplex volume

The volume of the ellipsoid {Au | ‖u‖2 ≤ 1}, which gives another measure of how
well conditioned the basis is, is given by

γ(det(AT A))1/2 = γ(det G)1/2,
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where γ is the volume of the unit ball in Rn. The log volume is therefore log γ +
(1/2) log detG, which is a concave function of G. We can therefore maximize the
volume of the image ellipsoid, over a convex set of configurations, by maximizing
log detG.

The same holds for any set in Rn. The volume of the image under A is its
volume, multiplied by the factor (detG)1/2. For example, consider the image under
A of the unit simplex conv{0, e1, . . . , en}, i.e., the simplex conv{0, a1, . . . , an}.
The volume of this simplex is given by γ(detG)1/2, where γ is the volume of the
unit simplex in Rn. We can maximize the volume of this simplex by maximizing
log detG.

8.3.2 Problems involving angles only

Suppose we only care about the angles (or correlation coefficients) between the
vectors, and do not specify the lengths or distances between them. In this case it is
intuitively clear that we can simply assume the vectors ai have length li = 1. This
is easily verified: The Gram matrix has the form G = diag(l)C diag(l), where l
is the vector of lengths, and C is the correlation matrix, i.e., Cij = cos θij . It
follows that if G � 0 for any set of positive lengths, then G � 0 for all sets of
positive lengths, and in particular, this occurs if and only if C � 0 (which is the
same as assuming that all lengths are one). Thus, a set of angles θij ∈ [0, π],
i, j = 1, . . . , n is realizable if and only if C � 0, which is a linear matrix inequality
in the correlation coefficients.

As an example, suppose we are given lower and upper bounds on some of the
angles (which is equivalent to imposing lower and upper bounds on the correlation
coefficients). We can then find the minimum and maximum possible value of some
other angle, over all configurations, by solving two SDPs.

Example 8.3 Bounding correlation coefficients. We consider an example in R4, where
we are given

0.6 ≤ ρ12 ≤ 0.9, 0.8 ≤ ρ13 ≤ 0.9,
0.5 ≤ ρ24 ≤ 0.7, −0.8 ≤ ρ34 ≤ −0.4.

(8.7)

To find the minimum and maximum possible values of ρ14, we solve the two SDPs

minimize/maximize ρ14

subject to (8.7)






1 ρ12 ρ13 ρ14

ρ12 1 ρ23 ρ24

ρ13 ρ23 1 ρ34

ρ14 ρ24 ρ34 1







� 0,

with variables ρ12, ρ13, ρ14, ρ23, ρ24, ρ34. The minimum and maximum values (to two
significant digits) are −0.39 and 0.23, with corresponding correlation matrices







1.00 0.60 0.87 −0.39
0.60 1.00 0.33 0.50
0.87 0.33 1.00 −0.55

−0.39 0.50 −0.55 1.00







,







1.00 0.71 0.80 0.23
0.71 1.00 0.31 0.59
0.80 0.31 1.00 −0.40
0.23 0.59 −0.40 1.00







.
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8.3.3 Euclidean distance problems

In a Euclidean distance problem, we are concerned only with the distances between
the vectors, dij , and do not care about the lengths of the vectors, or about the angles
between them. These distances, of course, are invariant not only under orthogonal
transformations, but also translation: The configuration ã1 = a1+b, . . . , ãn = an+b
has the same distances as the original configuration, for any b ∈ Rn. In particular,
for the choice

b = −(1/n)

n
∑

i=1

ai = −(1/n)A1,

we see that ãi have the same distances as the original configuration, and also satisfy
∑n

i=1 ãi = 0. It follows that in a Euclidean distance problem, we can assume,
without any loss of generality, that the average of the vectors a1, . . . , an is zero,
i.e., A1 = 0.

We can solve Euclidean distance problems by considering the lengths (which
cannot occur in the objective or constraints of a Euclidean distance problem) as
free variables in the optimization problem. Here we rely on the fact that there is
a configuration with distances dij ≥ 0 if and only if there are lengths l1, . . . , ln for
which G � 0, where Gij = (l2i + l2j − d2

ij)/2.

We define z ∈ Rn as zi = l2i , and D ∈ Sn by Dij = d2
ij (with, of course,

Dii = 0). The condition that G � 0 for some choice of lengths can be expressed as

G = (z1T + 1zT − D)/2 � 0 for some z � 0, (8.8)

which is an LMI in D and z. A matrix D ∈ Sn, with nonnegative elements,
zero diagonal, and which satisfies (8.8), is called a Euclidean distance matrix. A
matrix is a Euclidean distance matrix if and only if its entries are the squares
of the Euclidean distances between the vectors of some configuration. (Given a
Euclidean distance matrix D and the associated length squared vector z, we can
reconstruct one, or all, configurations with the given pairwise distances using the
method described above.)

The condition (8.8) turns out to be equivalent to the simpler condition that D
is negative semidefinite on 1⊥, i.e.,

(8.8) ⇐⇒ uT Du ≤ 0 for all u with 1T u = 0

⇐⇒ (I − (1/n)11T )D(I − (1/n)11T ) � 0.

This simple matrix inequality, along with Dij ≥ 0, Dii = 0, is the classical char-
acterization of a Euclidean distance matrix. To see the equivalence, recall that we
can assume A1 = 0, which implies that 1T G1 = 1T AT A1 = 0. It follows that
G � 0 if and only if G is positive semidefinite on 1⊥, i.e.,

0 � (I − (1/n)11T )G(I − (1/n)11T )

= (1/2)(I − (1/n)11T )(z1T + 1zT − D)(I − (1/n)11T )

= −(1/2)(I − (1/n)11T )D(I − (1/n)11T ),

which is the simplified condition.
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In summary, a matrix D ∈ Sn is a Euclidean distance matrix, i.e., gives the
squared distances between a set of n vectors in Rn, if and only if

Dii = 0, i = 1, . . . , n, Dij ≥ 0, i, j = 1, . . . , n,

(I − (1/n)11T )D(I − (1/n)11T ) � 0,

which is a set of linear equalities, linear inequalities, and a matrix inequality in
D. Therefore we can express any Euclidean distance problem that is convex in the
squared distances as a convex problem with variable D ∈ Sn.

8.4 Extremal volume ellipsoids

Suppose C ⊆ Rn is bounded and has nonempty interior. In this section we consider
the problems of finding the maximum volume ellipsoid that lies inside C, and the
minimum volume ellipsoid that covers C. Both problems can be formulated as
convex programming problems, but are tractable only in special cases.

8.4.1 The Löwner-John ellipsoid

The minimum volume ellipsoid that contains a set C is called the Löwner-John

ellipsoid of the set C, and is denoted Elj. To characterize Elj, it will be convenient
to parametrize a general ellipsoid as

E = {v | ‖Av + b‖2 ≤ 1} , (8.9)

i.e., the inverse image of the Euclidean unit ball under an affine mapping. We can
assume without loss of generality that A ∈ Sn

++, in which case the volume of E is
proportional to detA−1. The problem of computing the minimum volume ellipsoid
containing C can be expressed as

minimize log det A−1

subject to supv∈C ‖Av + b‖2 ≤ 1,
(8.10)

where the variables are A ∈ Sn and b ∈ Rn, and there is an implicit constraint
A ≻ 0. The objective and constraint functions are both convex in A and b, so the
problem (8.10) is convex. Evaluating the constraint function in (8.10), however,
involves solving a convex maximization problem, and is tractable only in certain
special cases.

Minimum volume ellipsoid covering a finite set

We consider the problem of finding the minimum volume ellipsoid that contains
the finite set C = {x1, . . . , xm} ⊆ Rn. An ellipsoid covers C if and only if it
covers its convex hull, so finding the minimum volume ellipsoid that covers C
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is the same as finding the minimum volume ellipsoid containing the polyhedron
conv{x1, . . . , xm}. Applying (8.10), we can write this problem as

minimize log det A−1

subject to ‖Axi + b‖2 ≤ 1, i = 1, . . . ,m
(8.11)

where the variables are A ∈ Sn and b ∈ Rn, and we have the implicit constraint A ≻
0. The norm constraints ‖Axi+b‖2 ≤ 1, i = 1, . . . ,m, are convex inequalities in the
variables A and b. They can be replaced with the squared versions, ‖Axi +b‖2

2 ≤ 1,
which are convex quadratic inequalities in A and b.

Minimum volume ellipsoid covering union of ellipsoids

Minimum volume covering ellipsoids can also be computed efficiently for certain
sets C that are defined by quadratic inequalities. In particular, it is possible to
compute the Löwner-John ellipsoid for a union or sum of ellipsoids.

As an example, consider the problem of finding the minimum volume ellip-
soid Elj, that contains the ellipsoids E1, . . . , Em (and therefore, the convex hull of
their union). The ellipsoids E1, . . . , Em will be described by (convex) quadratic
inequalities:

Ei = {x | xT Aix + 2bT
i x + ci ≤ 0}, i = 1, . . . ,m,

where Ai ∈ Sn
++. We parametrize the ellipsoid Elj as

Elj = {x | ‖Ax + b‖2 ≤ 1}
= {x | xT AT Ax + 2(AT b)T x + bT b − 1 ≤ 0}

where A ∈ Sn and b ∈ Rn. Now we use a result from §B.2, that Ei ⊆ Elj if and
only if there exists a τ ≥ 0 such that

[

A2 − τAi Ab − τbi

(Ab − τbi)
T bT b − 1 − τci

]

� 0.

The volume of Elj is proportional to detA−1, so we can find the minimum volume
ellipsoid that contains E1, . . . , Em by solving

minimize log det A−1

subject to τ1 ≥ 0, . . . , τm ≥ 0
[

A2 − τiAi Ab − τibi

(Ab − τibi)
T bT b − 1 − τici

]

� 0, i = 1, . . . ,m,

or, replacing the variable b by b̃ = Ab,

minimize log det A−1

subject to τ1 ≥ 0, . . . , τm ≥ 0




A2 − τiAi b̃ − τibi 0

(b̃ − τibi)
T −1 − τici b̃T

0 b̃ −A2



 � 0, i = 1, . . . ,m,

which is convex in the variables A2 ∈ Sn, b̃, τ1, . . . , τm.
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Figure 8.3 The outer ellipse is the boundary of the Löwner-John ellipsoid,
i.e., the minimum volume ellipsoid that encloses the points x1, . . . , x6 (shown
as dots), and therefore the polyhedron P = conv{x1, . . . , x6}. The smaller
ellipse is the boundary of the Löwner-John ellipsoid, shrunk by a factor of
n = 2 about its center. This ellipsoid is guaranteed to lie inside P.

Efficiency of Löwner-John ellipsoidal approximation

Let Elj be the Löwner-John ellipsoid of the convex set C ⊆ Rn, which is bounded
and has nonempty interior, and let x0 be its center. If we shrink the Löwner-John
ellipsoid by a factor of n, about its center, we obtain an ellipsoid that lies inside
the set C:

x0 + (1/n)(Elj − x0) ⊆ C ⊆ Elj.

In other words, the Löwner-John ellipsoid approximates an arbitrary convex set,
within a factor that depends only on the dimension n. Figure 8.3 shows a simple
example.

The factor 1/n cannot be improved without additional assumptions on C. Any
simplex in Rn, for example, has the property that its Löwner-John ellipsoid must
be shrunk by a factor n to fit inside it (see exercise 8.13).

