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6.4 Robust approximation

6.4.1 Stochastic robust approximation

We consider an approximation problem with basic objective ‖Ax−b‖, but also wish
to take into account some uncertainty or possible variation in the data matrix A.
(The same ideas can be extended to handle the case where there is uncertainty in
both A and b.) In this section we consider some statistical models for the variation
in A.

We assume that A is a random variable taking values in Rm×n, with mean Ā,
so we can describe A as

A = Ā + U,

where U is a random matrix with zero mean. Here, the constant matrix Ā gives
the average value of A, and U describes its statistical variation.

It is natural to use the expected value of ‖Ax − b‖ as the objective:

minimize E ‖Ax − b‖. (6.13)

We refer to this problem as the stochastic robust approximation problem. It is
always a convex optimization problem, but usually not tractable since in most
cases it is very difficult to evaluate the objective or its derivatives.

One simple case in which the stochastic robust approximation problem (6.13)
can be solved occurs when A assumes only a finite number of values, i.e.,

prob(A = Ai) = pi, i = 1, . . . , k,

where Ai ∈ Rm×n, 1T p = 1, p � 0. In this case the problem (6.13) has the form

minimize p1‖A1x − b‖ + · · · + pk‖Akx − b‖,

which is often called a sum-of-norms problem. It can be expressed as

minimize pT t

subject to ‖Aix − b‖ ≤ ti, i = 1, . . . , k,

where the variables are x ∈ Rn and t ∈ Rk. If the norm is the Euclidean norm,
this sum-of-norms problem is an SOCP. If the norm is the ℓ1- or ℓ∞-norm, the
sum-of-norms problem can be expressed as an LP; see exercise 6.8.

Some variations on the statistical robust approximation problem (6.13) are
tractable. As an example, consider the statistical robust least-squares problem

minimize E ‖Ax − b‖2
2,

where the norm is the Euclidean norm. We can express the objective as

E ‖Ax − b‖2

2 = E(Āx − b + Ux)T (Āx − b + Ux)

= (Āx − b)T (Āx − b) + ExT UT Ux

= ‖Āx − b‖2

2 + xT Px,



6.4 Robust approximation 319

where P = EUT U . Therefore the statistical robust approximation problem has
the form of a regularized least-squares problem

minimize ‖Āx − b‖2
2 + ‖P 1/2x‖2

2,

with solution
x = (ĀT Ā + P )−1ĀT b.

This makes perfect sense: when the matrix A is subject to variation, the vector
Ax will have more variation the larger x is, and Jensen’s inequality tells us that
variation in Ax will increase the average value of ‖Ax− b‖2. So we need to balance
making Āx − b small with the desire for a small x (to keep the variation in Ax

small), which is the essential idea of regularization.
This observation gives us another interpretation of the Tikhonov regularized

least-squares problem (6.10), as a robust least-squares problem, taking into account
possible variation in the matrix A. The solution of the Tikhonov regularized least-
squares problem (6.10) minimizes E ‖(A + U)x − b‖2, where Uij are zero mean,
uncorrelated random variables, with variance δ (and here, A is deterministic).

6.4.2 Worst-case robust approximation

It is also possible to model the variation in the matrix A using a set-based, worst-
case approach. We describe the uncertainty by a set of possible values for A:

A ∈ A ⊆ Rm×n,

which we assume is nonempty and bounded. We define the associated worst-case

error of a candidate approximate solution x ∈ Rn as

ewc(x) = sup{‖Ax − b‖ | A ∈ A},

which is always a convex function of x. The (worst-case) robust approximation

problem is to minimize the worst-case error:

minimize ewc(x) = sup{‖Ax − b‖ | A ∈ A}, (6.14)

where the variable is x, and the problem data are b and the set A. When A is the
singleton A = {A}, the robust approximation problem (6.14) reduces to the basic
norm approximation problem (6.1). The robust approximation problem is always
a convex optimization problem, but its tractability depends on the norm used and
the description of the uncertainty set A.

