Convex Optimization — Boyd & Vandenberghe

2. Convex sets

affine and convex sets

some important examples

operations that preserve convexity
generalized inequalities

separating and supporting hyperplanes

dual cones and generalized inequalities



Affine set

line through x1, z5: all points

r=0x+ (1—0)xs (0 € R)

affine set: contains the line through any two distinct points in the set

example: solution set of linear equations {x | Az = b}

(conversely, every affine set can be expressed as solution set of system of
linear equations)
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Convex set

line segment between x; and x5: all points
r=0x1+ (1—0)x
with 0 <6 <1
convex set: contains line segment between any two points in the set
r1, 1€ C, 0<0<1 = Or;1+(1—-0)x€C

examples (one convex, two nonconvex sets)
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Convex combination and convex hull

convex combination of x4,. . ., xx: any point z of the form
r = 0121 + Oz + - - - + Oy,

with 61 +---+0,=1,0, >0

convex hull conv §: set of all convex combinations of points in S
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Convex cone

conic (nonnegative) combination of x; and x5: any point of the form
r = 01.7;1 + 92$2

with 81 >0, 65 > 0

L1

oy,

convex cone: set that contains all conic combinations of points in the set
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Hyperplanes and halfspaces

hyperplane: set of the form {z | a2z = b} (a # 0)

Lo

e «a Is the normal vector

e hyperplanes are affine and convex; halfspaces are convex
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Euclidean balls and ellipsoids

(Euclidean) ball with center x. and radius 7:

B(we,r) = {2 | |z = xcll2 < 7p = @e +ru | [lull2 < 1}

ellipsoid: set of the form
{z](@—z)' PNz —a2) <1}

with P € S, (¢.e., P symmetric positive definite)

other representation: {x.+ Au | ||u||2 < 1} with A square and nonsingular

Convex sets 2-7



Norm balls and norm cones

norm: a function || - || that satisfies

o |[z|| >0; ||x]| =0if and only if x =0

o |tx|| =|t|||z| fort € R

o llz+yl < llzll + vl

notation: || - || is general (unspecified) norm; || - ||symb IS particular norm

norm ball with center z. and radius r: {z | ||z — x.|| < r}

norm cone: {(z,t) | ||z] < t}

Euclidean norm cone is called second-
order cone

norm balls and cones are convex
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Polyhedra

solution set of finitely many linear inequalities and equalities

Ax < b, Cx=d

(A e R™" C e RP" < is componentwise inequality)

a ao

as
as
a4

polyhedron is intersection of finite number of halfspaces and hyperplanes
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Positive semidefinite cone

notation:

e S” is set of symmetric n X n matrices

o ST ={X €S"| X = 0}: positive semidefinite n x n matrices
XeS! = 21Xz >0 for all 2

Sfﬁ IS a convex cone

o ST, ={X €S"| X > 0}: positive definite n x n matrices
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Operations that preserve convexity

practical methods for establishing convexity of a set C
1. apply definition

r1,12€C, 0<0<1 = Or;1+(1—-0)xx€C

2. show that C' is obtained from simple convex sets (hyperplanes,
halfspaces, norm balls, . . . ) by operations that preserve convexity

e intersection

e affine functions

e perspective function

e linear-fractional functions
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Intersection

the intersection of (any number of) convex sets is convex

example:
S={xeR™||p(t)| <1forlt| <n/3}

where p(t) = x1cost 4+ xocos2t + - - - + x,y, cos mt

for m = 2:

p(t)
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Affine function

suppose f : R"™ — R is affine (f(x) = Az + b with A € R™*", b € R™)

e the image of a convex set under f is convex

S CR" convex — f(S)={f(x)|x €S} convex

e the inverse image f~!(C) of a convex set under f is convex

C CR™convex = [ 1C)={xcR"| f(x) € C} convex

examples

e scaling, translation, projection

e solution set of linear matrix inequality {z | z141 + --- + Ay <X B}
(with A;, B € SP)

e hyperbolic cone {z | ' Pz < (¢'x)?, ¢'z >0} (with P € S7)

Convex sets 2-13



Perspective and linear-fractional function

n

perspective function P : R"™! — R™:
P(z,t) = x/t, dom P = {(z,t) |t > 0}

images and inverse images of convex sets under perspective are convex

linear-fractional function f : R" — R™:

B Ax + b

—m, domf:{xlcT:U—l—d>O}

f(z)

images and inverse images of convex sets under linear-fractional functions
are convex
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example of a linear-fractional function

1
fla) = x
r1+x9+1
1 1
& 0. g 0
1 1 ‘
—1 0 1 —1 0 1
I X1
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Generalized inequalities

a convex cone K C R" is a proper cone if

e K is closed (contains its boundary)
e K is solid (has nonempty interior)

e K is pointed (contains no line)

examples
e nonnegative orthant K =R} ={x ¢ R" | 2; > 0,i=1,...,n}
e positive semidefinite cone K = S’}

e nonnegative polynomials on [0, 1]:

K={zcR"|2z1+aat+a3t>+ -+ 2,t" 1 >0fortel0,1]}
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generalized inequality defined by a proper cone K:
rky <— y—ze€k, rT<KgYy <<— yYy—xecintk
examples
e componentwise inequality (K = RY)
ijf’;y — z; ]y, 1=1,...,n
e matrix inequality (K = S)
X 551 Y <« Y — X positive semidefinite

these two types are so common that we drop the subscript in <g

properties: many properties of <x are similar to < on R, e.g.,

rKkY, UKV — TH+UKY+V
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Minimum and minimal elements

<K is not in general a linear ordering: we can have x A y and y A x

x € S is the minimum element of S with respect to <g if

example (K = R?)

1 1S the minimum element of S
o 1S @ minimal element of S5 1
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Separating hyperplane theorem

if C' and D are disjoint convex sets, then there exists a # 0, b such that

alz <bforxeC, alx>bforze D

the hyperplane {z | al'z = b} separates C' and D

strict separation requires additional assumptions (e.g., C'is closed, D is a
singleton)
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Supporting hyperplane theorem

supporting hyperplane to set C' at boundary point xg:
{z|a'z =alzy}

where a # 0 and a’z < a’'zq for all z € C

supporting hyperplane theorem: if (' is convex, then there exists a
supporting hyperplane at every boundary point of C
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Dual cones and generalized inequalities
dual cone of a cone K:
K*={y|y'z>0forall x € K}

examples

o K =R}: K*=R]

o K =S1: K*=S%

o K ={(z,0) | [lzfl2 <t} K* = {(2,8) | ||lzll2 <t}
o K ={(z,0)|[lz]1 <t} K* = {(z,0) | |z]loc <1}

first three examples are self-dual cones

dual cones of proper cones are proper, hence define generalized inequalities:

yr-gx0 <= yTa:ZOforallszO
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Minimum and minimal elements via dual inequalities

minimum element w.r.t. <g

2 1s minimum element of S iff for all
A =g+ 0, x is the unique minimizer
of Mz over S

minimal element w.r.t. <g

e if £ minimizes A\’ z over S for some )\ =+ 0, then x is minimal
A1

I

T2

e if £ is a minimal element of a convex set S, then there exists a nonzero
A\ =+ 0 such that = minimizes ATz over S
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optimal production frontier

e different production methods use different amounts of resources x € R"
e production set P: resource vectors x for all possible production methods

o efficient (Pareto optimal) methods correspond to resource vectors x
that are minimal w.r.t. R’

fuel

example (n = 2)

xr1, Ta, T3 are efficient; x4, x5 are not P

To L5 T4

I3
labor
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