We will prove this efficiency result for the special case C = conv{x1, . . . , xm}.
We square the norm constraints in (8.11) and introduce variables Ã = A2 and
b̃ = Ab, to obtain the problem

minimize log det Ã−1

subject to xi
T Ãxi − 2b̃T xi + b̃T Ã−1b̃ ≤ 1, i = 1, . . . ,m.

(8.12)

The KKT conditions for this problem are

∑m
i=1 λi(xixi

T − Ã−1b̃b̃T Ã−1) = Ã−1,
∑m

i=1 λi(xi − Ã−1b̃) = 0,

λi ≥ 0, xi
T Ãxi − 2b̃T xi + b̃T Ã−1b̃ ≤ 1, i = 1, . . . ,m,

λi(1 − xi
T Ãxi + 2b̃T xi − b̃T Ã−1b̃) = 0, i = 1, . . . ,m.

By a suitable affine change of coordinates, we can assume that Ã = I and b̃ = 0,
i.e., the minimum volume ellipsoid is the unit ball centered at the origin. The KKT
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conditions then simplify to

m
∑

i=1

λixixi
T = I,

m
∑

i=1

λixi = 0, λi(1 − xi
T xi) = 0, i = 1, . . . ,m,

plus the feasibility conditions ‖xi‖2 ≤ 1 and λi ≥ 0. By taking the trace of
both sides of the first equation, and using complementary slackness, we also have
∑m

i=1 λi = n.
In the new coordinates the shrunk ellipsoid is a ball with radius 1/n, centered

at the origin. We need to show that

‖x‖2 ≤ 1/n =⇒ x ∈ C = conv{x1, . . . , xm}.

Suppose ‖x‖2 ≤ 1/n. From the KKT conditions, we see that

x =

m
∑

i=1

λi(x
T xi)xi =

m
∑

i=1

λi(x
T xi + 1/n)xi =

m
∑

i=1

µixi, (8.13)

where µi = λi(x
T xi + 1/n). From the Cauchy-Schwartz inequality, we note that

µi = λi(x
T xi + 1/n) ≥ λi(−‖x‖2‖xi‖2 + 1/n) ≥ λi(−1/n + 1/n) = 0.

Furthermore
m
∑

i=1

µi =
m
∑

i=1

λi(x
T xi + 1/n) =

m
∑

i=1

λi/n = 1.

This, along with (8.13), shows that x is a convex combination of x1, . . . , xm, hence
x ∈ C.

Efficiency of Löwner-John ellipsoidal approximation for symmetric sets

If the set C is symmetric about a point x0, then the factor 1/n can be tightened
to 1/

√
n:

x0 + (1/
√

n)(Elj − x0) ⊆ C ⊆ Elj.

Again, the factor 1/
√

n is tight. The Löwner-John ellipsoid of the cube

C = {x ∈ Rn | − 1 � x � 1}

is the ball with radius
√

n. Scaling down by 1/
√

n yields a ball enclosed in C, and
touching the boundary at x = ±ei.

Approximating a norm by a quadratic norm

Let ‖ · ‖ be any norm on Rn, and let C = {x | ‖x‖ ≤ 1} be its unit ball. Let
Elj = {x | xT Ax ≤ 1}, with A ∈ Sn

++, be the Löwner-John ellipsoid of C. Since C
is symmetric about the origin, the result above tells us that (1/

√
n)Elj ⊆ C ⊆ Elj.

Let ‖ · ‖lj denote the quadratic norm

‖z‖lj = (zT Az)1/2,
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whose unit ball is Elj. The inclusions (1/
√

n)Elj ⊆ C ⊆ Elj are equivalent to the
inequalities

‖z‖lj ≤ ‖z‖ ≤ √
n‖z‖lj

for all z ∈ Rn. In other words, the quadratic norm ‖ · ‖lj approximates the norm
‖ · ‖ within a factor of

√
n. In particular, we see that any norm on Rn can be

approximated within a factor of
√

n by a quadratic norm.

8.4.2 Maximum volume inscribed ellipsoid

We now consider the problem of finding the ellipsoid of maximum volume that lies
inside a convex set C, which we assume is bounded and has nonempty interior. To
formulate this problem, we parametrize the ellipsoid as the image of the unit ball
under an affine transformation, i.e., as

E = {Bu + d | ‖u‖2 ≤ 1} .

Again it can be assumed that B ∈ Sn
++, so the volume is proportional to detB. We

can find the maximum volume ellipsoid inside C by solving the convex optimization
problem

maximize log det B
subject to sup‖u‖2≤1 IC(Bu + d) ≤ 0

(8.14)

in the variables B ∈ Sn and d ∈ Rn, with implicit constraint B ≻ 0.

Maximum volume ellipsoid in a polyhedron

We consider the case where C is a polyhedron described by a set of linear inequal-
ities:

C = {x | aT
i x ≤ bi, i = 1, . . . ,m}.

To apply (8.14) we first express the constraint in a more convenient form:

sup
‖u‖2≤1

IC(Bu + d) ≤ 0 ⇐⇒ sup
‖u‖2≤1

aT
i (Bu + d) ≤ bi, i = 1, . . . ,m

⇐⇒ ‖Bai‖2 + aT
i d ≤ bi, i = 1, . . . ,m.

We can therefore formulate (8.14) as a convex optimization problem in the variables
B and d:

minimize log det B−1

subject to ‖Bai‖2 + aT
i d ≤ bi, i = 1, . . . ,m.

(8.15)

Maximum volume ellipsoid in an intersection of ellipsoids

We can also find the maximum volume ellipsoid E that lies in the intersection of
m ellipsoids E1, . . . , Em. We will describe E as E = {Bu + d | ‖u‖2 ≤ 1} with
B ∈ Sn

++, and the other ellipsoids via convex quadratic inequalities,

Ei = {x | xT Aix + 2bT
i x + ci ≤ 0}, i = 1, . . . ,m,
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where Ai ∈ Sn
++. We first work out the condition under which E ⊆ Ei. This occurs

if and only if

sup
‖u‖2≤1

(

(d + Bu)T Ai(d + Bu) + 2bT
i (d + Bu) + ci

)

= dT Aid + 2bT
i d + ci + sup

‖u‖2≤1

(

uT BAiBu + 2(Aid + bi)
T Bu

)

≤ 0.

From §B.1,

sup
‖u‖2≤1

(

uT BAiBu + 2(Aid + bi)
T Bu

)

≤ −(dT Aid + 2bT
i d + ci)

if and only if there exists a λi ≥ 0 such that

[

−λi − dT Aid − 2bT
i d − ci (Aid + bi)

T B
B(Aid + bi) λiI − BAiB

]

� 0.

The maximum volume ellipsoid contained in E1, . . . , Em can therefore be found by
solving the problem

minimize log det B−1

subject to

[

−λi − dT Aid − 2bT
i d − ci (Aid + bi)

T B
B(Aid + bi) λiI − BAiB

]

� 0, i = 1, . . . ,m,

with variables B ∈ Sn, d ∈ Rn, and λ ∈ Rm, or, equivalently,

minimize log det B−1

subject to





−λi − ci + bT
i A−1

i bi 0 (d + A−1
i bi)

T

0 λiI B
d + A−1

i bi B A−1
i



 � 0, i = 1, . . . ,m.

Efficiency of ellipsoidal inner approximations

Approximation efficiency results, similar to the ones for the Löwner-John ellipsoid,
hold for the maximum volume inscribed ellipsoid. If C ⊆ Rn is convex, bounded,
with nonempty interior, then the maximum volume inscribed ellipsoid, expanded
by a factor of n about its center, covers the set C. The factor n can be tightened
to

√
n if the set C is symmetric about a point. An example is shown in figure 8.4.

8.4.3 Affine invariance of extremal volume ellipsoids

The Löwner-John ellipsoid and the maximum volume inscribed ellipsoid are both
affinely invariant. If Elj is the Löwner-John ellipsoid of C, and T ∈ Rn×n is
nonsingular, then the Löwner-John ellipsoid of TC is TElj. A similar result holds
for the maximum volume inscribed ellipsoid.

To establish this result, let E be any ellipsoid that covers C. Then the ellipsoid
TE covers TC. The converse is also true: Every ellipsoid that covers TC has
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Figure 8.4 The maximum volume ellipsoid (shown shaded) inscribed in a
polyhedron P. The outer ellipse is the boundary of the inner ellipsoid,
expanded by a factor n = 2 about its center. The expanded ellipsoid is
guaranteed to cover P.

the form TE , where E is an ellipsoid that covers C. In other words, the relation
Ẽ = TE gives a one-to-one correspondence between the ellipsoids covering TC and
the ellipsoids covering C. Moreover, the volumes of the corresponding ellipsoids are
all related by the ratio |det T |, so in particular, if E has minimum volume among
ellipsoids covering C, then TE has minimum volume among ellipsoids covering TC.

8.5 Centering

8.5.1 Chebyshev center

Let C ⊆ Rn be bounded and have nonempty interior, and x ∈ C. The depth of a
point x ∈ C is defined as

depth(x,C) = dist(x,Rn \ C),

i.e., the distance to the closest point in the exterior of C. The depth gives the
radius of the largest ball, centered at x, that lies in C. A Chebyshev center of the
set C is defined as any point of maximum depth in C:

xcheb(C) = argmaxdepth(x,C) = argmaxdist(x,Rn \ C).

A Chebyshev center is a point inside C that is farthest from the exterior of C; it is
also the center of the largest ball that lies inside C. Figure 8.5 shows an example,
in which C is a polyhedron, and the norm is Euclidean.
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xchebxcheb

Figure 8.5 Chebyshev center of a polyhedron C, in the Euclidean norm. The
center xcheb is the deepest point inside C, in the sense that it is farthest from
the exterior, or complement, of C. The center xcheb is also the center of the
largest Euclidean ball (shown lightly shaded) that lies inside C.

Chebyshev center of a convex set

When the set C is convex, the depth is a concave function for x ∈ C, so computing
the Chebyshev center is a convex optimization problem (see exercise 8.5). More
specifically, suppose C ⊆ Rn is defined by a set of convex inequalities:

C = {x | f1(x) ≤ 0, . . . , fm(x) ≤ 0}.

We can find a Chebyshev center by solving the problem

maximize R
subject to gi(x,R) ≤ 0, i = 1, . . . ,m,

(8.16)

where gi is defined as

gi(x,R) = sup
‖u‖≤1

fi(x + Ru).

Problem (8.16) is a convex optimization problem, since each function gi is the
pointwise maximum of a family of convex functions of x and R, hence convex.
However, evaluating gi involves solving a convex maximization problem (either
numerically or analytically), which may be very hard. In practice, we can find the
Chebyshev center only in cases where the functions gi are easy to evaluate.

Chebyshev center of a polyhedron

Suppose C is defined by a set of linear inequalities aT
i x ≤ bi, i = 1, . . . ,m. We

have

gi(x,R) = sup
‖u‖≤1

aT
i (x + Ru) − bi = aT

i x + R‖ai‖∗ − bi
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if R ≥ 0, so the Chebyshev center can be found by solving the LP

maximize R
subject to aT

i x + R‖ai‖∗ ≤ bi, i = 1, . . . ,m
R ≥ 0

with variables x and R.

Euclidean Chebyshev center of intersection of ellipsoids

Let C be an intersection of m ellipsoids, defined by quadratic inequalities,

C = {x | xT Aix + 2bT
i x + ci ≤ 0, i = 1, . . . ,m},

where Ai ∈ Sn
++. We have

gi(x,R) = sup
‖u‖2≤1

(

(x + Ru)T Ai(x + Ru) + 2bT
i (x + Ru) + ci

)

= xT Aix + 2bT
i x + ci + sup

‖u‖2≤1

(

R2uT Aiu + 2R(Aix + bi)
T u
)

.