Example 6.5 Comparison of stochastic and worst-case robust approximation. To
illustrate the difference between the stochastic and worst-case formulations of the
robust approximation problem, we consider the least-squares problem

minimize ‖A(u)x − b‖2

2,

where u ∈ R is an uncertain parameter and A(u) = A0 + uA1. We consider a
specific instance of the problem, with A(u) ∈ R

20×10, ‖A0‖ = 10, ‖A1‖ = 1, and u
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Figure 6.15 The residual r(u) = ‖A(u)x − b‖2 as a function of the un-
certain parameter u for three approximate solutions x: (1) the nominal
least-squares solution xnom; (2) the solution of the stochastic robust approx-
imation problem xstoch (assuming u is uniformly distributed on [−1, 1]); and
(3) the solution of the worst-case robust approximation problem xwc, as-
suming the parameter u lies in the interval [−1, 1]. The nominal solution
achieves the smallest residual when u = 0, but gives much larger residuals
as u approaches −1 or 1. The worst-case solution has a larger residual when
u = 0, but its residuals do not rise much as the parameter u varies over the
interval [−1, 1].

in the interval [−1, 1]. (So, roughly speaking, the variation in the matrix A is around
±10%.)

We find three approximate solutions:

• Nominal optimal. The optimal solution xnom is found, assuming A(u) has its
nominal value A0.

• Stochastic robust approximation. We find xstoch, which minimizes E ‖A(u)x −
b‖2

2, assuming the parameter u is uniformly distributed on [−1, 1].

• Worst-case robust approximation. We find xwc, which minimizes

sup
−1≤u≤1

‖A(u)x − b‖2 = max{‖(A0 − A1)x − b‖2, ‖(A0 + A1)x − b‖2}.

For each of these three values of x, we plot the residual r(u) = ‖A(u)x − b‖2 as a
function of the uncertain parameter u, in figure 6.15. These plots show how sensitive
an approximate solution can be to variation in the parameter u. The nominal solu-
tion achieves the smallest residual when u = 0, but is quite sensitive to parameter
variation: it gives much larger residuals as u deviates from 0, and approaches −1 or
1. The worst-case solution has a larger residual when u = 0, but its residuals do not
rise much as u varies over the interval [−1, 1]. The stochastic robust approximate
solution is in between.
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The robust approximation problem (6.14) arises in many contexts and applica-
tions. In an estimation setting, the set A gives our uncertainty in the linear relation
between the vector to be estimated and our measurement vector. Sometimes the
noise term v in the model y = Ax + v is called additive noise or additive error,
since it is added to the ‘ideal’ measurement Ax. In contrast, the variation in A is
called multiplicative error, since it multiplies the variable x.

In an optimal design setting, the variation can represent uncertainty (arising in
manufacture, say) of the linear equations that relate the design variables x to the
results vector Ax. The robust approximation problem (6.14) is then interpreted as
the robust design problem: find design variables x that minimize the worst possible
mismatch between Ax and b, over all possible values of A.

Finite set

Here we have A = {A1, . . . , Ak}, and the robust approximation problem is

minimize maxi=1,...,k ‖Aix − b‖.

This problem is equivalent to the robust approximation problem with the polyhe-
dral set A = conv{A1, . . . , Ak}:

minimize sup {‖Ax − b‖ | A ∈ conv{A1, . . . , Ak}} .

We can cast the problem in epigraph form as

minimize t

subject to ‖Aix − b‖ ≤ t, i = 1, . . . , k,

which can be solved in a variety of ways, depending on the norm used. If the norm
is the Euclidean norm, this is an SOCP. If the norm is the ℓ1- or ℓ∞-norm, we can
express it as an LP.