From §B.1, gi(x,R) ≤ 0 if and only if there exists a λi such that the matrix
inequality

[

−xT Aixi − 2bT
i x − ci − λi R(Aix + bi)

T

R(Aix + bi) λiI − R2Ai

]

� 0 (8.17)

holds. Using this result, we can express the Chebyshev centering problem as

maximize R

subject to





−λi − ci + bT
i A−1

i bi 0 (x + A−1
i bi)

T

0 λiI RI
x + A−1

i bi RI A−1
i



 � 0, i = 1, . . . ,m,

which is an SDP with variables R, λ, and x. Note that the Schur complement of
A−1

i in the LMI constraint is equal to the lefthand side of (8.17).

8.5.2 Maximum volume ellipsoid center

The Chebyshev center xcheb of a set C ⊆ Rn is the center of the largest ball that
lies in C. As an extension of this idea, we define the maximum volume ellipsoid

center of C, denoted xmve, as the center of the maximum volume ellipsoid that lies
in C. Figure 8.6 shows an example, where C is a polyhedron.

The maximum volume ellipsoid center is readily computed when C is defined
by a set of linear inequalities, by solving the problem (8.15). (The optimal value
of the variable d ∈ Rn is xmve.) Since the maximum volume ellipsoid inside C is
affine invariant, so is the maximum volume ellipsoid center.
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xmve

Figure 8.6 The lightly shaded ellipsoid shows the maximum volume ellipsoid
contained in the set C, which is the same polyhedron as in figure 8.5. Its
center xmve is the maximum volume ellipsoid center of C.

8.5.3 Analytic center of a set of inequalities

The analytic center xac of a set of convex inequalities and linear equalities,

fi(x) ≤ 0, i = 1, . . . ,m, Fx = g

is defined as an optimal point for the (convex) problem

minimize −∑m
i=1 log(−fi(x))

subject to Fx = g,
(8.18)

with variable x ∈ Rn and implicit constraints fi(x) < 0, i = 1, . . . ,m. The objec-
tive in (8.18) is called the logarithmic barrier associated with the set of inequalities.
We assume here that the domain of the logarithmic barrier intersects the affine set
defined by the equalities, i.e., the strict inequality system

fi(x) < 0, i = 1, . . . ,m, Fx = g

is feasible. The logarithmic barrier is bounded below on the feasible set

C = {x | fi(x) < 0, i = 1, . . . ,m, Fx = g},

if C is bounded.
When x is strictly feasible, i.e., Fx = g and fi(x) < 0 for i = 1, . . . ,m, we can

interpret −fi(x) as the margin or slack in the ith inequality. The analytic center
xac is the point that maximizes the product (or geometric mean) of these slacks or
margins, subject to the equality constraints Fx = g, and the implicit constraints
fi(x) < 0.

The analytic center is not a function of the set C described by the inequalities
and equalities; two sets of inequalities and equalities can define the same set, but
have different analytic centers. Still, it is not uncommon to informally use the
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term ‘analytic center of a set C’ to mean the analytic center of a particular set of
equalities and inequalities that define it.

The analytic center is, however, independent of affine changes of coordinates.
It is also invariant under (positive) scalings of the inequality functions, and any
reparametrization of the equality constraints. In other words, if F̃ and g̃ are such
that F̃ x = g̃ if and only if Fx = g, and α1, . . . , αm > 0, then the analytic center of

αifi(x) ≤ 0, i = 1, . . . ,m, F̃x = g̃,

is the same as the analytic center of

fi(x) ≤ 0, i = 1, . . . ,m, Fx = g

(see exercise 8.17).

Analytic center of a set of linear inequalities

The analytic center of a set of linear inequalities

aT
i x ≤ bi, i = 1, . . . ,m,

is the solution of the unconstrained minimization problem

minimize −∑m
i=1 log(bi − aT

i x), (8.19)

with implicit constraint bi − aT
i x > 0, i = 1, . . . ,m. If the polyhedron defined by

the linear inequalities is bounded, then the logarithmic barrier is bounded below
and strictly convex, so the analytic center in unique. (See exercise 4.2.)

We can give a geometric interpretation of the analytic center of a set of linear
inequalities. Since the analytic center is independent of positive scaling of the
constraint functions, we can assume without loss of generality that ‖ai‖2 = 1. In
this case, the slack bi − aT

i x is the distance to the hyperplane Hi = {x | aT
i x =

bi}. Therefore the analytic center xac is the point that maximizes the product of
distances to the defining hyperplanes.

Inner and outer ellipsoids from analytic center of linear inequalities

The analytic center of a set of linear inequalities implicitly defines an inscribed and
a covering ellipsoid, defined by the Hessian of the logarithmic barrier function

−
m
∑

i=1

log(bi − aT
i x),

evaluated at the analytic center, i.e.,

H =

m
∑

i=1

d2
i aia

T
i , di =

1

bi − aT
i xac

, i = 1, . . . ,m.

We have Einner ⊆ P ⊆ Eouter, where

P = {x | aT
i x ≤ bi, i = 1, . . . ,m},

Einner = {x | (x − xac)
T H(x − xac) ≤ 1},

Eouter = {x | x − xac)
T H(x − xac) ≤ m(m − 1)}.
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xac

Figure 8.7 The dashed lines show five level curves of the logarithmic barrier
function for the inequalities defining the polyhedron C in figure 8.5. The
minimizer of the logarithmic barrier function, labeled xac, is the analytic
center of the inequalities. The inner ellipsoid Einner = {x | (x − xac)H(x −
xac) ≤ 1}, where H is the Hessian of the logarithmic barrier function at xac,
is shaded.

This is a weaker result than the one for the maximum volume inscribed ellipsoid,
which when scaled up by a factor of n covers the polyhedron. The inner and outer
ellipsoids defined by the Hessian of the logarithmic barrier, in contrast, are related

by the scale factor (m(m − 1))
1/2

, which is always at least n.
To show that Einner ⊆ P, suppose x ∈ Einner, i.e.,

(x − xac)
T H(x − xac) =

m
∑

i=1

(dia
T
i (x − xac))

2 ≤ 1.

This implies that

aT
i (x − xac) ≤ 1/di = bi − aT

i xac, i = 1, . . . ,m,

and therefore aT
i x ≤ bi for i = 1, . . . ,m. (We have not used the fact that xac is

the analytic center, so this result is valid if we replace xac with any strictly feasible
point.)

To establish that P ⊆ Eouter, we will need the fact that xac is the analytic
center, and therefore the gradient of the logarithmic barrier vanishes:

m
∑

i=1

diai = 0.

Now assume x ∈ P. Then

(x − xac)
T H(x − xac)

=

m
∑

i=1

(dia
T
i (x − xac))

2
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=

m
∑

i=1

d2
i (1/di − aT

i (x − xac))
2 − m

=
m
∑

i=1

d2
i (bi − aT

i x)2 − m

≤
(

m
∑

i=1

di(bi − aT
i x)

)2

− m

=

(

m
∑

i=1

di(bi − aT
i xac) +

m
∑

i=1

dia
T
i (xac − x)

)2

− m

= m2 − m,

which shows that x ∈ Eouter. (The second equality follows from the fact that
∑m

i=1 diai = 0. The inequality follows from
∑m

i=1 y2
i ≤ (

∑m
i=1 yi)

2
for y � 0. The

last equality follows from
∑m

i=1 diai = 0, and the definition of di.)

Analytic center of a linear matrix inequality

The definition of analytic center can be extended to sets described by generalized
inequalities with respect to a cone K, if we define a logarithm on K. For example,
the analytic center of a linear matrix inequality

x1A1 + x2A2 + · · · + xnAn � B

is defined as the solution of

minimize − log det(B − x1A1 − · · · − xnAn).

8.6 Classification

In pattern recognition and classification problems we are given two sets of points
in Rn, {x1, . . . , xN} and {y1, . . . , yM}, and wish to find a function f : Rn → R

(within a given family of functions) that is positive on the first set and negative on
the second, i.e.,

f(xi) > 0, i = 1, . . . , N, f(yi) < 0, i = 1, . . . ,M.

If these inequalities hold, we say that f , or its 0-level set {x | f(x) = 0}, separates,
classifies, or discriminates the two sets of points. We sometimes also consider weak

separation, in which the weak versions of the inequalities hold.



8.6 Classification 423

Figure 8.8 The points x1, . . . , xN are shown as open circles, and the points
y1, . . . , yM are shown as filled circles. These two sets are classified by an
affine function f , whose 0-level set (a line) separates them.

8.6.1 Linear discrimination

In linear discrimination, we seek an affine function f(x) = aT x − b that classifies
the points, i.e.,

aT xi − b > 0, i = 1, . . . , N, aT yi − b < 0, i = 1, . . . ,M. (8.20)

Geometrically, we seek a hyperplane that separates the two sets of points. Since
the strict inequalities (8.20) are homogeneous in a and b, they are feasible if and
only if the set of nonstrict linear inequalities

aT xi − b ≥ 1, i = 1, . . . , N, aT yi − b ≤ −1, i = 1, . . . ,M (8.21)

(in the variables a, b) is feasible. Figure 8.8 shows a simple example of two sets of
points and a linear discriminating function.

Linear discrimination alternative

The strong alternative of the set of strict inequalities (8.20) is the existence of λ,
λ̃ such that

λ � 0, λ̃ � 0, (λ, λ̃) 6= 0,

N
∑

i=1

λixi =

M
∑

i=1

λ̃iyi, 1T λ = 1T λ̃ (8.22)

(see §5.8.3). Using the third and last conditions, we can express these alternative
conditions as

λ � 0, 1T λ = 1, λ̃ � 0, 1T λ̃ = 1,

N
∑

i=1

λixi =

M
∑

i=1

λ̃iyi
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(by dividing by 1T λ, which is positive, and using the same symbols for the normal-
ized λ and λ̃). These conditions have a simple geometric interpretation: They state
that there is a point in the convex hull of both {x1, . . . , xN} and {y1, . . . , yM}. In
other words: the two sets of points can be linearly discriminated (i.e., discrimi-
nated by an affine function) if and only if their convex hulls do not intersect. We
have seen this result several times before.

Robust linear discrimination

The existence of an affine classifying function f(x) = aT x − b is equivalent to a
set of linear inequalities in the variables a and b that define f . If the two sets
can be linearly discriminated, then there is a polyhedron of affine functions that
discriminate them, and we can choose one that optimizes some measure of robust-
ness. We might, for example, seek the function that gives the maximum possible
‘gap’ between the (positive) values at the points xi and the (negative) values at the
points yi. To do this we have to normalize a and b, since otherwise we can scale a
and b by a positive constant and make the gap in the values arbitrarily large. This
leads to the problem

maximize t
subject to aT xi − b ≥ t, i = 1, . . . , N

aT yi − b ≤ −t, i = 1, . . . ,M
‖a‖2 ≤ 1,

(8.23)

with variables a, b, and t. The optimal value t⋆ of this convex problem (with
linear objective, linear inequalities, and one quadratic inequality) is positive if
and only if the two sets of points can be linearly discriminated. In this case the
inequality ‖a‖2 ≤ 1 is always tight at the optimum, i.e., we have ‖a⋆‖2 = 1. (See
exercise 8.23.)

We can give a simple geometric interpretation of the robust linear discrimination
problem (8.23). If ‖a‖2 = 1 (as is the case at any optimal point), aT xi − b is the
Euclidean distance from the point xi to the separating hyperplane H = {z | aT z =
b}. Similarly, b−aT yi is the distance from the point yi to the hyperplane. Therefore
the problem (8.23) finds the hyperplane that separates the two sets of points, and
has maximal distance to the sets. In other words, it finds the thickest slab that
separates the two sets.

As suggested by the example shown in figure 8.9, the optimal value t⋆ (which is
half the slab thickness) turns out to be half the distance between the convex hulls
of the two sets of points. This can be seen clearly from the dual of the robust linear
discrimination problem (8.23). The Lagrangian (for the problem of minimizing −t)
is

−t +

N
∑

i=1

ui(t + b − aT xi) +

M
∑

i=1

vi(t − b + aT yi) + λ(‖a‖2 − 1).

Minimizing over b and t yields the conditions 1T u = 1/2, 1T v = 1/2. When these
hold, we have

g(u, v, λ) = inf
a

(

aT (

M
∑

i=1

viyi −
N
∑

i=1

uixi) + λ‖a‖2 − λ

)
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Figure 8.9 By solving the robust linear discrimination problem (8.23) we
find an affine function that gives the largest gap in values between the two
sets (with a normalization bound on the linear part of the function). Ge-
ometrically, we are finding the thickest slab that separates the two sets of
points.

=

{

−λ
∥

∥

∥

∑M
i=1 viyi −

∑N
i=1 uixi

∥

∥

∥

2
≤ λ

−∞ otherwise.

The dual problem can then be written as

maximize −
∥

∥

∥

∑M
i=1 viyi −

∑N
i=1 uixi

∥

∥

∥

2
subject to u � 0, 1T u = 1/2

v � 0, 1T v = 1/2.

We can interpret 2
∑N

i=1 uixi as a point in the convex hull of {x1, . . . , xN} and

2
∑M

i=1 viyi as a point in the convex hull of {y1, . . . , yM}. The dual objective is to
minimize (half) the distance between these two points, i.e., find (half) the distance
between the convex hulls of the two sets.

Support vector classifier

When the two sets of points cannot be linearly separated, we might seek an affine
function that approximately classifies the points, for example, one that minimizes
the number of points misclassified. Unfortunately, this is in general a difficult
combinatorial optimization problem. One heuristic for approximate linear discrim-
ination is based on support vector classifiers, which we describe in this section.

We start with the feasibility problem (8.21). We first relax the constraints
by introducing nonnegative variables u1, . . . , uN and v1, . . . , uM , and forming the
inequalities

aT xi− b ≥ 1−ui, i = 1, . . . , N, aT yi− b ≤ −(1−vi), i = 1, . . . ,M. (8.24)
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Figure 8.10 Approximate linear discrimination via linear programming. The
points x1, . . . , x50, shown as open circles, cannot be linearly separated from
the points y1, . . . , y50, shown as filled circles. The classifier shown as a solid
line was obtained by solving the LP (8.25). This classifier misclassifies one
point. The dashed lines are the hyperplanes aT z − b = ±1. Four points are
correctly classified, but lie in the slab defined by the dashed lines.

When u = v = 0, we recover the original constraints; by making u and v large
enough, these inequalities can always be made feasible. We can think of ui as
a measure of how much the constraint aT xi − b ≥ 1 is violated, and similarly
for vi. Our goal is to find a, b, and sparse nonnegative u and v that satisfy the
inequalities (8.24). As a heuristic for this, we can minimize the sum of the variables
ui and vi, by solving the LP

minimize 1T u + 1T v
subject to aT xi − b ≥ 1 − ui, i = 1, . . . , N

aT yi − b ≤ −(1 − vi), i = 1, . . . ,M
u � 0, v � 0.

(8.25)

Figure 8.10 shows an example. In this example, the affine function aT z + b mis-
classifies 1 out of 100 points. Note however that when 0 < ui < 1, the point xi

is correctly classified by the affine function aT z + b, but violates the inequality
aT xi − b ≥ 1, and similarly for yi. The objective function in the LP (8.25) can be
interpreted as a relaxation of the number of points xi that violate aT xi−b ≥ 1 plus
the number of points yi that violate aT yi−b ≤ −1. In other words, it is a relaxation
of the number of points misclassified by the function aT z − b, plus the number of
points that are correctly classified but lie in the slab defined by −1 < aT z − b < 1.

More generally, we can consider the trade-off between the number of misclas-
sified points, and the width of the slab {z | − 1 ≤ aT z − b ≤ 1}, which is
given by 2/‖a‖2. The standard support vector classifier for the sets {x1, . . . , xN},
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Figure 8.11 Approximate linear discrimination via support vector classifier,
with γ = 0.1. The support vector classifier, shown as the solid line, misclas-
sifies three points. Fifteen points are correctly classified but lie in the slab
defined by −1 < aT z − b < 1, bounded by the dashed lines.

{y1, . . . , yM} is defined as the solution of

minimize ‖a‖2 + γ(1T u + 1T v)
subject to aT xi − b ≥ 1 − ui, i = 1, . . . , N

aT yi − b ≤ −(1 − vi), i = 1, . . . ,M
u � 0, v � 0,

The first term is the proportional to the inverse of the width of the slab defined
by −1 ≤ aT z − b ≤ 1. The second term has the same interpretation as above,
i.e., it is a convex relaxation for the number of misclassified points (including the
points in the slab). The parameter γ, which is positive, gives the relative weight of
the number of misclassified points (which we want to minimize), compared to the
width of the slab (which we want to maximize). Figure 8.11 shows an example.

Approximate linear discrimination via logistic modeling

Another approach to finding an affine function that approximately classifies two
sets of points that cannot be linearly separated is based on the logistic model
described in §7.1.1. We start by fitting the two sets of points with a logistic model.
Suppose z is a random variable with values 0 or 1, with a distribution that depends
on some (deterministic) explanatory variable u ∈ Rn, via a logistic model of the
form

prob(z = 1) = (exp(aT u − b))/(1 + exp(aT u − b))

prob(z = 0) = 1/(1 + exp(aT u − b)).
(8.26)

Now we assume that the given sets of points, {x1, . . . , xN} and {y1, . . . , yM},
arise as samples from the logistic model. Specifically, {x1, . . . , xN} are the values
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of u for the N samples for which z = 1, and {y1, . . . , yM} are the values of u for
the M samples for which z = 0. (This allows us to have xi = yj , which would rule
out discrimination between the two sets. In a logistic model, it simply means that
we have two samples, with the same value of explanatory variable but different
outcomes.)

We can determine a and b by maximum likelihood estimation from the observed
samples, by solving the convex optimization problem

minimize −l(a, b) (8.27)

with variables a, b, where l is the log-likelihood function

l(a, b) =
∑N

i=1(a
T xi − b)

−∑N
i=1 log(1 + exp(aT xi − b)) −∑M

i=1 log(1 + exp(aT yi − b))

(see §7.1.1). If the two sets of points can be linearly separated, i.e., if there exist a,
b with aT xi > b and aT yi < b, then the optimization problem (8.27) is unbounded
below.

Once we find the maximum likelihood values of a and b, we can form a linear
classifier f(x) = aT x− b for the two sets of points. This classifier has the following
property: Assuming the data points are in fact generated from a logistic model
with parameters a and b, it has the smallest probability of misclassification, over
all linear classifiers. The hyperplane aT u = b corresponds to the points where
prob(z = 1) = 1/2, i.e., the two outcomes are equally likely. An example is shown
in figure 8.12.

Remark 8.1 Bayesian interpretation. Let x and z be two random variables, taking
values in Rn and in {0, 1}, respectively. We assume that

prob(z = 1) = prob(z = 0) = 1/2,

and we denote by p0(x) and p1(x) the conditional probability densities of x, given
z = 0 and given z = 1, respectively. We assume that p0 and p1 satisfy

p1(x)

p0(x)
= eaT x−b

for some a and b. Many common distributions satisfy this property. For example,
p0 and p1 could be two normal densities on Rn with equal covariance matrices and
different means, or they could be two exponential densities on Rn

+.

It follows from Bayes’ rule that

prob(z = 1 | x = u) =
p1(u)

p1(u) + p0(u)

prob(z = 0 | x = u) =
p0(u)

p1(u) + p0(u)
,

from which we obtain

prob(z = 1 | x = u) =
exp(aTu− b)

1 + exp(aTu− b)

prob(z = 0 | x = u) =
1

1 + exp(aTu− b)
.
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Figure 8.12 Approximate linear discrimination via logistic modeling. The
points x1, . . . , x50, shown as circles, cannot be linearly separated from the
points y1, . . . , y50, shown as squares. The maximum likelihood logistic model
yields the hyperplane shown as a dark line, which misclassifies only two
points. The two dashed lines show the lines defined by aTu− b = ±1, where
the probability of each outcome, according to the logistic model, is 73%.
Three points are correctly classified, but lie in between the solid lines.

The logistic model (8.26) can therefore be interpreted as the posterior distribution of
z, given that x = u.

8.6.2 Nonlinear discrimination

We can just as well seek a nonlinear function f , from a given subspace of functions,
that is positive on one set and negative on another:

f(xi) > 0, i = 1, . . . , N, f(yi) < 0, i = 1, . . . ,M.

Provided f is linear (or affine) in the parameters that define it, these inequalities
can be solved in exactly the same way as in linear discrimination. In this section
we examine some interesting special cases.

Quadratic discrimination

Suppose we take f to be quadratic: f(x) = xT Px + qT x + r. The parameters
P ∈ Sn, q ∈ Rn, r ∈ R must satisfy the inequalities

xT
i Pxi + qT xi + r > 0, i = 1, . . . , N

yT
i Pyi + qT yi + r < 0, i = 1, . . . ,M,
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which is a set of strict linear inequalities in the variables P , q, r. As in linear
discrimination, we note that f is homogeneous in P , q, and r, so we can find a
solution to the strict inequalities by solving the nonstrict feasibility problem

xT
i Pxi + qT xi + r ≥ 1, i = 1, . . . , N

yT
i Pyi + qT yi + r ≤ −1, i = 1, . . . ,M.

The separating surface {z | zT Pz + qT z + r = 0} is a quadratic surface, and
the two classification regions

{z | zT Pz + qT z + r ≤ 0}, {z | zT Pz + qT z + r ≥ 0},

are defined by quadratic inequalities. Solving the quadratic discrimination problem,
then, is the same as determining whether the two sets of points can be separated
by a quadratic surface.

We can impose conditions on the shape of the separating surface or classification
regions by adding constraints on P , q, and r. For example, we can require that
P ≺ 0, which means the separating surface is ellipsoidal. More specifically, it means
that we seek an ellipsoid that contains all the points x1, . . . , xN , but none of the
points y1, . . . , yM . This quadratic discrimination problem can be solved as an SDP
feasibility problem

find P, q, r
subject to xT

i Pxi + qT xi + r ≥ 1, i = 1, . . . , N

yT
i Pyi + qT yi + r ≤ −1, i = 1, . . . ,M

P � −I,

with variables P ∈ Sn, q ∈ Rn, and r ∈ R. (Here we use homogeneity in P , q, r
to express the constraint P ≺ 0 as P � −I.) Figure 8.13 shows an example.

Polynomial discrimination

We consider the set of polynomials on Rn with degree less than or equal to d:

f(x) =
∑

i1+···+in≤d

ai1···id
xi1

1 · · ·xin

n .