Norm bound error

Here the uncertainty set A is a norm ball, A = {Ā + U | ‖U‖ ≤ a}, where ‖ · ‖ is a
norm on Rm×n. In this case we have

ewc(x) = sup{‖Āx − b + Ux‖ | ‖U‖ ≤ a},

which must be carefully interpreted since the first norm appearing is on Rm (and
is used to measure the size of the residual) and the second one appearing is on
Rm×n (used to define the norm ball A).

This expression for ewc(x) can be simplified in several cases. As an example,
let us take the Euclidean norm on Rn and the associated induced norm on Rm×n,
i.e., the maximum singular value. If Āx − b 6= 0 and x 6= 0, the supremum in the
expression for ewc(x) is attained for U = auvT , with

u =
Āx − b

‖Āx − b‖2

, v =
x

‖x‖2

,

and the resulting worst-case error is

ewc(x) = ‖Āx − b‖2 + a‖x‖2.
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(It is easily verified that this expression is also valid if x or Āx − b is zero.) The
robust approximation problem (6.14) then becomes

minimize ‖Āx − b‖2 + a‖x‖2,

which is a regularized norm problem, solvable as the SOCP

minimize t1 + at2
subject to ‖Āx − b‖2 ≤ t1, ‖x‖2 ≤ t2.

Since the solution of this problem is the same as the solution of the regularized
least-squares problem

minimize ‖Āx − b‖2
2 + δ‖x‖2

2

for some value of the regularization parameter δ, we have another interpretation of
the regularized least-squares problem as a worst-case robust approximation prob-
lem.

Uncertainty ellipsoids

We can also describe the variation in A by giving an ellipsoid of possible values for
each row:

A = {[a1 · · · am]T | ai ∈ Ei, i = 1, . . . ,m},

where
Ei = {āi + Piu | ‖u‖2 ≤ 1}.

The matrix Pi ∈ Rn×n describes the variation in ai. We allow Pi to have a nontriv-
ial nullspace, in order to model the situation when the variation in ai is restricted
to a subspace. As an extreme case, we take Pi = 0 if there is no uncertainty in ai.

With this ellipsoidal uncertainty description, we can give an explicit expression
for the worst-case magnitude of each residual:

sup
ai∈Ei

|aT
i x − bi| = sup{|āT

i x − bi + (Piu)T x| | ‖u‖2 ≤ 1}

= |āT
i x − bi| + ‖PT

i x‖2.

Using this result we can solve several robust approximation problems. For
example, the robust ℓ2-norm approximation problem

minimize ewc(x) = sup{‖Ax − b‖2 | ai ∈ Ei, i = 1, . . . ,m}

can be reduced to an SOCP, as follows. An explicit expression for the worst-case
error is given by

ewc(x) =

(

m
∑

i=1

(

sup
ai∈Ei

|aT
i x − bi|

)2
)1/2

=

(

m
∑

i=1

(|āT
i x − bi| + ‖PT

i x‖2)
2

)1/2

.

To minimize ewc(x) we can solve

minimize ‖t‖2

subject to |āT
i x − bi| + ‖PT

i x‖2 ≤ ti, i = 1, . . . ,m,
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where we introduced new variables t1, . . . , tm. This problem can be formulated as

minimize ‖t‖2

subject to āT
i x − bi + ‖PT

i x‖2 ≤ ti, i = 1, . . . ,m
−āT

i x + bi + ‖PT
i x‖2 ≤ ti, i = 1, . . . ,m,

which becomes an SOCP when put in epigraph form.

Norm bounded error with linear structure

As a generalization of the norm bound description A = {Ā+U | ‖U‖ ≤ a}, we can
define A as the image of a norm ball under an affine transformation:

A = {Ā + u1A1 + u2A2 + · · · + upAp | ‖u‖ ≤ 1},

where ‖ · ‖ is a norm on Rp, and the p + 1 matrices Ā, A1, . . . , Ap ∈ Rm×n are
given. The worst-case error can be expressed as

ewc(x) = sup
‖u‖≤1

‖(Ā + u1A1 + · · · + upAp)x − b‖

= sup
‖u‖≤1

‖P (x)u + q(x)‖,

where P and q are defined as

P (x) =
[

A1x A2x · · · Apx
]

∈ Rm×p, q(x) = Āx − b ∈ Rm.