We can determine whether or not two sets {x1, . . . , xN} and {y1, . . . , yM} can be
separated by such a polynomial by solving a set of linear inequalities in the variables
ai1···id

. Geometrically, we are checking whether the two sets can be separated by
an algebraic surface (defined by a polynomial of degree less than or equal to d).

As an extension, the problem of determining the minimum degree polynomial on
Rn that separates two sets of points can be solved via quasiconvex programming,
since the degree of a polynomial is a quasiconvex function of the coefficients. This
can be carried out by bisection on d, solving a feasibility linear program at each
step. An example is shown in figure 8.14.
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Figure 8.13 Quadratic discrimination, with the condition that P ≺ 0. This
means that we seek an ellipsoid containing all of xi (shown as open circles)
and none of the yi (shown as filled circles). This can be solved as an SDP
feasibility problem.

Figure 8.14 Minimum degree polynomial discrimination in R2. In this ex-
ample, there exists no cubic polynomial that separates the points x1, . . . xN

(shown as open circles) from the points y1, . . . yM (shown as filled circles),
but they can be separated by fourth-degree polynomial, the zero level set of
which is shown.
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8.7 Placement and location

In this section we discuss a few variations on the following problem. We have
N points in R2 or R3, and a list of pairs of points that must be connected by
links. The positions of some of the N points are fixed; our task is to determine the
positions of the remaining points, i.e., to place the remaining points. The objective
is to place the points so that some measure of the total interconnection length of
the links is minimized, subject to some additional constraints on the positions.
As an example application, we can think of the points as locations of plants or
warehouses of a company, and the links as the routes over which goods must be
shipped. The goal is to find locations that minimize the total transportation cost.
In another application, the points represent the position of modules or cells on an
integrated circuit, and the links represent wires that connect pairs of cells. Here
the goal might be to place the cells in such a way that the total length of wire used
to interconnect the cells is minimized.

The problem can be described in terms of an undirected graph with N nodes,
representing the N points. With each node we associate a variable xi ∈ Rk, where
k = 2 or k = 3, which represents its location or position. The problem is to
minimize

∑

(i,j)∈A

fij(xi, xj)

where A is the set of all links in the graph, and fij : Rk × Rk → R is a cost
function associated with arc (i, j). (Alternatively, we can sum over all i and j, or
over i < j, and simply set fij = 0 when links i and j are not connected.) Some of
the coordinate vectors xi are given. The optimization variables are the remaining
coordinates. Provided the functions fij are convex, this is a convex optimization
problem.

8.7.1 Linear facility location problems

In the simplest version of the problem the cost associated with arc (i, j) is the
distance between nodes i and j: fij(xi, xj) = ‖xi − xj‖, i.e., we minimize

∑

(i,j)∈A

‖xi − xj‖.

We can use any norm, but the most common applications involve the Euclidean
norm or the ℓ1-norm. For example, in circuit design it is common to route the wires
between cells along piecewise-linear paths, with each segment either horizontal or
vertical. (This is called Manhattan routing, since paths along the streets in a city
with a rectangular grid are also piecewise-linear, with each street aligned with one
of two orthogonal axes.) In this case, the length of wire required to connect cell i
and cell j is given by ‖xi − xj‖1.

We can include nonnegative weights that reflect differences in the cost per unit
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distance along different arcs:

∑

(i,j)∈A

wij‖xi − xj‖.

By assigning a weight wij = 0 to pairs of nodes that are not connected, we can
express this problem more simply using the objective

∑

i<j

wij‖xi − xj‖. (8.28)

This placement problem is convex.

Example 8.4 One free point. Consider the case where only one point (u, v) ∈ R2 is
free, and we minimize the sum of the distances to fixed points (u1, v1), . . . , (uK , vK).

• ℓ1-norm. We can find a point that minimizes

K
∑

i=1

(|u− ui| + |v − vi|)

analytically. An optimal point is any median of the fixed points. In other words,
u can be taken to be any median of the points {u1, . . . , uK}, and v can be taken
to be any median of the points {v1, . . . , vK}. (If K is odd, the minimizer is
unique; if K is even, there can be a rectangle of optimal points.)

• Euclidean norm. The point (u, v) that minimizes the sum of the Euclidean
distances,

K
∑

i=1

(

(u− ui)
2 + (v − vi)

2
)1/2

,

is called the Weber point of the given fixed points.

8.7.2 Placement constraints

We now list some interesting constraints that can be added to the basic placement
problem, preserving convexity. We can require some positions xi to lie in a specified
convex set, e.g., a particular line, interval, square, or ellipsoid. We can constrain
the relative position of one point with respect to one or more other points, for
example, by limiting the distance between a pair of points. We can impose relative
position constraints, e.g., that one point must lie to the left of another point.

The bounding box of a group of points is the smallest rectangle that contains
the points. We can impose a constraint that limits the points x1, . . . , xp (say) to lie
in a bounding box with perimeter not exceeding Pmax, by adding the constraints

u � xi � v, i = 1, . . . , p, 21T (v − u) ≤ Pmax,

where u, v are additional variables.
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8.7.3 Nonlinear facility location problems

More generally, we can associate a cost with each arc that is a nonlinear increasing
function of the length, i.e.,

minimize
∑

i<j wijh(‖xi − xj‖)

where h is an increasing (on R+) and convex function, and wij ≥ 0. We call this
a nonlinear placement or nonlinear facility location problem.

One common example uses the Euclidean norm, and the function h(z) = z2,
i.e., we minimize

∑

i<j

wij‖xi − xj‖2
2.

This is called a quadratic placement problem. The quadratic placement problem
can be solved analytically when the only constraints are linear equalities; it can be
solved as a QP if the constraints are linear equalities and inequalities.

Example 8.5 One free point. Consider the case where only one point x is free, and we
minimize the sum of the squares of the Euclidean distances to fixed points x1, . . . , xK ,

‖x− x1‖2
2 + ‖x− x2‖2

2 + · · · + ‖x− xK‖2
2.

Taking derivatives, we see that the optimal x is given by

1

K
(x1 + x2 + · · · + xK),

i.e., the average of the fixed points.

Some other interesting possibilities are the ‘deadzone’ function h with deadzone
width 2γ, defined as

h(z) =

{

0 |z| ≤ γ
γ |z| ≥ γ,

and the ‘quadratic-linear’ function h, defined as

h(z) =

{

z2 |z| ≤ γ
2γ|z| − γ2 |z| ≤ γ.

Example 8.6 We consider a placement problem in R2 with 6 free points, 8 fixed
points, and 27 links. Figures 8.15–8.17 show the optimal solutions for the criteria

∑

(i,j)∈A

‖xi − xj‖2,
∑

(i,j)∈A

‖xi − xj‖2
2,

∑

(i,j)∈A

‖xi − xj‖4
2,

i.e., using the penalty functions h(z) = z, h(z) = z2, and h(z) = z4. The figures also
show the resulting distributions of the link lengths.

Comparing the results, we see that the linear placement concentrates the free points in
a small area, while the quadratic and fourth-order placements spread the points over
larger areas. The linear placement includes many very short links, and a few very long
ones (3 lengths under 0.2 and 2 lengths above 1.5.). The quadratic penalty function
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Figure 8.15 Linear placement. Placement problem with 6 free points (shown
as dots), 8 fixed points (shown as squares), and 27 links. The coordinates of
the free points minimize the sum of the Euclidean lengths of the links. The
right plot is the distribution of the 27 link lengths. The dashed curve is the
(scaled) penalty function h(z) = z.
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Figure 8.16 Quadratic placement. Placement that minimizes the sum of
squares of the Euclidean lengths of the links, for the same data as in fig-
ure 8.15. The dashed curve is the (scaled) penalty function h(z) = z2.
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Figure 8.17 Fourth-order placement. Placement that minimizes the sum of
the fourth powers of the Euclidean lengths of the links. The dashed curve
is the (scaled) penalty function h(z) = z4.

puts a higher penalty on long lengths relative to short lengths, and for lengths under
0.1, the penalty is almost negligible. As a result, the maximum length is shorter (less
than 1.4), but we also have fewer short links. The fourth-order function puts an even
higher penalty on long lengths, and has a wider interval (between zero and about
0.4) where it is negligible. As a result, the maximum length is shorter than for the
quadratic placement, but we also have more lengths close to the maximum.

8.7.4 Location problems with path constraints

Path constraints

A p-link path along the points x1, . . . , xN is described by a sequence of nodes,
i0, . . . , ip ∈ {1, . . . , N}. The length of the path is given by

‖xi1 − xi0‖ + ‖xi2 − xi1‖ + · · · + ‖xip
− xip−1

‖,

which is a convex function of x1, . . . , xN , so imposing an upper bound on the length
of a path is a convex constraint. Several interesting placement problems involve
path constraints, or have an objective based on path lengths. We describe one
typical example, in which the objective is based on a maximum path length over a
set of paths.

Minimax delay placement

We consider a directed acyclic graph with nodes 1, . . . , N , and arcs or links repre-
sented by a set A of ordered pairs: (i, j) ∈ A if and only if an arc points from i
to j. We say node i is a source node if no arc A points to it; it is a sink node or
destination node if no arc in A leaves from it. We will be interested in the maximal
paths in the graph, which begin at a source node and end at a sink node.

The arcs of the graph are meant to model some kind of flow, say of goods or
information, in a network with nodes at positions x1, . . . , xN . The flow starts at
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a source node, then moves along a path from node to node, ending at a sink or
destination node. We use the distance between successive nodes to model prop-
agation time, or shipment time, of the goods between nodes; the total delay or
propagation time of a path is (proportional to) the sum of the distances between
successive nodes.

Now we can describe the minimax delay placement problem. Some of the node
locations are fixed, and the others are free, i.e., optimization variables. The goal
is to choose the free node locations in order to minimize the maximum total delay,
for any path from a source node to a sink node. Evidently this is a convex problem,
since the objective

Tmax = max{‖xi1 − xi0‖ + · · · + ‖xip
− xip−1

‖ | i0, . . . , ip is a source-sink path}
(8.29)

is a convex function of the locations x1, . . . , xN .
While the problem of minimizing (8.29) is convex, the number of source-sink

paths can be very large, exponential in the number of nodes or arcs. There is
a useful reformulation of the problem, which avoids enumerating all sink-source
paths.

We first explain how we can evaluate the maximum delay Tmax far more ef-
ficiently than by evaluating the delay for every source-sink path, and taking the
maximum. Let τk be the maximum total delay of any path from node k to a sink
node. Clearly we have τk = 0 when k is a sink node. Consider a node k, which has
outgoing arcs to nodes j1, . . . , jp. For a path starting at node k and ending at a
sink node, its first arc must lead to one of the nodes j1, . . . , jp. If such a path first
takes the arc leading to ji, and then takes the longest path from there to a sink
node, the total length is

‖xji
− xk‖ + τji

,

i.e., the length of the arc to ji, plus the total length of the longest path from ji to
a sink node. It follows that the maximum delay of a path starting at node k and
leading to a sink node satisfies

τk = max{‖xj1 − xk‖ + τj1 , . . . , ‖xjp
− xk‖ + τjp

}. (8.30)

(This is a simple dynamic programming argument.)
The equations (8.30) give a recursion for finding the maximum delay from any

node: we start at the sink nodes (which have maximum delay zero), and then
work backward using the equations (8.30), until we reach all source nodes. The
maximum delay over any such path is then the maximum of all the τk, which will
occur at one of the source nodes. This dynamic programming recursion shows
how the maximum delay along any source-sink path can be computed recursively,
without enumerating all the paths. The number of arithmetic operations required
for this recursion is approximately the number of links.

Now we show how the recursion based on (8.30) can be used to formulate the
minimax delay placement problem. We can express the problem as

minimize max{τk | k a source node}
subject to τk = 0, k a sink node

τk = max{‖xj − xk‖ + τj | there is an arc from k to j},
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with variables τ1, . . . , τN and the free positions. This problem is not convex, but
we can express it in an equivalent form that is convex, by replacing the equality
constraints with inequalities. We introduce new variables T1, . . . , TN , which will be
upper bounds on τ1, . . . , τN , respectively. We will take Tk = 0 for all sink nodes,
and in place of (8.30) we take the inequalities

Tk ≥ max{‖xj1 − xk‖ + Tj1 , . . . , ‖xjp
− xk‖ + Tjp

}.
If these inequalities are satisfied, then Tk ≥ τk. Now we form the problem

minimize max{Tk | k a source node}
subject to Tk = 0, k a sink node

Tk ≥ max{‖xj − xk‖ + Tj | there is an arc from k to j}.
This problem, with variables T1, . . . , TN and the free locations, is convex, and solves
the minimax delay location problem.

8.8 Floor planning

In placement problems, the variables represent the coordinates of a number of
points that are to be optimally placed. A floor planning problem can be considered
an extension of a placement problem in two ways:

• The objects to be placed are rectangles or boxes aligned with the axes (as
opposed to points), and must not overlap.

• Each rectangle or box to be placed can be reconfigured, within some limits.
For example we might fix the area of each rectangle, but not the length and
height separately.

The objective is usually to minimize the size (e.g., area, volume, perimeter) of the
bounding box, which is the smallest box that contains the boxes to be configured
and placed.

The non-overlap constraints make the general floor planning problem a compli-
cated combinatorial optimization problem or rectangle packing problem. However,
if the relative positioning of the boxes is specified, several types of floor planning
problems can be formulated as convex optimization problems. We explore some
of these in this section. We consider the two-dimensional case, and make a few
comments on extensions to higher dimensions (when they are not obvious).

We have N cells or modules C1, . . . , CN that are to be configured and placed
in a rectangle with width W and height H, and lower left corner at the position
(0, 0). The geometry and position of the ith cell is specified by its width wi and
height hi, and the coordinates (xi, yi) of its lower left corner. This is illustrated in
figure 8.18.

The variables in the problem are xi, yi, wi, hi for i = 1, . . . , N , and the width
W and height H of the bounding rectangle. In all floor planning problems, we
require that the cells lie inside the bounding rectangle, i.e.,

xi ≥ 0, yi ≥ 0, xi + wi ≤ W, yi + hi ≤ H, i = 1, . . . , N. (8.31)
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Figure 8.18 Floor planning problem. Non-overlapping rectangular cells are
placed in a rectangle with width W , height H, and lower left corner at (0, 0).
The ith cell is specified by its width wi, height hi, and the coordinates of its
lower left corner, (xi, yi).

We also require that the cells do not overlap, except possibly on their boundaries:

int (Ci ∩ Cj) = ∅ for i 6= j.

(It is also possible to require a positive minimum clearance between the cells.) The
non-overlap constraint int(Ci ∩ Cj) = ∅ holds if and only if for i 6= j,

Ci is left of Cj , or Ci is right of Cj , or Ci is below Cj , or Ci is above Cj .

These four geometric conditions correspond to the inequalities

xi + wi ≤ xj , or xj + wj ≤ xi, or yi + hj ≤ yj , or yj + hi ≤ yi, (8.32)

at least one of which must hold for each i 6= j. Note the combinatorial nature of
these constraints: for each pair i 6= j, at least one of the four inequalities above
must hold.

8.8.1 Relative positioning constraints

The idea of relative positioning constraints is to specify, for each pair of cells,
one of the four possible relative positioning conditions, i.e., left, right, above, or
below. One simple method to specify these constraints is to give two relations on
{1, . . . , N}: L (meaning ‘left of’) and B (meaning ‘below’). We then impose the
constraint that Ci is to the left of Cj if (i, j) ∈ L, and Ci is below Cj if (i, j) ∈ B.
This yields the constraints

xi + wi ≤ xj for (i, j) ∈ L, yi + hi ≤ yj for (i, j) ∈ B, (8.33)
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for i, j = 1, . . . , N . To ensure that the relations L and B specify the relative
positioning of each pair of cells, we require that for each (i, j) with i 6= j, one of
the following holds:

(i, j) ∈ L, (j, i) ∈ L, (i, j) ∈ B, (j, i) ∈ B,

and that (i, i) 6∈ L, (i, i) 6∈ B. The inequalities (8.33) are a set of N(N −1)/2 linear
inequalities in the variables. These inequalities imply the non-overlap inequali-
ties (8.32), which are a set of N(N − 1)/2 disjunctions of four linear inequalities.

We can assume that the relations L and B are anti-symmetric (i.e., (i, j) ∈
L ⇒ (j, i) 6∈ L) and transitive (i.e., (i, j) ∈ L, (j, k) ∈ L ⇒ (i, k) ∈ L). (If this
were not the case, the relative positioning constraints would clearly be infeasible.)
Transitivity corresponds to the obvious condition that if cell Ci is to the left of cell
Cj , which is to the left of cell Ck, then cell Ci must be to the left of cell Ck. In
this case the inequality corresponding to (i, k) ∈ L is redundant; it is implied by
the other two. By exploiting transitivity of the relations L and B we can remove
redundant constraints, and obtain a compact set of relative positioning inequalities.

A minimal set of relative positioning constraints is conveniently described using
two directed acyclic graphs H and V (for horizontal and vertical). Both graphs have
N nodes, corresponding to the N cells in the floor planning problem. The graph
H generates the relation L as follows: we have (i, j) ∈ L if and only if there is
a (directed) path in H from i to j. Similarly, the graph V generates the relation
B: (i, j) ∈ B if and only if there is a (directed) path in H from i to j. To ensure
that a relative positioning constraint is given for every pair of cells, we require that
for every pair of cells, there is a directed path from one to the other in one of the
graphs.

Evidently, we only need to impose the inequalities that correspond to the edges
of the graphs H and V; the others follow from transitivity. We arrive at the set of
inequalities

xi + wi ≤ xj for (i, j) ∈ H, yi + hi ≤ yj for (i, j) ∈ V, (8.34)

which is a set of linear inequalities, one for each edge in H and V. The set of
inequalities (8.34) is a subset of the set of inequalities (8.33), and equivalent.

In a similar way, the 4N inequalities (8.31) can be reduced to a minimal, equiv-
alent set. The constraint xi ≥ 0 only needs to be imposed on the left-most cells,
i.e., for i that are minimal in the relation L. These correspond to the sources in
the graph H, i.e., those nodes that have no edges pointing to them. Similarly, the
inequalities xi + wi ≤ W only need to be imposed for the right-most cells. In the
same way the vertical bounding box inequalities can be pruned to a minimal set.
This yields the minimal equivalent set of bounding box inequalities

xi ≥ 0 for i L minimal, xi + wi ≤ W for i L maximal,
yi ≥ 0 for i B minimal, yi + hi ≤ H for i B maximal.

(8.35)

A simple example is shown in figure 8.19. In this example, the L minimal or
left-most cells are C1, C2, and C4, and the only right-most cell is C5. The minimal
set of inequalities specifying the horizontal relative positioning is given by

x1 ≥ 0, x2 ≥ 0, x4 ≥ 0, x5 + w5 ≤ W, x1 + w1 ≤ x3,
x2 + w2 ≤ x3, x3 + w3 ≤ x5, x4 + w4 ≤ x5.
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Figure 8.19 Example illustrating the horizontal and vertical graphs H and
V that specify the relative positioning of the cells. If there is a path from
node i to node j in H, then cell i must be placed to the left of cell j. If there
is a path from node i to node j in V, then cell i must be placed below cell
j. The floorplan shown at right satisfies the relative positioning specified by
the two graphs.

The minimal set of inequalities specifying the vertical relative positioning is given
by

y2 ≥ 0, y3 ≥ 0, y5 ≥ 0, y4 + h4 ≤ H, y5 + h5 ≤ H,
y2 + h2 ≤ y1, y1 + h1 ≤ y4, y3 + h3 ≤ y4.

8.8.2 Floor planning via convex optimization

In this formulation, the variables are the bounding box width and height W and
H, and the cell widths, heights, and positions: wi, hi, xi, and wi, for i = 1, . . . , N .
We impose the bounding box constraints (8.35) and the relative positioning con-
straints (8.34), which are linear inequalities. As objective, we take the perimeter
of the bounding box, i.e., 2(W + H), which is a linear function of the variables.
We now list some of the constraints that can be expressed as convex inequalities
or linear equalities in the variables.

Minimum spacing

We can impose a minimum spacing ρ > 0 between cells by changing the relative
position constraints from xi + wi ≤ xj for (i, j) ∈ H, to xi + wi + ρ ≤ xj for
(i, j) ∈ H, and similarly for the vertical graph. We can have a different minimum
spacing associated with each edge in H and V. Another possibility is to fix W and
H, and maximize the minimum spacing ρ as objective.
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Minimum cell area

For each cell we specify a minimum area, i.e., we require that wihi ≥ Ai, where
Ai > 0. These minimum cell area constraints can be expressed as convex inequali-

ties in several ways, e.g., wi ≥ Ai/hi, (wihi)
1/2 ≥ A

1/2
i , or log wi + log hi ≥ log Ai.

Aspect ratio constraints

We can impose upper and lower bounds on the aspect ratio of each cell, i.e.,

li ≤ hi/wi ≤ ui.

Multiplying through by wi transforms these constraints into linear inequalities. We
can also fix the aspect ratio of a cell, which results in a linear equality constraint.

Alignment constraints

We can impose the constraint that two edges, or a center line, of two cells are
aligned. For example, the horizontal center line of cell i aligns with the top of cell
j when

yi + wi/2 = yj + wj .

These are linear equality constraints. In a similar way we can require that a cell is
flushed against the bounding box boundary.

Symmetry constraints

We can require pairs of cells to be symmetric about a vertical or horizontal axis,
that can be fixed or floating (i.e., whose position is fixed or not). For example, to
specify that the pair of cells i and j are symmetric about the vertical axis x = xaxis,
we impose the linear equality constraint

xaxis − (xi + wi/2) = xj + wj/2 − xaxis.

We can require that several pairs of cells be symmetric about an unspecified vertical
axis by imposing these equality constraints, and introducing xaxis as a new variable.

Similarity constraints

We can require that cell i be an a-scaled translate of cell j by the equality con-
straints wi = awj , hi = ahj . Here the scaling factor a must be fixed. By imposing
only one of these constraints, we require that the width (or height) of one cell be
a given factor times the width or height) of the other cell.

Containment constraints

We can require that a particular cell contains a given point, which imposes two lin-
ear inequalities. We can require that a particular cell lie inside a given polyhedron,
again by imposing linear inequalities.
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Distance constraints

We can impose a variety of constraints that limit the distance between pairs of
cells. In the simplest case, we can limit the distance between the center points
of cell i and j (or any other fixed points on the cells, such as lower left corners).
For example, to limit the distance between the centers of cells i and j, we use the
(convex) inequality

‖(xi + wi/2, yi + hi/2) − (xj + wj/2, yj + hj/2)‖ ≤ Dij .

As in placement problems, we can limit sums of distances, or use sums of distances
as the objective.