As a first example, we consider the robust Chebyshev approximation problem

minimize ewc(x) = sup‖u‖∞≤1 ‖(Ā + u1A1 + · · · + upAp)x − b‖∞.

In this case we can derive an explicit expression for the worst-case error. Let pi(x)T

denote the ith row of P (x). We have

ewc(x) = sup
‖u‖∞≤1

‖P (x)u + q(x)‖∞

= max
i=1,...,m

sup
‖u‖∞≤1

|pi(x)T u + qi(x)|

= max
i=1,...,m

(‖pi(x)‖1 + |qi(x)|).

The robust Chebyshev approximation problem can therefore be cast as an LP

minimize t

subject to −y0 � Āx − b � y0

−yk � Akx � yk, k = 1, . . . , p
y0 +

∑p
k=1

yk � t1,

with variables x ∈ Rn, yk ∈ Rm, t ∈ R.
As another example, we consider the robust least-squares problem

minimize ewc(x) = sup‖u‖2≤1 ‖(Ā + u1A1 + · · · + upAp)x − b‖2.
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Here we use Lagrange duality to evaluate ewc. The worst-case error ewc(x) is the
squareroot of the optimal value of the (nonconvex) quadratic optimization problem

maximize ‖P (x)u + q(x)‖2
2

subject to uT u ≤ 1,

with u as variable. The Lagrange dual of this problem can be expressed as the
SDP

minimize t + λ

subject to





I P (x) q(x)
P (x)T λI 0
q(x)T 0 t



 � 0
(6.15)

with variables t, λ ∈ R. Moreover, as mentioned in §5.2 and §B.1 (and proved
in §B.4), strong duality holds for this pair of primal and dual problems. In other
words, for fixed x, we can compute ewc(x)2 by solving the SDP (6.15) with variables
t and λ. Optimizing jointly over t, λ, and x is equivalent to minimizing ewc(x)2.
We conclude that the robust least-squares problem is equivalent to the SDP (6.15)
with x, λ, t as variables.

Example 6.6 Comparison of worst-case robust, Tikhonov regularized, and nominal

least-squares solutions. We consider an instance of the robust approximation problem

minimize sup‖u‖2≤1
‖(Ā + u1A1 + u2A2)x − b‖2, (6.16)

with dimensions m = 50, n = 20. The matrix Ā has norm 10, and the two matrices
A1 and A2 have norm 1, so the variation in the matrix A is, roughly speaking, around
10%. The uncertainty parameters u1 and u2 lie in the unit disk in R

2.

We compute the optimal solution of the robust least-squares problem (6.16) xrls, as
well as the solution of the nominal least-squares problem xls (i.e., assuming u = 0),
and also the Tikhonov regularized solution xtik, with δ = 1.

To illustrate the sensitivity of each of these approximate solutions to the parameter
u, we generate 105 parameter vectors, uniformly distributed on the unit disk, and
evaluate the residual

‖(A0 + u1A1 + u2A2)x − b‖2

for each parameter value. The distributions of the residuals are shown in figure 6.16.

We can make several observations. First, the residuals of the nominal least-squares
solution are widely spread, from a smallest value around 0.52 to a largest value
around 4.9. In particular, the least-squares solution is very sensitive to parameter
variation. In contrast, both the robust least-squares and Tikhonov regularized so-
lutions exhibit far smaller variation in residual as the uncertainty parameter varies
over the unit disk. The robust least-squares solution, for example, achieves a residual
between 2.0 and 2.6 for all parameters in the unit disk.

6.5 Function fitting and interpolation

In function fitting problems, we select a member of a finite-dimensional subspace
of functions that best fits some given data or requirements. For simplicity we