We can also limit the distance dist(Ci, Cj) between cell i and cell j, i.e., the
minimum distance between a point in cell i and a point in cell j. In the general
case this can be done as follows. To limit the distance between cells i and j in the
norm ‖ · ‖, we can introduce four new variables ui, vi, uj , vj . The pair (ui, vi)
will represent a point in Ci, and the pair (uj , vj) will represent a point in Cj . To
ensure this we impose the linear inequalities

xi ≤ ui ≤ xi + wi, yi ≤ vi ≤ yi + hi,

and similarly for cell j. Finally, to limit dist(Ci, Cj), we add the convex inequality

‖(ui, vi) − (uj , vj)‖ ≤ Dij .

In many specific cases we can express these distance constraints more efficiently,
by exploiting the relative positioning constraints or deriving a more explicit formu-
lation. As an example consider the ℓ∞-norm, and suppose cell i lies to the left of
cell j (by a relative positioning constraint). The horizontal displacement between
the two cells is xj − (xi + wi) Then we have dist(Ci, Cj) ≤ Dij if and only if

xj − (xi + wi) ≤ Dij , yj − (yi + hi) ≤ Dij , yi − (yj + hj) ≤ Dij .

The first inequality states that the horizontal displacement between the right edge
of cell i and the left edge of cell j does not exceed Dij . The second inequality
requires that the bottom of cell j is no more than Dij above the top of cell i, and
the third inequality requires that the bottom of cell i is no more than Dij above the
top of cell j. These three inequalities together are equivalent to dist(Ci, Cj) ≤ Dij .
In this case, we do not need to introduce any new variables.

We can limit the ℓ1- (or ℓ2-) distance between two cells in a similar way. Here
we introduce one new variable dv, which will serve as a bound on the vertical
displacement between the cells. To limit the ℓ1-distance, we add the constraints

yj − (yi + hi) ≤ dv, yi − (yj + hj) ≤ dv, dv ≥ 0

and the constraints
xj − (xi + wi) + dv ≤ Dij .

(The first term is the horizontal displacement and the second is an upper bound
on the vertical displacement.) To limit the Euclidean distance between the cells,
we replace this last constraint with

(xj − (xi + wi)
2 + d2

v) ≤ D2
ij .
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Figure 8.20 Four instances of an optimal floor plan, using the relative po-
sitioning constraints shown in figure 8.19. In each case the objective is to
minimize the perimeter, and the same minimum spacing constraint between
cells is imposed. We also require the aspect ratios to lie between 1/5 and 5.
The four cases differ in the minimum areas required for each cell. The sum
of the minimum areas is the same for each case.

Example 8.7 Figure 8.20 shows an example with 5 cells, using the ordering constraints
of figure 8.19, and four different sets of constraints. In each case we impose the
same minimum required spacing constraint, and the same aspect ratio constraint
1/5 ≤ wi/hi ≤ 5. The four cases differ in the minimum required cell areas Ai. The
values of Ai are chosen so that the total minimum required area

∑5

i=1
Ai is the same

for each case.

8.8.3 Floor planning via geometric programming

The floor planning problem can also be formulated as a geometric program in the
variables xi, yi, wi, hi, W, H. The objectives and constraints that can be handled
in this formulation are a bit different from those that can be expressed in the convex
formulation.

First we note that the bounding box constraints (8.35) and the relative po-
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sitioning constraints (8.34) are posynomial inequalities, since the lefthand sides
are sums of variables, and the righthand sides are single variables, hence monomi-
als. Dividing these inequalities by the righthand side yields standard posynomial
inequalities.

In the geometric programming formulation we can minimize the bounding box
area, since WH is a monomial, hence posynomial. We can also exactly specify
the area of each cell, since wihi = Ai is a monomial equality constraint. On the
other hand alignment, symmetry, and distance constraints cannot be handled in
the geometric programming formulation. Similarity, however, can be; indeed it
is possible to require that one cell be similar to another, without specifying the
scaling ratio (which can be treated as just another variable).
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Exercises

Projection on a set

8.1 Uniqueness of projection. Show that if C ⊆ Rn is nonempty, closed and convex, and the
norm ‖ · ‖ is strictly convex, then for every x0 there is exactly one x ∈ C closest to x0. In
other words the projection of x0 on C is unique.

8.2 [Web94, Val64] Chebyshev characterization of convexity. A set C ∈ Rn is called a Cheby-
shev set if for every x0 ∈ Rn, there is a unique point in C closest (in Euclidean norm)
to x0. From the result in exercise 8.1, every nonempty, closed, convex set is a Chebyshev
set. In this problem we show the converse, which is known as Motzkin’s theorem.

Let C ∈ Rn be a Chebyshev set.

(a) Show that C is nonempty and closed.

(b) Show that PC , the Euclidean projection on C, is continuous.

(c) Suppose x0 6∈ C. Show that PC(x) = PC(x0) for all x = θx0 + (1 − θ)PC(x0) with
0 ≤ θ ≤ 1.

(d) Suppose x0 6∈ C. Show that PC(x) = PC(x0) for all x = θx0 + (1 − θ)PC(x0) with
θ ≥ 1.

(e) Combining parts (c) and (d), we can conclude that all points on the ray with base
PC(x0) and direction x0 − PC(x0) have projection PC(x0). Show that this implies
that C is convex.

8.3 Euclidean projection on proper cones.

(a) Nonnegative orthant. Show that Euclidean projection onto the nonnegative orthant
is given by the expression on page 399.

(b) Positive semidefinite cone. Show that Euclidean projection onto the positive semidef-
inite cone is given by the expression on page 399.

(c) Second-order cone. Show that the Euclidean projection of (x0, t0) on the second-
order cone

K = {(x, t) ∈ R
n+1 | ‖x‖2 ≤ t}

is given by

PK(x0, t0) =

{

0 ‖x0‖2 ≤ −t0
(x0, t0) ‖x0‖2 ≤ t0
(1/2)(1 + t0/‖x0‖2)(x0, ‖x0‖2) ‖x0‖2 ≥ |t0|.

8.4 The Euclidean projection of a point on a convex set yields a simple separating hyperplane

(PC(x0) − x0)
T (x− (1/2)(x0 + PC(x0))) = 0.

Find a counterexample that shows that this construction does not work for general norms.

8.5 [HUL93, volume 1, page 154] Depth function and signed distance to boundary. Let C ⊆ Rn

be a nonempty convex set, and let dist(x,C) be the distance of x to C in some norm.
We already know that dist(x,C) is a convex function of x.

(a) Show that the depth function,

depth(x,C) = dist(x,Rn \ C),

is concave for x ∈ C.

(b) The signed distance to the boundary of C is defined as

s(x) =

{

dist(x,C) x 6∈ C
−depth(x,C) x ∈ C.

Thus, s(x) is positive outside C, zero on its boundary, and negative on its interior.
Show that s is a convex function.
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Distance between sets

8.6 Let C, D be convex sets.

(a) Show that dist(C, x+D) is a convex function of x.

(b) Show that dist(tC, x+ tD) is a convex function of (x, t) for t > 0.

8.7 Separation of ellipsoids. Let E1 and E2 be two ellipsoids defined as

E1 = {x | (x− x1)
TP−1

1 (x− x1) ≤ 1}, E2 = {x | (x− x2)
TP−1

2 (x− x2) ≤ 1},
where P1, P2 ∈ Sn

++. Show that E1 ∩ E2 = ∅ if and only if there exists an a ∈ Rn with

‖P 1/2
2 a‖2 + ‖P 1/2

1 a‖2 < aT (x1 − x2).

8.8 Intersection and containment of polyhedra. Let P1 and P2 be two polyhedra defined as

P1 = {x | Ax � b}, P2 = {x | Fx � g},
with A ∈ Rm×n, b ∈ Rm, F ∈ Rp×n, g ∈ Rp. Formulate each of the following problems
as an LP feasibility problem, or a set of LP feasibility problems.

(a) Find a point in the intersection P1 ∩ P2.

(b) Determine whether P1 ⊆ P2.

For each problem, derive a set of linear inequalities and equalities that forms a strong
alternative, and give a geometric interpretation of the alternative.
Repeat the question for two polyhedra defined as

P1 = conv{v1, . . . , vK}, P2 = conv{w1, . . . , wL}.

Euclidean distance and angle problems

8.9 Closest Euclidean distance matrix to given data. We are given data d̂ij , for i, j = 1, . . . , n,
which are corrupted measurements of the Euclidean distances between vectors in Rk:

d̂ij = ‖xi − xj‖2 + vij , i, j = 1, . . . , n,

where vij is some noise or error. These data satisfy d̂ij ≥ 0 and d̂ij = d̂ji, for all i, j. The
dimension k is not specified.
Show how to solve the following problem using convex optimization. Find a dimension

k and x1, . . . , xn ∈ Rk so that
∑n

i,j=1
(dij − d̂ij)

2 is minimized, where dij = ‖xi − xj‖2,

i, j = 1, . . . , n. In other words, given some data that are approximate Euclidean distances,
you are to find the closest set of actual Euclidean distances, in the least-squares sense.

8.10 Minimax angle fitting. Suppose that y1, . . . , ym ∈ Rk are affine functions of a variable
x ∈ Rn:

yi = Aix+ bi, i = 1, . . . ,m,

and z1, . . . , zm ∈ Rk are given nonzero vectors. We want to choose the variable x, subject
to some convex constraints, (e.g., linear inequalities) to minimize the maximum angle
between yi and zi,

max{6 (y1, z1), . . . , 6 (ym, zm)}.
The angle between nonzero vectors is defined as usual:

6 (u, v) = cos−1

(

uT v

‖u‖2‖v‖2

)

,

where we take cos−1(a) ∈ [0, π]. We are only interested in the case when the optimal
objective value does not exceed π/2.
Formulate this problem as a convex or quasiconvex optimization problem. When the
constraints on x are linear inequalities, what kind of problem (or problems) do you have
to solve?
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8.11 Smallest Euclidean cone containing given points. In Rn, we define a Euclidean cone, with
center direction c 6= 0, and angular radius θ, with 0 ≤ θ ≤ π/2, as the set

{x ∈ R
n | 6 (c, x) ≤ θ}.

(A Euclidean cone is a second-order cone, i.e., it can be represented as the image of the
second-order cone under a nonsingular linear mapping.)

Let a1, . . . , am ∈ R. How would you find the Euclidean cone, of smallest angular radius,
that contains a1, . . . , am? (In particular, you should explain how to solve the feasibility
problem, i.e., how to determine whether there is a Euclidean cone which contains the
points.)

Extremal volume ellipsoids

8.12 Show that the maximum volume ellipsoid enclosed in a set is unique. Show that the
Löwner-John ellipsoid of a set is unique.

8.13 Löwner-John ellipsoid of a simplex. In this exercise we show that the Löwner-John el-
lipsoid of a simplex in Rn must be shrunk by a factor n to fit inside the simplex. Since
the Löwner-John ellipsoid is affinely invariant, it is sufficient to show the result for one
particular simplex.

Derive the Löwner-John ellipsoid Elj for the simplex C = conv{0, e1, . . . , en}. Show that
Elj must be shrunk by a factor 1/n to fit inside the simplex.

8.14 Efficiency of ellipsoidal inner approximation. Let C be a polyhedron in Rn described as
C = {x | Ax � b}, and suppose that {x | Ax ≺ b} is nonempty.

(a) Show that the maximum volume ellipsoid enclosed in C, expanded by a factor n
about its center, is an ellipsoid that contains C.

(b) Show that if C is symmetric about the origin, i.e., of the form C = {x | −1 � Ax �
1}, then expanding the maximum volume inscribed ellipsoid by a factor

√
n gives

an ellipsoid that contains C.

8.15 Minimum volume ellipsoid covering union of ellipsoids. Formulate the following problem
as a convex optimization problem. Find the minimum volume ellipsoid E = {x | (x −
x0)

TA−1(x− x0) ≤ 1} that contains K given ellipsoids

Ei = {x | xTAix+ 2bTi x+ ci ≤ 0}, i = 1, . . . ,K.

Hint. See appendix B.

8.16 Maximum volume rectangle inside a polyhedron. Formulate the following problem as a
convex optimization problem. Find the rectangle

R = {x ∈ R
n | l � x � u}

of maximum volume, enclosed in a polyhedron P = {x | Ax � b}. The variables are
l, u ∈ Rn. Your formulation should not involve an exponential number of constraints.

Centering

8.17 Affine invariance of analytic center. Show that the analytic center of a set of inequalities is
affine invariant. Show that it is invariant with respect to positive scaling of the inequalities.

8.18 Analytic center and redundant inequalities. Two sets of linear inequalities that describe
the same polyhedron can have different analytic centers. Show that by adding redundant
inequalities, we can make any interior point x0 of a polyhedron

P = {x ∈ R
n | Ax � b}
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the analytic center. More specifically, suppose A ∈ Rm×n and Ax0 ≺ b. Show that there
exist c ∈ Rn, γ ∈ R, and a positive integer q, such that P is the solution set of the m+ q
inequalities

Ax � b, cTx ≤ γ, cTx ≤ γ, . . . , cTx ≤ γ (8.36)

(where the inequality cTx ≤ γ is added q times), and x0 is the analytic center of (8.36).

8.19 Let xac be the analytic center of a set of linear inequalities

aT
i x ≤ bi, i = 1, . . . ,m,

and define H as the Hessian of the logarithmic barrier function at xac:

H =

m
∑

i=1

1

(bi − aT
i xac)2

aia
T
i .

Show that the kth inequality is redundant (i.e., it can be deleted without changing the
feasible set) if

bk − aT
k xac ≥ m(aT

kH
−1ak)1/2.

8.20 Ellipsoidal approximation from analytic center of linear matrix inequality. Let C be the
solution set of the LMI

x1A1 + x2A2 + · · · + xnAn � B,

where Ai, B ∈ Sm, and let xac be its analytic center. Show that

Einner ⊆ C ⊆ Eouter,

where

Einner = {x | (x− xac)
TH(x− xac) ≤ 1},

Eouter = {x | (x− xac)
TH(x− xac) ≤ m(m− 1)},

and H is the Hessian of the logarithmic barrier function

− log det(B − x1A1 − x2A2 − · · · − xnAn)

evaluated at xac.

8.21 [BYT99] Maximum likelihood interpretation of analytic center. We use the linear mea-
surement model of page 352,

y = Ax+ v,

where A ∈ Rm×n. We assume the noise components vi are IID with support [−1, 1]. The
set of parameters x consistent with the measurements y ∈ Rm is the polyhedron defined
by the linear inequalities

−1 + y � Ax � 1 + y. (8.37)

Suppose the probability density function of vi has the form

p(v) =

{

αr(1 − v2)r −1 ≤ v ≤ 1
0 otherwise,

where r ≥ 1 and αr > 0. Show that the maximum likelihood estimate of x is the analytic
center of (8.37).

8.22 Center of gravity. The center of gravity of a set C ⊆ Rn with nonempty interior is defined
as

xcg =

∫

C
u du

∫

C
1 du

.
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The center of gravity is affine invariant, and (clearly) a function of the set C, and not
its particular description. Unlike the centers described in the chapter, however, it is very
difficult to compute the center of gravity, except in simple cases (e.g., ellipsoids, balls,
simplexes).

Show that the center of gravity xcg is the minimizer of the convex function

f(x) =

∫

C

‖u− x‖2
2 du.

Classification

8.23 Robust linear discrimination. Consider the robust linear discrimination problem given
in (8.23).

(a) Show that the optimal value t⋆ is positive if and only if the two sets of points can
be linearly separated. When the two sets of points can be linearly separated, show
that the inequality ‖a‖2 ≤ 1 is tight, i.e., we have ‖a⋆‖2 = 1, for the optimal a⋆.

(b) Using the change of variables ã = a/t, b̃ = b/t, prove that the problem (8.23) is
equivalent to the QP

minimize ‖ã‖2

subject to ãTxi − b̃ ≥ 1, i = 1, . . . , N

ãT yi − b̃ ≤ −1, i = 1, . . . ,M.

8.24 Linear discrimination maximally robust to weight errors. Suppose we are given two sets of
points {x1, . . . , xN} and and {y1, . . . , yM} in Rn that can be linearly separated. In §8.6.1
we showed how to find the affine function that discriminates the sets, and gives the largest
gap in function values. We can also consider robustness with respect to changes in the
vector a, which is sometimes called the weight vector. For a given a and b for which
f(x) = aTx− b separates the two sets, we define the weight error margin as the norm of
the smallest u ∈ Rn such that the affine function (a + u)Tx − b no longer separates the
two sets of points. In other words, the weight error margin is the maximum ρ such that

(a+ u)Txi ≥ b, i = 1, . . . , N, (a+ u)T yj ≤ b, i = 1, . . . ,M,

holds for all u with ‖u‖2 ≤ ρ.

Show how to find a and b that maximize the weight error margin, subject to the normal-
ization constraint ‖a‖2 ≤ 1.

8.25 Most spherical separating ellipsoid. We are given two sets of vectors x1, . . . , xN ∈ Rn, and
y1, . . . , yM ∈ Rn, and wish to find the ellipsoid with minimum eccentricity (i.e., minimum
condition number of the defining matrix) that contains the points x1, . . . , xN , but not the
points y1, . . . , yM . Formulate this as a convex optimization problem.

Placement and floor planning

8.26 Quadratic placement. We consider a placement problem in R2, defined by an undirected
graph A with N nodes, and with quadratic costs:

minimize
∑

(i,j)∈A
‖xi − xj‖2

2.

The variables are the positions xi ∈ R2, i = 1, . . . ,M . The positions xi, i = M+1, . . . , N
are given. We define two vectors u, v ∈ RM by

u = (x11, x21, . . . , xM1), v = (x12, x22, . . . , xM2),

containing the first and second components, respectively, of the free nodes.
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Show that u and v can be found by solving two sets of linear equations,

Cu = d1, Cv = d2,

where C ∈ SM . Give a simple expression for the coefficients of C in terms of the graph A.

8.27 Problems with minimum distance constraints. We consider a problem with variables
x1, . . . , xN ∈ Rk. The objective, f0(x1, . . . , xN ), is convex, and the constraints

fi(x1, . . . , xN ) ≤ 0, i = 1, . . . ,m,

are convex (i.e., the functions fi : RNk → R are convex). In addition, we have the
minimum distance constraints

‖xi − xj‖2 ≥ Dmin, i 6= j, i, j = 1, . . . , N.

In general, this is a hard nonconvex problem.

Following the approach taken in floorplanning, we can form a convex restriction of the
problem, i.e., a problem which is convex, but has a smaller feasible set. (Solving the
restricted problem is therefore easy, and any solution is guaranteed to be feasible for the
nonconvex problem.) Let aij ∈ Rk, for i < j, i, j = 1, . . . , N , satisfy ‖aij‖2 = 1.

Show that the restricted problem

minimize f0(x1, . . . , xN )
subject to fi(x1, . . . , xN ) ≤ 0, i = 1, . . . ,m

aT
ij(xi − xj) ≥ Dmin, i < j, i, j = 1, . . . , N,

is convex, and that every feasible point satisfies the minimum distance constraint.

Remark. There are many good heuristics for choosing the directions aij . One simple
one starts with an approximate solution x̂1, . . . , x̂N (that need not satisfy the minimum
distance constraints). We then set aij = (x̂i − x̂j)/‖x̂i − x̂j‖2.

Miscellaneous problems

8.28 Let P1 and P2 be two polyhedra described as

P1 = {x | Ax � b} , P2 = {x | −1 � Cx � 1} ,

where A ∈ Rm×n, C ∈ Rp×n, and b ∈ Rm. The polyhedron P2 is symmetric about the
origin. For t ≥ 0 and xc ∈ Rn, we use the notation tP2 + xc to denote the polyhedron

tP2 + xc = {tx+ xc | x ∈ P2},

which is obtained by first scaling P2 by a factor t about the origin, and then translating
its center to xc.

Show how to solve the following two problems, via an LP, or a set of LPs.

(a) Find the largest polyhedron tP2 + xc enclosed in P1, i.e.,

maximize t
subject to tP2 + xc ⊆ P1

t ≥ 0.

(b) Find the smallest polyhedron tP2 + xc containing P1, i.e.,

minimize t
subject to P1 ⊆ tP2 + xc

t ≥ 0.
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In both problems the variables are t ∈ R and xc ∈ Rn.

8.29 Outer polyhedral approximations. Let P = {x ∈ Rn | Ax � b} be a polyhedron, and
C ⊆ Rn a given set (not necessarily convex). Use the support function SC to formulate
the following problem as an LP:

minimize t
subject to C ⊆ tP + x

t ≥ 0.

Here tP +x = {tu+x | u ∈ P}, the polyhedron P scaled by a factor of t about the origin,
and translated by x. The variables are t ∈ R and x ∈ Rn.

8.30 Interpolation with piecewise-arc curve. A sequence of points a1, . . . , an ∈ R2 is given. We
construct a curve that passes through these points, in order, and is an arc (i.e., part of a
circle) or line segment (which we think of as an arc of infinite radius) between consecutive
points. Many arcs connect ai and ai+1; we parameterize these arcs by giving the angle
θi ∈ (−π, π) between its tangent at ai and the line segment [ai, ai+1]. Thus, θi = 0 means
the arc between ai and ai+1 is in fact the line segment [ai, ai+1]; θi = π/2 means the arc
between ai and ai+1 is a half-circle (above the linear segment [a1, a2]); θi = −π/2 means
the arc between ai and ai+1 is a half-circle (below the linear segment [a1, a2]). This is
illustrated below.

ai ai+1

θi = 0

θi = π/4

θi = π/2

θi = 3π/4

Our curve is completely specified by the angles θ1, . . . , θn, which can be chosen in the
interval (−π, π). The choice of θi affects several properties of the curve, for example, its
total arc length L, or the joint angle discontinuities, which can be described as follows.

At each point ai, i = 2, . . . , n− 1, two arcs meet, one coming from the previous point and
one going to the next point. If the tangents to these arcs exactly oppose each other, so the
curve is differentiable at ai, we say there is no joint angle discontinuity at ai. In general,
we define the joint angle discontinuity at ai as |θi−1+θi+ψi|, where ψi is the angle between
the line segment [ai, ai+1] and the line segment [ai−1, ai], i.e., ψi = 6 (ai−ai+1, ai−1−ai).
This is shown below. Note that the angles ψi are known (since the ai are known).

θi−1

θi

ψi

ai−1

ai ai+1

We define the total joint angle discontinuity as

D =

n
∑

i=2

|θi−1 + θi + ψi|.

Formulate the problem of minimizing total arc length length L, and total joint angle
discontinuity D, as a bi-criterion convex optimization problem. Explain how you would
find the extreme points on the optimal trade-off curve.


